文档视界 最新最全的文档下载
当前位置:文档视界 › 输电线路工频参数测量方法

输电线路工频参数测量方法

输电线路工频参数测量方法
输电线路工频参数测量方法

输电线路工频参数测量方法浅析

摘要随着输电线路运行环境的日益复杂,传统的线路工频参数测量方法已不能满足当前的工作要求。本文对传统测量方法中存在的问题进行了阐述,并且通过实际的测量数据,对目前两种新型的测量方法进行了分析。

关键词输电线路;工频参数;移频法;变向量法

中图分类号tn7 文献标识码a 文章编号 1674-6708(2011)49-0188-02

0引言

输电线路是构成电网的重要组成部分,在投运之前需要对其电气参数进行测量核准,为电力调度等部门计算系统短路电流、继电保护整定、计算潮流分布和选择合适运行方式等提供参考。一般测量的参数有绝缘测试、核对相位、直流电阻、正序阻抗、零序阻抗、正序电容、零序电容;对于同塔多回线路,还需要测量线路之间的互感阻抗及耦合电容。

目前,工程上多采用工频法进行这些参数的测量,其原理是在被测线路上施加工频电源,由电流表、电压表、功率表计量数据,通过人工读取各表计刻度,再经相应的运算后求得实际的工频参数值[1]。

1目前测量方法中存在的问题

实际工程中使用工频法进行测量时,有许多不容忽视的问题:

标准架空输电线路电气参数计算

架空输电线路电气参数计算

一、提资参数表格式 二、线路参数的计算: 导线的直流电阻可在导线产品样本中查到。 当线路的相导线为两分裂导线时,相当于两根导线并联,则其电阻应除以2。多分裂导线以此类推。Array 1)单回路单导线的正序电抗: X1=0、0029f lg(d m/r e) Ω/km 式中f-频率(Hz);

d m-相导线间的几何均距,(m); dm=3√(d ab d bc d ca) d ab d bc d ca -分别为三相导线间的距离,(m); r e-导线的有效半径,(m); r e≈0、779r r-导线的半径,(m)。 2)单回路相分裂导线的正序电抗: X1=0、0029f lg(d m/R e) Ω/km 式中f-频率(Hz); d m-相导线间的几何均距,(m); dm=3√(d ab d bc d ca) d ab d bc d ca -分别为三相导线间的距离,(m); R e-相分裂导线的有效半径,(m);

n=2 R e=(r e S)1/2 n=4 R e=1、091(r e S3)1/4 n=6 R e=1、349(r e S5)1/6 S-分裂间距,(m)。 3)双回路线路的正序电抗: X1=0、0029f lg (d m/R e) Ω/km 式中f-频率(Hz); d m-相导线间的几何均距,(m); a 。c′。 dm=12√(d ab d ac d a b′d ac′‵d ba d bc d ba′d bc′d ca d cb d ca′d cb′) b 。b′。 d ab d bc ……分别为三相双回路导线间的轮换距离,(m); c 。a′。 R e-相分裂导线的有效半径,(m); R e=6√(r e3 d aa′d bb′d cc′) 国内常用导线的线路正序电抗查《电力工程高压送电线路设计手册》第二版 P18~P19

线路参数测试方法

高感应电压下用SM501测试线路参数的方法 湖南省送变电建设公司调试所邓辉邓克炎 0引言 超高压输电线路工频参数测试时,经常遇到感应电压很高的情况,不能用仪器直接测试, 否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 1SM501的介绍: SM501线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D同步交流采样及数字信号处理技术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 1.1SM501的主要功能与特点: (1)可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。 (2)全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。

(3)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电流互感器。 (4)可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。 1.2主要技术指标; (1)基本测量精度:电流、电压、阻抗0.2级,功率0.5级 (2)电压测量范围:AC 0-450V 电流测量范围:AC 0-50A 2为什么要对输电线路进行参数测试: 输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。 以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保定市超人电子有限公司研制了一种比较智能的参数测试仪那就是SM501。 3几种典型的参数测试: 3.1 输电线路正序阻抗的测试: 将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图1接法测量。当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器,按图2接法测量。在仪器测试项目菜单中

2010级《输电线路测量》期末考试试题

《输电线路测量》试卷【闭卷】 一.填空题:(本大题共20个空,每空1分,共20分) 1.GPS主要由、、等组成。 2.DS3型水准仪主要由、、等组成。 3.光学经纬仪水平度盘的控制装置:、。 4. 水准仪精平的标志:。 5.桩间量距以及高差测量都称为、一般用。 6.DJ6光学经纬仪由、、等组成。 7. DS3型水准仪与DSZ3型水准仪的区别在于。 8. DJ6光学经纬仪的读数装置:、。 9.全站仪主要由、、等组成。 二.单项选择题:在下列各题中,有三个备选答案,其中只有一个正确的答案。(本大题共10小题,每小题2分,共20分) 1.消除视差的方法是重新仔细地进行()。 (A)目镜对光(B)物镜对光(C)望远镜对光 2.水准仪通过()进行读数。 (A)目镜(B)物镜(C)望远镜 3.光学经纬仪通过()进行读数。 (A)目镜(B)物镜(C)读数显微镜 4.具有复测装置的经纬仪,称为()。 (A)方向经纬仪(B)复测经纬仪(C)光学经纬仪 5.DJ2经纬仪读数可以精确到()。 (A) '' 1(B)'1(C)01 6.()是为了鉴定导线对地、对被跨物的弧垂是否符合规定的电气安全距离。(A)横断面测量(B)纵断面测量(C)斜断面测量 7. DJ6光学经纬仪与DJ2光学经纬仪在结构上的区别在于()。 (A)结构不同(B)精度不用 (C)读数设备的不同 8.经纬仪制动后不可强行转动,需转动时可用()。 (A)微倾螺旋(B)制动螺旋(C)微动螺旋 9.输电线路设计测量中,选定线路的测量方法有直接定线法和( )。 (A)间接定线法(B)矩形法定线(C)等腰三角形法定线 10.桩间量距以及高差测量中,为了保证精度采用同向观测和()两次观测的方 式。(A)对面观测 (B)异向观测(C)对向观测 三.判断题:下列所给题目中对的打√,错的打×(本大题共20小题,每 小题1分,共20分) 1.精平和读数虽是两项不同的操作步骤,但在水准测量的实施过程中,却把两项操作 视为一个整体。精平后马上读数,读书前一定要精平。读书后不必检查管水准气泡是否 完全水平。(错) 2.仪器使用前后,不必详细检查仪器状况及配件是否齐全。(错) 3.杆塔定位测量先测后定法的过程是:选定线测量→平断面图测绘→图上定位→现场 定位→施测档距和杆塔位高差→测定施工基面值。(错) 4.在打开物镜时或观测过程中,如发现灰尘,可用镜头纸或软毛刷轻轻拂去,可以用 手或手帕等物擦拭镜头。(错) 5.水准仪调节基座上的三个脚螺旋使圆水准器气泡居中,经纬仪调节基座上的三个脚 螺栓也是圆水准器气泡居中。(错) 6.在斜坡上安置仪器时应注意将脚架的两条腿架在斜坡的上方,以防仪器倾倒。(错) 7.把杆塔基础坑及其拉线基础坑的位置测定,并钉立木桩作为基础开挖的依据。(对) 8.全站仪电子测距系统完成仪器到目标之间斜距的测量。(对) 考生须知: 1、请您遵守考 试规则,专心致 志,发挥最佳水 平; 2、凡姓名、学 号写在装订线 外的试卷作废。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 第 1 页共 2 页

