文档视界 最新最全的文档下载
当前位置:文档视界 › 函数单调性习题(含参问题)

函数单调性习题(含参问题)

一、选择题

1、在上是减函数,则a的取值范围是()。

A.B.C.

D.

2、当时,函数的值有正也有负,则实数a的取值范围是()

A. B. C.

D .

3、若函数b a x x x f +-+=||)(2

在区间]0,(-∞上为减函数,则实数a 的取值范围是( )

A.0a ≤;

B.1a ≤;

C.0a ≥;

D.1a ≥ 4、若函数3

2)(k

x k x x h +-

=在),1(+∞上是增函数,则实数k 的取值范围是( ) A .[2,)-+∞;B .[2,)+∞; C .(,2]-∞-;D .(,2]-∞

5、已知函数12)(2

++=x x x f ,若存在实数t ,当[]m x ,1∈时,x t x f ≤+)(恒成立,则实数m 的

最大值是( )

A .1;

B .2;

C .3;

D .4

6、已知关于y 轴对称的函数()f x 在区间[0,)+∞单调递增,则满足(21)f x -<1()3f 的x 取值范围是( ) A .(13,23) B .(∞-,23) C .(12,2

3) D .?

?? ??+∞,3

2 7、已知定义域为(-1,1)的关于原点对称的函数y=f(x)又是减函数,且2

(3)(9)0f a f a -+-<,则a 的 取值范围是( ) A.(22,3) B.(3,10) C.(22,4)

D.(-2,3)

二、填空题

8、函数 ,当 时,是增

函数,当x ∈

时是减函数,则f(1)=_____________

9、函数2

()4(1)3f x ax a x =++-在[2,+∞]上递减,则a 的取值范围是 10、已知t 为常数,函数t x x y --=22在区间[0,3]上的最大值为2,则=t 11、已知函数2

()24(03),f x ax ax a =++<<若01,2121=-++

12、定义在]11[,-上的函数)(x f y =是减函数,若

)45()1(2

a f a a f ->--,则实数a 的范围为_____________ 13、已知(31)4,1

()log ,1a

a x a x f x x x -+

14、已知a 为实数,函数))(1()(2

a x x x f ++=,若0)1('=-f ,求函数)(x f y =在3

[,1]2

-上的最大值和 最小值分别为 、 。

三、解答题

15、讨论函数

322

+-=ax x f(x)在(-2,2)内的单调性。

16、定义在R 上的函数)(x f y =,0)0(≠f ,当x >0时,1)(>x f ,且对任意的a 、b ∈R ,有 f (a +b )=f (a )·f (b ). (1)求证:f (0)=1;

(2)求证:对任意的x ∈R ,恒有f (x )>0; (3)求证:f (x )是R 上的增函数;

(4)若f (x )·f (2x -x 2)>1,求x 的取值范围. 17、已知函数3

2

()1f x x ax x =+++,a ∈R . (1)讨论函数()f x 的单调区间; (2)设函数()f x 在区间2

133??

--

???

,内是减函数,求a 的取值范围. 18、已知函数x

a

x x x f ++=2)(2).,1[,+∞∈x

(1)当2

1

=

a 时,求函数)(x f 的最小值; (2)若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围。

19、已知定义域为R 的函数12()2x x b

f x a

+-+=+是奇函数。

(1)求,a b 的值;

(2)若对任意的t R ∈,不等式2

2

(2)(2)0f t t f t k -+-<恒成立,求k 的取值范围; 20、已知向量→m =(sinA,cosA),→n =(3,-1),→m·→n =1,且A 为锐角

(1)求角A 的大小;

(2)求函数f(x)=cos2x +4cosAsinx(x ∈R)的值域. 21、△ABC 的角A 、B 、C 的对边分别为a 、b 、c ,→m =(2b -c ,a),→n =(cosA ,-cosC),且→m ⊥→n . (1)求角A 的大小;

(2)当y =2sin2B +sin(2B +π

6)取最大值时,求角B 的大小.

22、已知→a =(cosx +sinx ,sinx),→b =(cosx -sinx ,2cosx), (1)求证:向量→a 与向量→b 不可能平行;

(2)若f(x)=→a ·→b ,且x ∈[-π4,π4]时,求函数f(x)的最大值及最小值.

1.A ;由题知2(1)

42

a --

≥解得3a ≤- 2.D ;由题知0a ≠,当

y=0

时,ax+2a+1=0

x=21

a a

+-

,则211a a +-≤,解得

3.C ;因为?????<++-≥+-+=+-+=)

()(||)(222

a x

b a x x a x b a x x b a x x x f ,由其图象知,若函数b a x x x f +-+=||)(2在区间

]0,(-∞上为减函数,则应有0a ≥

4. A ;若函数32)(k x k x x h +-

=在),1(+∞上是增函数,

则02)(2≥+='x

k

x h 对于),1(+∞∈x 恒成立,即22x k -≥对于),1(+∞∈x 恒成立,而函数)),1[(22

+∞∈-=x x u 的最大值为2-,实数k 的取值范围是[2,)-+∞

5. D ;依题意,应将函数)(x f 向右平行移动得到)(t x f +的图象,为了使得在[]m ,1上,)(t x f +的图象都在直线

x y =的下方,并且让m 取得最大,则应取2-=t ,这时m 取得最大值4

6. A ;f(x)在]0,(-∞上是减少的,在

[0,)

+∞上是减少的,所以有2101213x x -≥???-

1

213x x -

?->-??

