文档视界 最新最全的文档下载
当前位置:文档视界 › 光器件封装详解

光器件封装详解

光器件封装详解
光器件封装详解

产品名称

产品版本

共28页无

有源光器件的结构和封装

分析:日期:

拟制:日期:

审核:日期:

批准:日期:

目录

1有源光器件的分类 (5)

2有源光器件的封装结构 (5)

2.1光发送器件的封装结构 (6)

2.1.1同轴型光发送器件的封装结构 (7)

2.1.2蝶形光发送器件的封装结构 (7)

2.2光接收器件的封装结构 (8)

2.2.1同轴型光接收器件的封装结构 (8)

2.2.2蝶形光接收器件的封装结构 (9)

2.3光收发一体模块的封装结构 (9)

2.3.11×9和2×9大封装光收发一体模块 (9)

2.3.2GBIC(Gigabit Interface Converter)光收发一体模块 (10)

2.3.3SFF(Small Form Factor)小封装光收发一体模块 (11)

2.3.4SFP(Small Form Factor Pluggable)小型可插拔式光收发一体模块 (12)

2.3.5光收发模块的子部件 (12)

3有源光器件的外壳 (14)

3.1机械及环境保护 (14)

3.2热传递 (14)

3.3电通路 (15)

3.3.1玻璃密封引脚 (15)

3.3.2单层陶瓷 (15)

3.3.3多层陶瓷 (16)

3.3.4同轴连接器 (16)

3.4光通路 (17)

3.5几种封装外壳的制作工艺和电特性实例 (18)

3.5.1小型双列直插封装(MiniDIL) (18)

3.5.2多层陶瓷蝶形封装(Multilayer ceramic butterfly type packages) (19)

3.5.3射频连接器型封装 (20)

4有源光器件的耦合和对准 (20)

4.1耦合方式 (20)

4.1.1直接耦合 (21)

4.1.2透镜耦合 (22)

4.2对准技术 (22)

4.2.1同轴型器件的对准 (22)

4.2.2双透镜系统的对准 (23)

4.2.3直接耦合的对准 (23)

5有源光器件的其它组件/子装配 (23)

5.1透镜 (23)

5.2热电制冷器(TEC) (24)

5.3底座 (25)

5.4激光器管芯和背光管组件 (25)

6有源光器件的封装材料 (26)

6.1胶 (26)

6.2焊锡 (27)

6.3搪瓷或低温玻璃 (27)

6.4铜焊 (28)

7附录:参考资料清单 (28)

有源光器件的结构和封装

关键词:有源光器件、材料、封装

摘要:本文对光发送器件、光接收器件以及光收发一体模块等有源光器件的封装类型、材料、结构和电特性等各个方面进行了研究,给出了详细研究结果。

缩略语清单:无

缩略语英文全名中文解释

1有源光器件的分类

一般把能够实现光电(O/E)转换或者电光(E/O)转换的器件叫做有源光电子器件,其种类非常繁多,这里只讨论用于通信系统的光电子器件。在光通信系统中,常用的光电子器件可以分为以下几类:光发送器件、光接收器件、光发送模块、光接收模块和光收发一体模块。

光发送器件一般是在一个管壳内部集成了激光二极管、背光检测管、热敏电阻、TEC制冷器以及光学准直机构等元部件,实现电/光转换的功能,最少情况可以只包含一个激光二极管。而光发送模块则是在光发送器件的基础上增加了一些外围电路,如激光器驱动电路、自动功率控制电路等,比起光发送器件来说其集成度更高、使用更方便。

光接收器件一般是在一个管壳内部集成了光电探测器(APD管或PIN管)、前置放大器以及热敏电阻等元部件,实现光/电转换的功能,最少情况可以只包含一个光电探测器管芯。光接收模块则是在光接收器件的基础上增加了放大电路、数据时钟恢复电路等外围电路,同样使用起来更加方便。

把光发送模块和光接收模块再进一步集成到同一个器件内部便形成了光收发一体模块。它的集成度更高,使用也更加方便,目前广泛用于数据通信和光传输等领域。

2有源光器件的封装结构

前面提到,有源光器件的种类繁多且其封装形式也是多种多样,这样到目前为止,对于光发送和接收器件的封装,业界还没有统一的标准,各个厂家使用的封装形式、管壳外形尺寸等相差较大,但大体上可以分为同轴型和蝶形封装两种,如图2.1所示。而对于光收发一体模块,其封装形式则较为规范,主要有1×9和2×9大封装、2×5和2×10小封装(SFF)以及支持热插拔的SFP和GBIC等封装。

图2.1光通信系统常用的两种封装类型的有源光器件

光器件与一般的半导体器件不同,它除了含有电学部分外,还有光学准直机构,因此其封装结构比较复杂,并且通常由一些不同的子部件构成。其子部件一般有两种结构,一种是激光二极管、光电探测器等有源部分都安装在密闭型的封装里面,同一封装里面可以只含有一个有源光器件,也

可以与其它的元部件集成在一起。TO-CAN就是最常见的一种,如图2.2所示,它管帽上有透镜或玻璃窗,管脚一般采用“金属-玻璃”密封。这种以TO-CAN形式封装的部件一般用于更高一级的装配,例如可以加上适当的光路准直机构和外围驱动电路构成光发送或接收模块以及收发一体模块。