第十章 输电线路试验与检测

第十章输电线路试验与检测 第一节输电线路绝缘试验 本节讨论的线路参数均指三相导线的平均值,即按三相线路通过换位后获得完全对称。对不换位线路,因其不对称度较小,也可以近似地适用。 一、线路各相的绝缘电阻的测量 ?线路各相的绝缘电阻的测量,是对线路绝缘状况、接地情况或相间短路等缺陷的检查。 ?测量不能在雷雨天气,应在天气良好的情况下进行。为保证人身和设备安全以释放线路电容积累的静电荷,首先将被测线路相对地短接。 ?测量时,拆除三相对地的短路接地线,为保证测试工作的安全和测量结果的准确,应测量各相对地是否还有感应电压,若还有感应电压,应采取措施消除。 ?对线路的绝缘电阻进行测量时,确定线路上无人工作,并得到现场指挥允许工作的命令后,将非测量的两相短路接地,用两千五至五千伏兆欧表,依次测量每一相对其它两相及地间的绝缘电阻。 ?对于线路长、电容量较大的,应在读取绝缘电阻值后,先拆去接于兆欧表L端子上的测量导线,再停摇兆欧表,以免反充电损坏兆欧表。测量结束应对线路进行放电。 ?根据测得的绝缘电阻值,结合当时气候条件和线路具体情况综合分析,作出正确判断。 二、核对相位 核对相位一般用兆欧表和指示灯法。指示灯法又分干电池和工频低压电源两种。 1、兆欧表法

图10-1是用兆欧表核对相位的接线图,在线路的始端一相接兆欧表的L 端,兆欧表的E 端接地,在线路末端逐相接地测量,若兆欧表的指示为零,则表示末端接地相与始端测量相同属于一相。按此方法,定出线路始、末两端的A 、B 、C 相。 2、指示灯法 指示灯法是将图10-1中的兆欧表换成电源,和指示灯串联测量,若指示灯亮,则表示始、末两端同属于一相。但应注意感应电压的影响,以免造成误判断。 A B C 始端末端A B C ''' 图10-1 核对相位接线图 三、测量直流电阻 试验前线路末端三相均应彻底放电。线路始端开路,末端三相短路,拆开两端所有接地线。使用仪器设备:24V 直流电源,直流毫伏电压表如图10-2。 A B C 始端末端A .DC V ... 图10-2 电流电压表法测量线路直流电阻接线图 A ─直流电流表,V ─直流电压表 A , B 相加直流电压AB U ,测电流AB I ,则

线路参数测试方法

SM501测试线路参数的方法高感应电压下用邓克炎邓辉湖南省送变电建设公司调试所 引言0, ,不能用仪器直接测试超高压输电线路工频参数测试时,经常遇到感应电压很高的情况否则仪器被感应电压击穿损坏。本文根据厂家仪器给出的原理接线进行了改接,通过理论分析,实际测试,数据证实,此种方法确实有效可行。 SM501的介绍:1 线路参数测试仪,是专门用于输电线路工频参数测试的仪器。该仪器电路设计精巧,思路独特,SM501同步交流采样及数字信号处理技使得其性能优越,功能强大,体积小,重量轻。该仪器内部采用先进的A/D 术,成功的解决了多路信号在市电条件下同步测量和计算的难题。仪器操作简单方便,数据准确可靠,可完全取代传统仪表的测量方法,可显示并记录用户关心的所有测量数据,可作为现场高精度交流指示仪表使用。该仪器测试线路参数与传统仪表测试线路参数比较,减轻劳动强度,工作效率大大提高。 SM501的主要功能与特点:1.1 可测量输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电(1)冰箱容,零序电容,线地电容,互感阻抗,电压,电流,功率,电阻,电抗,阻抗角,频率等参数。全部数据均在统一周期内同步测量,保证在市电条件下测量结果的准确性和合理性。(2)在仪器允许的测量范围内可直接测量,超出测量范围时可外接一次电压互感器和电(3) 流互感器。可锁定显示数据并存储或打印全部测量结果,本仪器内置不掉电存储器,可长期保(4) 持测量数据并可随时查阅。 (5)全部汉字菜单及操作提示,直观方便。主要技术指标;1.2 0.5级级,功率(1)基本测量精度:电流、电压、阻抗0.2:AC 0-50A :AC 0-450V 电流测量范围(2)电压测量范围为什么要对输电线路进行参数测试:2输电线路短距离也有几公里,长距离的有几十至几百公里,输电线路长距离的架设,中途的换位,变电站两端相位有时出现差错,输电线路的正序阻抗,线间阻抗,零序阻抗,线地阻抗,正序电容,线间电容,零序电容,线地电容,互感阻抗,电阻,电抗,阻抗角等实际与理论计算值不一至。以上这些参数的准确对继电保护的整定至关重要,这些参数如果有误,保护不能正确动作,距离保护不能准确测距,甚至误动或不动,对电力设备造成直接经济损失。为了保证输电线路进行参数测试的准确,保SM501。定市超人电子有限公司研制了一种比较智能的参数测试仪那就是几种典型的参数测试:3: 输电线路正序阻抗的测试3.1 接法测量。1将线路末端三相短路悬浮。当测试电压和测试电流都不超过本测试仪器允许输入范围时,按图接法测量。2当测试电压和测试电流超过本测试仪器允许输入范围必须外接电压互感器和电流互感器, 按图在仪器测试项目菜单中应选择“正序阻抗”。 IUA a A I UB B b