解得1233x <<。 7. A ;因为f(x)关于原点对称,所以有f(-x)=-f(x),于是2

(3)(9)0f a f a -+-<可变形为2

(3)(9)f a f a -<-,所

以有2

2131

19139a a a a -<--?

,解得3a <。

8.-3; f (x )=2(x -m 4)2+3-m 28,由题意m

4

=2,∴m =8.

9. (1,2?-∞-??,由题知,0

4(1)22a a a

+?-≤??

解得12a <-.

10. 1;显然函数t x x y --=22的最大值只能在1=x 或3=x 时取到, 若在1=x 时取到,则221=--t ,得1=t 或3-=t 1=t ,3=x 时,2=y ;3-=t ,3=x 时,6=y (舍去)

若在3=x 时取到,则269=--t ,得1=t 或5=t

1=t ,1=x 时,2=y ;5=t ,1=x 时,6=y (舍去) 所以1=t

11. 12()()f x f x <;函数2

()24(03),f x ax ax a =++<<的图象开口向上,对称轴为1-=x ,因30<

故)1,2()1(21-∈-=+a x x ,从而

)2

1

,1(221-∈+x x ,又21x x <,所以2x 的对应点到对称轴的距离大于1x 的对应点到对称轴的距离,故12()()f x f x <

12. 31,2??

???;由题知22111

1541154a a a a a a

?-<--

解得312a <<。

13. )3

1

,71[;要x y a log =在)1[∞+,上是减函数,则10<

013<-a 并且041)13(≥+?-a a ,所以

3

171<≤a 14. 6,

138

;∵123)(,)(0)1(2

23++='+++==-ax x x f a x ax x x f f ,由,, ,2,0123==+-∴a a 143)(2

++='∴x x x f

)1)(3

1

(3)(++='x x x f 由 得:

当31

10)(->-<>'x x x f 或时,

当31

10)(-<<-<'x x f 时,

因此,)(x f 在区间]1,31[]1,23[---和内单调递减,而在]3

1

,1[--内单调递减,

且27

50

)31()(,2)1()(=-==-=f x f f x f 极小值极大值

又813)23(=-f 8

13

2750,6)1(>=且f ,

8

13

)23(,6)1(]1,23[)(=-=-∴f f x f 最小值上的最大值在

15.略(动轴定区间问题)

16.(1)证明:令a =b =0,则f (0)=f 2(0).

又f (0)≠0,∴f (0)=1.

(2)证明:当x <0时,-x >0, ∴f (0)=f (x )·f (-x )=1.

∴f (-x )=

)

(1

x f >0.又x ≥0时f (x )≥1>0, ∴x ∈R 时,恒有f (x )>0.

(3)证明:设x 1<x 2,则x 2-x 1>0. ∴f (x 2)=f (x 2-x 1+x 1)=f (x 2-x 1)·f (x 1). ∵x 2-x 1>0,∴f (x 2-x 1)>1. 又f (x 1)>0,∴f (x 2-x 1)·f (x 1)>f (x 1). ∴f (x 2)>f (x 1).∴f (x )是R 上的增函数. (4)解:由f (x )·f (2x -x 2)>1,f (0)=1得f (3x -x 2)>f (0).又f (x )是R 上的增函数, ∴3x -x 2>0.∴0<x <3.

17.(1)3

2

()1f x x ax x =+++求导:2

()321f x x ax '=++ 当23a ≤时,0?≤,()0f x '≥,()f x 在R 上递增

当2

3a >,()0f x '=

求得两根为3

a x -±=

即()f x

在?-∞ ??

递增,

33a a ??---+ ? ???,

递减,3a ??

-+∞

? ???

递增 (2

)2

3

1

3--,且23a >解得:7

4

a ≥

18.(1)当21=a 时,221

1)(',221)(x

x f x x x f -=++=

∵1≥x ,∴0)(>'x f 。∴)(x f 在区间),1[+∞上为增函数。

∴)(x f 在区间),1[+∞上的最小值为2

7)1(=

f 。 (2)∵02)(2>++=

x a

x x x f 在区间),1[+∞上恒成立; ∴022>++a x x 在区间),1[+∞上恒成立; ∴a x x ->+22在区间),1[+∞上恒成立;

∵函数x x y 22

+=在区间),1[+∞上的最小值为3,∴3<-a 即3->a

19.[解析](Ⅰ)因为()f x 是奇函数,所以0)0(=f ,即1

11201()22

x

x b b f x a a +--=?=∴=++ 又由)1()1(,

--=∴f f 知1

1122 2.41

a a a -

-=-?=++

(Ⅱ)[解法一]由(Ⅰ)知11211

()22221

x x x f x +-==-+++,易知()f x 在(,)-∞+∞上

为减函数。又因()f x 是奇函数,从而不等式: 2

2

(2)(2)0f t t f t k -+-< 等价于2

2

2

(2)(2)(2)f t t f t k f k t -<--=-,因()f x 为减函数,由上式推得:

2222t t k t ->-.即对一切t R ∈有:2320t t k -->,

从而判别式14120.3

k k ?=+

[解法二]由(Ⅰ)知1

12()22x

x f x +-=+.又由题设条件得:

222

22221

21

1212022

22

t t

t k

t t t k ---+-+--=

<++,

即22

2

2

21

221

2(2

2)(12)(22)(12)0t k t

t

t

t t

k

-+--+-+-++-<,

整理得2322

1,t t k

-->因底数2>1,故:2320t t k -->

上式对一切t R ∈均成立,从而判别式14120.3

k k ?=+

20. (Ⅰ)由题意得→m·→n =3sinA -cosA =1,2sin(A -π6)=1,sin(A -π6)=1

2

由A 为锐角得A -π6=π6,A =π

3

.

