文档视界 最新最全的文档下载
当前位置:文档视界 › 车辆系统振动的理论模态分析

车辆系统振动的理论模态分析

车辆系统振动的理论模态分析
车辆系统振动的理论模态分析

振 动 与 冲 击

第20卷第2期

JOURNA L OF VI BRATION AND SHOCK

V ol.20N o.22001 

工程应用

车辆系统振动的理论模态分析

Ξ

陶泽光 李润方 林腾蛟

(重庆大学机械传动国家重点实验室,重庆 400044)

摘 要 将车体和转向架看成弹性体,采用有限元方法,建立用空间梁单元描述的具有50个自由度的车辆系统力

学模型,并以客车为例研究其垂向振动的固有特性,所得结果既反映系统动力学性能,又为动态响应计算和分析打下基础。

关键词:车辆动力学,模态分析,有限元法中图分类号:TH132.41

0 引 言

高速铁路运输以快速、节能、经济、安全和污染小

等优势,在与高速公路和航空等运输形式的竞争中迅速发展起来。列车运行速度的提高给机车车辆提出了许多新要求,带来了新的课题,如大的牵引动力、大的制动功率、剧烈的横向动力作用和更加明显的垂向越轨动力作用、复杂的高速气流、振动和噪声等。其中,振动和噪声是高速列车一个非常重要的问题,它既关系到高速列车运行的安全性,又关系到列车高速运行时的乘坐舒适度。

车辆系统是由车体、转向架构架、轮对,通过悬挂

元件联接起来的机械系统。通常,把车体及装载、转

向架构架及安装部件、轮对及装备视为刚体,作为刚体动力学系统,研究其动力特性[1,2],这方面的技术已比较成熟,有商品化的通用软件可供使用[3]。

本文将车体和转向架看成弹性体,采用有限元法,建立了用六自由度节点空间梁单元描述的车辆系统动力学模型,由于包括车辆的浮沉、点头垂向振动,车辆的横摆、侧滚和摇头横向振动的研究。在建立车辆系统离散化模型的基础上,计算车辆垂向振动的各阶固有频率和振型,为车辆系统的动态响应计算和分析打下基础

图1 车辆振动系统的有限元模型

1 车辆的动力学模型

将车辆振动系统简化为图1所示的分析模型,即

由车体、转向架和轮对通过弹簧与阻尼器连接起来的振动系统。其中,将车体和转向架看成空间弹性梁,每

Ξ西南交通大学牵引动力国家重点实验室开放课题基金资助项目

收稿日期:2000-10-10 修改稿收到日期:2000-11-20

第一作者 陶泽光 男,博士,副教授1963年12月生

一轮对视为集中质量。

对于空间梁单元,每一节点有六个自由度,即沿三个局部坐标轴X 、Y 、Z 的移动和绕三个局部坐标轴的转动(图2)。对车体来说,则对应于车体的六种运动形式:浮沉运动———即车体沿Y 轴方向平移;横摆运动———即车体沿Z 轴方向平移;伸缩运动———即车体沿X 轴方向平移;摇头运动———即车体绕Y 轴回转;点头运动———即车体绕Z 轴回转;侧滚运动———即车体绕X 轴回转

图2 空间梁单元

2 动力学方程的建立和求解

由有限元法求出车体空间梁单元的刚度、

质量和

阻尼矩阵,将所有梁单元组集后即可得到车体的刚度、质量和阻尼矩阵。同理可得转向架的刚度、质量和阻尼矩阵。最后利用单元组集拼装的对号入座法则,并考虑到车辆各联接处的刚度和阻尼,得到车辆系统的总体刚度矩阵[K]、质量矩阵[M ]和阻尼矩阵[C ],由此可得车辆系统的运动微分方程

[M ]{¨X }+[C ]{ X }+[K]{X}={F (t )}

(1)式中,{¨X },{ X },{X},{F (t )}分别为车辆的系统各自由度加速度、速度、位移和激振力向量。

若无外力作用,即{F (t )}={0},则得到系统的自由振动方程。在计算系统的固有频率和固有振型时,阻尼影响可以略去,这时无阻尼自由振动的运动方程为

[M ]{¨X }+[K]{X}={0}

(2)其对应的特征方程为

([K]- ω2[M ]){X}=0

(3)式中 ω为车辆系统的固有频率。

图3为求解车辆系统的固有频率和振型的程序框图。

3 应用实例

下面以客车为例,研究车辆垂向振动系统的固有频率和振动。所选车辆为带CW -3转向架的22型客车。如图1,将车体划分为12个单元,每个转向架划分为4个单元,四个轮对即为4个集中质量,车体和转向架的每个节点有两个自由度(Y 方向的位移和绕Z 轴的转角),每个轮对有一个自由度(Y 方向的位移),整个车辆系统共有50个自由度。表1为所选车辆的

计算参数。

图3 求解程序框图表1 车辆系统的主要计算参数

项目代号

数值

项目代号

数值

车体重量M133.6Mg 车体长度L 125.5m 转向架

重量M2 2.4Mg 转向架长度L 23m 轮对重量M3 1.8Mg 车辆定距L 18m 每轴箱一系垂向刚度K 10.502M N/m 弹性模量E

2.1×1011N/m 2

每空簧二系垂向刚度

K 2

0.29M N/m

泊松比

ν

0.28

表2为计算得到的车辆系统前5阶固有频率和振型。图4为前3阶的振型图(横坐标为节点号)。从计算结果可以看出,前二阶为车体的振动,后三阶为转向架和轮对的振动。

表2 计算结果

固频(H z )0.854

2.4

4.833

5.41

6.814

振型

车体的浮沉和点头振动车体的浮沉和点头振动转向架的垂直振动轮对的垂直振动转向架的

垂直振动

4 结 论

(1)本文用有限元法将车体和转向架简化为空间

梁元,从而可较准确地在设计阶段预测和研究列车车辆系统的动力特性。

(2)所求出的各阶固有频率和振型,反映了系统的动力学特性,同时为车辆系统的动态响应计算和分

析打下基础。

(下转第88页)5

7第2期 陶泽光等:车辆系统振动的理论模态分析

图6给出了对称角铺设复合材料层合板[-15°/15°/15°/-15°]在板侧流体介质B ′分别为空气和水时的传声损失曲线,可以看到,由于流体加载效应,层合

板的固有频率较B ′为空气时有较大降低,而且,当B ′

为水时该层合板的传声损失远大于B ′为空气时层合板的传声损失。

表1 复合材料层合板的固有频率

铺层顺序

频率/H z 12345678910[0]4

24.937.061.890.999.099.8116.2145.8151.3190.0[-15/15]s 25.841.969.987.9102.6109.1129.8154.9175.7193.8[-30/30]s 27.752.381.187.7113.