线路参数测试作业指导书

交流输电线路工频电气参数测量作业指导书 批准: 审核: 编制: 深圳市鹏能投资控股有限公司试验分公司

1.试验项目 测试要求 新建和改建的单回交流输电线路,在运行前应进行线路单位长度电阻、电感、电容等工频电气参数的测量; 新建和改建的同塔双回输电线路,在运行前应进行双回线路之间的工频单位长度的耦合电感、耦合电容测量。 线路电气参数测试前的试验项目 (a)感应电压; (b)感应电流; (c)绝缘电阻; (d)核对相别。 线路电气参数测量项目 (a)直流电阻 (b)直流电阻测量 (c)正序阻抗测量 (d)零序阻抗测量 (e)正序电容测量 (f)零序电容测量 (g)双回线路之间的工频单位长度的耦合电感和耦合电容测量(无特殊要求不用测试, 详细测试方法见附表1)。 架空线和电缆混合线路参数的测量 当一条输电线路由架空线路和电缆线路串联构成时,可测量混合线路的电气参数,必要时分别测量架空线段和电缆线段的电气参数。 测量用电源的频率选取 待测线路不存在工频感应电压和感应电流的条件下,可直接选用工频电源进行测量。 待测线路存在工频感应电压和感应电流的条件下,为保证参数测量结果的准确度,宜采

用异频法进行测量。一般情况下,选取f -f S ?和f f S ?+两个频率点进行测量。 f ?通常可取 Hz ,5 Hz , Hz ,10 Hz 。 2.适用范围 交接试验是能及时有效地发现电力设备因运输、安装等方面的问题造成的缺陷、防范电力设备事故、保证电力系统安全运行的有效手段,是保证电力设备安全投产工作中必不可少的一个重要环节。为了强化一次设备交接试验工作,规范交接试验现场作业,四川通源电力科技有限公司组织编制交接试验标准化作业指导书。作业指导书的编写参照国家标准、企业标准的技术规范、规定。 本作业指导书适用于110kV~500kV 电压等级新安装的、按照国家相关出厂试验标准试验合格的电气设备交接试验,本标准不适用于安装在煤矿井下或其他有爆炸危险场所的电气设备。 3.编写依据 表3-1 编 写 依 据

输电线路节能导线技术参数

输电线路节能导线应用试点工程导线选型参考资料 一、导线技术参数及参考价格 导线技术参数和参考价格见附件1。 二、专题报告格式要求 根据交流输电线路的特点,专题报告建议包含如下几项内容: 1.工程概况,包含路径概况、电力系统条件、气象条件和杆塔条件等内容; 2.导线组合及型号选择,包含导线截面和分裂数、分裂间距、参与比选的导线技术参数; 3.导线电气性能比较,包含载流量,电阻损失的比较; 4.导线机械特性比较,包含导线弧垂、导线过载能力、杆塔荷载的影响及风偏角的比较; 5.线路造价分析,包含导线总体价格、杆塔耗钢价格、增量投资回收年限等经济性比较。 6.选型总结,包含对三种节能导线提出设计推荐使用排序,对于工程中有特殊情况制约某类节能导线的使用(如重冰区、大风区),需在报告中明确说明。 三、交流电阻计算方法及参数选取 计算导线载流量及电阻损耗中的交流电阻时,建议采用以下参数: 1.电阻温度系数α取值时,硬铝线(61%IACS)取

0.00403;硬铝线(61.5%IACS)取0.00405;高导硬铝线(63%IACS)取0.00416;铝合金线(52.5%IACS、53%IACS)取0.0036;中强度铝合金线(58.5%IACS)取0.00386; 2. 计算载流量时,导线允许温度一般采用700C,必要时可采用800C,风速V取值0.5m/s,日照强度J S取值为1000W/m2,导线表面的辐射散热系数E取0.9,导线表面吸热系数αs取0.9,包尔茨曼常数S取值5.67×10-8W/m2;环境温度为最高气温月的平均气温。 3. 计算电能损耗时,风速V取值0.5m/s,日照强度J S 取值为1000W/m2,导线表面的辐射散热系数E取0.9,导线表面吸热系数αs取0.9,包尔茨曼常数S取值 5.67×10-8W/m2;,环境温度为当地年平均气温; 4. 交直流电阻比暂按日本电线与电缆制作协会颁发的标准JCS 0374:2003“裸线载流量计算方法”进行计算。 四、杆塔选取原则 试点工程杆塔统一采用输电线路通用设计杆塔,使用时考虑如下三个方面: 1.按照对地距离和交叉跨越的要求,选用呼高合理的杆塔。 2.校核杆塔荷载和塔头间隙,在塔头间隙满足要求的情况下,使用钢芯铝绞线适用的原杆塔,当节能导线引起塔