(Ⅱ)由(Ⅰ)知cosA =12,所以f(x)=cos2x +2sinx =1-2sin2x +2sinx =-2(sinx -12)2+3

2,

因为x ∈R ,所以sinx ∈[-1,1],因此,当sinx =12时,f(x)有最大值3

2.

当sinx =-1时,f(x)有最小值-3,所以所求函数f(x)的值域是[-3,3

2].

21.(Ⅰ)由→m ⊥→n ,得→m·→n =0,从而(2b -c)cosA -acosC =0, 由正弦定理得2sinBcosA -sinCcosA -sinAcosC =0 ∴2sinBcosA -sin(A +C)=0,2sinBcosA -sinB =0, ∵A 、B ∈(0,π),∴sinB≠0,cosA =12,故A =π

3

.

(Ⅱ)y =2sin2B +2sin(2B +π6)=(1-cos2B)+sin2Bcos π6+cos2Bsin π

6

=1+

32sin2B -12 cos2B =1+sin(2B -π

6

). 由(Ⅰ)得,0<B <2π3,-π6<2B -π6<7π6,

∴当2B -π6=π2,即B =π

3

时,y 取最大值2.

22.(Ⅰ)假设→a ∥→b ,则2cosx(cosx +sinx)-sinx(cosx -sinx)=0,

∴2cos2x +sinxcosx +sin2x =0,2·1+cos2x 2+12sin2x +1-cos2x

2=0,

即sin2x +cos2x =-3,

∴2(sin2x +π4)=-3,与|2(sin2x +π

4)|≤2矛盾,

故向量→a 与向量→b 不可能平行.

(Ⅱ)∵f(x)=→a ·→b =(cosx +sinx)·(cosx -sinx)+sinx·2cosx =cos2x -sin2x +2sinxcosx =cos2x +sin2x =2(

22cos2x +22sin2x)=2(sin2x +π4

), ∵-π4≤x≤π4,∴-π4≤2x +π4≤3π4,∴当2x +π4=π2,即x =π

8时,f(x)有最大值2;

当2x +π4=-π4,即x =-π

4

时,f(x)有最小值-1.

导数应用:含参函数的单调性讨论(二)

导数应用:含参函数的单调性讨论(二) 对函数(可求导函数)的单调性讨论可归结为对相应导函数在何处正何处负的讨论,若有多个讨论点时,要注意讨论层次与顺序,一般先根据参数对导函数类型进行分类,从简单到复杂。 一、典型例题 例1、已知函数3 2 ()331,f x ax x x a R =+++∈,讨论函数)(x f 的单调性. 分析:讨论单调性就是确定函数在何区间上单调递增,在何区间单调递减。而确定函数的增区间就是确定0)('>x f 的解区间;确定函数的减区间就是确定0)('时,/2 ()3(21)f x ax x =++的图像开口向上,36(1)a ?=- I) 当136(1)0,a a ≥?=-≤时,时,/ ()0f x ≥,所以函数()f x 在R 上递增; II) 当0136(1)0,a a <时,时,方程/ ()0f x =的两个根分别为 1211x x a a ---+= =且12,x x < 所以函数()f x 在1(, a --∞,1(,)a -+∞上单调递增, 在11( a a --+上单调递减; (3) 当0a <时,/2 ()3(21)f x ax x =++的图像开口向下,且36(1)0a ?=-> 方程/ ()0f x =的两个根分别为1211,,x x a a --= =且12,x x > 所以函数()f x 在1(, a --∞,1()a -+∞上单调递减, 在11( )a a -+--上单调递增。 综上所述,当0a <时,所以函数()f x 在11( ,a a --上单调递增, 在1(, a -+-∞,1(,)a -+∞上单调递减; 当0a =时,()f x 在1(,]2-∞-上单调递增,在1 [,)2 -+∞上单调递减; 当01a <<时,所以函数()f x 在(-∞,)+∞上单调递增, 在上单调递减; 当1a ≥时,函数()f x 在R 上递增; 小结: 导函数为二次型的一股先根据二次项系数分三种情况讨论(先讨论其为0情形),然后讨论判别式(先讨论判别式为负或为0的情形,对应导函数只有一种符号,原函数在定义域上为单调的),判别式为正的情况下还要确定两根的大小(若不能确定的要进行一步讨论),最后根据导函数正负确定原函数相应单调性,记得写出综述结论。

