文档视界 最新最全的文档下载
当前位置:文档视界 › 轴向拉伸与压缩的应力及强度计算条件.

轴向拉伸与压缩的应力及强度计算条件.

轴向拉伸与压缩的应力及强度计算条件.
轴向拉伸与压缩的应力及强度计算条件.

《机械设计基础》课程单元教学设计

单元标题:轴向拉伸与压缩的应力

及强度计算条件

单元教学学时 2

在整体设计中的位置第10次

授课班级上课地点

教学目标

能力目标知识目标素质目标

1.能求轴向拉伸与压缩横截面

上应力;

2.能利用胡克定律求变形。

3.能利用强度计算条件解决三

类问题

1.理解应力的概念;

2.掌握拉压杆正应力计

算;

3.理解应变的概念;

4.掌握胡克定律的第一

第二表达式;

5.掌握强度计算条件

1.培养学生热爱本专业、爱

学、会学的思想意识。

2.培养学生应用理论知识分

析和解决实际问题的能力;

3.培养学生的团队合作意

识;

4.培养学生仔细、认真、严

谨的工作态度。

能力训

练任务及案例任务1:计算拉压杆的应力;任务2:计算拉压杆的变形;

教学材料1.教材;

2.使用多媒体辅助教学。

单元教学进度

步骤教学内容教学方法学生活动工具

手段

时间

分配

1复习、导

入复习:拉压杆的受力变形特点、截面法求轴

力直接法求轴力

导入:在求轴力时,我们已经知道轴力的大

小不能代表一个杆件的受力强弱,那谁能代

表呢?

提问

讲授

讨论

回答

黑板

课件

视频

5

分钟

2提出任务如图(a)所示的三角形托架,P=75kN,AB杆

为圆形截面钢杆,其[σ1]=160MPa;BC杆为

正方形截面木杆,其[σ2]=10MPa,试确定

AB杆的直径d和BC杆的边长a。

情景教

问题探究

问题引领

听讲

思考

板、

ppt

5

分钟

一.应力

应力:内力在截面上某点处的分布集

度,称为该点的应力。

在拉(压)杆横截面上,与轴力N相对

应的是正应力,一般用σ表示。

N

A

σ=

案例应用1:

一变截面圆钢杆ABCD如图5-6(a)所

示,已知F1=20kN,F2=35kN,F3=35kN,

d1=12mm,d2=16mm,d3=24mm。试求:

(1)各截面上的轴力,并作轴力图。

(2)杆的最大正应力。

15分

3讲授新知二.拉压杆的变形

纵向伸长量1

l l l

?=-

纵向线应变

l

l

ε

?

=

胡克定律(1)

Nl

l

EA

?=

(2)E

σε

=

横向变形为1

b b b

?=-

横向线应变为

b

b

ε

?

'=

当正应力不超过材料的比例极限时,横

向线应变ε'与纵向线应变ε成正比,但符号

相反,即

εμε

'=-

μ为杆的横向线应变与纵向线应变代

数值之比,称为泊松比或横向变形系数

一.极限应力许用应力安全因数

1.极限应力(σu):材料失效时的应力。

塑性材料的极限应力是屈服极限(σs);

脆性材料的极限应力是强度极限(σb)。

2.许用应力[σ]:保证构件安全工作,材

料许可承担的最大应力。

其中:n---安全系数

3.安全因数:为保证构件具有一定安全贮

备而选取的一个大于1的系数。

4.选取安全系数时应考虑:计算精度、材

质、工作环境、构件的重要性、其它意外因

5.对塑性材料一般取:n=1.3~2.0 对

脆性材料一般取:n=2.0~3.5

二.拉压杆的强度条件

1、强度条件:

讲授法

启发式

问题探究

讨论法

分数

激励

听讲

讨论

回答

板、

ppt

20分

其中:[σ]---许用正应力

三.强度计算

1.强度校核

校核

是否成立

2.截面设计

3.确定许可荷载20分钟

4任务分析

分析杆的受力,制定解题方案——利用

平面汇交力系的平衡条件,先求未知力,然

后利用强度计算条件设计出尺寸。

启发、诱

讨论 5

分钟

5任务实施

小组讨论、确定实施步骤,个体完成

计算。请部分同学到黑板上完成。

启发、诱

导、个别

指导

操作

黑板

纸本

10

分钟

6点评1.知识的掌握情况;

2.方案实施的情况;

引导、归

展示、汇

报、听讲

听讲

记录

5

分钟

7效果评价

对整个单元的知识学习与实际操练的

各个环节进行评价,填写过程考核评价表

教师评价

学生评价

总结归纳

记录

评价

3

分钟

8布置作业课后习题、预习

2

分钟

课后体会

各种许用应力与抗拉强度、屈服强度的关系

各种许用应力与抗拉强度、屈服强度的关系 我们在设计的时候常取许用剪切应力,在不同的情况下安全系数不同,许用剪切应力就不一样。校核各种许用应力常常与许用拉应力有联系,而许用材料的屈服强度(刚度)与各种应力关系如下: <一> 许用(拉伸)应力 钢材的许用拉应力[δ]与抗拉强度极限、屈服强度极限的关系: 1.对于塑性材料[δ]= δs /n 2.对于脆性材料[δ]= δb /n δb ---抗拉强度极限 δs ---屈服强度极限 n---安全系数 轧、锻件n=1.2-2.2 起重机械n=1.7 人力钢丝绳n=4.5 土建工程n=1.5 载人用的钢丝n=9 螺纹连接n=1.2-1.7 铸件n=1.6-2.5 一般钢材n=1.6-2.5 注:脆性材料:如淬硬的工具钢、陶瓷等。 塑性材料:如低碳钢、非淬硬中炭钢、退火球墨铸铁、铜和铝等。 <二> 剪切 许用剪应力与许用拉应力的关系: 1.对于塑性材料[τ]=0.6-0.8[δ] 2.对于脆性材料[τ]=0.8-1.0[δ] <三> 挤压 许用挤压应力与许用拉应力的关系 1.对于塑性材料[δj]=1.5- 2.5[δ]