高压输电线路测量方法

高压输电线路工频参数测量方法 根据GB50150-2006标准规定,新建及改建的35kV高压输电线路在投入运行前,除了检查线路绝缘情况,核对相位外,还应测量各种工频参数值,以作为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作的实际依据,并可借以验证长线路的换相效果和无功补偿是否达到了设计的预期 目前,高压输电线路工频参数测量方法有2种:传统工频法和变频法测试 目前国内不少电业部门在现场进行线路工频参数测量时,有的还采用指针式表计组合,需人工多次不同步读取测量数据,人工工作量大;有的虽已使用了专用的数字测量仪表或线路参数测试仪,但当线路较长时,所需用的工频试验电源容量仍将会很大;而且采用工频电源进行测试需要用调压器,隔离变压器,高压电流互感器、电压互感器等众多设备, 使得试验设备重、大、多,试验接线非常繁杂。整套试验设备体积庞大,重量大,需要吊车等配合工作,十分不利于现场工作,而且由于测试电源是工频电源,容易与耦合的工频干扰信号混频,带来很大的测量误差,需要大幅度提高信噪比,对电源的容量和体积要求又进一步提高 随着国家电力建设的发展、供电线路的同杆架设和交叉跨越增多,导致输电线路相互间的感应电压不断提高,对测试人员和仪器仪表的安全造成严重的威胁;给线路工频参数的准确测量带来了强力的干扰。因此,采用传统的工频电源进行线路参数的测试难以保证工作的安全性及测试结果的准确性 变频法测试系统可采用非工频频率的电源进行线路的测试,以代替目前线路测试需用的众多设备,并规避了工频感应对测量准确性的干扰。为了进一步削弱工频感应电压、电流对于测量安全的威胁和对测量准确性的干扰,我公司在测试系统的核心部件-变频电源内部做了特殊处理,用于泄放工频感应电流和削除工频感应电压 测试系统主机可对设定的频率信号进行定频采样,并根据主机仪器中数据库内置的不同类型及线径的输电线路每公里的理论参考值用于对测试结果的非工频频率进行 校正得出工频下的线路参数测试值 用户可根据被测线路的工频感应电压、电流的大小确定试验频率为工频或变频,若采用定频测试,仪器可将线路测试参数自动归算到工频条件下的测试结果,并且生成标准规范的测试报告。这样一来,极大的简化了线路参数的传统测试,而且可不必再考虑 量仪表、数学模型于一体,消除强干扰的影响,保证仪器设备的安全,能极其方便快速、准确地测量输电线路的工频参数 MS-110输电线路工频参数测试系统主要特点有 1、快速准确完成线路的正序电容,正序阻抗,零序电容,零序阻抗等参数的测量,还可以测量线路间互感和耦合电容(线路直阻采用线路直阻仪进行测量) 2、抗干扰能力强,能在异频信号与工频干扰信号之比为1:10的条件下准确测量; 3、外部接线简单,仅需一次接入被测线路的引下线就可以完成全部的线路参数测量

架空输电线路中导线的选型..

架空输电线路中导线的选型 牟俊 (中工武大设计研究有限公司,武汉市,430072) 摘要:随着社会科技的进步发展,架空输电线路中导线的形式越来越多样化,导线受环境、材质、输送容量等多种因素的影响,在实际应用中如何选择合适的导线? 关键词:输电线路;导线;选型;经济电流密度 0引言 在架空输电线路的设计中,导线的选型至关重要,架空输电线路工程本是导线与杆塔结合的艺术,目前国家电网提出打造坚强可靠、经济高效、清洁环保、透明开放、友好互动的现代电网。对目前导线产品的多样性,每种产品优缺点不同,我们需要根据输送容量和线路环境因素,选择经济适用的导线。 1、导线的选型原则 送电线路的导线和地线长期在旷野、山区或湖海边缘运行,需要经常耐受风、冰等外荷载的作用,气温的剧烈变化以及化学气体等的侵袭,同时受国家资源和线路造价等因素的限制。因此,在设计中特别是大跨越地段,对电线的材质、结构等必须慎重选取。 选定电线的材质、结构一般应考虑以下原则: ⑴导线材料应具有较高的导电率。但考虑国家资源情况,一般不应采用铜线。

⑵导线和地线应具有较高的机械强度和耐振性能。 ⑶导线和地线应具有一定的耐化学腐蚀,抗氧化能力。 ⑷选择电线材质和结构时,除满足传输容量外还应保证线路的造价经济和技术合理。 2、导线截面的选择 架空送电线路导线截面一般按经济电流密度来选择,并应根据事故情况下的发热条件、电压损耗、机械强度和电晕进行校验。必要时,通过技术经济比较确定;但对110KV 及以下线路,电晕往往不成为选择导线截面的决定因素。 1)按经济电流密度选择导线截面 按经济电流密度选择导线截面所用的输送容量,应考虑线路投入运行后5~10年电力系统的发展规划,在计算中必须采用正常进行方式下经常重复出现的最大负荷。但在系统还不明确的情况下,应注意勿使导线截面选的过小。 导线截面的计算公式为 S =cos φ3J U P e (1~1) 式中 S ——导线截面,mm 2 P ——输送容量,kw U e ——线路额度电压,kv J ——经济电流密度,A/ mm 2 cos φ—功率因素

线路参数测试方法

线路参数测试方法 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

220KV茅申I线、茅申II线线路 参数测试方案 编制: 审核: 批准: 年月日 线路参数测试方案 I试验前的准备: 1、先组织参加试验人员学习该线路测量三措方案 2、由工作负责人向全体试验人员交待整个工作内容和人员分工定位及安全注意事项。 3、检查试验所需仪器、仪表连接线,绝缘工器具等是否按试验要求备齐备足。 4、检查两方通讯工具是否正常。 5、整个试验工作开始之前,一定要得到基建负责人许可,确认所有试验线路已停电,线路上均无人工作,可以进行测量。 6、两则分别办理许可开工手续。 II试验项目和步骤: 以下试验项目,每执行一项,即在序号左方打“√”,由工作负责人执行。 一、线路相序和绝缘电阻的测定:

1、测试人员按“安规”要求设置工作围栏,并悬挂“止步,高压危险”标示牌。 2、由工作负责人再次向工作班成员交待工作内容和人员分工定位及安全注意事项。 3、准备绝缘垫一块,2500伏兆欧表面2只(其中一只作备品) 4、用验电器验明线路确无电压后,将线路三相短路接地。 5、用电话通知对方,线路已接地,请对方做好安措,拆除线路耦合电容器上的引线,对已拆开的引线要保持一定的相间距离并有防止摆动措施。 测试茅申II线时,将茅申I线申城变侧三相短路接地,测茅申I线时,将茅申II线三相短路接地。 6、得到对方回答:引线已拆除,人员已离开。 7、通知对方:将线路一相接地,其它两相开路,操作完毕,人员离开设备后,用电话回答对方。 8、接到对方回答后,开始测量,并作好数据记录。 9、重复项7、项8,测量其它两相。 二、直流电阻测定: 1、将被试线路短路接地放电20分钟。 2、用电话通知对方(申城变侧,以下同):线路已接地,将对方侧线路三相用专用线夹短路并接地。 3、得到对方回答:“三相已短接完毕,可以试验”。 4、通知对方:“试验开始,将引下线分别接至电桥进行三相电阻测量,记录电桥读数和两端环境温度”。(为了防止空间感应电压干扰,根据情况可在线路测量端并上旁路电容)。