函数的定义域与值域单调性与奇偶性三角函数典型例题

函数的定义域与值域、单调性与奇偶性 一、知识归纳: 1. 求函数的解析式 (1)求函数解析式的常用方法: ①换元法( 注意新元的取值范围) ②待定系数法(已知函数类型如:一次、二次函数、反比例函数等) ③整体代换(配凑法) ④构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等) (2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。 (3)理解轨迹思想在求对称曲线中的应用。 2. 求函数的定义域 求用解析式y =f (x )表示的函数的定义域时,常有以下几种情况: ①若f (x )是整式,则函数的定义域是实数集R ; ②若f (x )是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x )是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f (x )是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑤若f (x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 3. 求函数值域(最值)的一般方法: (1)利用基本初等函数的值域; (2)配方法(二次函数或可转化为二次函数的函数); (3)不等式法(利用基本不等式,尤其注意形如)0(>+=k x k x y 型的函数) (4)函数的单调性:特别关注)0(>+ =k x k x y 的图象及性质 (5)部分分式法、判别式法(分式函数) (6)换元法(无理函数) (7)导数法(高次函数) (8)反函数法 (9)数形结合法 4. 求函数的单调性 (1)定义法: (2)导数法: (3)利用复合函数的单调性: (4)关于函数单调性还有以下一些常见结论: ①两个增(减)函数的和为_____;一个增(减)函数与一个减(增)函数的差是______; ②奇函数在对称的两个区间上有_____的单调性;偶函数在对称的两个区间上有_____的单调性; ③互为反函数的两个函数在各自定义域上有______的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等 (6)应用:比较大小,证明不等式,解不等式。 5. 函数的奇偶性 奇偶性:定义:注意区间是否关于原点对称,比较f (x ) 与f (-x )的关系。f (x ) -

函数的单调性·典型例题精析

2.3.1 函数的单调性·例题解析【例1】求下列函数的增区间与减区间 (1)y=|x2+2x-3| (2)y (3)y = = x x x x x 2 2 2 11 23 - -- --+ || 解(1)令f(x)=x2+2x-3=(x+1)2-4. 先作出f(x)的图像,保留其在x轴及x轴上方部分,把它在x轴下方的图像翻到x轴就得到y=|x2+2x-3|的图像,如图2.3-1所示. 由图像易得: 递增区间是[-3,-1],[1,+∞) 递减区间是(-∞,-3],[-1,1] (2)分析:先去掉绝对值号,把函数式化简后再考虑求单调区间. 解当x-1≥0且x-1≠1时,得x≥1且x≠2,则函数y=-x. 当x-1<0且x-1≠-1时,得x<1且x≠0时,则函数y=x-2. ∴增区间是(-∞,0)和(0,1) 减区间是[1,2)和(2,+∞) (3)解:由-x2-2x+3≥0,得-3≤x≤1. 令u==g(x)=-x2-2x+3=-(x+1)2+4.在x∈[-3,-1] 上是在x∈[-1,1] 上是. 而=在≥上是增函数. y u0 u ∴函数y的增区间是[-3,-1],减区间是[-1,1]. 【例2】函数f(x)=ax2-(3a-1)x+a2在[-1,+∞]上是增函数,求实数a的取值范

围. 解 当a =0时,f(x)=x 在区间[1,+∞)上是增函数. 当≠时,对称轴= , 若>时,由>≤,得<≤. a 0x a 0a 0 3a 10a 131212a a a --??? ?? 若a <0时,无解. ∴a 的取值范围是0≤a ≤1. 【例3】已知二次函数y =f(x)(x ∈R )的图像是一条开口向下且对称轴为x =3的抛物线,试比较大小: (1)f(6)与f(4) (2)f(2)f(15)与 解 (1)∵y =f(x)的图像开口向下,且对称轴是x =3,∴x ≥3时,f(x)为减函数,又6>4>3,∴f(6)<f(4) (2)x 3f(2)f(4)34f(x)x 3∵对称轴=,∴=,而< <,函数在≥15 时为减函数. ∴>,即>.f(15)f(4)f(15)f(2) 【例4】判断函数= ≠在区间-,上的单调性.f(x)(a 0)(11)ax x 2 1 - 解 任取两个值x 1、x 2∈(-1,1),且x 1<x 2. ∵-= ∵-<<<,+>,->,-<,-<.∴ >f(x )f(x )1x x 1x x 10x x 0x 10x 100 12121221a x x x x x x x x x x x x ()()()() ()()()() 122112 22 12 12 122112 22 111111+---+--- 当a >0时,f(x)在(-1,1)上是减函数. 当a <0时,f(x)在(-1,1)上是增函数. 【例5】利用函数单调性定义证明函数f(x)=-x 3+1在(-∞,+∞)上是减函数. 证 取任意两个值x 1,x 2∈(-∞,+∞)且x 1<x 2. ∵-=-++这里有三种证法:当<时,++=+->当≥时,++>f(x )f(x )(x x )(x x x x )()x x 0x x x x (x x )x x 0x x 0x x x x 0 2112221212 1212 1222 122 121212 1222证法一

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

导数应用_含参函数的单调性讨论(一)

导数应用:含参函数的单调性讨论(一) 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈?Y Y Y Y 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论。 二、典例讲解 例1 讨论x a x x f + =)(的单调性,求其单调区间 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并。 变式练习1 : 讨论x a x x f ln )(+=的单调性,求其单调区间 例2.讨论x ax x f ln )(+=的单调性