2132.3162.7167.8185.2201.3[-45/45]s 28.858.676.397.6127.3145.3146.1184.4202.4220.8[-15/15]as 26.844.774.489.3106.6116.7135.4173.0176.0194.8[-30/30]as 30.359.983.9103.8120.4164.2171.6171.7210.9236.5[-45/45]as 32.074.074.0126.8139.0139.0199.4199.4230.4230.4[0/90/90/0]24.947.286.092.299.0131.4159.1188.4191.2199.6[0/90/90/0]

24.9

69.4

69.4

99.0

150.2

150.2

169.0169.0220.5267.1

3 结 论

数值计算表明:对复合材料层合板,即使在相同材料、相同层数、相同厚度等情况下,不同的铺设角度和铺设方式仍会对层合板的传声损失产生较大影响,这在复合材料结构设计中是值得注意的。

参 考 文 献

1 Sgard F ,Atalla N ,Nicolas J.C oupled FE M -BE M approach for mean flow effects on Vibro-acoustic behavior of planar structures ,AI AA Journal ,1994;32(12):2351-2358

2 Wang B T ,Fuller C R ,Dimitriadis E K.Active control of noise

transmission through rectangular plates using multiple piezoelectric or point force actuators.J.Acoust.S oc.Am.,1991;90(5):2820-28303 顾元宪,曾庆纲.一种新的四边形层合板与夹层板单元.大

连理工大学学报,1997;37(4):392-397

(上接第75页)

图4 车辆系统振型图

(3)在设计阶段预估车辆系统的动态性能,可为车辆

的动态特性实验提供理论依据。

参 考 文 献

1 白协伟.弹性车体铁路车辆的垂向随机振动问题.西南交通

大学学报,1986

2 程隆文.客车垂向振动研究.西南交通大学学报,19853 藏其吉.车辆动力学的研究和发展.中国铁道科学,19944 李润方,王建军.结构分析程序S AP5原理及其应用.重庆:

重庆大学出版社,1992

5 向 俊.机车车辆随机振动分析的有限单元法研究.长沙铁

道学院学报,1995

6 孙靖民.机床结构计算的有限元法.北京:机械工业出版社,

1983

7 夏永源,张阿舟.机械振动问题的计算机解法.北京:国防工

业出版社,1993

8 万耀青,阮宝湘.机电工程现代设计方法.北京:北京理工大

学出版社,1994

9 T etsuji HIROTS U etc.,S imulation of Hunting of Rail Vehicles ,JS ME International Journal ,Series III ,1991;34(3)

8

8 振 动 与 冲 击 2001年第20卷

control scheme is proposed to control the wind-induced vibration of the suspended feed cabin structure of the next generation large radio telescope.The initial static reference posture and initial stresses are determined by nonlinear static analysis.Random wind forces acted on the cables and the cabin are simulated based on the characters of the structure.Then the control effect of the stable cable system on structural vibration is analyzed in the time region.Meanwhile the frequency response spectrum of a special node of the cabin is drawn through FFT trans formation ,which describes further the control effect.

K ey w ords :structural passive vibration control ,wind-induced vibration ,large radio telescope ,suspended feed cabin structure

THEORETICAL MODAL ANALYSIS OF RAI L VEHICLE SYSTEM

Tao Zeguang Li Runf ang Lin Tengjiao

(State K ey Lab of Mechanical T ransmission ,Chongqing University ,Chongqing 400044)

Abstract The body and bogie of rail vehicle are treated as elastic beams.The dynamic m odel of vehicle is established using 3-D beam elements in FE M.The eigenvalue of vertical vibration of a passenger train is studied as an exam ple.The results indicate the dynamic characteristics of the system ,and provide the basis for calculation and analysis of dynamic responses.K ey w ords :vehicle dynamics m odal analysis finite element analysis

IMPACT ABSORBING TEST STU DY FOR RUBBER P LANKING MATERIAL

Yan Shengli Lu Pengmin Jiao Shengjie

(Chang ’an University ,X i ’an 710064)

Abstract In accordance with the European Standard E N1177,the im pact abs orbing tests of three kinds of rubber plank 2ing materials have been conducted.S ome significant results are g otten.The approaches and results in the paper can be refer 2enced for carrying out the elastic planking materials study in China.K ey w ords :elastic planking ,im pact feature ,test

DYNAMIC OPPORTUNIT Y RESTRAINTS PR OGRAMMING DESIGN OF ARC

STRUCTURE BASE D ON RAN DOM VIBRATION ANALYSIS

Xie Nenggang Wang Biao Shao Weixun

(East China University of Metallurgy ,Ma ’anshan 243100)

Abstract In the light of the random property of seismic vibration ,dynamic opportunity restraints programming design m odel is established.Dynamic optimum com putation of arc structure is done with random simulating technolgy.With the com pu 2tation results ,the m odel is proved to be effective for reduction of dynamic response.K ey w ords :random vibration ,arc ,opportunity restraints program ,energy object

DYNAMIC RE LIABI LIT Y ANALYSIS FOR BUFFETING OF CAB LE -STAYE D BRI D GE

Lu Wei Qiang Shizhong Li Xiaoyu

(Department of Bridge and Structure Engineering ,S outhwest Jiaotong University ,Sichuan Chengdu 610031)Abstract C onsidering the characteristics of long -span cable-stayed bridge ,the explicit decom position technique for the wind velocity spectrum density matrix and the dynamic increment equilibrium iteration method are proposed to fulfill the time