线路参数测量方案

110kV电缆线路参数测量方案 一、试验目的: 新建线路在投入运行前,测量各种工频参数值,为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作提供依据。 二、线路名称 1、2.8km纯电缆线路; 三、试验方法 1、从XX变电站进行测量,对侧站根据试验项目进行相应配合; 2、从XXX变电站进行测量,对侧站根据试验项目进行相应配合。 四、试验设备 五、试验准备 1.测试前应收集被测线路情况如线路名称、电压等级、线路长度、型号、截面等信息。 2.由对方协调好各关联单位 3.对侧GIS进行相应的操作 4.按试验计划准备好在现象XX变电站和XX变电站测量的工作票。 六、测量接线及步骤 1.正序阻抗的测量: 试验接线:将线路末端三相短路不接地,即合H-ES11地刀、并将接地

(1)如图接好试验回路接线,检查调压器置于零位。 (2)将测试仪选择正序阻抗测量后按确定,进入正序阻抗测量。 (2)将测试仪选择零序阻抗测量后按确定,进入零序阻抗测量。

(3)调节调压器开始升压,待电流升至一定值并且较为稳定时按确认。 (4)记录仪器显示的测量数值。可多次测量取平均值。 3. 正序电容的测量: 试验接线:将线路末端三相短路不接地,即合H-ES11地刀、并将接地点解开,三相短接。在线路始端加三相工频电源进行测量。接线图如下: 图一:正序电容测试接线图 试验步骤: (4)如图接好试验回路接线,检查调压器置于零位。 (5)将测试仪选择正序阻抗测量后按确定,进入正序阻抗测量。 (6)调节调压器开始升压,待电流升至一定值并且较为稳定时按确认。记录仪器显示的测量数值。可多次测量取平均值。 2. 零序电容的测量:

室内外热环境参数测定实验指导书

【实验名称】室内外热环境测试 【实验性质】综合性实验 【实验任务】测试不同类型建筑、不同建筑空间的热环境,对室外气象因素对室内热环境的影响进行分析,并根据分析结果针对建筑热工设计提出结论性意见。 【实验目的】 通过实验,使学生了解室内外热环境参数测定的基本内容,初步掌握仪器仪表的性能和使用方法,进一步感受和了解室外气象因素对建筑热环境的影响。 【实验内容】 建筑室内外热环境参数的测定主要分为室内热环境测定和室外热环境测定两部分。其中:室内热环境参数的测量主要包括2个方面的内容: ■温度的测定 ■空气相对湿度的测定 室外热环境参数的测试同样主要包括2个方面的内容: ■温度的测定 ■空气相对湿度的测定 ■风环境的测定 【实验仪器设备】 1、室内热环境的测定主要使用TESTO174H温湿度记录仪。 2、室外热环境参数的测定主要使用温湿度记录仪及8910便携气象站。 【实验方法和步骤】 1、室内热环境参数的测定 (1)将记录仪与计算机连接,设置记录仪时间及存储间隔等信息; (2)选择测点,注意避免测点受到日照等因素的影响; (3)选择完整时间段对选定测点和室外温湿度进行测试; (4)上传数据,进行数据整理和处理; (5)结合测点房间的特点(建筑形式、外环境、布局、朝向、围护结构等等)对实测数据的差异进行分析,提出建筑热工设计的改进型意见及设计原则; 测点A 位于建艺馆地下一层综合实验室西侧,有西向外墙外窗,有采暖; 测点B位于建艺馆地下一层综合实验室西侧,无外墙外窗,有采暖,暖气配置较少; 测点C 位于建艺馆地下一层综合实验室构造展室,无外墙外窗,无采暖;

【数据整理】 根据提供的数据图表选择所研究的时间段(周期10个小时),将对应的时刻、数据参数填入表格。 【分析】 根据数据结果分析同样外扰作用下不同室内环境的原因。 【结论及建议】 根据分析结果,归纳建筑热环境影响因素及其影响机理,提出通过建筑设计和设备等多种措施改善室内热环境的建议。

220kV线路参数试验总结

电网线路参数测试研究介绍 摘要: 本文介绍了220kV架空线线路参数测试原理,试验步骤及试验时一些注意事项 关键字: 线路参数测试 220kV架空线线路电气试验 1 概述 输电线路是电力系统的重要组成部分,工频参数则是输电线路重要的特征数据,是电力系统潮流计算、继电保护整定计算和选择电力系统运行方式等工作之前建立电力系统数学模型的必备参数,工频参数的准确性关系到电网的安全稳定运行,因此对新建和新改造的线路在投运前均需进行工频参数的计算和测量,为调度等部门提供准确的数据。 一般应测的参数有直流电阻R,正序阻抗Z1,零序阻抗Z0,正序电容C1,零序电容C0,及双回线路零序互感和线间耦合电容。除了以上参数外,绝缘电阻及相序核对也是线路参数中不可缺少的测试内容。 2 试验原理及试验步骤 2.1 测量线路各相的绝缘电阻及相序核对 测量绝缘电阻,是为了检查线路的绝缘状况,以及有无接地或相间短路等缺陷。一般应在沿线天气良好情况下(不能在雷雨天气)进行测量。首先将被测线路三相对地短接,以释放线路电容积累的静电荷,从而保证人身和设备安全。测量时,应拆除三相对地的短路接地线,然后测量各相对地是否还有感应电压,若还有感应电压,应采取消除措施。 测量绝缘电阻时,应确知线路上无人工作,并得到现场指挥允许工作的命令后,如图(2-1)所示将非测量的两相短路接地,用2500V或者5000V兆欧表轮流测量每一相对其他两相及地间的绝缘电阻。 图(2-1) 相位核对的方法很多,一般用兆欧表法进行测量,如图(2-2)所示在线路始端接兆欧表的L端,而兆欧表的E端接地,在线路末端逐相接地测量;若兆欧表指示为零,则表示末端接地相与始端测量相同属于一相。按此方法,定出线路始,末两端的A﹑B﹑C相。

输电线路施工测量全解

输电线路施工测量工作包括: 线路施工复测 分坑测量 基础的操平找正及杆塔检查 架空线弧垂观测 交叉跨越测量等 一、线路杆塔桩复测 线路杆塔桩位置是根据线路断面图、架空线弧垂曲线模型板参照地物、地貌、地质及其他有关技术参数比较而设计的,经过现场实际校核和测定后确定的。 由于从设计、定桩到施工,相隔了一段较长的时间,可能发生桩位偏移或丢失等情况。因此在线路施工前,应对杆塔中心桩的位置进行复核。 (一)直线杆塔桩位复测