小结: 导函数正负的相应区间也可以由导函数零点来分界,但要注意其定义域和连续性。即先求出)('x f 的零点,再其分区间然后定)('x f 在相应区间的符号。一般先讨论0)('=x f 无解情况,再讨论解 0)('=x f 过程产生增根的情况(即解方程变形中诸如平方、去分母、去对数符号等把自变量x 围扩 大而出现有根,但根实际上不在定义域的),即根据)('x f 零点个数从少到多,相应原函数单调区间个数从少到多讨论,最后区间(最好结合导函数的图象)确定相应单调性。 变式练习2. 讨论x ax x f ln 2 1)(2 += 的单调性 小结: 一般最后要综合讨论情况,合并同类的,如i),ii)可合并为一类结果。 对于二次型函数(如1)(2 +=ax x g )讨论正负一般先根据二次项系数分三种类型讨论。 例3. 求1)(232--+=x ax x a x f 的单调区间

函数的单调性知识点总结与经典题型归纳

函数的单调性 知识梳理 1. 单调性概念 一般地,设函数()f x 的定义域为I : (1)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x <,那么就说函数()f x 在区间D 上是增函数; (2)如果对于定义域I 内的某个区间D 上的任意两个自变量的值12,x x ,当12x x <时,都有12()()f x f x >,那么就说函数()f x 在区间D 上是减函数. 2. 单调性的判定方法 (1)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (2)定义法步骤; ①取值:设12,x x 是给定区间内的两个任意值,且12x x < (或12x x >); ②作差:作差12()()f x f x -,并将此差式变形(注意变形到能判断整个差式符号为止); ③定号:判断12()()f x f x -的正负(要注意说理的充分性),必要时要讨论; ④下结论:根据定义得出其单调性. (3)复合函数的单调性: 当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为减函数。也就是说:同增异减(类似于“负负得正”) 3. 单调区间的定义 如果函数()y f x =,在区间D 上是增函数或减函数,那么就说函数在这个区间上具有单调性,区间D 叫做()y f x =的单调区间. 例题精讲 【例1】下图为某地区24小时内的气温变化图. (1)从左向右看,图形是如何变化的? (2)在哪些区间上升?哪些区间下降?

解:(1)从左向右看,图形先下降,后上升,再下降; (2)在区间[0,4]和[14,24]下降,在区间[4,14]下降。 【例2】画出下列函数的图象,观察其变化规律: (1)f (x )=x ; ①从左至右图象上升还是下降? ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着怎么变化? (2)f (x )=x 2. ①在区间(-∞,0)上,随着x 的增大,f (x )的值随着怎么变化? ②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着怎么变化? 解:(1)①从左至右图象是上升的; ②在区间(-∞,+∞)上,随着x 的增大,f (x )的值随着增大. (2)①在区间(-∞,0)上,随着x 的增大,f (x )的值随着减小; ②在区间[0 ,+∞)上,随着x 的增大,f (x )的值随着增大. 【例3】函数()y f x =在定义域的某区间D 上存在12,x x ,满足12x x <且12()()f x f x <,那么函 数()y f x =在该区间上一定是增函数吗? 解:不一定,例如下图: 【例4】下图是定义在闭区间[5,5]-上的函数()y f x =的图象,根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数. 解:函数()y f x =的单调区间有[5,2),[2,1),[1,3),[3,5)---; 其中在区间[5,2),[1,3)--上是减函数,在区间[2,1),[3,5)-上是增函数. 【例5】证明函数()32f x x =+在R 上是增函数.

含参不含参函数单调性

含参不含参函数单调性

————————————————————————————————作者:————————————————————————————————日期:

利用导数研究函数单 调性

不含参函数单调性 【题型一】因式分解 【例1】 求函数的单调区间。 【变式1】求函数421()342 f x x x x = -+的单调区间。 【例2】 求函数2()322 x x e f x e x =-+的单调区间。 【变式1】求函数2()ln 7ln f x x x x x x =-+的单调区间。 【例3】 求函数()2()2x x x f x x e e -= +-的单调区间。 【变式1】求函数22 ln 3()ln 224 x x x f x ex x ex =--+的单调区间。 3227()154()32f x x x x x R = +-+∈

【例4】 求函数()2 ()ln 22 x f x x x e x =+-+的单调区间。 【变式1】求函数()()ln 1x f x e x =-+的单调区间。 【例5】 求函数2()ln f x x x x =-的单调区间。 【变式1】求函数ln 1()x e x e f x e +-= 的单调区间。 【变式2】求函数2()mx f x e x mx =+-的单调区间。

【例6】 求函数2311()26 x f x e x x x =-+ -的单调区间。 【变式1】求函数2 ()cos 12 x f x x =+-的单调区间。 【例7】 求函数()2311()123x f x x ex e x = -+-的单调区间。 【变式1】求函数()41()24x f x x e x x =--+,112,??∈ ???x 的单调区间。

(完整版)函数单调性奇偶性经典例题

函数的性质的运用 1.若函数y f x x R =∈()()是奇函数,则下列坐标表示的点一定在函数 y f x =()图象上的是( ) A.(())a f a ,- B.(())--a f a , C.(())---a f a , D.(())a f a ,- 2. 已知函数)(1 22 2)(R x a a x f x x ∈+-+?= 是奇函数,则a 的值为( ) A .1- B .2- C .1 D .2 3.已知f (x )是偶函数,g (x )是奇函数,若1 1)()(-= +x x g x f ,则f (x ) 的解析式为_______. 4.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有 实根之和为________. 5.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立, 求实数k 的取值范围. 6.已知定义在区间(0,+∞)上的函数f(x)满足f()2 1 x x =f(x 1)-f(x 2),且当x >1时,f(x)<0. (1)求f(1)的值; (2)判断f(x )的单调性; (3)若f(3)=-1,解不等式f(|x|)<-2.