2.对于脆性材料[δj]=0.9-1.5[δ] 注:[δj]=1.7-2[δ](部分教科书常用) <四> 扭转 许用扭转应力与许用拉应力的关系: 1.对于塑性材料[δn]=0.5-0.6[δ] 2.对于脆性材料[δn]=0.8-1.0[δ] 轴的扭转变形用每米长的扭转角来衡量。对于一般传动可取[φ]=0.5°--1°/m;对于精密件,可取[φ]=0.25°-0.5°/m;对于要求不严格的轴,可取[φ]大于1°/m计算。 <五> 弯曲 许用弯曲应力与许用拉应力的关系: 1.对于薄壁型钢一般采取用轴向拉伸应力的许用值 2.对于实心型钢可以略高一点,具体数值可参见有关规范。

轴向拉伸与压缩

第七章 轴向拉伸和压缩 一、内容提要 轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。 (一)、基本概念 1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。这里要注意产生内力的前提条件是构件受到外力的作用。 2. 轴力 轴向拉(压)时,杆件横截面上的内力。它通过截面形心,与横截面相垂直。拉力为正,压力为负。 3. 应力 截面上任一点处的分布内力集度称为该点的应力。与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。轴拉(压)杆横截面上只有正应力。 4. 应变 单位尺寸上构件的变形量。 5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。 6. 极限应力 材料固有的能承受应力的上限,用σ0表示。 7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。极限应力与许用应力的比值称为安全系数。 8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。 (二)、基本计算 1. 轴向拉(压)杆的轴力计算 求轴力的基本方法是截面法。用截面法求轴力的三个步骤:截开、代替和平衡。 求出轴力后要能准确地画出杆件的轴力图。 画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。 2. 轴向拉(压)杆横截面上应力的计算 任一截面的应力计算公式 A F N =σ 等直杆的最大应力计算公式 A F max N max = σ 3. 轴向拉(压)杆的变形计算 虎克定律 A E l F l N = ?εσE =或 虎克定律的适用范围为弹性范围。 泊松比 εε=μ' 4. 轴向拉(压)杆的强度计算 强度条件 塑性材料: σma x ≤[σ] 脆性材料: σt ma x ≤[σt ] σ c ma x ≤[σc ] 强度条件在工程中的三类应用

抗拉强度与屈服强度区别

钢筋抗拉强度标准值和屈服强度的标准值有什么区别 普通钢筋的抗拉强度设计值?y是普通钢筋强度标准值(屈服强度标准值)除以材料分项系数γs。钢筋的强度标准值应具有不小于95%的保证率。钢筋屈服强度特征值是在无限多次检验中,与某一规定概率所对应的分位值。屈服强度的标准值?yk相当于钢筋标准中的屈服强度特征值ReL。 如表4.2.3-1中抗拉强度设计值?y及抗压强度设计值?ˊy是由表4.2.2-1中屈服强度标准值?yk除以材料分项系数γs所得: HPB300的270(N/mm2),是300÷1.10=272.7=270(N/mm2); HRB335的300(N/mm2),是335÷1.10=304.5=300(N/mm2); HRB400的360(N/mm2),是400÷1.10=363.6=360(N/mm2); HRB500的435(N/mm2),是500÷1.15=434.7=435(N/mm2)。 设计是根据钢产品标准的修改,不再限制钢筋材料的化学成分和制作工艺,而按性能确定钢筋的牌号和强度级别,并以相应的符号表达。普通钢筋采用屈服强度标志。增列了钢筋极限强度(即钢筋拉断前相于最大拉力下的强度)的标准值?stk,相当于钢筋标准中的抗拉强度特征值Rm。 钢筋的强度设计值为其强度标准值除以材料分项系数γs的数值。延性较好的热轧钢筋γs取1.10。但对新列入的高强度500MPa级钢筋适当提高安全储备,取为1.15。 向左转|向右转 向左转|向右转

参考资料:《混凝土结构设计规范》GB50010-2010和《钢筋混凝土用钢第1部 分热轧光圆钢筋》GB1499.1-2008和《钢筋混凝土用钢第2部分热轧带肋钢筋》 GB1499.2-2007 钢筋抗拉强度、抗拉强度标准值、设计值区别,帮解释下 以HRB335为例,抗拉强度为455,标准值为355,设计值为300,为什么抗拉强度标准值和抗拉强度怎么不一样,还有,为什么屈服强度等于抗拉强度标准值? 答:钢筋在受到外力作用下会产生变形,变形过程分为弹性阶段、屈服阶段、强化阶段和颈缩阶段。在屈服阶段之前,如果卸去外力,还可以恢复到以前状态(物理变化),标准值说的就是下屈服值(例:HRB335钢筋屈服点为335Mpa。抗拉强度为最大力强度,即为455Mpa.)一般设计时都采用屈服强度为设计值,所以设计值远远小于抗拉强度,就是考虑到钢筋在收到外力作用下的变形,(即:在达到屈服强度还可以回复原来状态)。

第二章轴向拉伸与压缩练习题

第二章 轴向拉伸与压缩练习题 一.单项选择题 1、在轴向拉伸或压缩杆件上正应力为零的截面是( ) A 、横截面 B 、与轴线成一定交角的斜截面 C 、沿轴线的截面 D 、不存在的 2、一圆杆受拉,在其弹性变形范围内,将直径增加一倍,则杆的相对变形将变为原来的( )倍。 A 、41; B 、21 ; C 、1; D 、2 3、由两杆铰接而成的三角架(如图所示),杆的横截面面积为A ,弹性模量为E ,当在节点C 处受到铅垂载荷P 作用时,铅垂杆AC 和斜杆BC 的变形应分别为( ) A 、EA Pl ,EA Pl 34; B 、0, EA Pl ; C 、EA Pl 2,EA Pl 3 D 、EA Pl ,0 4、几何尺寸相同的两根杆件,其弹性模量分别为E1=180Gpa,E2=60 Gpa,在弹性变形的范围内两者的轴力相同,这时产生的应变的比值21 εε 应力为( ) A 、31 B 、1; C 、2; D 、3 5、所有脆性材料,它与塑性材料相比,其拉伸力学性能的最大特点是( )。 A 、强度低,对应力集中不敏感; B 、相同拉力作用下变形小; C 、断裂前几乎没有塑性变形; D 、应力-应变关系严格遵循胡克定律 6、构件具有足够的抵抗破坏的能力,我们就说构件具有足够的( ) A 、刚度, B 、稳定性, C 、硬度, D 、强度。 7、构件具有足够的抵抗变形的能力,我们就说构件具有足够的( ) A 、强度, B 、稳定性, C 、刚度, D 、硬度。 8、单位面积上的内力称之为( ) A 、正应力, B 、应力, C 、拉应力, D 、压应力。