图2.2TO-CAN封装外形和结构图

另一种结构就是将激光器或者探测器管芯直接安装在一个子装配上(submount),然后再粘接到一个更大的基底上面以提供热沉,上面可能还有热敏电阻、透镜等元件,这样的单元一般称为光学子装配(OSA:optical subassembly)。光学子装配一般又分为两种:发送光学子装配(TOSA)和接收光学子装配(ROSA),图2.3就是一个典型的蝶形封装用发送光学子装配实物图。光学子装配通常安装在TEC制冷器上或者直接安装在封装壳体的底座上。

图2.3光学子装配(OSA)

2.1光发送器件的封装结构

光发送器件的封装主要分为两种类型:同轴型封装(coaxial type package)和蝶形封装(butterfly type package)。同轴型封装一般不带制冷器,而蝶形封装根据需要可以带制冷器也可以不带制冷器。

2.1.1同轴型光发送器件的封装结构

同轴型封装光发送器件的典型外形和内部结构如图2.4所示,从图中可知,同轴型光发送器件主要由TO-CAN、耦合部分、接口部分等组成。其中TO-CAN是主要部件,它的详细结构和外形如图2.2所示,从图中可见激光器管芯和背光检测管粘接在热沉上,通过键合的方法与外部实现互联,并且TO-CAN一定要密闭封装。耦合部分一般都是透镜,透镜可以直接装在TO-CAN上,也可以不装在TO-CAN上,而装在图2.4中所示的位置。接口部分可以是带尾纤和连接器的尾纤型,也可以是带连接器而不带尾纤的插拔型(根据具体的应用来选择)。尾纤的固定一般采用环氧树脂粘接或者采用激光焊接,另外可以使用单透镜结构或者直接在光纤端面制作透镜的方法来提高耦合效率。

图2.4同轴型激光器外形及内部结构图

2.1.2蝶形光发送器件的封装结构

蝶形封装因其外形而得名,这种封装形式一直被光通信系统所采用。根据应用条件不同,蝶形封装可以带制冷器也可以不带。通常在长距光通信系统中,由于对光源的稳定性和可靠性要求较高,因此需要对激光器管芯温度进行控制而加制冷器,对于一些可靠性要求较低的数据通信或短距应用的激光器就可以不加制冷器。图2.5是蝶形封装的常见结构,它在一个金属封装的管壳内集成了半导体激光器、集成调制器、背光检测管、制冷器、热敏电阻等部件,然后通过一定的光学系统将激光器发出的光信号耦合至光纤。一般光路上有两个透镜,第一透镜用于准直,第二透镜进行聚焦,当然也可以使用锥形光纤或者在尾部制作了透镜的光纤进行耦合。光纤的耦合可以在壳体外部完成也可以采用伸入壳体内部的结构,如图2.6所示。

图2.5带制冷器的蝶形封装光发送器件外形和内部结构图

图2.6两种不同耦合方式的蝶形封装光发送器件结构图

2.2光接收器件的封装结构

与光发送器件一样,光接收器件的封装类型也主要是同轴型和蝶形两种。

2.2.1同轴型光接收器件的封装结构

同轴型封装光接收器件的典型外形和内部结构如图2.7所示,从图中可知,同轴型光接收器件主要由TO-CAN、耦合部分、接口部分等组成。TO-CAN是主要部件,里面集成了探测器(PIN或者APD)

图2.7同轴型光接收器件外形及内部结构图

和前置放大器,通过键合的方法与外部实现互联,并且一定要密闭封装。然后它和金属外壳、透镜、尾纤等组件通过焊接或粘接的方法固定在一起。耦合部分一般都是透镜,透镜可以直接装在TO-CAN

上,也可以不装在TO-CAN上。接口部分可以是带尾纤和连接器的尾纤型,也可以是带连接器而不带尾纤的插拔型(根据具体的应用来选择)。尾纤的固定一般采用环氧树脂粘接或者采用激光焊接,另外可以使用单透镜结构或者直接在光纤端面制作透镜的方法来提高耦合效率。

2.2.2蝶形光接收器件的封装结构

蝶形封装光接收器件的典型外形和内部结构如图2.8所示,它主要有两种结构。一种是使用同轴型封装的探测器加上相应的放大电路等构成,如图2.8中右下角所示,这种结构对管壳的密封性要求不高;另外一种就是将探测器以及放大电路等组件做在同一个壳体中实现,如图2.8中右上角所示,这种结构要求管壳是全密闭封装。

图2.8蝶形封装光接收器件外形和内部结构图

2.3光收发一体模块的封装结构

光收发一体模块就是将光发送和光接收两部分集成在同一个封装内部构成的一种新型光电子器件,它具有体积小、成本低、可靠性高以及较好的性能等优点。它一般由发送和接收两部分构成,发送部分输入一定码率的电信号(155M、622M、2.5G等)经内部驱动芯片处理后,驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,并且其内部带有光功率自动控制电路,使输出的光功率保持稳定。在接收部分,一定码率的光信号输入模块后由光探测二极管转换成电信号,然后经前置放大器处理后输出相应码率的电信号,输出的电信号一般为PECL电平,同时在输入光功率小于一定值后会输出一个无光告警信号。

光收发一体模块封装有着比较规范的标准,目前主要有以下一些形式:1×9footprint、2×9 footprint、GBIC(Gigabit Interface Converter)Transceiver、SFF(Small Form Factor)以及SFP(Small Form Factor Pluggable)。其中1X9和2X9两种封装为大封装,小封装的有2X5和2X10SFF两种。光接口有SC、MTRJ、LC等形式。