7.函数f(x)对任意的a 、b ∈R,都有f(a+b)=f(a)+f(b)-1,并且当x >0时,f(x)>1. (1)求证:f(x)是R 上的增函数; (2)若f(4)=5,解不等式f(3m 2 -m-2)<3. 8.设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f y x f -= (1)求证:f (1)=0,f (xy )=f (x )+f (y ); (2)设f (2)=1,解不等式2)3 1 ( )(≤--x f x f 。 9.设函数()f x 对x R ∈都满足(3)(3)f x f x +=-,且方程()0f x =恰有6个不同 的实数根,则这6个实根的和为( ) A . 0 B .9 C .12 D .18 10.关于x 的方程 22(28)160x m x m --+-=的两个实根 1x 、2x 满足 123 2 x x <<, 则实数m 的取值范围 11.已知函数()()y f x x R =∈满足(3)(1)f x f x +=+,且x ∈[-1,1]时,()||f x x =, 则()y f x =与5log y x =的图象交点的个数是( ) A .3 B .4 C .5 D .6 12.已知函数()f x 满足:4x ≥,则()f x =1()2 x ;当4x <时()f x =(1)f x +,则 2(2log 3)f += A 124 B 112 C 18 D 38 13.已知函数f (x )在(-1,1)上有定义,f ( 2 1 )=-1,当且仅当0

函数的单调性和奇偶性典型例题

函数的单调性和奇偶性 例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间. 解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数. 评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上. (2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围. 分析要充分运用函数的单调性是以对称轴为界线这一特征. 解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x =1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3. 评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合. 例2判断下列函数的奇偶性: (1)f(x)=- (2)f(x)=(x-1). 解:(1)f(x)的定义域为R.因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-f(x). 所以f(x)为奇函数.

(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数. 评析用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性. 例3已知函数f(x)=. (1)判断f(x)的奇偶性. (2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论. 解:因为f(x)的定义域为R,又 f(-x)===f(x), 所以f(x)为偶函数. (2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数. 其证明:取x1<x2<0, f(x1)-f(x2)=- ==. 因为x1<x2<0,所以 x2-x1>0,x1+x2<0, x21+1>0,x22+1>0, 得f(x1)-f(x2)<0,即f(x1)<f(x2). 所以f(x)在(-∞,0)上为增函数. 评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反. 例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.

导数讨论含参单调性习题(含详细讲解答案)

1.设函数. (1)当时,函数与在处的切线互相垂直,求的值; (2)若函数在定义域内不单调,求的取值范围; (3)是否存在正实数,使得对任意正实数恒成立?若存在,求出满足条件的实数;若不存在,请说明理由. 2.已知函数是的导函数,为自然对数的底数.(1)讨论的单调性; (2)当时,证明:; (3)当时,判断函数零点的个数,并说明理由. 3.已知函数(其中,). (1)当时,若在其定义域内为单调函数,求的取值范围; (2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由(其中是自然对数的底数,). 4.已知函数,其中为常数. (1)讨论函数的单调性; (2)若存在两个极值点,求证:无论实数取什么值都有. 5.已知函数(为常数)是实数集上的奇函数,函数是区间上的减函数. (1)求的值; (2)若在及所在的取值范围上恒成立,求的取值范围;(3)讨论关于的方程的根的个数.

6.已知函数()()ln ,x f x ax x F x e ax =-=+,其中0,0x a ><. (1)若()f x 和()F x 在区间()0,ln3上具有相同的单调性,求实数a 的取值范围; (2)若21,a e ? ? ∈-∞- ??? ,且函数()()12ax g x xe ax f x -=-+的最小值为M ,求M 的最小值. 7.已知函数()ln x m f x e x +=-. (1)如1x =是函数()f x 的极值点,求实数m 的值并讨论的单调性()f x ; (2)若0x x =是函数()f x 的极值点,且()0f x ≥恒成立,求实数m 的取值范围(注:已知常数a 满足ln 1a a =). 8.已知函数()()2 ln 12x f x mx mx =++-,其中01m <≤. (1)当1m =时,求证:10x -<≤时,()3 3 x f x ≤; (2)试讨论函数()y f x =的零点个数. 9.已知e 是自然对数的底数,()()()1 2ln ,13x F x e x x f x a x -=++=-+. (1)设()()()T x F x f x =-,当112a e -=+时, 求证:()T x 在()0,+∞上单调递增; (2)若()()1,x F x f x ?≥≥,求实数a 的取值范围. 10.已知函数()2x f x e ax =+- (1)若1a =-,求函数()f x 在区间[1,1]-的最小值; (2)若,a R ∈讨论函数()f x 在(0,)+∞的单调性; (3)若对于任意的1212,(0,),,x x x x ∈+∞<且 [][]2112()()x f x a x f x a +<+都有成立,求a 的取值范围。