9、与截面垂直的应力称之为( ) A、正应力, B、拉应力, C、压应力, D、切应力。 10、轴向拉伸和压缩时,杆件横截面上产生的应力为( ) A、正应力, B、拉应力, C、压应力, D、切应力。 二、填空题 1、杆件轴向拉伸或压缩时,其受力特点是:作用于杆件外力的合力的作用线与杆件轴线相________。 2、轴向拉伸或压缩杆件的轴力垂直于杆件横截面,并通过截面________。 3、杆件轴向拉伸或压缩时,其横截面上的正应力是________分布的。 4、胡克定律的应力适用范围若更精确地讲则就是应力不超过材料的________极限。 5、杆件的弹必模量E表征了杆件材料抵抗弹性变形的能力,这说明杆件材料的弹性模量E值越大,其变形就越________。 6、在国际单位制中,弹性模量E的单位为________。 7、在应力不超过材料比例极限的范围内,若杆的抗拉(或抗压)刚度越________,则变形就越小。 8、为了保证构件安全,可靠地工作在工程设计时通常把________应力作为构件实际工作应力的最高限度。 9、安全系数取值大于1的目的是为了使工程构件具有足够的________储备。 10、设计构件时,若片面地强调安全而采用过大的________,则不仅浪费材料而且会使所设计的结构物笨重。 11、正方形截而的低碳钢直拉杆,其轴向向拉力3600N,若许用应力为100Mpa,由此拉杆横截面边长至少应为________mm。 12、轴力是指通过横截面形心垂直于横截面作用的内力,而求轴力的基本方法是_______________。 13、在低碳钢拉伸曲线中,其变形破坏全过程可分为______个变形阶段,它们依次

抗拉强度_延伸率_屈服强度

问题:什么是抗拉强度,延伸率,屈服强度? 球铁管是一种即有高强度和高弹性的输水管道,球铁管优秀的力学性能是它在种类繁多的输水管材中立于不败之地的保证,因而我们有必要对描述球铁管的各种力学性能做一番介绍: 1. 延伸率 延伸率主要衡量球墨铸铁塑性性能-即发生永久变形而不至于断裂的性能。 δ= (L-L 0)/L 0*100% δ---伸长率 L 0----试样原长度 L----试样受拉伸断裂后的长度 2. 强度 强度是金属材料在外力作用下抵抗永久变形和断裂的能力。工程上常用来表示金属材料强度的指标有屈服强度和抗拉强度。 a. 屈服强度是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。 δS =Fs/A O Fs----试样产生屈服现象时所承受的最大外力(N ) A O ----试样原来的截面积(mm 2) δS ---屈服强度(Mpa) b. 抗拉强度是指金属材料在拉断前所能承受的最大应力,用δb =F O /A O F O ----试样在断裂前的最大外力(N ) A O ----试样原来的截面积(mm 2) δb ---抗拉强度(Mpa ) Table:三种不同材料之间的机械性能对比 对于球墨铸铁管而言,其试样实际就是取自插口处试样加工过后的试棒;对球墨铸铁管件而言,其试样通常是取自与管件同批的铁水铸出的Y 型试块加工成的试棒。 管材和管件的抗拉强度实验,就是用试棒拉断前的最大持续力除以试棒面积计算得出的抗拉强度。把试棒断裂的两部分拼在一起测量伸长的标距,用伸长标距与初始标距之比求得伸长率。 不同的管材之间因为力学性能实验方法有别,所以某些管材宣传他们的力学性能甚至优于铸铁管是毫无根据的。 退火球墨铸铁 铸态球墨铸铁管 灰口铁管 屈服强度 ≥300MPa 未定义 未定义 抗拉强度 ≥420MPa ≤300MPa ≥200 MPa 延伸率 ≥10% ≥3% ≤3% 断裂形式 塑性变形 突然断裂 突然断裂

土体应力及压缩计算(习题)

土体应力及压缩计算 一、概念 压缩模量\附加应力\基底压力\固结沉降\角点法\ 平均固结度 二、简答题 1. 自重应力与附加应力各自在地基中的分布特点。 2. 超固结比指的是什么?根据超固结比,将土可分为哪三种固结状态。 3. 侧限渗压模型有效应力与孔隙水压力随时间的转换过程 4.分层总和法计算地基沉降量的基本原理与步骤。 5. 土的压缩性指标有哪些? 6.写出一维渗透固结微分方程的求解条件 7.土体中地下水向上或向下渗流时,相对于静止水位而言,孔隙水压力与有效应力是如何变化的。 8.修建建筑物后,由建筑物荷重对基底所增加的那部分压力,称为什么?其与基底压力之间的有什么样的关系? 三、计算题 1. 均布竖直荷载p 作用于图中的阴影部分(见图1),用角点法写出A 点以下某深度处σz 的表达式。 2.如图2示为均布竖直荷载p 作用的面积,用角点法写出A 点下某深度处 z 的表达式。 一、概念 压缩模量是指土体在侧限条件下的竖向附加应力与相应的竖向应变之比 附加应力是由于修建建筑物之后再地基内新增加的应力,它是使地基发生变形从而引起建筑物沉降的主要原因。 图1 图2