2.3.11×9和2×9大封装光收发一体模块

大封装的有1X9和2X9两种封装,2X9的前一排9个管脚与1X9的完全兼容,另外9个管脚有激光器功率和偏置监控以及时钟恢复等功能(2X9封装虽然带偏置和功率监控以及时钟恢复,但由于无

国际标准支持,为非主流产品,使用较少,生产厂家也少,且目前部分厂家已停产)。光接口一般采用无尾纤SC接头,但也有少量厂家生产ST接口和带尾纤的FC、SC接头。模块内部主要由两大部分组成:发送部分和接收部分。发送部分由同轴型激光器(它的详细结构和封装参见2.1.1节)、驱动电路、控制电路等几部分构成,有些模块还具有发送使能、检测输出以及自动温度补偿等;接收部分主要由PIN-FET前放组件(它的详细结构和封装参见2.2.1节)和主放电路两部分组成,并具有无光告警;模块内部的详细结构如图2.9所示,图中左边是大封装模块的典型外形图,右边是两个不同厂家模块的内部结构图(1×9封装和2×9封装模块的外形和内部结构一样)。

图2.91×9SC收发一体模块外形和内部结构

2.3.2GBIC(Gigabit Interface Converter)光收发一体模块

由于部分系统需要在运行中更换光模块,为了不影响系统的正常运行,出现了不需关掉系统电源而直接插拔的光模块。目前支持热插拔的光模块主要有GBIC(Gigabit Interface Converter)和SFP (Small Form Factor Plugable)两种。图2.10是GBIC光收发一体模块的典型外形和内部结构图,从图中可知,GBIC模块和1X9以及2X9大封装的模块在光接口类型、内部结构、外形尺寸等方面都相同。GBIC模块的光接口类型也是SC型,外形也是大尺寸,内部也是包含发送和接收两部分。它们不同之处在于GBIC模块的电接口采用的是卡边沿型电连接器(20-pin SCA连接器),以满足模块热插拔时的上下电顺序,另外,模块内部还有一个EEPROM用来保存模块的信息。

图2.10GBIC收发一体模块外形及内部结构图

2.3.3SFF(Small Form Factor)小封装光收发一体模块

SFF小封装光收发一体模块外形尺寸只有1×9大封装的一半,有2X5和2X10两种封装形式。2X10的器件前面2X5个管脚与2X5封装的器件完全兼容,其余2X5个管脚有激光器功率和偏置监控等功能。小封装光收发模块的光接口形式有多种,如MTRJ、LC、MU、VF-45、E3000等。我司主要使用的有MTRJ和LC光接口。图2.11是SFF型2×10封装LC型光接口收发一体模块典型外形和内部详细结构图,从图中可知它由接收光学子装配(结构参见同轴型光接收器)、发送光学子装配(结构参见同轴型光发送器)、光接口、内部电路板、导热架和外壳等部分组成。MTRJ光接口的2×5封装SFF模块和LC型的SFF模块只有光接口部分不同,其它部分都一样,如图2.12所示。

图2.11SFF型2×10封装LC光接口收发一体模块外形和内部详细结构图

图2.12SFF型2×5封装MTRJ光接口收发一体模块外形和内部结构图

2.3.4SFP(Small Form Factor Pluggable)小型可插拔式光收发一体模块

SFP为支持热插拔的小型光收发一体模块,光接口类型主要有LC和MTRJ两种,其体积是1×9大封装的一半,因此单板上可以获得更高的集成度。SFP收发一体模块采用的是卡边沿型电连接器以满足模块热插拔时的上下电顺序。另外,模块内部还有一个EEPROM用来保存模块的信息。图2.13是SFP型封装LC型光接口收发一体模块外形和内部结构图。

图2.13SFP封装LC型光接口收发一体模块外形和内部结构图

2.3.5光收发模块的子部件

光收发一体模块从结构上来看主要由光学子装配(OSA)、电路板和外壳等构成,下面对这些子部件进行详细讲述。

(1)光学子装配(OSA)

光学子装配(OSA)包括发送光学子装配(TOSA)和接收光学子装配(ROSA),是收发一体模块的主要部件。它主要由机械结构、光路以及TO-CAN封装的有源部分(激光器、探测器及放大电路等)构成,如图2.14和2.15所示。

图2.14两种接收光学子装配的结构及实物图

图2.15两种发送光学子装配的结构及实物图

由于探测器的光敏面较大,对光路的对准精度要求不高,所以接收光学子装配(ROSA)的结构要简单些,一般为TO-CAN直接套接在一个金属套筒(或塑料套筒)中构成,而且一些厂家在光接口内部不使用陶瓷套筒;在固定方式上一般直接采用简单的粘胶进行固定,同时也有用激光点焊等其它固定方法。而发送光学子装配(TOSA)由于对准精度要求较高,因而结构复杂,一般为金属结构且光接口多使用陶瓷套筒,固定方法多采用激光点焊进行固定。另外,采用何种光路结构还与器件的类别有关,一般单模激光器要求对准精度较高,因此多采用金属结构且光接口多用陶瓷套筒,而多模激光器由于对准精度要求不高而采用塑料结构。

(2)电路板

光收发一体模块内部使用的电路板主要有FR-4材料的PCB板、柔性板或者在陶瓷基板上制作的电路板三种,如图2.16所示。其中FR-4材料的PCB板使用最多,陶瓷基板虽然高频特性较好但价格较贵,而柔性板的加工难度要求较高,且不能多次弯折,所以这两种使用较少。