(完整word版)函数的单调性典型例题.docx

函数的单调性及典型习题 一、函数的单调性 1、定义: (1)设函数y f (x) 的定义域为A,区间 M A ,如果取区间 M 中的任意两个值x1, x2 ,当改变量x 2 x1 时,都有f ( x 2) f ( x1 ) 0,那么就称函数y f ( x) 在区间M上是增函数,如图(1)当改变量x2x10 时,都有 f ( x2 ) f (x1) 0,那么就称函数y f (x) 在区间M上是减函数,如图(2) 注意:函数单调性定义中的x1,x2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间.2、巩固概念: 1、定义的另一种表示方法 如果对于定义域I内某个区间 D 上的任意两个自变量x1,x2,若f ( x 1 ) f (x2 )0 即 x1x2 y ,则函数 y=f(x)是增函数,若f ( x1 ) f ( x2 ) 0 即y0 ,则函数y=f(x)为减函数。 x1x2 x x 判断题: ①已知 f (x)1 1) f(2) ,所以函数 f ( x) 是增函数. 因为 f ( x ②若函数 f ( x) 满足 f (2) f (3)则函数 f ( x) 在区间2,3 上为增函数. ③若函数 f ( x) 在区间 (1,2] 和 (2,3) 上均为增函数,则函数 f ( x) 在区间 (1,3) 上为增函数. ④ 因为函数 1 在区间,0),(0,) 上都是减函数,所以 f ( x) 1 f ( x)在 x x ( ,0)(0, ) 上是减函数. 通过判断题,强调几点: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.

②对于某个具体函数的单调区间,可以是整个定义域 ( 如一次函数 ) ,可以是定义域内某个 区间 ( 如二次函数 ) ,也可以根本不单调 ( 如常函数 ) . ③单调性是对定义域的某个区间上的整体性质,不能用特殊值说明问题。 ④函数在定义域内的两个区间A,B 上都是增(或减)函数,一般不能认为函数在 A B 上 是增(或减)函数. 熟记以下结论,可迅速判断函数的单调性. 1.函数 y =- f ( x )与函数 y = f ( x )的单调性相反. 1 2.当 f ( x )恒为正或恒为负时,函数 y = f ( x) 与 y = f ( x )的单调性相反. 3.在公共区间内,增函数+增函数=增函数,增函数-减函数=增函数等 3.判断函数单调性的方法 ( 1)定义法. ( 2)直接法.运用已知的结论,直接得到函数的单调性,如一次函数,二次函数的单 调性均可直接说出. ( 3)图象法. 例 1、证明函数 f ( x) 1 )是减函数. 在( 0, + x 练习 1:证明函数 f ( x) x 在 0, 上是增函数. 1 1 x 例 2、设函数 f (x )= x 2 + lg 1 x ,试判断 f ( x )的单调性,并给出证明. 例 3、求下列函数的增区间与减区间 (1)y = |x 2 + 2x - 3| x 2 2x (2)y = 1| 1 |x (3)y = x 2 2x 3

1.3.1函数的单调性例题

1.3.1函数的单调性 题型一、利用函数的图象确定函数的单调区间 例1.作出下列函数的图象,并写出函数的单调区间 (1)12-=x y ; (2)322++-=x x y ; (3)2 )2(1-++=x x y ; (4)969622++++-=x x x x y 相应作业1:课本P32第3题. 题型二、用定义法证明函数的单调性 用定义法证明函数的单调性步骤:取值 作差变形 定号 下结论 ?取值,即_____________________________; ?作差变形,作差____________,变形手段有__________、_____、_____、_______等; ?定号,即____________________________________________________________; ④下结论,即______________________________________________________。 例2.用定义法证明下列函数的单调性 (1)证明:1)(3 +-=x x f 在()+∞∞-,上是减函数.

▲定义法证明单调性的等价形式: 设[]b a x x ,21∈、,21x x ≠,那么 [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?>--? >--在[]b a ,上是增函数; [])(0) ()(0)()()(2 1212121x f x x x f x f x f x f x x ?<--? <--在[]b a ,上是减函数. (2)证明:x x x f -+=1)(2在其定义域内是减函数; (3)证明:21 )(x x f = 在()0,∞-上是增函数; 法一: 作差 法二:作商

含参函数的单调性习题

导数专题------求函数的单调区间 1.设()()2 56ln f x a x x =-+,其中a R ∈,曲线 ()y f x =在点()()1,1f 处的切线与y 轴相交于点 ()0,6.(1)确定a 的值; (2)求函数()f x 的单调区间与极值. 2.设函数()()2 1x f x x e kx =--(k ∈R ) 当1k =时,求函数()f x 的单调区间; 3.已知函数ln ()x x k f x e +=(k 为常数, 2.71828e =???是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间; 4. 的单调区间求设函数)(,0,ln )(22x f a ax x x a x f >+-= 的单调区间和极值。)求函数(处的切线的斜率;,在点((时,求曲线当(设函数)(2))1(1)1)1(. 0),(,)1(3 1 ).5223x f f x f y m m R x x m x x x f ==>∈-++-=