固结沉降:饱和或接近饱和的粘性土在基础荷载的作用下,随着超静孔隙水压力的消散,土骨架产生变形所造成的沉降。 基底压力:基础底面传递给地基表面的压力,也称基底接触压力。 角点法的实质是利用角点下的应力计算公式和应力叠加原理推求地基中任意点的附加应力的方法,称为角点法。 平均固结度是时间因数Tv的单值函数,它与所加的附加应力的大小无关,但与附加应力的分布形式有关。 二、简答题 1、自重应力与附加应力各自在地基中的分布特点。 自重应力:自重应力分布线的斜率是重度; 自重应力在等重度地基中随深度呈直线分布; 自重应力在成层地基中呈折线分布; 在土层分界面处和地下水位处发生转折; 有不透水层界面处有突变。 附加应力:集中力作用线上附加应力最大, 向两侧逐渐减小; 同一竖直线上附加应力随深度而变化; 竖向集中力作用引起的附加应力向深部和四周传播,并逐渐衰减(应力扩散。2、土体的先期固结压力与其现有作用压力的比值称为土的超固结比一般用OCR表示 OCR=1.0 正常固结土 OCR>1.0 超固结土 OCR<1.0 欠固结土 3、侧限渗压模型有效应力与孔隙水压力均是时间的函数: 当t=0时,超孔隙水压力u=σ,而有效应力σ′=0,总应力全部由水承担。当t>0时,σ′>0,u>0,u+σ′=σ,总应力由土骨架和水共同承担。 当t=∞时,σ′=σ,u=0,总应力全部由土骨架承担。 4、1.地基土分层。成层土的层面和地下水面试当然的分层界面。此外,粉层厚度一般不大于0.4b. 2.计算各分层界面处土的自重应力,从天然地面起算,地下水位以下取有 效重度 3.计算各分层界面处基底中心下竖向附加应力 4.确定地基沉降计算深度。一般取地基附加应力等于自重应力的20% 5.计算各分层图的压缩量△si,利用室内压缩试验成果进行计算 =ai(p2i-p1i)/(1+e1i)Hi

工程力学-轴向拉伸与压缩

第6章轴向拉伸与压缩 6.1 轴向拉伸与压缩的概念 受力特征:杆端作用两个力,大小相等、方向相反、外力的作用线与轴线重合。 变形特征:轴向伸长或缩短 6.2 轴向拉伸与压缩时的内力 6.2.1 内力截面法轴力 1.内力【理解】 内力:由外力作用引起的、物体内部相邻部分之间分布内力系的合成。(因抵抗变形所引起的内力的变化量,只与外力有关) 内力有四种形式: (1)沿轴线方向,称为轴力,用N表示; (2)沿横截面切向,称为剪力,用V表示; (3)绕轴线方向转动,称为扭矩,用T表示; (4)绕切面方向力偶,称为弯矩,用M表示。 2.截面法【掌握】 ——假想地用一个截面将构件截开,从而揭示内力并确定内力的方法。 利用截面法求内力的四字口诀是: 截(切)、弃(抛)、代、平。 一切:在求内力的截面处,假想把构件切为两部分; 二弃:弃去一部分,留下一部分作为研究对象。 三代:用内力代替弃去部分对保留部分的作用力。 四平:研究的保留部分在外力和内力的共同作用下也应平衡,建立平衡方程,由已知外力求出各内力分量。 3.轴力【掌握】 定义:轴向拉压杆的内力称为轴力。其作用线与杆的轴线重合,用符号N 表示。 符号:轴力方向离开截面为正,反之为负,即:拉伸为正,压缩为负。 单位:N,kN 计算轴力的法则:任意横截面的内力(轴力)等于截面一侧所有外力的代数和。 6.2.2 轴力图 以一定的比例尺,用平行于轴线的坐标表示横截面的位置,垂直于杆轴线的坐标表示横截面上轴力的数值,以此表示轴力与横截面位置关系的几何图形,称为轴力图。

画轴力图的意义: ① 反映出轴力与截面位置的变化关系,较直观; ② 反映出最大轴力的数值及其所在面的位置,即危险截面位置,为强度计算提供依据。 轴力图的突变规律: (1) 在两个外力之间的区段上,轴力为常数,轴力图为与基线平行的直线; (2) 在外力施加处轴力图要发生突变,突变值等于外力值。 (3) 轴力突变的方向与外力对构件的作用有关,外力使构件受拉/压,轴力向正/负方向突变。 画轴力图注意事项: (1)轴力图应封闭; (2)图中直线表示截面位置对应的轴力数值,因此,应垂直于轴线,而不是阴影线,画时也可省略; (3)轴力图的位置应和杆件的位置相对应。轴力的大小,按比例画在坐标上,并在图上标出代表点数值。 (4)轴力图应标出轴力数值、正负号、单位。 (5)习惯上将正值(拉力)的轴力图画在坐标的正向;负值(压力)的轴力图画在坐标的负向。 6.3 轴向拉伸与压缩时的应力 应力——截面上分布内力的集度。 6.3.1 轴向拉压杆件横截面的应力 应力求解公式:N F A σ= 应力符号规定:当轴向力为正时,正应力为正(拉应力),反之为负(压应力)。 由公式可以看出,截面积有变化、轴力有变化处,应力可能有变化,需要单独计算。 6.3.2 斜截面的应力 2cos ασσα= s i n 22 ασ τα= 斜截面上剪应力方向规定:取保留截面内任一点为矩心,当对矩心顺时针转动时为正,反之为负。 讨论 (1)ασ、ατ均为α的函数,随斜截面的方向而变化。 (2)当0=α°时,σ=σαmax 、0=τα横截面上。 当45=α°时,2σ= ταmax 、2 σ=σα

ABAQUS后处理中各应力解释(个人收集)

ABAQUS中的壳单元S33代表的是壳单元法线方向应力,S11 S22 代表壳单元面内的应力。因为壳单元的使用范围是“沿厚度方向应力为0”,也即沿着法相方向应力为0,且满足几何条件才能使用壳单元,所以所有壳单元的仿真结果应力查看到的S33应力均为0。 S11 S22 S33 实体单元是代表X Y Z三个方向应力,但壳单元不是,另外壳单元只有S12,没有S13,S23。