图2.16光收发一体模块内部常见的几种电路板

在电路设计上,光收发一体模块主要采用专用集成电路构成,也有直接在PCB板上绑定芯片的形式(COB:chip on board),如图2.17所示。COB的生产过程是将集成电路芯片用含银的环氧树脂胶直接粘接在电路板上,并经过引线键合(wire bonding),再加上适当抗垂流性的环氧树脂或硅烷

树脂(silicone)将COB区域密封,这样可以省掉集成电路的封装成本,但使用这种封装的模块生产工艺复杂,且可靠性不高。

图2.17光收发一体模块内部所用的电路芯片

3有源光器件的外壳

有源光器件的外壳主要实现以下一些功能:

a.机械以及环境保护

b.热传递

c.保证光路的稳定性

d.提供光通路和电通路

3.1机械及环境保护

用于传输系统的元器件要求具有较高的可靠性,特别是对于光器件要求就更高。所以,传输用光电子器件一般采用密闭封装。典型的管壳由基底(base)、密封环(seal-ring)、电通路以及尾纤导管(fiber pipe)等部分构成,这些部分为内部芯片和电路提供了机械和环境保护,并且要求这些部件的热膨胀系数相匹配,以便保证整个工作温度范围内壳体密封性能的可靠性。而对于一些数据通信用的光电子器件,由于可靠性要求没有传输系统高,有时候基于成本的考虑可以采用非密闭封装,而且壳体可以使用铸模塑料。

3.2热传递

对于一些发热量较大或者需要工作温度稳定的有源光器件,管壳内通常还会包含一个TEC制冷器(Thermo-Electric Cooler),这种情况下,管壳的基底一般采用铜钨合金(copper-tungsten)构成,以便起到良好的热传递功能。

3.3电通路

为了实现封装的可靠密封,管壳上电通路所使用的电介质一般为非有机材料――玻璃或者陶瓷。而可伐合金(Kovar)的热膨胀系数与陶瓷接近,所以密封环和尾纤导管一般采用可伐合金,但可伐合金的导热性能并不理想,所以在不是特别需要低热阻的情况下,可伐合金才可以用来做基底。有时,管壳也用多层陶瓷来制作。

根据电信号速率的不同,电通路主要有以下结构:

a.玻璃密封管脚

b.单层陶瓷

c.多层陶瓷

d.同轴连接器

3.3.1玻璃密封引脚

玻璃密封引脚是直接利用玻璃介质将电引脚密封于管壳上的过孔内(如图3.1所示),内部元件与管脚间电信号的互联一般通过键合实现。该方法成本较低,但仅适用于信号速率低于500-800Mb/s 的场合,我司的单收/单发模块常采用(速率一般都在622Mb/s以下)这种玻璃密封引脚。

图3.1玻璃密封引脚

3.3.2单层陶瓷

单层陶瓷引线与玻璃密封管脚相类似,只不过介质使用的是陶瓷,如图3.2所示。由于陶瓷材料有更好的电性能,因此这种方式的信号速率可以达到2Gb/s。

图3.2单层陶瓷

3.3.3多层陶瓷

多层陶瓷引线是在陶瓷层上通过金属化的方法生成走线以实现模块内外的互联,如图3.3所示。该方法如果使用差分的形式可以获得高达10Gb/s的信号速率。

图3.3多层陶瓷

3.3.4同轴连接器

前面提到的几种引脚设计,对于器件的安装来说都是直接将器件焊接在PCB板上,而一般的PCB 材料对于超过3-5Gb/s左右的信号很难提供良好的传输特性。因此,对于高速率的信号间互联一般通过同轴电缆来实现,这样业界对于10Gb/s或更高速率的有源光器件的电接口都采用同轴电缆的方式,如图3.4、3.5和3.6所示。我司所使用的10Gb/s以上速率的有源光器件也是采用这种方式。

图3.4同轴连接头

图3.5器件引脚到内部部件间的互联

图3.6器件引脚的结构图以及电参数的测试实例

3.4光通路--------------------------------------------------------------------------

激光器发出的光信号要进入光纤以及从光纤传来的光信号要进入光探测器都得经过一定的光通路,光通路的结构一般有两种,如图3.6所示。从图中可知,b结构是将光纤直接延伸到管壳内部

图3.6两种光通路结构

进行耦合,此时就需要对光纤进行金属化,然后通过焊锡与外壳上的金属套管密封起来,最后光纤尾部通过粘胶来固定,以增强其机械性能。由于光纤和套管间有很多的空隙,所以焊锡用量较大,

有时为了减小焊锡的用量,先将光纤焊接到一个小的金属套管上,然后再焊接到管壳的套管中,但这样会有两次焊接操作并需要不同熔点的焊料,增加了工艺的复杂度,不利于自动化生产。但如果采用直接耦合方式,则不得不采用这样的结构。当光路中使用透镜耦合时,则可以通过使用集成了透镜或隔离器的管壳来实现光路的耦合,如图3.6中的a结构,这样就不存在光纤的金属化和密封焊接等问题,这种结构的耦合对准在外部的第二透镜处完成。

总的来说,两种光路结构除了生产过程不同外(a结构更易于生产),在可靠性方面也都有各自的问题。采用透镜耦合方式,从激光器到光纤间的距离较长,整个光路上元件的微小位移都会引起耦合下降。如底座、壳体以及器件尾部耦合部分受到机械应力的作用都会引起光路发生位移,从而使得耦合效率下降,这也是该类器件的常见失效模式。而对于直接耦合方式,由于尾纤对准激光器,而且通常与激光器位于同一个模块上,因此壳体以及器件尾部受力对耦合光路的影响不大,但器件内部光纤夹子的固定会影响到光路的耦合(有激光点焊和焊料固定两种方式),焊接质量不好,应力的缓慢释放都会导致光路位移,从而使得耦合效率下降。