V ol.20N o.22001 JOURNA L OF VI BRATION AND SHOCK

模态振型固有频率基本理论

模态分析技术发展到今天已趋成熟,特别是线性模态理论(通常所说的模态分析均是指线性模态分析)方面的研究已日臻完善,但在工程应用方面还有不少工作可做。首先是如何提高模态分析的精度,扩大应用范围。增加模态分析的信息量是提高分析精度的关键,单靠增加传感器的测点数目很难实现,目前提出的一种激光扫描方法是大大增加测点数的有效办法,测点数目的增加随之而来的是增大数据采集与分析系统的容量及提高分析处理速度,在测试方法、数据采集与分析方面还有不少研究工作可做。对复杂结构空间模态的测量分析、频响函数的耦合、高频模态检测、抗噪声干扰……等等方面的研究尚需进一步开展。模态分析当前的一个重要发展趋势是由线性向非线性问题方向发展。非线性模态的概念早在1960年就由Rosenberg提出,虽有不少学者对非线性模态理论进行了研究,但由于非线性问题本身的复杂性及当时工程实践中的非线性问题并示引起重视,非线性模态分析的发展受到限制。近年来在工程中的非线性问题日益突出,因此非线性模态分析亦日益受到人们的重视。最近已逐步形成了所谓非线性模态动力学。关于非线性模态的正交性、解耦性、稳定性、模态的分叉、渗透等问题是当前研究的重点。在非线性建模理论与参数辨识方面的研究工作亦是当今研究的热点。非线性系统物理参数的识别、载荷识别方面的研究亦已开始。展望未来,模态分析与试验技术仍将以新的速度,新的内容向前发展。 模态振型是一个相对量,通常是一个列向量,二维以上的系统其模态振型不是一个数。一个数对应单模态,其数值无意义。某模态频率下的模态振型反映了在该模态频率下各自由度的相对位移的比值。如果系统的初始位移恰好等于模态频率下的模态振型(或与之成比例),则此时系统的自由响应中只会出现该模态频率。感谢欧阳中华教授的指点,我现在觉得自己当初确实对模态振型概念不清楚。模态振型是系统固有的振动形态,线性响应是振型线性叠加的结果,但振型之间是独立不耦合的。振型是个相对量,所以就有了多种振型归一划的方法。振型是个很重要的固有特征,正如楼上所说用于验证固有频率。 我觉得振型在判别你计算固有频率正确性是非常有用的,比如,通过有限元计算得到了模型的前十阶固有频率,试验模态分析也得到了低阶的固有频率,假设计算的某阶固有频率与试验的某阶固有频率非常接近,但是并不能马上说明他们是同一阶的,需要通过振型来判断。 其他的不知道,但是之所以引入模态的概念,之所以从物理坐标变换到模态坐标就是为了解耦,就是为了让其正交,这样方程才能解出来。从能量角度说,这样各个振型之间就没有能量的交换。 从数学上看,对响应函数级数展开后,其中的各项构成各阶模态,而级数展开形

工程振动——模态分析、多自由度系统振动响应

1.复习模态分析理论 1.1单自由度系统频响函数(幅频、相频、实频与虚频、品质因子等) 系统的脉冲响应函数h(t)与系统的频响函数H(ω)是一对傅里叶变换对,与系统的传递函数H(s)是一对拉普拉斯变换对。即有: i ()()e d t H h t t ωω-∞ =? -∞ 1i () ( )e d 2π t h t H ωωω -∞ =?-∞ ()()e d 0 st H s h t t -∞ =? 1 i () ( )e d i 2πi st h t H s σωσ+∞=? -∞ 复频率响应的实部 2 1(/)R e [()]22 2 [1(/) ](2/)n H n n ωωωωω ξωω-= -+ 复频率响应的虚部 2/Im [()]22 2 [1(/)](2/) n H n n ξωω ωωω ξωω =- -+ 单自由度系统频响函数的各种表达式及其特征1 (w )2H k m w j k η=-+,对频响函数特征的描述 采用的几种表达式 1)幅频图:幅值与频率之间的关系曲线 2)相频图:相位与频率之间的关系曲线 3)实频图:实部与频率之间的关系曲线 4)虚频图:虚部与频率之间的关系曲线 5)矢端轨迹图(Nyquist 图) 1.2单自由度结构阻尼系统频响函数的各种表达形式 频响函数的基本表达式:11111 ()22222100 H m k k m j k j j ωω ηωωηωη = = ?=? -+-+-Ω+ 频响函数的极坐标表达式:()|()|j H H e ?ωω=,w H () —幅频特性, a rc ta n 21η?? ? -= ? ? ?-Ω? —相频特性。 频响函数的直角坐标表达式: ()()() R I H H jH ωωω=+, ()() 211()222 1R H k ωη -Ω= ? -Ω+—实频特性, () 1()22 2 1I H k η ωη -=? -Ω+—虚频特性 频响函数的矢量表达式:()()()R I H H ωωω=+H i j 1.3单自由度结构阻尼系统频响函数各种表达式图形及数字特征 幅频特性:1|()|0H k ωη = 固有频率:0D ωω= 阻尼比:00 B A ω ωω ηω ω -?== 相频特性