直线杆塔桩位复测是以两相邻的直线桩为基准,检查杆塔中心桩位置是否在线路的中心线上。 测量方法可采用正、倒镜法或测量其水平角,若实测的水平角超过允许的误差值(1800±1')时,必须予以纠正。 (二)档距和标高的复测 线路上杆塔的高度是根据杆塔地面标高及档距间的最大弧垂曲线,利用断面图而确定的。 在线路施工前,应复测两相邻杆塔中心桩间的平距,其偏差不应大于设计档距的1%;复测两杆塔间被跨越物及相邻两杆塔位的标高,其偏差不应大于0.5m。 (三)转角杆塔桩复测 转角杆塔桩复测是用一测回法复测转角的水平角度值,其与设计值的偏差不应大于1'30〃。在复测中若发现杆塔桩丢失或移动,应及时进行补桩。 二、分坑测量 一条线路上的杆塔类型很多,而杆塔基础的形式又取决于杆塔的类型。

分坑测量依据设计部门编制的线路杆塔明细表进行,明细表注明了每根杆塔基础的型号和洞深,这些数据是分坑测量的主要依据。 分坑测量包括坑口放样数据计算和坑位测量。 (一)坑口放样数据计算

二)坑位测量 杆塔有铁塔与拉线杆两大类。因此,杆塔基础有主杆与拉线基础坑之分。

输电线路工频参数测试的技术要点及注意事项_刘焕强

65 第11卷 (2009年第10期)电力安全技术 输电线路工频参数测试的技术要点及注意事项 〔摘 要〕输电线路参数的测试是一项专业性极强的工作,要求测试方案科学,测试方法安全,测试参数准确。在介绍输电线路参数测试的基本原则后,结合实际工程的经验,提出了在测试线路参数中技术上应掌握的要点及安全方面应注意的事项。 〔关键词〕输电线路;参数测试;注意事项1 概述 新建高压输电线路在投入运行前,除了检查线路绝缘、核对相位外,还应测试各种工频参数值,以作为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作的实际依据。对于投入运行多年的线路,由于投运后导线的老化、邻近线路的建设、土壤电阻率的变化,或气候、环境及地理等因素的影响,可能使输电线路的实际工频参数发生变化,也需定期测试。因此输电线路参数的测试是一项专业性极强的工作,要求测试方案科学,测试方法安全,测试参数准确。2 编制测试方案的主要内容2.1 收集有关参数资料 线路工频参数值的准确测试将为计算系统短路电流、继电保护整定、推算潮流分布和选择合理运行方式等工作提供实际依据。因此测试参数前,应收集线路的有关设计资料,如线路名称、电压等级、线路长度、杆塔型式、导线型号和截面,了解线路参数设计值,并根据资料和现场实际条件制订测试方案。对于己投入运行的线路,由于电网结构的改变,可能会出现同杆架设的多回路或距离较近、平行段较长的线路,以致严重影响初期测试的耦合电容和互感阻抗参数值,同样要收集有关资料,根据电网的发展变化编制出符合实际的测试方案。2.2 确定需测试的线路参数 线路工频参数测试包括:正序阻抗、零序阻抗、线间阻抗、线地阻抗、互感阻抗、正序电容、零序电容、线间电容、线地电容及耦合电容。对新架线路各相的绝缘电阻、直流电阻也是需测试的线路参 刘焕强,欧阳青 (广东电网公司河源供电局,广东 河源 517000) 数。其中互感阻抗、耦合电容是当出现两回平行线 路运行时继电保护整定、考虑电容传递过电压影响必须用到的参数。 2.3 选定符合现场实际条件的试验方法 目前测量线路参数的方法大致包含以下3种。2.3.1 仪表法 仪表法是最早采用的方法。即在被测线路上施加电源后,使用电压表、电流表、功率表、频率计等,通过人工读取各表刻度,经运算后求得各参数值。由于在实测中工频干扰电压对线路零序参数和线路互感阻抗的测量精度影响很大,作为主要成分的工频分量必须予以消除,因此提出了一些改进,如电源倒相法、附加工频电源法、提高信噪比法。经过长时间的现场实践,证明仪表法是容易掌握、实用性强、使用广泛、行之有效的测量方法,但是在消除干扰方面稍显不足。2.3.2 数字法 实际上,这种方法的测量原理基本上是采用第一种方法,只是在信号的提取和处理上有了进一步提高。因为引入了单片机技术,使得处理方法上有了质的飞跃。首先是通过高精度的电压、电流互感器进行信号采集,再通过滤波器的按需组合,在硬件上实现对信号的滤波,再经过模/数转换,最后用单片机处理离散化的数字信号,得到最终结果。数字法在处理干扰的方面要明显优越于仪表法。但是,测量信号和干扰信号的主要成分是工频信号,因此在干扰很大时,就算使用再强大的数字信号处理方法,也不能达到应有的效果。如果想得到较为准确的结果,依然是以提高输出功率为代价。通过提高施加电压来提高信噪比,这就大大削弱了数字法的优越性。 A njipingtai 安 技 平 台

用三表法测量电路等效参数

用三表法测量电路等效参数 一、实验目的 1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。 2. 学会功率表的接法和使用。 二、原理说明 1. 正弦交流信号激励下的元件值或阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到所求的各值,这种方法称为三表法, 是用以测量50Hz 交流电路参数的基本方法。 计算的基本公式为: 阻抗的模I U Z = , 电路的功率因数 cos φ=UI P 等效电阻 R = 2I P =│Z │cos φ, 等效电抗 X =│Z │sin φ 或 X =X L =2πfL , X =Xc =fC π21 2. 阻抗性质的判别方法:在被测元件两端并联电容或串联电容的方法来加以判别,方法与原理如下: (1) 在被测元件两端并联一只适当容量的试验电容, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。 图16-1 并联电容测量法 图16-1(a)中,Z 为待测定的元件,C'为试验电容器。(b)图是(a)的等效电路,图中G 、B 为待测阻抗Z 的电导和电纳,B'为并联电容C' 的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析: ① 设B +B'=B",若B'增大,B"也增大,则电路中电流I 将单调地上升,故可判断B 为容性元件。 ② 设B +B'=B",若B'增大,而B"先减小而后再增大,电流I 也是先减小后上升,如图16-2所示,则可判断B 为感性元件。 由上分析可见,当B 为容性元件时, 对并联电容C'值无特殊要求;而当B 为感 性元件时,B'<│2B │才有判定为感性的意 I I Z B B B 2,U .U ....(a)(b).