3.5几种封装外壳的制作工艺和电特性实例

3.5.1小型双列直插封装(MiniDIL)

小型双列直插封装适用于无制冷激光器、探测器和小功率泵浦激光器,具有高可靠性和低成本的特点,可根据需要设计成25ohm或50ohm匹配,并可集成透镜,如图3.7、3.8所示。图3.7是小型双列直插封装的外形尺寸图,图3.8是小型双列直插封装制作流程图。

图3.7小型双列直插封装管壳外形尺寸图

图3.8小型双列直插封装管壳制作流程图

3.5.2多层陶瓷蝶形封装(Multilayer ceramic butterfly type packages)

多层陶瓷蝶形封装是光通信系统中激光器和泵浦激光器常用的一种封装结构,其主要应用范围是OC192(STM-64)、OC48(STM-16)、DWDM等高速率激光器、泵浦激光器、可调激光器以及激光调制器等,其可靠性较高并且易于满足客户的各种需求,而且陶瓷电通路还可采用射频连接器,所以该封装的应用范围很广。图3.9是多层陶瓷蝶形封装的外形尺寸和频率特性,图3.10是多层陶瓷蝶形封装制作流程图。

图3.9多层陶瓷封装外形尺寸和频率特性

图3.10多层陶瓷蝶形封装管壳制作流程图

3.5.3射频连接器型封装

射频连接器型封装一般应用于10G以上速率,使用射频连接器可获得较好的电性能,如图3.11所示。图中给出了射频连接器型的常见封装和不同类型的电性能。

图3.11射频连接器型封装管壳外形及频率特性

4有源光器件的耦合和对准

4.1耦合方式

激光器发出的光信号进入光纤的途径主要有两种方式:直接耦合、透镜耦合,其中透镜耦合又

光器件封装详解有源光器件的结构和封装

有源光器件的结构和封装

目录 1有源光器件的分类 ........................................................................................错误!未指定书签。2有源光器件的封装结构 .................................................................................错误!未指定书签。 2.1光发送器件的封装结构 ...........................................................................错误!未指定书签。 2.1.1同轴型光发送器件的封装结构 ..........................................................错误!未指定书签。 2.1.2蝶形光发送器件的封装结构..............................................................错误!未指定书签。 2.2光接收器件的封装结构 ...........................................................................错误!未指定书签。 2.2.1同轴型光接收器件的封装结构 ..........................................................错误!未指定书签。 2.2.2蝶形光接收器件的封装结构..............................................................错误!未指定书签。 2.3光收发一体模块的封装结构....................................................................错误!未指定书签。 2.3.11×9和2×9大封装光收发一体模块 .....................................................错误!未指定书签。 2.3.2GBIC(GigabitInterfaceConverter)光收发一体模块 ......................错误!未指定书签。 2.3.3SFF(SmallFormFactor)小封装光收发一体模块 ...........................错误!未指定书签。 2.3.4SFP(SmallFormFactorPluggable)小型可插拔式光收发一体模块错误!未指定书签。 2.3.5光收发模块的子部件.........................................................................错误!未指定书签。3有源光器件的外壳 ........................................................................................错误!未指定书签。 3.1机械及环境保护 ......................................................................................错误!未指定书签。 3.2热传递.....................................................................................................错误!未指定书签。 3.3电通路.....................................................................................................错误!未指定书签。 3.3.1玻璃密封引脚....................................................................................错误!未指定书签。 3.3.2单层陶瓷 ...........................................................................................错误!未指定书签。 3.3.3多层陶瓷 ...........................................................................................错误!未指定书签。 3.3.4同轴连接器........................................................................................错误!未指定书签。 3.4光通路.....................................................................................................错误!未指定书签。 3.5几种封装外壳的制作工艺和电特性实例..................................................错误!未指定书签。 3.5.1小型双列直插封装(MiniDIL).........................................................错误!未指定书签。 3.5.2多层陶瓷蝶形封装(Multilayerceramicbutterflytypepackages)......错误!未指定书签。 3.5.3射频连接器型封装.............................................................................错误!未指定书签。4有源光器件的耦合和对准..............................................................................错误!未指定书签。 4.1耦合方式 .................................................................................................错误!未指定书签。 4.1.1直接耦合 ...........................................................................................错误!未指定书签。 4.1.2透镜耦合 ...........................................................................................错误!未指定书签。 4.2对准技术 .................................................................................................错误!未指定书签。 4.2.1同轴型器件的对准.............................................................................错误!未指定书签。 4.2.2双透镜系统的对准.............................................................................错误!未指定书签。 4.2.3直接耦合的对准 ................................................................................错误!未指定书签。5有源光器件的其它组件/子装配 .....................................................................错误!未指定书签。 5.1透镜 ........................................................................................................错误!未指定书签。 5.2热电制冷器(TEC)...............................................................................错误!未指定书签。 5.3底座 ........................................................................................................错误!未指定书签。 5.4激光器管芯和背光管组件........................................................................错误!未指定书签。