模态分析中的几个基本概念模态分析中的几个基本概念分析

模态分析中的几个基本概念 物体按照某一阶固有频率振动时,物体上各个点偏离平衡位置的位移是满足一定的比例关系的,可以用一个向量表示,这个就称之为模态。模态这个概念一般是在振动领域所用,你可以初步的理解为振动状态,我们都知道每个物体都具有自己的固有频率,在外力的激励作用下,物体会表现出不同的振动特性。一阶模态是外力的激励频率与物体固有频率相等的时候出现的,此时物体的振动形态叫做一阶振型或主振型;二阶模态是外力的激励频率是物体固有频率的两倍时候出现,此时的振动外形叫做二阶振型,以依次类推。一般来讲,外界激励的频率非常复杂,物体在这种复杂的外界激励下的振动反应是各阶振型的复合。模态是结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。有限元中模态分析的本质是求矩阵的特征值问题,所以“阶数”就是指特征值的个数。将特征值从小到大排列就是阶次。实际的分析对象是无限维的,所以其模态具有无穷阶。但是对于运动起主导作用的只是前面的几阶模态,所以计算时根据需要计算前几阶的。一个物体有很多个固有振动频率(理论上无穷多个),按照从小到大顺序,第一个就叫第一阶固有频率,依次类推。所以模态的阶数就是对应的固有频率的阶数。振型是指体系的一种固有的特性。它与固有频率相对应,即为对应固有频率体系自身振动的形态。每一阶固有频率都对应一种振型。振型与体系实际的振动形态不一定相同。振型对应于频率而言,一个固有频率对应于一个振型。按照频率从低到高的排列,来说第一振型,第二振型等等。此处的振型就是指在该固有频率下结构的振动形态,频率越高则振动周期越小。在实验中,我们就是通过用一定的频率对结构进行激振,观测相应点的位移状况,当观测点的位移达到最大时,此时频率即为固有频率。实际结构的振动形态并不是一个规则的形状,而是各阶振型相叠加的结果。 固有频率也称为自然频率( natural frequency)。物体做自由振动时,其位移随时间按正弦或余弦规律变化,振动的频率与初始条件无关,而仅与系统的固有特性有关(如质量、形状、材质等),称为固有频率,其对应周期称为固有周期。 物体做自由振动时,其位移随时间按正弦规律变化,又称为简谐振动。简谐振动的振幅及初相位与振动的初始条件有关,振动的周期或频率与初始条件无关,而与系统的固有特性有关,称为固有频率或者固有周期。 物体的频率与它的硬度、质量、外形尺寸有关,当其发生形变时,弹力使其恢复。弹力主要与尺寸和硬度有关,质量影响其加速度。同样外形时,硬度高的频率高,质量大的频率低。一个系统的质量分布,内部的弹性以及其他的力学性质决定 模态扩展是为了是结果在后处理器中观察而设置的,原因如下: 求解器的输出内容主要是固有频率,固有频率被写到输出文件Jobname.OUT 及振型文件Jobnmae.MODE 中,输出内容中也可以包含缩减的振型和参与因子表,这取决于对分析选项和输出控制的设置,由于振型现在还没有被写到数据库或结果文件中,因此不能对结果进行后处理,要进行后处理,必须对模态进行扩展。在模态分析中,我们用“扩展”这个词指将振型写入结果文件。也就是说,扩展模态不仅适用于Reduced 模态提取方法得到的缩减振型,而且也适用与其他模态提取方法得到的完整振型。因此,如果想在后处理器中观察振型,必须先扩展模态。谱分析中的模态合并是因为激励谱是其实是由一系列的激励组合成的一个谱,里面的频率不会是只有一个,而不同的激励频率对于结构产生的结果是不一样的,对于结果的贡献也是不一样的,所以要选择模态组合法对模态进行组合,得到最终的响应结果。

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

ANSYS— 弹性平面问题、振动模态分析

ANSYS ——有限元分析 弹性平面问题、振动模态分析 1、弹性平面问题 1、1.题目一:(见图一所示) 图1 已知条件: 1.5a m =,0.4c m =,0.5d m =,6/q kN m =,5F kN =; 1、1.1解题的总体思路 由于单元体是一个300×140的,为了方便计算,采用直接建模法,先创建一个30×14的单元体结构,在挖去15×4的单元,建立如下模型(见图二所示) 图2 并且对模型进行加载和约束,左边为固定端约束,右下角为端约束。荷载分别为均布荷载和一个集中力荷载。 1、1.2运行结果 此节只显示运行的结果和简单的解释,详细的命令见1、1.3节命令流中各个命令的注解。 1、各个节点的位移和扭矩 主要列举了具有代表意义的节点,由于节点有15×31个,所以只列出约束处的

节点的位移和扭矩。 只列出了31节点的位移,其他约束处的位移都为0 结果显示出:Ux=0.017236mm Uy=0mm 2、受力后与受力前变形图(放大)【见图3所示】 图3 3、X方向的变形图【见图4所示】 图4 4、Y方向的变形图【见图5所示】

图5 5、内力图【见图6所示】 图6 结论: 节点31处是最容易收到破坏的,因此再设计时应注意此处的设计。 1、1.3命令流 /PREP7 N,1,0,0!确定第一个节点 N,31,300,0!确定第31个节点 FILL,1,31!在1到31节点中插入节点 NGEN,15,31,1,31,1,0,10!复制上述节点15行,每行间距为10 ET,1,PLANE42!常量的设置 MP,EX,1,200E9 MP,NUXY,1,0.3 E,1,2,33,32 !创建第一个单元 EGEN,30,1,1 !复制1到31个单元的建立 EGEN,14,31,1,30 !所有的单元创建 EDELE,151,165 !下面都是挖去中间的面 EDELE,181,195 EDELE,211,225 EDELE,241,255

机翼模型的振动模态分析

机设1305 彭鹏程1310140521 一个简化的飞机机翼模型如图所示,该机翼沿延翼方向为等厚度。有关的几何尺寸见下图,机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r =886 kg/m。对该结构进行振动模态的分析。 (a) 飞机机翼模型 (b) 翼形的几何坐标点 振动模态分析计算模型示意图 解答这里体单元SOLID45 进行建模,并计算机翼模型的振动模态。 建模的要点: ⑴首先根据机翼横截面的关键点,采用连接直线以及样条函数< BSPLIN >进行连接以形成一个由封闭线围成的面; ⑵在生成的面上采用自由网格划分生成面单元(PLANE42); ⑶设置体单元SOLID45,采用< VEXT>进行Z 方向的多段扩展; ⑷设置模态分析< ANTYPE,2>,采用Lanczos 方法进行求解< MODOPT,LANB >; ⑸在后处理中,通过调出相关阶次的模态; ⑹显示变形后的结构图并进行动态演示。 给出的基于图形界面的交互式操作(step by step)过程如下。 (1) 进入ANSYS(设定工作目录和工作文件) 程序→ANSYS →→ANSYS Interactive →Working directory ( 设置工作目录) →Initial jobname(设置工作文件名):Modal→Run (2) 设置计算类型 ANSYS Main Menu:Preferences…→Structural →OK (3) 选择单元类型 ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete →Add…→Structural solid:Quad 4node 42 →Apply →solid →Brick 8node 45→OK →Close (4) 定义材料参数 ANSYS Main Menu:Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic:EX:0.26E9(弹性模量),PRXY:0.3(泊