注意:塑性材料第一行中的塑性应变必须为0,其含义为:在屈服点处的塑性应变为0。 4、定义塑性数据时,应尽可能让其中最大的真实应力和塑性应变大于模型中可能出现的应力和应变值。 5、对于塑性损伤模型,其应力应变曲线中部能有负斜率。 通常都是通过其他软件数据导入到abaqus,比如Etabs,Midas,satwe等中建模,然后把网格数据作为abaqus有限元模型。那么abaqus的cae是做什么的?其实用cae来建模实体模型还是可行的,可以油点变线,由线变面,由面变体,并可做布尔运算,然后把多个部件组装为整体结构,统一划分网格。从这方面来说cae是不错的。 abaqus最厉害的方面显然是它的求解器,abaqus分隐式求解器和显式求解器。隐式求解器里可实现模态分析、瞬态分析、时程分析、屈曲分析等,内嵌了改进型NewMark隐式算法和Wilson算法,求解非线性问题非常稳定,一般只要计算通过就能得到较好的结果。显式求解器不仅是abaqus的特色求解器,而且有极高的效率,能够快速的进行非线性求解,并且也能有较好的稳定性,也能完成静力和动力计算。另外,同样模型数据可以在两个求解器中计算。 abaqus另一方面,它提供大量的单元,丰富的材料,可以模拟混凝土、金属等硬质材料,或岩土、泡沫、塑料等软质材料,而且提供了自定义材料接口和自定义单元,有了给研究者、应用者丰富的空间。 对于我们做结构的人来说,结构设计是不可少的,既然abaqus是通用有限元软件,我就不可能去苛求它能做设计,所以我也只能用它去核算一些应力内力位移等,abaqus提供了交互良好的后处理,可以查看各种结果,而且可以自定义集合,按集合输出自己想要的内容。也可以绘制跟时程相关的曲线。能输出图形也能输出文本。但是,在结构设计中各种跟层相关的统计参数就非常的困难,用户必须把相应的结果输出后到excel表中统计计算得到。因此通常建议对abaqus的结果通过程序做二次处理来实现结果统计。

轴向拉伸和压缩作业集及解

第二章 轴向拉伸和压缩 第一节 轴向拉压杆的内力 1.1 工程实际中的轴向受拉杆和轴向受压杆 在工程实际中,经常有承受轴向拉伸荷载或轴向压缩荷载的等直杆.例如图2-1a 所示桁架的竖杆、斜杆和上、下弦杆,图2-1b 所示起重机构架的各杆及起吊重物的钢索,图2-1c 所示的钢筋混凝土电杆上支承架空电缆的横担结构,BC 、AB 杆,此外,千斤顶的螺杆,连接气缸的螺栓及活塞连杆等都是轴间拉压杆. 钢木组合桁架 2 d 起重机 图 工程实际中的轴向受拉(压)杆 1.2 轴向拉压杆的内力——轴力和轴力图 b c x 图用截面法求杆的内力

为设计轴向拉压杆,需首先研究杆件的内力,为了显示杆中存在的内力和计算其大小,我们采用在上章中介绍过的截面法.(如图2-2a )所示等直杆,假想地用一截面m -m 将杆分割为I 和II 两部分.取其中的任一部分(例如I )为脱离体,并将另一部分(例如II )对脱离体部分的作用,用在截开面上的内力的合力N 来代替(图2-2b ),则可由静力学平衡条件: 0 0X N P =-=∑ 求得内力N P = 同样,若以部分II 为脱离体(图2-2c ),也可求得代表部分I 对部分II 作用的内力为N =P ,它与代表部分II 对部分I 的作用的内力等值而反向,因内力N 的作用线通过截面形心 即沿杆轴线作用,故称为轴力... 轴力量纲为[力],在国际单位制中常用的单位是N (牛)或kN (千牛). 为区别拉伸和压缩,并使同一截面内力符号一致,我们规定:轴力的指向离开截面时为正号轴力;指向朝向截面时为负号轴力.即拉力符号为正,压力符号为负.据此规定,图2-2所示m-m 截面的轴力无论取左脱离体还是右脱离体,其符号均为正. 1.3 轴力图 当杆受多个轴向外力作用时,杆不同截面上的轴力各不相同.为了形象表示轴力沿杆轴线的变化情况,以便于对杆进行强度计算,需要作出轴力图,通常用平行于杆轴线的坐标表示截面位置,用垂直杆轴线的坐标表示截面上轴力大小,从而给出表示轴力沿截面位置关系的图例,即为轴力图... . 下面用例题说明轴力的计算与轴力图的作法. 例题2-1:变截面杆受力情况如图2-3所示,试求杆各段轴力并作轴力图. 解:(1)先求支反力 固定端只有水平反力,设为X A ,由整个杆平衡条件 0X =∑,-X A +5-3+2=0,X A =5+2-3=4kN (2)求杆各段轴力 力作用点为分段的交界点,该题应分成AB 、BD 和DE 三段.在AB 段内用任一横截面1-1将杆截开后,研究左段杆的平衡.在截面上假设轴力N 1为拉力(如图2-3(b )).由平衡条件 0X =∑得 N 1-X A =0,N 1=4kN .结果为正,说明原假设拉力是正确的. x x x N 1X X X A N 2N 2kN N 图2-3 例题2-1图 c b e

钢筋的屈服强度和抗拉强度

钢筋的屈服强度和抗拉强度 HPB235钢筋,屈服点强度为235MPa,(延伸率为17%); HRB335钢筋,屈服点强度为335MPa,(延伸率为16%); HRB400钢筋,屈服点强度为400MPa,(延伸率为15%)。 根据规定,直径28-40的钢筋,断后延伸率可降低1%,40以上的钢筋可降低2%。 以上要求是交货检验的最小保证值 实验钢筋的拉伸试验 简单的说就是钢筋伸长段与钢筋原长的比。 ①钢筋强度的计算 试件的屈服强度按下式计算: 式中ps——屈服点荷载,n; a0——试件横截面积,cm2。 试件的抗拉强度按下式计算: 式中p0——屈服点荷载,n; a0——试件横截面积,cm2。 ②伸长率的测定 a. 将已拉断试件的两段在断裂处对齐,尽量使其轴线位于一条