光模块-市场-分析==

1、行业整体综述 光模块的市场应用主要是在以太网SDH/SONET IPTV,数据通信、视频监控,安防、存储区域网络(SAN)和FTTX,其中的光模块电信市场已经处于供过于求状态,特别是低端光模块市场,小型卖家数不胜数,即使是整个需求量在增加,也没有供货量增长来得快。最近的几个季度,全球十大光模块厂商的收入增长大多是持续下降便是很好的说明。我们国内的光模块市场相比较而言,潜力巨大,我们的光模块厂商也似乎都在探求出奇制胜之道。 以光组件,TO,LD/TOSA/ROSA/OSA/CHIPS,模块,部分企业走向专业方向,更多的企业走想整合路线。大企业之间也通过合并,重组完成对整个产品线的整合,从而达到强化竞争之优势。由于市场对光通讯网络设备持续降低成本的要求,以低端产品GBPS SFP,CWDM SFP价格已经逐步走低,全球各大巨头主要利润来源已经转移到10GXFP XENPARK X2或更高技术含量,更底层光器件,伴随着亚洲光通信行业企业的低成本竞争,各大企业也或多或少的进入亏损。 2、市场分析 2.1市场应用: 1.Ethernet,SDH/SONET IPTV,数据通信 2.视频监控 3.SAN 4.FTTH 据市场研究机构的报告显示,2010年全球电信运营商在光通信产业的资本开支为2880亿美元,2010年中国电信运营商在光通信的资本开支为2900亿元人民币。全球光通信产业在逐步走出全球金融危机的阴影后,将进入一个新的投资周期。根据市场研究机构 Lightcounting的预测,未来五年,全球光通信产业将保持每年15%增长率。由于国内市场起步较晚,以及国家政策的极大推动作用,预计国内光通信市场在未来五年内仍将以年均至少20%的速度呈现快速增长的势头,成为全球第一大光通信市场。受此大环境影响,国内光模块市场也将迎来蓬勃的发展机遇。 2011年国内光模块市场规模为80亿元,预计今年国内光模块市场将有20%的增长率,并将在随后几年内保持与整个国内光通信市场的同步增长态势。 2008年中国电信运营商重组后,中国三大运营商进入全业务竞争时代。同时,在国务院主导的三网融合的激励下,中国电信、中国联通、中国移动都

推荐-超详细的光模块介绍

超详细的光模块介绍 光模块发展简述 光模块分类 按封装:1*9 、GBIC、 SFF、SFP、XFP、SFP+、X2、XENPARK、300pin等。按速率:155M、622M、1.25G、2.5G、4.25G、10G、40G等。 按波长:常规波长、CWDM、DWDM等。 按模式:单模光纤(黄色)、多模光纤(橘红色)。 按使用性:热插拔(GBIC、 SFP、XFP、XENPAK)和非热插拔(1*9、SFF)。封装形式

光模块基本原理 光收发一体模块(Optical Transceiver) 光收发一体模块是光通信的核心器件,完成对光信号的光-电/电-光转换。由两部分组成:接收部分和发射部分。接收部分实现光-电变换,发射部分实现电-光变换。 发射部分: 输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路(APC),使输出的光信号功率保持稳定。 接收部分: 一定码率的光信号输入模块后由光探测二极管转换为电信号,经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。同时在输入光功率小于一定值后会输出一个告警信号。

光模块的主要参数 1. 传输速率 传输速率指每秒传输比特数,单位Mb/s 或Gb/s。主要速率:百兆、千兆、2.5G、4.25G和万兆。 2.传输距离 光模块的传输距离分为短距、中距和长距三种。一般认为2km 及以下的为短距离,10~20km 的为中距离,30km、40km 及以上的为长距离。 ■光模块的传输距离受到限制,主要是因为光信号在光纤中传输时会有一定的损耗和色散。 注意: ? 损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。

光模块的封装类型发展

看光模块的封装发展,越来越小是否成主流? 从1946年约翰·冯·诺依曼发明了世界第一台电子计算机开始,就预示着世界将进入信息和网络的时代。改革开放以后,互联网、通信、多媒体等领域迅速发展。光纤通信产业,也得到了相应的发展,在这个过程中光模块也慢慢朝着小型化,低功耗,低成本,高速率,远距离,热插拔的方向发展着。 光模块由光电子器件,功能电路和光接口组成,可实现光电转换。光模块主要有两大类别:光收发一体模块和光转发模块。从2000年开始到现今,光模块封装类型得到了快速发展,主要的封装类型有:GBIC、SFP、XENPAK、SNAP12、X2、XFP、SFP+、QSFP/QSFP+、CFP、CXP,这里主要介绍以下几种常见的光模块。 1).GBIC光模块 GBIC是Gigabit Interface Converter的缩写,即千兆接口转换器,是将千兆位电信号转换为光信号的接口器件。GBIC个头比较大,差不多是SFP体积的两倍,是通过插针焊接在PCB板上使用。目前基本上被SFP取代。 2).SFP光模块 SFP是Small Form-factor Pluggables的简称,即小封装可插拔光模块。SFP 只能用于2.5Gbps及以下速率的超短距离、短距离和中距离应用。

3).XENPAK光模块 XENPAK是面向10G以太网的第一代光模块,支持所有IEEE802.3ae定义的光接口,在线路端可以提供10.3Gbps、9.95Gbps或4*3.125Gbps的速率。 4).X2光模块 X2是一款跟XPAK很相似的产品,相比XPAK,它主要在导轨系统上做了改进。体积减小了很多,目前小型化是10G光模块的一种趋势,X2属于过渡型产品。 5).XFP光模块 XFP是10G小封装可插拔光模块,主要用于需要小型化及低成本10G解决方案。XFP在XENPAK、X2的基础上,完全去掉了SerDes,从而大大降低了功耗、体积和成本。