有关输电线路测量的知识

关于50T除盐水电气设计部分图纸问题 1、现场操作盘内控制回路熔断器FU建议改为1P或2P的小型断 路器。 2、现场操作盘内电磁阀控制开到位、关到位都有指示灯显示,但 只有开到位信号送PLC,建议关到位信号也送PLC。 3、现场操作盘内去现场阀门的开/关限位电缆为3*1.5,建议电缆 选用4*1.5。 4、现场操作盘内线号(1-L+)~(16-L+)DC24V电源可以不用引回 PLC柜。 5、现场操作盘内图纸设计手动自动切换转换开关通过一个中间 继电器控制几控制路电源。若中间继电器坏掉将导致几路设备不能工作,是否考虑更好的设计思路。 6、按图纸设计电源回路电磁阀DC24V,但图纸未给出电磁具体 型号和电源等级,需要确认。 7、现场操作盘内电动阀(如反渗透浓排口电动阀MV3)开/关阀 远程控制回路中只设计了一路开阀控制信号,关阀时PLC信号失电即关。如果电动阀内部关到位信号出短接状态时,远程关阀信号将一直有信号这样容易导致设备误动作和损坏设备。建议远程PLC增加一路关阀控制输出点。 8、现场操作盘内电动阀(如反渗透浓排口电动阀MV3)控制开 到位、关到位都有指示灯显示,但只有开到位信号送PLC,建议关到位信号也送到PLC。

9、LCP-10/11/12/13/08/09/14/15/16操作盘内DC24V直流主回路 也应增加一个主回路开关。 10、现场操作盘内指示灯电源线号(如02-L+)同GGD柜内到操 作盘内的电源线号(如2L+)不一致,应统一线号。 11、GGD柜中的零排究竟是(40*4)还是(30*4),图纸中有标注 3*(60*6)+40*4和标注零排30*4,需要确认。建议零排40*4。 12、GGD柜内控制回路熔断器FU应改为2P或1P的小型断路器。 13、GGD柜没有设计检修电源开关及照明配电开关。 14、PLC柜图纸中设备表统计后台监控电脑1套,应改为4套。 15、PLC柜图纸中设备表应增加一台8口交换机。 16、PLC柜图纸中设备表MMC存储卡128K应改为1M。 17、PLC柜图纸中设备表20针前连接器端子应为6个。 18、PLC柜图纸中设备表工业组态软件未注明品牌和型号,建议为 西门子WINCC6.2。 19、PLC柜图纸中的设备表统计UPS电源为1KV A应改为3KV A。 20、PLC柜图纸中设计的直流24V稳压电源为明纬(S-350-24)直 流输出24V/14.5A应改为稳压电源直流输出24V/20A的西门子或航天朝阳品牌的电源。 21、PLC柜图纸设计PLC站点通讯采用扩展机架的通讯方式,建 议改为PROFIBUS-DP通讯方式,硬件上接口模块IM360/IM361更换为IM153,同时增加DP头和DP通讯电缆。 22、PLC柜图纸设计中的熔断器FU应改为1P或2P小型断路器,

用三表法测量电路等效参数实验报告(含数据处理)

实验七 用三表法测量电路等效参数 一、实验目的 1. 学会用交流电压表、 交流电流表和功率表测量元件的交流等效参数的方法。 2. 学会功率表的接法和使用。 二、原理说明 1. 正弦交流信号激励下的元件的阻抗值,可以用交流电压表、 交流电流表及功率表分别测量出元件两端的电压U 、流过该元件的电流I 和它所消耗的功率P ,然后通过计算得到元件的参数值,这种方法称为三表法。 计算的基本公式为: 阻抗的模I U Z = , 电路的功率因数UI P =?cos 等效电阻 R = 2I P =│Z │cos φ, 等效电抗 X =│Z │sin φ 2. 阻抗性质的判别方法 可用在被测元件两端并联电容的方法来判别, 若串接在电路中电流表的读数增大,则被测阻抗为容性,电流减小则为感性。其原理可通过电压、电流的相量图来表示: 图7-1 并联电容测量法 图7-2 相量图 3. 本实验所用的功率表为智能交流功率表,其电压接线端应与负载并联,电流接线端应与负载串联。 三、实验设备 DGJ-1型电工实验装置:交流电压表、交流电流表、功率表、自耦调压器、白炽灯、镇流器、电容器。 四、实验内容 测试线路如图7-3所示,根据以下步骤完成表格7-1。 1. 按图7-3接线,将调压器调到表1中的规定值。 2. 分别测量15W 白炽灯(R)、镇流器(L) 和4.7μF 电容器( C)的电流和功率以及功率因数。 3. 测量L 、C 串联与并联后的电流和功率以及功率因数。 4. 如图7-4,用并联电容法判断以上负载的性质。

图7-3 图7-4 五、实验数据的计算和分析 根据表格7-1的测量结果,分别计算每个负载的等效参数。 白炽灯:I U Z ==2386.6, UI P =?cos =1 镇流器L :I U Z ==551.7,UI P =?cos =0.172 电容器C :I U Z ==647.2,UI P =?cos =0,C Z f ωπω1 ||,2==,f=50Hz ,因此C=4.9μF L 和C 串联:I U Z ==180.9,UI P =?cos =0.35;并联1μF 电容后,电流增大,所以是容 性负载 L 和C 并联:I U Z ==2515.7,UI P =?cos =0.47;并联1μF 电容后,电流减小,所以是感性负载 由以上数据计算等效电阻 R =│Z│cosφ,等效电抗 X =│Z│sinφ,填入表7-1中。 六、实验小结 掌握了交流电路的基本实验方法,学会使用调压器,交流电压表、交流电流表,用功率表测量元件的功率。通过三表法可以通过实验方法测量并计算出负载元件的阻抗。实验中,线路接错会出现报警,也可能烧坏功率表的保险丝,需按照例图仔细检查线路。通过测量发现,被测负载有些不是线性元件。 Z