各种模态分析方法总结及比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机内存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成内置选项。然而随着计算机的发展,内存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

振动系统的模态分析

理论力学振动系统模态分析实验 一.实验目的: 1.了解数字化测试技术的原理和做法。学习模态分析原理。 2.学会用“锤击发”测量振动系统的模态参数与振型。 二.实验仪器: 1.MSC-1型弹性力锤。 2.Yj9A压电加速度传感器。 3.Zj-601A型震动教学试验仪。 三.实验装置示意图: 四、实验原理: 本实验测试对象是弹性梁。实验步骤与原理是:由力锤锤击被测物体,锤体内的力传感器与被测物体上的加速度计同时记录下脉冲激励与被测物体的响应,震动教学试验仪放大并转化为电压,经接口箱,传入计算机的采集分析系统记录。数据采集完毕后,动用分析系统,首先对数据进行传递函数分析,然后,进入模态分析,根据振动理论,分析系统在确定阶数后,进行质量或振型归一,自动生成分析结果并可以生成振动的动画显示,各阶频率、模态质量、模态刚度、模态阻尼比同时列出。

五、实验步骤: 1.准备工作:先将梁分画成所需的单元格,节点编号,将加速度计固定在梁的 五分之二处(避免放在节点处)。 2. 设备连接:将力锤与加速度计与电荷放大器连接,按力锤与加速度计的灵 敏度分别调好电荷放大器上的旋钮,并选好相应的滤波上限开关。再将二信号输出端与接口箱相应频道相连。 3. 进入计算机采集分析系统参数设置部分,设定实验名称与各频道单位。 4. 进入计算机采集分析系统菜单中模态分析部分,画出被测对象的几何图形 及节点号,给出约束条件。 5. 进入计算机采集分析系统的信号采集部分,开始实验。 6.对17个测试位置依次进行敲击,没一个测试点进行三次。以减小误差。 7.调用采集的数据,打开分析界面,调入波形。进行函数分析,模态拟合。 8.振型编辑,质量归一,至此分析完毕,显示动画 9输出数据及计算结果,保存动画截图。

车辆系统振动的理论模态分析

振 动 与 冲 击 第20卷第2期 JOURNA L OF VI BRATION AND SHOCK V ol.20N o.22001  工程应用 车辆系统振动的理论模态分析 Ξ 陶泽光 李润方 林腾蛟 (重庆大学机械传动国家重点实验室,重庆 400044) 摘 要 将车体和转向架看成弹性体,采用有限元方法,建立用空间梁单元描述的具有50个自由度的车辆系统力 学模型,并以客车为例研究其垂向振动的固有特性,所得结果既反映系统动力学性能,又为动态响应计算和分析打下基础。 关键词:车辆动力学,模态分析,有限元法中图分类号:TH132.41 0 引 言 高速铁路运输以快速、节能、经济、安全和污染小 等优势,在与高速公路和航空等运输形式的竞争中迅速发展起来。列车运行速度的提高给机车车辆提出了许多新要求,带来了新的课题,如大的牵引动力、大的制动功率、剧烈的横向动力作用和更加明显的垂向越轨动力作用、复杂的高速气流、振动和噪声等。其中,振动和噪声是高速列车一个非常重要的问题,它既关系到高速列车运行的安全性,又关系到列车高速运行时的乘坐舒适度。 车辆系统是由车体、转向架构架、轮对,通过悬挂 元件联接起来的机械系统。通常,把车体及装载、转 向架构架及安装部件、轮对及装备视为刚体,作为刚体动力学系统,研究其动力特性[1,2],这方面的技术已比较成熟,有商品化的通用软件可供使用[3]。 本文将车体和转向架看成弹性体,采用有限元法,建立了用六自由度节点空间梁单元描述的车辆系统动力学模型,由于包括车辆的浮沉、点头垂向振动,车辆的横摆、侧滚和摇头横向振动的研究。在建立车辆系统离散化模型的基础上,计算车辆垂向振动的各阶固有频率和振型,为车辆系统的动态响应计算和分析打下基础 。 图1 车辆振动系统的有限元模型 1 车辆的动力学模型 将车辆振动系统简化为图1所示的分析模型,即 由车体、转向架和轮对通过弹簧与阻尼器连接起来的振动系统。其中,将车体和转向架看成空间弹性梁,每 Ξ西南交通大学牵引动力国家重点实验室开放课题基金资助项目 收稿日期:2000-10-10 修改稿收到日期:2000-11-20 第一作者 陶泽光 男,博士,副教授1963年12月生