直线上。如拉断处由于各种原因形成缝隙,则此缝隙应计入试件拉断后的标距部分长度内。 b. 如拉断处到邻近标距端点的距离大于(1/3)l0时,可用卡尺直接量出已被拉的标距长度l1(mm)。 c. 如拉断处到邻近的标距端点的距离小于或等于(1/3)l0时,可按移位法计算。 d. 伸长率按下式计算(精确至1%): 式中δ——伸长率,%,精确至1%; l0——原标距长度,mm; l1——试件拉断后直接量出或按移位法确定的标距部分的长度,mm(测量精确 mm)。 e. 如试件在标距端点上或标距外断裂,则试验结果无效,应重作试验。 将测试、计算所得到的结果δ10、δ5(δ10、δ5分别表示l0=10a和l0=5a时的断后伸长率),对照国家规范对钢筋性能的技术要求,如达到标准要求则合格,如未达到,可取双倍试验重做,如仍未达到标准者,则钢筋的伸长率不合格。 联系电话: 企业网址:山东金业机械有限公司

圆柱螺旋压缩(拉伸)弹簧的设计计算

圆柱螺旋压缩(拉伸)弹簧的设计计算 (一)几何参数计算普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为: 式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。 圆柱螺旋弹簧的几何尺寸参数 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表([color=#0000ff 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。 普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式

参数名称及代号 计算公式 备注压缩弹簧拉伸弹簧 中径D2D2=Cd 按普通圆柱螺旋弹簧尺寸系列表取标准值 内径D1D1=D2-d 外径D D=D2+d 旋绕比C C=D2/d 压缩弹簧长细比 b b=H0/D2 b在1~5.3的范 围内选取 自由高度或长度 H0H0≈pn+(1.5~2)d (两端并紧,磨平) H0≈pn+(3~3.5)d (两端并紧,不磨 H0=nd+钩环轴向长 度

平) 工作高度或长度 H1,H2,…,H n H n=H0-λn H n=H0+λnλn--工作变形量有效圈数n根据要求变形量按式(16-11)计算n≥2 总圈数n1n1=n+(2~2.5)(冷 卷) n1=n+(1.5~2) (YII型热卷) n1=n 拉伸弹簧n1尾数 为1/4,1/2,3/4整 圈。推荐用1/2圈 节距p p=(0.28~0.5)D2p=d 轴向间距δδ=p-d 展开长度L L=πD2n1/cosα L≈πD2n+钩环展 开长度 螺旋角αα=arct g(p/πD2) 对压缩螺旋弹簧,推荐α=5°~ 9°

关于抗拉强度和屈服强度的区别

抗拉强度与屈服强度的区别及实例 首先自我介绍一下,本人现在某检测机构任职,我任职的这家机构主要是对金属材料进行理化检验,有CMA认证(中国计量认证)、CNAS 认证(国家认可委认证),属国家级实验室。检测结果全球100多个国家互认。本人任金属物理检测室副主任,物理检测技术组组长。应当算得上是专业人士。 什么是的屈服强度和抗拉强度。 要说这两个概念,先从材料是如何被破坏的说起。任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。 屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。 抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同

样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。抗拉强度是材料单位面积上所能承受外力作用的极限。超过这个极限,材料将被解离性破坏。 那什么是屈服强度呢?屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。 弹性材料在受到恒定持续增大的外力作用下,直到断裂。究竟发生了怎样的变化呢?首先,材料在外力作用下,发生弹性形变,遵循胡克定律。什么叫弹性形变呢?就是外力消除,材料会恢复原来的尺寸和形状。当外力继续增大,到一定的数值之后,材料会进入塑性形变期。材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。从晶体角度来说,只有拉力超过屈服点,材料的晶体结合才开始被破坏!材料的破坏,是从屈服点就已经开始,而不是从断裂的时候开始的!弄清楚这两个强度怎么来的了,所以说,屈服强度高的材料,能承受的破坏力就