输电线路测量技术与方法探讨

输电线路测量技术与方法探讨 发表时间:2019-05-24T17:29:13.860Z 来源:《电力设备》2018年第35期作者:薛剑白俊平焦傲[导读] 摘要:随着国民经济大力发展,社会对电力的要求相对提高,输定线路的测量成为电力工作者关注的问题之一,但是输定线路的测量工作范围有设计施工运行维护、输电线与配电线的联系、高压和低压的过度等,所以测量工作的质量以及工作效率队工程有深远的影响,本文简要分析输电线路测量技术的现状,提出几点提高输电线路测量技术的措施,希望对测量技术的研究做出贡献。 (新疆送变电有限公司新疆乌鲁木齐 830011)摘要:随着国民经济大力发展,社会对电力的要求相对提高,输定线路的测量成为电力工作者关注的问题之一,但是输定线路的测量工作范围有设计施工运行维护、输电线与配电线的联系、高压和低压的过度等,所以测量工作的质量以及工作效率队工程有深远的影响,本文简要分析输电线路测量技术的现状,提出几点提高输电线路测量技术的措施,希望对测量技术的研究做出贡献。 关键词:输电线路;测量技术;方法讨论引言: 随着电力行业的不断进步与发展,输电线路的测量监控成为保障供电可靠性的手段之一,在电力系统和电力建设中有积极的作用,输电线路的测量需要从工程设计的初期开始考虑,工程施工过程中需要输定线路测量的参与,工程竣工验收需呀输电线路测量数据的参考以及线路的维修运行需要实时监测输电线路的数据,为继电保护工作提供数据源,随着时代的进步,新的测量技术不断应用于输电线路的测量中,本文基于这个大趋势进行一些研究,提出对应用于输电线路测量的五大技术的简要分析。 (一)震动测量输电线路 根据力学结构的理论知识来看,输电线路发生震动的根本是由于输电线路原本负荷分布被外来负荷打乱。电力系统可靠的运行需要分析输电线路产生震动的原理,通过研究提出行之有效的可行性改善措施来帮助输电线路运行趋于稳定,减少事故发生的频率。 现阶段较为推广的基于震动测量输电线路原理的方法按照震动信号传输转动方式可以分为电测法、光学法以及机械法,这三种方法中又以电测法最受欢迎,电测法属于应力测试法中的一种,当金属电阻丝发生形变拉长或压缩的时候,金属电阻丝的电阻会发生变化,通过变化就可以看出是否有故障发生。但是电测法带来一个最大的问题,就是要在输电线路上增加测量系统的装置,在一定程度上影响电测法的精度,同时增加了操作的复杂性和危险性,需要操作人员提高警惕遵守规范操作。结合电测法和光学法而成的光电式测量法,可以减少测量装备,避免线路受到影响而影响测量结果,同时简化了操作步骤,省去高空作业和带电作业给工作带来的安全风险。操作人员仅需要操作地面设备测量结果就可以得到准确的数据,可以达到实时监测的效果。 (二)“三角形”测量法 输电线路的测量工作因为地形地貌不同会遇到好多困难,比如:第一,线路到达居民区、树林等故障且没有消除故障的方法时,必须绕过故障才能回到直线输电线路,第二,有重要跨越物或者重要断层在山沟河谷之上,操作人员不能携带测量仪器到达现场测量线路,或者仪器不能直接测量线路等,这就可以采取“三角形”测量法测量输电线路来解决以上输电线路测量存在的问题,“三角形”测量法就是在地面设置连续多个三角形,测角方式测定各个三角形顶点的坐标然后确定测量数据。按照空间不同可以分为水平三角形和竖直三角形。可以利用“三角形”法很好的测量塔高、直线杆塔偏移距离等数据,由于“三角形”测量法要求很高的测量仪器,在测量过程中采用全站仪测量可以大大提高测量的精确度,所以在测量中常使用全站仪保证测量工作便捷高效。 (三)RTK测量技术 最初的线路选线、线路施工采取全站仪、经纬仪等施工测量仪器,虽可以保证完成施工,但耗费大量的人力物力,浪费拥有的资源。随着新的技术不断在输电线路测量中应用,测绘科学理论和实践有了质的进步,RTK(相位差分)技术是GPS技术的一大突破,RTK技术应用于输电线路测量中可以实现实时动态测量输电线路,提高测量的效果和准确度。 RTK(Real-timekinematic)技术基于实时处理两个载波站之间数据的基础,在厘米级的误差等级上实现两个测站载波相位通信三维建模,相较于以往GPS技术静态、快速静态等需要时间间隔处理才能达到厘米级误差的技术,RTK技术采用动态相位实时差分法提高野外输电线路测量的效率。 (四)RS遥感技术 RS遥感技术主要应用在飞机、卫星等高空飞行物上,利用传感器技术接受地面物体发射或反射的信号以数据或图像形式记录下来并将数据传回地面供地面参考分析使用。RS遥感技术最显著的优点是能获取形象的图片信息和大量数据建立数据库,供工作分析决策,具有综合收集信息能录,实现直观动态的监测地面数据。 在电力输电线路测量方面应用RS遥感技术,可以客观反应输电线路的布设情况,分析电力输电线路沿途的自然环境、人文设施是否会对电力输电线路造成影响,是否处于安全状态等。还可以对重要供电区域进行标注,保证供电可靠性,分析现有电路的走向规划未来输电线路布局等。RS遥感技术应用于输电线路的测量,很好的提高了工作效率创造更高的价值。 (五)卫星导航参考站系统 卫星导航参考站系统也叫CORS技术,广泛应用于施工放样、数据测量、汽车导航以及输电线路测量等方面。 CORS技术测了校正点仅要三分钟,测量范围内选取足够多的已知点就可以选择控制点,不采取CORS技术则需要考虑基线、交通和信号,输电线路长且途径路况复杂,造成测量工作需要投入大量的人力时间,CORS技术的效率与输电线路的长度成正比。但使用CORS 技术要注意一下几点:首先,CORS技术会因为雷击而失去工作能力,其次,CORS技术的数据链不稳定,蓝牙技术可以解决这个问题,但蓝牙比较耗电,不利于长期工作,最后,卫星信号不稳定时,数据链会断掉,重新连接数据链需要3分钟左右的时间,手机没信号地方不可以使用CORS技术。 总结: 总而言之,电力将会未来很长一段时间占能源比例的重头,输电线路的测量技术也会随着不断的深入研究而产生更精密更可靠,输电线路测量工作内容包括测量电线路的勘查、施工以及运行过程中的数据,贯穿于输电线路勘查、施工以及竣工的多个阶段。输电线路的测量会不断结合新技术,比如震动测量输电线路、“三角形”测量法、RTK测量技术、RS遥感技术、卫星导航参考站技术等等,输电线路测量将会朝着数字化智能化的方向发展。

相关文档
相关文档 最新文档