模态振型固有频率基本理论

模态振型是一个相对量,通常是一个列向量,二维以上地系统其模态振型不是一个数.一个数对应单模态,其数值无意义.某模态频率下地模态振型反映了在该模态频率下各自由度地相对位移地比值.如果系统地初始位移恰好等于模态频率下地模态振型(或与之成比例),则此时系统地自由响应中只会出现该模态频率. 感谢欧阳中华教授地指点,我现在觉得自己当初确实对模态振型概念不清楚.模态振型是系统固有地振动形态,线性响应是振型线性叠加地结果,但振型之间是独立不耦合地.振型是个相对量,所以就有了多种振型归一划地方法.振型是个很重要地固有特征,正如楼上所说用于验证固有频率. 文档来自于网络搜索 我觉得振型在判别你计算固有频率正确性是非常有用地,比如,通过有限元计算得到了模型地前十阶固有频率,试验模态分析也得到了低阶地固有频率,假设计算地某阶固有频率与试验地某阶固有频率非常接近,但是并不能马上说明他们是同一阶地,需要通过振型来判断. 文档来自于网络搜索 其他地不知道,但是之所以引入模态地概念,之所以从物理坐标变换到模态坐标就是为了解耦,就是为了让其正交,这样方程才能解出来. 从能量角度说,这样各个振型之间就没有能量地交换. 文档来自于网络搜索 从数学上看,对响应函数级数展开后,其中地各项构成各阶模态,而级数展开形式本身要求各个基函数是相互正交地,也就是说:其实是把响应函数放到了一个函数空间里,各个展开项系数相当于这个响应在此函数空间里地坐标.文档来自于网络搜索 因为个自由度以上地系统往往都有耦合现象,例如方程*^^*中地、不同时为对角阵.但是从求解地角度来说,我们又希望其中地每个方程都是独立地,那样我们就可以像求解单自由度系统一样求解.我们就想能否选到合适地坐标系,使得运动完全不耦合,即系统质量矩阵和刚度矩阵同时为对角矩阵,称这样地坐标系为主坐标系,而模态坐标正是我们要寻找地主坐标.固有振型地正交性是指(以自由度为例),第一阶固有振动引起地作用力在第二阶固有振动上所做地功为零,即两种固有振动间无弹性势能地交换.同时也可证明振型地各阶导数间也是正交地. 文档来自于网络搜索 就像不同地坐标系下,对同一运动系统地表述会很不一样,表述同一运动系统地振型模态也可以有很多物理量地坐标系,当然其中很多都是很复杂地,对解决实际问题是没有实际意义和帮助地,只有那个特殊地正交状态地模态坐标,才是最简单最有用地坐标,因为它能把系统解耦,,这个特殊地坐标称之为主坐标,对应主振型,这个状态可以把方程解开,把问题解决掉,,文档来自于网络搜索 各阶模态是互相正交是为了解耦,使问题最简化.类似向量地分解,比方说,一个平面内力向量地分解方式有很多种,但采用直角正交分解最方便. 文档来自于网络搜索 主要从以后地解方程组时候要解耦考虑吧 模态正交,具体表现在模态振型存在正交,请注意“存在”,而这种正交是线性系统模态地基本特性,准确地说是固有特性,正因为存在这种正交特性,带来了运算时地广义坐标下地耦合矩阵变为模态坐标中.文档来自于网络搜索 地解耦,计算变得简单. 注:(对上段话地个人理解:线性系统具有正交特性,人们利用线性系统地正交特性,对线性模态进行解耦,使问题简化.)文档来自于网络搜索 .任一阶主振型地惯性力在另一阶主振型作为虚位移上所做地虚功之和为零 .任一阶主振型地惯性力只在各自地振型上做功,在另外地主振型上不做功 这是正交相应地物理解释,是模态振型正交地物理形式,所以不能用物理含义去证明其相应地数学表达. 上面模态正交地数学和物理形式和概念有解释清楚了,那么,为什么会正交呢?

汽车悬挂系统的振动模态分析

汽车悬挂系统的振动模态分析 一、问题描述 一个简单的汽车系统如图1所示,若将其处理成平面系统,可以由车身(梁)、承重、前后支撑组成,汽车悬架振动系统可以简化地看作由以下两个主要运动组成:运动体系在垂直方向的线性运动以及车身质量块的旋转运动,对该系统进行模态分析。模型中的各项参数如表 1 所示,为与文献结果进行比较,这里采用英制单位。 表1 汽车悬架振动模型的参数 (a)问题描述(b)有限元分析模型 图1 汽车悬架振动系统模型 二、有限元建模 1、模型分析 计算模型如图1(b)所示。 这里将车身简化为梁,仅起到连接作用,这里设定不考虑梁的质量对振动性

能的影响,因此需将密度设定为零即可,但在建模时需要输入梁的各种参数(包括材料以及几何参数),实际上,可以将车身梁的弹性效果通过质量块的垂直运动及旋转运动来等效,质量块的转动惯性矩为2r m I zz ?=,r 取为 4ft ,经计算 ft lb I zz ??=2sec 1600。 可以看出所采用的平面简化模型仅有两个自由度(梁单元由于取密度为零,将仅起连接作用)。 采用 2D 的计算模型,使用梁单元 2-D Elastic Beam Elements (BEAM3)来等效车身,使用弹簧单元Spring-Damper Elements (COMBIN14)来等效车体的前后悬架支撑,使用质量块单元Structural Mass Element (MASS21)来等效车身质量。 2、建模的要点 1) 首先定义分析类型并选取三种单元,输入实常数; 2) 建立对应几何模型,并赋予各单元类型对应各参数值 ; 3) 在后处理中,用命令<*GET >来提取其计算分析结果(频率); 4) 通过命令<*GET >来提取模态的频率值。 3、建模步骤 1) 进入 ANSYS (设定工作目录和工作文件) 程序 → ANSYS → ANSYS Interactive → Working directory (设置工作目录)→ Initial jobname: Vehicle (设置工作文件名):→Run → OK 2) 设置计算类型 ANSYS Main Menu :Preferences … → Structural → OK 3) 定义单元类型 ANSYS Main Menu :Preprocessor → Element Type → Add/Edit/Delete... → Add …→ Beam: 2d elastic 3 → Apply (返回到Library of Element 窗口)→ Combination: Spring-damper 14→ Apply (返回到Library of Element 窗口)→Structural Mass: 3D mass 21→OK (返回到Element Types 窗口)→选择Type 2 COMBIN14 单击Options …→K3 设定为2-D longitudinal →OK (返回到Element Types 窗口) →选择Type 3 MASS21 单击Options …→K3 设定为2-D w rot inert → OK → Close 4) 定义实常数 ANSYS Main Menu: Preprocessor → Real Constants …→Add/Edit/Delete... →Add …→ 选择 Type 2 COMBIN14 → OK → Real Constants Set No. : 1

结构模态分析研究生论文

课程论文题目:模态分析技术在机械 领域中的运用 课程名称结构模态分析 课程类别□学位课□非学位课 任课教师 所在学院 学科专业 姓名 学号 提交日期2010年6月18日