光器件封装详解

光器件封装详解 有源光器件的结构和封装 目录 1 有源光器件的分 类 ................................................................. (5) 2 有源光器件的封装结 构 ................................................................. .. (5) 2.1 光发送器件的封装结 构 ................................................................. .. (6) 同轴型光发送器件的封装结 构 ................................................................. (7) 蝶形光发送器件的封装结 构 ................................................................. . (7) 同轴型光接收器件的封装结 构 ................................................................. (8) 蝶形光接收器件的封装结

构 ................................................................. . (9) 1×9和2×9大封装光收发一体模 块 ................................................................. . (9) GBIC(Gigabit Interface Converter)光收发一体模 块 .............................................. 10 SFF(Small Form Factor)小封装光收发一体模 块 ................................................... 11 SFP(Small Form Factor Pluggable)小型可插拔式光收发一体模 块 ....................... 12 光收发模块的子部 件 ................................................................. .................................. 12 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.3 2. 3.1 2.3.2 2.3.3 2.3.4 2.3.5 3.1 3.2 3.3 光接收器件的封装结 构 ................................................................. ...................................... 8 光收发一体模

光器件封装详解有源光器件的结构和封装

光器件封装详解有源光器件的结构和封装 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

有源光器件的结构和封装

目录

有源光器件的结构和封装 关键词:有源光器件、材料、封装 摘要:本文对光发送器件、光接收器件以及光收发一体模块等有源光器件的封装类型、材料、结构和电特性等各个方面进行了研究,给出了详细研 究结果。

1有源光器件的分类 一般把能够实现光电(O/E)转换或者电光(E/O)转换的器件叫做有源光电子器件,其种类非常繁多,这里只讨论用于通信系统的光电子器件。在光通信系统中,常用的光电子器件可以分为以下几类:光发送器件、光接收器件、光发送模块、光接收模块和光收发一体模块。 光发送器件一般是在一个管壳内部集成了激光二极管、背光检测管、热敏电阻、TEC制冷器以及光学准直机构等元部件,实现电/光转换的功能,最少情况可以只包含一个激光二极管。而光发送模块则是在光发送器件的基础上增加了一些外围电路,如激光器驱动电路、自动功率控制电路等,比起光发送器件来说其集成度更高、使用更方便。 光接收器件一般是在一个管壳内部集成了光电探测器(APD管或PIN管)、前置放大器以及热敏电阻等元部件,实现光/电转换的功能,最少情况可以只包含一个光电探测器管芯。光接收模块则是在光接收器件的基础上增加了放大电路、数据时钟恢复电路等外围电路,同样使用起来更加方便。 把光发送模块和光接收模块再进一步集成到同一个器件内部便形成了光收发一体模块。它的集成度更高,使用也更加方便,目前广泛用于数据通信和光传输等领域。 2有源光器件的封装结构 前面提到,有源光器件的种类繁多且其封装形式也是多种多样,这样到目前为止,对于光发送和接收器件的封装,业界还没有统一的标准,各个厂家使用的封装形式、管壳外形尺寸等相差较大,但大体上可以分为同轴型和蝶形封装两种,如图2.1所示。而对于光收发一体模块,其封装形式则较为规范,主要有1×9和2×9大封装、2×5和2×10小封装(SFF)以及支持热插拔的SFP和GBIC 等封装。 图2.1光通信系统常用的两种封装类型的有源光器件光器件与一般的半导体器件不同,它除了含有电学部分外,还有光学准直

光器件封装详解

产品名称 无 产品版本 共28页无 有源光器件的结构和封装 分析:日期: 拟制:日期: 审核:日期: 批准:日期:

目录 1有源光器件的分类 (5) 2有源光器件的封装结构 (5) 2.1光发送器件的封装结构 (6) 2.1.1同轴型光发送器件的封装结构 (7) 2.1.2蝶形光发送器件的封装结构 (7) 2.2光接收器件的封装结构 (8) 2.2.1同轴型光接收器件的封装结构 (8) 2.2.2蝶形光接收器件的封装结构 (9) 2.3光收发一体模块的封装结构 (9) 2.3.11×9和2×9大封装光收发一体模块 (9) 2.3.2GBIC(Gigabit Interface Converter)光收发一体模块 (10) 2.3.3SFF(Small Form Factor)小封装光收发一体模块 (11) 2.3.4SFP(Small Form Factor Pluggable)小型可插拔式光收发一体模块 (12) 2.3.5光收发模块的子部件 (12) 3有源光器件的外壳 (14) 3.1机械及环境保护 (14) 3.2热传递 (14) 3.3电通路 (15) 3.3.1玻璃密封引脚 (15) 3.3.2单层陶瓷 (15) 3.3.3多层陶瓷 (16) 3.3.4同轴连接器 (16) 3.4光通路 (17) 3.5几种封装外壳的制作工艺和电特性实例 (18) 3.5.1小型双列直插封装(MiniDIL) (18) 3.5.2多层陶瓷蝶形封装(Multilayer ceramic butterfly type packages) (19) 3.5.3射频连接器型封装 (20) 4有源光器件的耦合和对准 (20) 4.1耦合方式 (20) 4.1.1直接耦合 (21) 4.1.2透镜耦合 (22) 4.2对准技术 (22) 4.2.1同轴型器件的对准 (22) 4.2.2双透镜系统的对准 (23) 4.2.3直接耦合的对准 (23) 5有源光器件的其它组件/子装配 (23) 5.1透镜 (23) 5.2热电制冷器(TEC) (24) 5.3底座 (25)

常见元件的封装实物图汇总

常见元器件封装实物图 Protel 99SE 中常见元件的封装形式 2007年06月20日 16:49 1.电阻原理图中常用的名称为RES1-RES4;引脚封装形式: AXIAL系列从AXIAL-0.3到AXIAL-1.0,后缀数字代表两焊盘的间距,单位为Kmil. 2.电容原理图中常用的名称为CAP(无极性电容)、ELECTRO(有极性电容);引脚封装形式:无极性电容为RAD-0.1到RAD-0.4,有极性电容为RB.2/.4到RB.5/1.0.