玻璃金属封装的作用及其意义

玻璃金属封装的作用及其意义 时间: 2010年06月28日来源:书籍作者: huatian 浏览次数: 376 有人说外壳是元器件的躯干与四肢,亦有人说外壳与芯片是唇与齿、皮与肉的关系。总之,人们的共识是:外壳不仅是封装芯片的外衣,对其起有支撑(电连接、热传导、机械保护等)作用,同时亦是元器件的组成部分。外壳质量的好坏与元器件的质量与可靠性密切相关。众所周知,气密性既是外壳亦是元器件的重要指标之一,气密性不好会使外界水汽、有害离子或气体进入元器件的腔体内而产生表面漏电,"结"发生变化、参数变坏等失效模式(据报导,由于腔体内湿气含量大而导致元器件失效的比例为总失效率的26%以上)。在GJB548A的方法1014A密封中,对未封盖外壳的气密性作了试验条件A4的规定,其失效判据:若无其它规定,如果"测量的漏率"Rl超过1×10-3 Pa·cm3/s(氦)时,则器件(外壳)应视为失效。 本文仅就玻璃与金属的封接机理及原材料、工艺方面与气密性相关因素谈谈个人看法,供有关人员了解、参考。 1玻璃与金属的封接机理 从金属外壳的外形、几何尺寸、引线(脚)数以及引出形式,其中零件可谓五花八门、成千上万种,但按其封接应力(熔封形式)而言,主要是匹配封接和失配封接,究其封接机理将涉及到二个方面的问题: 1.1 玻璃与金属的润湿(浸润)问题 1.1.1润湿问题 这里所谓的润湿问题则是指玻璃与金属的结合力问题,要想达到玻璃与金属的良好密封,就必须使两者有良好的润湿性。玻璃与金属的润湿同液体对固体表面润湿的道理-样,即如水滴与物体接触时常出现的两种状况一种是水滴在荷叶上呈圆球形,其润湿角θ接近180℃这种润湿显然是不好的;另一种是水滴落在木板上呈扁平形,其θ角近似于0°,这便是很好的润湿。 1.1.2氧化物结合学说 这种学说认为:玻璃是由多种氧化物所组成,在封接的过程中,金属表面的氧化物能熔入玻璃内,从而成为玻璃成分的一部分,由此获得良好地密封。但该学说未能对高价氧化物能存在于玻璃成分中,并不能与玻璃做到很好的封接作出解释,而电力结合学说则从金属氧化物属于离键晶体结构的观点出发对其作了相应的解释。 1.1.3 电力结合学说 这种学说认为:金属表面形成低价氧化物时,金属内层价电子并不参加化合作用,而形成高价氧化物时,金属内层价电子将参加化合作用。因此,金属氧化物的离子半径大小是随金属化合价的高低而不同。在高价氧化物时,由于金属离子半径小,被氧离子紧密包围,使金属离子不能与玻璃中的正负离子很好地结合。当形成低价氧化物时,由于金属离子和周围的氧离子之间形成较大空隙,其电力线可以延伸出来,与玻璃中的正负离子获得最大的结合力和最小的排斥力,从而得到满意的封接。 a.润湿角与金属化合价间关系 b. 金属表面形成高价氧化物时与玻璃的电力线结合关系图 c. 金属表面形成低价氧化物时与玻璃的电力线结合关系; d. 金属表面没有被氧化时与玻璃电力线结合关系。 由以上的分析告诉我们,在金属表面形成低价氧化层才能获得玻璃与金属的良好润湿效果。 1.2膨胀系数问题 这里所谓的膨胀系数问题则是指在熔封过程中[主要是室温至应变点(T g)温度范围内]玻璃与金属的膨胀系数应尽可能达到一致,原则上两者膨胀系数之差"Δα"应不大于10%,这时,便可获得最小的封接应力(既无害应力),从而获得良好的密封效果。鉴于玻璃能承受较大的压应力,因此,在设计外壳和选择材料时,往往希望外层金属的膨胀系数略高于中间玻璃,中间玻璃的膨胀系数略高于中心金属(引出线、管)即遵循α外金≥α中玻≥α内金的原则。 在匹配封接中,常用的封接材料是4J29柯伐合金与钼组玻璃相封接GBN97中规定4J29合金的平均线膨胀

抗拉强度和屈服强度.

抗拉强度和屈服强度 抗拉强度 抗拉强度(tensile strength) 抗拉强度(бb)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:extensional rigidity. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 拉伸强度 拉伸强度(tensile strength)是指材料产生最大均匀塑性变形的应力。 (1)在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa 表示。有些错误的称之为抗张强度、抗拉强度等。 (2)用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。 (3)拉伸强度的计算: σt = p /(b×d) 式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。 注意:计算时采用的面积是断裂处试样的原始截面积,而不是断裂后端口截面积。 屈服强度 材料拉伸的应力-应变曲线 yield strength 是材料屈服的临界应力值。 (1)对于屈服现象明显的材料,屈服强度就是在屈服点在应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性能的评价指标,是材料的实际使用极限。因为材料屈服后产生颈缩,应变增大,使材料失去了原有功能。 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解 答 Prepared on 22 November 2020

轴向拉伸与压缩习题及解答 一、判断改错 1、构件内力的大小不但与外力大小有关,还与材料的截面形状有关。 答:错。 静定构件内力的大小之与外力的大小有关,与材料的截面无关。 2、杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。 答:对。 3、两根材料、长度都相同的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A >。如图所示。两杆都受自重作用。则两杆最大压应力相等,最大压缩量也相等。 答:对。 自重作用时,最大压应力在两杆底端,即max max N Al l A A νσν= == 也就是说,最大应力与面积无关,只与杆长有关。所以两者的最大压应力相等。 最大压缩量为 2 max max 22N Al l l l A EA E νν??=== 即最大压缩量与面积无关,只与杆长有关。所以两杆的最大压缩量也相等。 A 1 (a) (b)

4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。所以宗乡纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。 答:错 。在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。 5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε,则x 和y 方向肯定有正应力x σ和y σ。 答:错, 不一定。由于横向效应作用,轴在x 方向受拉(压),则有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x εενε'==-。 二、填空题 1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成(45) 2、受轴向拉伸的等直杆,在变形后其体积将(增大) 3、低碳钢经过冷做硬化处理后,它的(比例)极限得到了明显的提高。 4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。 5、 一空心圆截面直杆,其内、外径之比为,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的(4)倍。 6、两根长度及截面面积相同的等直杆,一根为钢杆,一根为铝杆,承受相同的轴向拉力,则钢杆的正应力(等于)铝杆的正应力,钢杆的伸长量(小于)铝杆的伸长量。 7、 结构受力如图(a )所示,已知各杆的材料和横截面面积均相同,面积 2200A mm =,材料的弹性模量E=200GPa ,屈服极限280s MPa σ=,强度极限 460b MPa σ=,试填写下列空格。

什么是屈服强度和抗拉强度(知识参考)