模态分析技术在机械领域中的运用 摘要:本文首先系统地解析了模态分析技术的基本定义,以模态分析技术的理论为基础,查阅了大量的文献和资料后介绍了模态分析技术在国内、外机械领域的中的研究运用,并结合自己的研究方向对模态分析技术的运用进行总结。 关键词:模态分析;机械;结构;运用 Modal analysis technology in the field of mechanical use Abstract:This paper first system analysis of the modal analysis technology in the basic definition, the modal analysis technology, based on the theory of the massive literature and access information introduced the modal analysis technology in domestic and foreign machinery field of study of utilization, and combined with their research direction of modal analysis of the use of technology were summarized in this paper. Key words:Modal analysis;Machinery;Structure;Use 1前言 模态分析技术是现代机械产品结构设计、分析的基础,是分析结构系统动态特性强有力的工具[1]。试验模态分析方法(EMA,ExperimentalModalAnalysis)通过试验数据采集系统的输入输出信号,经过参数识别获得模态参数,验证有限元理论模态分析模型正确性,根据模态试验结果修改有限元理论模型。计算模态分析可以预测产品的动态特性,为结构优化设计提供依据。 模态分析是研究结构动力特性的一种方法,是系统辨别方法在工程振动领域中的应用[2]。振动模态是弹性结构固有的、整体的特性,如果通过模态分析方法得到结构各阶模态的 主要特性,就可能预知结构在此频段内,在外部或是内部各种振源作用下实际的振动响应,而且一旦通过模态分析知道模态参数并给予验证,就可以将这些参数用于设计过程,优化系统动态性能。模态分析过程如果是由有限元计算的方法取得的,称为是数值模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,则称为试验模态分析[3]。 实际的机械结构在振动环境中都受到动载的作用,为确保其良好的动态性能,必须对机械结构系统进行动态设计。结构动态设计要求根据结构的动载工况、对结构提出的功能要求以及设计准则,按照结构动力学的分析方法和实验方法反复进行分析和计算[4]。结构模态分析是结构动态设计的核心,其目的是利用模态变换矩阵将耦合的复杂自由度系统解耦为一系列单自由度系统振动的线性叠加,为结构系统的振动特性分析,振动故障诊断与预报以及结构动力特性的优化设计提供依据。 2模态分析技术的运用 模态分析技术源于30年代提出的将机电进行比拟的机械阻抗技术。经过几十年的发展,模态测试和分析技术已经在航空、航天、航海、汽车、土木、机械等几乎所有和结构动态分析相关的领域得到了广泛应用[5]。 2.1国外研究现状 国外的结构模态分析技术发展较早,应用到了航空、航天等诸多军工领域和汽车、电子、机械、土木等民用的各个领域,使模态分析得到了广泛的发展和充分的应用[6-8]。模态分析软件以美国的ME’scopeVEs的功能最为全面。ME,ScopeVES软件的功能包括信号处理(signalprocessing)、运行挠曲振型(operatingoerlectionshapes)、模态分析(ModalAna-ysis)、结

工程振动——振动理论、模态分析理论

1.复习振动理论 1.1单自由度系统响应 只有一个自由度的振动系统,称为单自由度振动系统,简称单自由度系统。 1.1.1单自由度系统自由响应 a )有阻尼: 220 (0)00ξωω?++==x x x n n x 0,(0)0 +==mx kx x x (0)00ω+==x x n x 02x 0a n ωx mx cx kx f ++=()x t X ω=-2x x x n n ξωωω++=周期:g(t)是周期为T 的周期函数,满足(1)在[-T/2,T/2]上连续或只有有限个一类间断点;(2)只有有限个极值。则g (t )可在[-T /2,T /2]上展成傅立叶级数 ()(cos sin ) 000 g t a p t b p t p p p ωω∞ =+∑=。最终得到,i i 00()Re[e ]e 0p t p t g t A d p p p p ωω∞∞= =∑∑==-∞ 。 非周期:脉冲函数(δ函数),当t=τ 时的单位脉冲力()0 ()d 1 t t t t δττ δτ-=≠? ??∞ -=???-∞,F(t)在t=τ连续, 则有()()d ()F t t t F δττ∞-=?-∞,脉冲力?()()F t F t δτ=-。由于??()d F t t F δτ∞-=?-∞,得?()e sin 0 t F n x t t t d m d ξωωω-= >。

2.预习模态分析理论 2.1单自由度系统频响函数(幅频、相频、实频与虚频、品质因子等) 系统的脉冲响应函数h(t)与系统的频响函数H(ω)是一对傅里叶变换对,与系统的传递函数H(s)是一对拉普拉斯变换对。即有: i ()()e d t H h t t ωω-∞=?-∞ 1i () ()e d 2π t h t H ωωω-∞ =?-∞ ()()e d 0 st H s h t t -∞=? 1i ()()e d i 2πi st h t H s σωσ+∞ = ? -∞ 复频率响应的实部 2 1(/)Re[()]222 [1(/)](2/)n H n n ωωωωωξωω-= -+ 复频率响应的虚部 2/Im[()][1(/)](2/)n H n n ξωωωωωξωω=- -+ 单自由度系统频响函数的各种表达式及其特征1 (w)2H k mw j k η=-+,对频响函数特征的描述 采用的几种表达式 1)幅频图:幅值与频率之间的关系曲线 2)相频图:相位与频率之间的关系曲线 3)实频图:实部与频率之间的关系曲线 4)虚频图:虚部与频率之间的关系曲线 5)矢端轨迹图(Nyquist 图) 2.2机械阻抗与表达式图形及数字特征 幅频图: 相频图: 实频图:虚频图:

基于MATLAB的振动模态分析

摘要 振动系统是研究机械振动的运动学和动力学,研究单自由系统的振动有着实际意义,因为工程上有许多问题通过简化,用单自由度系统的振动理论就能得到满意的结果。模态是振动系统的一种固有振动特性,模态一般包含频率、振型、阻尼。 振动系统问题是个比较虚拟的问题,比较抽象的理论分析,对于问题的分析可以实体化建立数学模型,通过MATLAB可以转化成为图像。单自由度频率、阻尼、振型的分析,我们可以建立数学模型,最后通过利用MATLAB编程实现数据图形;多自由度主要研究矩阵的迭代求解,我们在分析抽象的理论的同时根据MATLAB编程实现数据的迭代最后可以得到所要的数据,使我们的计算更加简便。 利用MATLAB编程并验证程序的正确性。通过程序的运行,能快速获得多自由度振动系统的固有频率以及主振型,为设计人员提供了防止系统共振的理论依据,也为初步分析各构件的振动情况以及解耦分析系统响应奠定了基础。 关键词:振动系统;单自由度;MATLAB;多自由度

Abstract Vibration system is to study the kinematics and dynamics of mechanical vibration, the vibration of a single free system has practical significance, because there are many engineering problems by simplifying, using the vibration theory of a single degree of freedom system can be satisfied with the results. Vibration system problems is a relatively virtual problems, more abstract and theoretical analysis, problem analysis for a mathematical model can be materialized by MATLAB can be converted into images. Single degree of freedom frequency, damping, mode shape analysis, we can create mathematical models, the final program data through the use of MATLAB graphics; many degrees of freedom main matrix iterative solution, our analysis based on abstract theory, while MATLAB programming The last iteration of data can be the desired data, so our calculations easier Using MATLAB programming and verify the correctness of the program.Through the process of operation, can quickly obtain multiple degrees of freedom vibration system and the main vibration mode natural frequency for the design to prevent resonance provide the theoretical basis for the preliminary analysis of the vibration of each component, and laid the decoupling of system response basis. Key words:vibrating system; Single Degree of Freedom ;MATLAB; multiple degree of freedom

自由模态与约束模态的理论基础

网上经常看到一些朋友询问关于自由模态与约束模态的问题,而且看到了很多不同的说法。而最近又有朋友向我问到了这个问题,我想,还是彻底地解决这个问题为好。而要彻底解决它,就需要考察其理论基础。 所以这篇文章专门去看看它的理论底层。 首先我们要明确,无论是自由模态还是约束模态,都属于模态分析的范畴。 那么什么是模态分析呢?这个概念来自于《机械振动》。于是我们到《机械振动》中去看看。考察一个三自由度的例子 现在我们要对该三自由度系统列动力学方程。这很容易,只需要分别取出每个质量块,使用牛顿第二定律就好 这样就有三个微分方程,用矩阵的形式整理这三个方程,得到 其中

这里的[m][k][c]分别是质量矩阵,刚度矩阵和阻尼矩阵。而{F(t)}是力向量。 下面我们来考虑模态分析。 所谓模态分析,是取力向量为0,就是说系统不受外力;而且忽略阻尼,则上述方程变成 下面的任务是求解这个微分方程组 这种解很难找到,于是我们假设了一个解的形式为(很有意思的是,这种形式的解刚好是正确的) 将该假设的解代入到上述方程中,得到 整理上述方程组,得到 该方程组的左边只与时间t有关,而右边与时间t无关。如果要这两边相等,除非两端都等 于一个常数。例如都等于,于是有 (1) 以及 (2) 对于(1)式,从《高等数学》的二阶常系数微分方程的解可以知道,其解为 对于(2)式,把它写成矩阵形式,并令

可以得到 提出位移向量{u},可以得到 上述式子要有非零解,按照《线性代数》理论,有 将该式子展开,可以得到 根据它就可以解出各个 可以证明,该方程有n个正实根,它们对应于系统的n个自然频率。假设没有重根,则这些频率可以从小到大排序,得到 这其中,最小的这个就是基频。可见,系统有多少个自由度,就有多少个频率。 在解出所有频率后,将某个频率代入到 中,就可以得到此时的 此即系统的模态向量或者振型向量。 从以上推导中我们知道 (1)有多少个自由度,就有多少个自然频率。 (2)有多少个自然频率,就有多少个与自然频率相对应的模态向量。 下面来说明所谓的约束模态与自由模态。 仍旧取最前面的例子。

振动系统的模态分析

理论力学振动系统模态分析实验 实验目的: 1?了解数字化测试技术的原理和做法。学习模态分析原理。 2. 学会用“锤击发”测量振动系统的模态参数与振型 二?实验仪器: 1. MSC-1型弹性力锤。 2. Yj9A压电加速度传感器。 3. Zj-601A型震动教学试验仪。 三?实验装置示意图: <被测对象) 匸电荷放大器二f 接□箱匸计算机采集分析系统 四、实验原理: 本实验测试对象是弹性梁。实验步骤与原理是:由力锤锤击被测物体,锤体内的力传 感器与被测物体上的加速度计同时记录下脉冲激励与被测物体的响应,震动教学试验仪放大 并转化为电压,经接口箱,传入计算机的采集分析系统记录。数据采集完毕后,动用分析系统,首先对数据进行传递函数分析,然后,进入模态分析,根据振动理论,分析系统在确定阶数后,进行质量或振型归一,自动生成分析结果并可以生成振动的动画显示,各阶频率、模态质量、模态刚度、模态阻尼比同时列出。

五、实验步骤: 1. 准备工作:先将梁分画成所需的单元格,节点编号,将加速度计固定在梁的五分之二处(避免放在节点处)。 2. 设备连接:将力锤与加速度计与电荷放大器连接,按力锤与加速度计的灵 敏度分别调好电荷放大器上的旋钮,并选好相应的滤波上限开关。再将二信号输出端与接口箱相应频道相连。 3. 进入计算机采集分析系统参数设置部分,设定实验名称与各频道单位。 4. 进入计算机采集分析系统菜单中模态分析部分,画出被测对象的几何图形及节点号,给出约束条件。 5. 进入计算机采集分析系统的信号采集部分,开始实验。 6. 对17个测试位置依次进行敲击,没一个测试点进行三次。以减小误差。 7. 调用采集的数据,打开分析界面,调入波形。进行函数分析,模态拟合。 8. 振型编辑,质量归一,至此分析完毕,显示动画 9输出数据及计算结果,保存动画截图

相关文档
相关文档 最新文档