。 的单调区间和极小值点求函数其中 (已知函数 ) ( .0 , ln ) 1( 2 1 ) .62 x f a x a x a x x f> + + - = 的单调区间。 )求 ( 处的切线方程 , 在点( 时,求曲线当 已知函数 ) ( 2 )) 1( 1 ) ( 2 )1( , 2 ) 1 ln( ) ( .72 x f f x f y k x k x x x f = = + - + = 8. 的单调区间。 ( 求 已知函数) ), .( )1 ( ln ) (2x f R a ax x x a x f∈ - - - = 的单调区间。 讨论 已知函数) ( ), 1 (, ln ) ( .9x f x ax x x x f> - =

必修一函数的单调性专题讲解(经典)

(2)第一章函数的基本性质之单调性 一、基本知识 1 .定义:对于函数y f (x),对于定义域内的自变量的任意两个值x「X2,当捲x2时,都有f(x i) f (X2)(或f (x i) f(X2)),那么就说函数y f (x)在这个区间上是增(或减)函数。 重点2 .证明方法和步骤: (1) 取值: 设X i,X2是给定区间上任意两个值,且X i X2 ; (2) 作差: f(xj f(X2); (3) 变形: (如因式分解、配方等); (4) 宀口 定 号: 即f (x i) f(x2) 0或f (x i) f(x2) 0 ; (5) 根据定义下结论。 3?常见函数的单调性 ⑴ 心) 也+乩k o|时,回在R上是增函数;k

5.函数的单调性的应用: 判断函数y f(x)的单调性;比较大小;解不等式;求最值(值域) 例题分析 T 2 例1 :证明函数f(x)=区_1在(0, + 上是减函数。 例2 :证明F@) = / + 3|在定义域上是增函数。 例3 :证明函数f(x)=x 3的单调性。 例4 :讨论函数y =一; 1 — x2在[—1,1]上的单调性. 3 例5 :讨论函数f(x) =W 的单调性.

奇偶性与单调性与典型例题

奇偶性与单调性及典型例题 函数的单调性、奇偶性是高考的重点内容之一,考查内容灵活多样.本节主要帮助考生深刻理解奇偶性、单调性的定义,掌握判定方法,正确认识单调函数与奇偶函数的图象. 难点磁场 (★★★★)设a>0,f(x)=是R上的偶函数,(1)求a的值;(2)证明: f(x)在(0,+∞)上是增函数. 案例探究 [例1]已知函数f(x)在(-1,1)上有定义,f()=-1,当且仅当00,1-x1x2>0,∴>0, 又(x2-x1)-(1-x2x1)=(x2-1)(x1+1)<0 ∴x2-x1<1-x2x1, ∴0<<1,由题意知f()<0, 即f(x2)3a2-2a+1.解之,得0

专题5导数的应用含参函数的单调性讨论(答案)

〖专题5〗 导数的应用—含参函数的单调性讨论 “含参数函数的单调性讨论问题”是近年来高考考查的一个常考内容,也是我们高考复习的重点.从这几年来的高考试题来看,含参数函数的单调性讨论常常出现在研究函数的单调性、极值以及最值中,因此在高考复习中更应引起我们的重视. 一、思想方法: 上为常函数 在区间时上为减函数在区间时上为增函数在区间时和增区间为和增区间为D x f x f D x D x f x f D x D x f x f D x D C x f D C x x f B A x f B A x x f )(0)(')(0)(')(0)('...,)(...0)('...,)(...0)('?=∈?<∈?>∈?∈? 讨论函数的单调区间可化归为求解导函数正或负的相应不等式问题的讨论. 二、典例讲解 [典例1] 讨论x a x x f + =)(的单调性,求其单调区间. 解:x a x x f + =)(的定义域为),0()0,(+∞-∞ )0(1)('2 22≠-=-=x x a x x a x f (它与a x x g -=2 )(同号) I )当0≤a 时,)0(0)('≠>x x f 恒成立, 此时)(x f 在)0,(-∞和),0(+∞都是单调增函数, 即)(x f 的增区间是)0,(-∞和),0(+∞; II) 当0>a 时 a x a x x x f > -或)0(0)(' a x x a x x f < <<<-?≠<00)0(0)('或 此时)(x f 在),(a --∞和),(+∞a 都是单调增函数, )(x f 在)0,(a -和),0(a 都是单调减函数, 即)(x f 的增区间为),(a --∞和),(+∞a ; )(x f 的减区间为)0,(a -和),0(a . 步骤小结:1、先求函数的定义域, 2、求导函数(化为乘除分解式,便于讨论正负), 3、先讨论只有一种单调区间的(导函数同号的)情况, 4、再讨论有增有减的情况(导函数有正有负,以其零点分界), 5、注意函数的断点,不连续的同类单调区间不要合并. [变式练习1] 讨论x a x x f ln )(+=的单调性,求其单调区间.

(word完整版)高中函数典型例题.doc

§ 1.2.1 函数的概念 ¤知识要点: 1. 设 A 、B 是非空的数集,如果按某个确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 y 和它对应,那么就称 f :A →B 为从集合 A 到集合 B 的一个函数,记作 y = f (x) , x A .其中, x 叫自变量, x 的取值范 围 A 叫作定义域,与 x 的值对应的 y 值叫函数值,函数值的集合 { f ( x) | x A} 叫值域 . 2. 设 a 、b 是两个实数,且 a

相关文档
相关文档 最新文档