什么是屈服强度和抗拉强度 要说这两个概念,先从材料是如何被破坏的说起。任何材料在受到不断增大或者持续恒定或者持续交变的外力作用下,最终会超过某个极限而被破坏。对材料造成破坏的外力种类很多,比如拉力、压力、剪切力、扭力等。屈服强度和抗拉强度这两个强度,仅仅是针对拉力而言。这两个强度是通过拉伸试验得出的,是通过拉力试验机(一般是万能试验机,可以进行各种拉和压以及弯曲的试验),用规定的恒定的加荷速率(就是单位时间内拉力的增加量),对材料进行持续拉伸,直到断裂或达到规定的破坏程度(比如有些对接焊缝强度试验可以不拉断),这个造成材料最终破坏的力,就是该材料的抗拉极限载荷。抗拉极限载荷是一个力的表述,单位为牛顿(N),因为牛顿是一个很小的单位,所以,大部分情况下用千牛(KN)的比较多。因为各种材料大小不一,所以抗拉极限载荷很难评判材料的强度。所以,用抗拉极限载荷除以实验材料的截面积,就得到单位面积的抗拉极限载荷。单位面积上受的力,这是一个强度的表述,单位是帕斯卡(Pa),同样,帕斯卡是一个极小的单位,一般都用兆帕(MPa)来表述。 所以,抗拉极限载荷与实验材料的截面积之比,就是抗拉强度。抗拉强度是材料单位面积上所能承受外力作用的极限。超过这个极限,材料将被解离性破坏。 那什么是屈服强度呢?屈服强度仅针对具有弹性材料而言,无弹性的材料没有屈服强度。比如各类金属材料、塑料、橡胶等等,都有弹性,都有屈服强度。而玻璃、陶瓷、砖石等等,一般没有弹性,这类材料就算有弹性,也微乎其微,所以,没有屈服强度一说。 弹性材料在受到恒定持续增大的外力作用下,直到断裂。究竟发生了怎样的变化呢? 首先,材料在外力作用下,发生弹性形变,遵循胡克定律。什么叫弹性形变呢?就是外力消除,材料会恢复原来的尺寸和形状。当外力继续增大,到一定的数值之后,材料会进入塑性形变期。材料一旦进入塑性形变,当外力,材料的原尺寸和形状不可恢复!而这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉力而言,这个临界点的拉力值,叫屈服点。从晶体角度来说,只有拉力超过屈服点,材料的晶体结合才开始被破坏!材料的破坏,是从屈服点就已经开始,而不是从断裂的时候开始的! 弄清楚这两个强度怎么来的了,所以说,屈服强度高的材料,能承受的破坏力就大,这是正确的。

轴向拉伸与压缩的应力及强度计算条件.

《机械设计基础》课程单元教学设计 单元标题:轴向拉伸与压缩的应力 及强度计算条件 单元教学学时 2 在整体设计中的位置第10次 授课班级上课地点 教学目标 能力目标知识目标素质目标 1.能求轴向拉伸与压缩横截面 上应力; 2.能利用胡克定律求变形。 3.能利用强度计算条件解决三 类问题 1.理解应力的概念; 2.掌握拉压杆正应力计 算; 3.理解应变的概念; 4.掌握胡克定律的第一 第二表达式; 5.掌握强度计算条件 1.培养学生热爱本专业、爱 学、会学的思想意识。 2.培养学生应用理论知识分 析和解决实际问题的能力; 3.培养学生的团队合作意 识; 4.培养学生仔细、认真、严 谨的工作态度。 能力训 练任务及案例任务1:计算拉压杆的应力;任务2:计算拉压杆的变形; 教学材料1.教材; 2.使用多媒体辅助教学。

单元教学进度 步骤教学内容教学方法学生活动工具 手段 时间 分配 1复习、导 入复习:拉压杆的受力变形特点、截面法求轴 力直接法求轴力 导入:在求轴力时,我们已经知道轴力的大 小不能代表一个杆件的受力强弱,那谁能代 表呢? 提问 讲授 讨论 回答 黑板 课件 视频 5 分钟 2提出任务如图(a)所示的三角形托架,P=75kN,AB杆 为圆形截面钢杆,其[σ1]=160MPa;BC杆为 正方形截面木杆,其[σ2]=10MPa,试确定 AB杆的直径d和BC杆的边长a。 情景教 问题探究 问题引领 听讲 思考 黑 板、 ppt 5 分钟 一.应力 应力:内力在截面上某点处的分布集 度,称为该点的应力。 在拉(压)杆横截面上,与轴力N相对 应的是正应力,一般用σ表示。 N A σ= 案例应用1: 一变截面圆钢杆ABCD如图5-6(a)所 示,已知F1=20kN,F2=35kN,F3=35kN, d1=12mm,d2=16mm,d3=24mm。试求: (1)各截面上的轴力,并作轴力图。 (2)杆的最大正应力。 15分 钟

轴向拉伸与压缩

§2-1轴向拉伸与压缩杆件及实例 轴向拉伸和压缩的杆件在生产实际中经常遇到,虽然杆件的外形各有差异,加载方式也不同,但一般对受轴向拉伸与压缩的杆件的形状和受力情况进行简化,计算简图如图2-1。轴向拉伸是在轴向力作用下,杆件产生伸长变形,也简称拉伸;轴向压缩是在轴向力作用下,杆件产生缩短变形,也简称压缩。实例如图2-2所示用于连接的螺栓;如图2-3所示桁架中的拉杆;如图2-4所示汽车式起重机的支腿;如图2-5所示巷道支护的立柱。

通过上述实例得知轴向拉伸和压缩具有如下特点: 1. 受力特点:作用于杆件两端的外力大小相等,方向相反,作用线与杆件轴线重合,即称轴向力。 2. 变形特点:杆件变形是沿轴线方向的伸长或缩短。

§2-2横截面上的内力和应力 1.内力 在图2-6所示受轴向拉力P 的杆件上作任一横截面m —m ,取左段部分,并以内力 的合力N 代替右段对左段的作用力。由平衡条件 ,得 0=∑X 0=?P N 0>=P N 由于(拉力),则 0>P 合力N 的方向正确。因而当外力沿着杆件的轴线作用时,杆件截面上只有一个与轴线重合 的内力分量,该内力(分量)称为轴力,一般用N 表示。 若取右段部分,同理0=∑X ,知 0=N -P 得 0>=P N 图中N 的方向也是正确的。 材料力学中轴力的符号是由杆件的变形决定,而不是由平衡坐标方程决定。习惯上将轴力N 的正负号规定为:拉伸时,轴力N 为正;压缩时,轴力N 为负。

2.轴力图 轴力图可用图线表示轴力沿轴线变化的情况。该图一般以杆轴线为横坐标表示截面位置,纵轴表示轴力大小。 例2-1 求如图2-7所示杆件的内力,并作轴力图。 解: (1)计算各段内力 AC 段:作截面1—1,取左段部分(图b )。由0=∑X 得 kN (拉力) 51=N CB 段:作截面2—2,取左段部分(图c ),并假设方向如图所示。由2N 0=∑X 得 05152=?+N 则

相关文档
相关文档 最新文档