3.电位器原理图中常用的名称为POT1和POT2; 引脚封装形式:VR-1到VR-5. 4.二极管原理图中常用的名称为DIODE(普通二极管)、DIODE SCHOTTKY(肖特基二极管)DUIDE TUNNEL(隧道二极管)DIODE VARCTOR(变容二极管)ZENER1~3(稳压二极管) 5.引脚封装形式:DIODE0.4和DIODE 0.7; 6.三极管原理图中常用的名称为NPN,NPN1和PNP,PNP1; 引脚封装形式TO18、TO92A(普通三极管)TO220H(大功率三极管)TO3(大功率达林顿管) 7.场效应管原理图中常用的名称为JFET N(N沟道结型场效应管),JFET P(P 沟道结型场效应管)MOSFET N(N沟道增强型管)MOSFET P(P沟道增强型管)引脚封装形式与三极管同。 8.整流桥原理图中常用的名称为BRIDGE1和BRIDGE2,引脚封装形式为D系列,如D-44,D-37,D-46等。 9.单排多针插座原理图中常用的名称为CON系列,从CON1到CON60,引脚封装形式为SIP系列,从SIP-2到SIP-20。 10.双列直插元件原理图中常用的名称为根据功能的不同而不同,引脚封装形式DIP系列。 11.串并口类原理图中常用的名称为DB系列,引脚封装形式为DB和MD 电阻 AXIAL 无极性电容 RAD 电解电容 RB- 电位器 VR 二极管 DIODE 三极管 TO 电源稳压块78和79系列 TO-126H和TO-126V 场效应管和三极管一样 整流桥 D-44 D-37 D-46 单排多针插座 CON SIP 双列直插元件 DIP 晶振 XTAL1 电阻:RES1,RES2,RES3,RES4;封装属性为axial系列 无极性电容:cap;封装属性为RAD-0.1到rad-0.4 电解电容:electroi;封装属性为rb.2/.4到rb.5/1.0 电位器:pot1,pot2;封装属性为vr-1到vr-5 二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率) 三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大

光模块的一些常识知识

光模块的一些常识知识 光纤模块的构成:有发射激(TOSA),接受(ROSSA) 线路板IC 外部配件 光纤模块接口分为FC 型、SC 型、LC 型、ST 型和FTRJ 型。RJ45 光收发一体模块分类按照速率分:以太网应用的100Base(百兆)、1000Base(千兆)、10GE SDH 应用的155M、622M、2.5G、10G 按照封装分:1×9、SFF、SFP、GBIC SFP+ XFP X2 XENPAK 1×9 封装--焊接型光模块,一般速率有52M/155M/622M/1.25G,多采用SC 接口SFF 封装--焊接小封装光模块,一般速率有155M/622M/1.25G/2.25G/4.25G,多采用LC 接口GBIC 封装--热插拔千兆接口光模块,采用SC 接口SFP封装--热插拔小封装模块,目前最高数率可达155M/622M/1.25G/2.125G/4.25G/8G/10G,多采用LC 接口XENPAK 封装--应用在万兆以太网,采用SC 接口XFP封装--10G 光模块,可用在万兆以太网,SONET 等多种系统,多采用LC 接口 按照激光类型分:LED、VCSEL、FP LD、DFB LD 按照发射波长分:850nm、1310nm、1550nm 等等按照使用方式分:非热插拔(1×9、SFF),可热插拔(GBIC、SFP、XENPAK、XFP) 光纤模块又分单模和多模单模光纤使用的光波长为1310nm 或1550 nm。单模光纤的尺寸为9-10/125μm 它的传输距离一般10KM 20kM 40KM 70KM 120KM 多模光纤使用的光波长多为850 nm 或1310nm.多模光纤50/125μm 或62.5/125μm 两种,它的传输距离也不一样,一般千兆环境下50/125μm 线可传输550M,62.5/125μm 只可以传送330M。(2KM 550M) 从颜色上可以区分单模光纤和多模光纤。单模光纤外体为黄色,多模光纤外体为橘红色。光纤模块的电频:PECL 电流:18 豪安,电压:3.3V ,5V 0~70 ,-40~70(工业级)温度: 光模块常用的一些符号:SX MM(850nm 550M) LX SM(1310nm 15KM) 40km)ZX (1550nm 70KM) EZX(1550nm120KM) SR LR ER ZR LHSM(1310nm 长用光模块的一些技术参数:1.155M 1310nm FP 2KM 光功率:发射-8~-19dbm,接收:《-31dbm。电频:PCEL 温度:0~70 电压:3.3~5V 可选的 2.155M 1310nm FP 15KM 光功率:发射-8~-15dbm,接收:《-31dbm。电频:PCEL 温度:0~70 电压:3.3~5V 可选的3.155M 1310nmFP 40KM 光功率:发射0~-5dbm,接收:《-35dbm。电频:PCEL 温度:0~70 电压:3.3~5V 可选的 4.155M 1550nmDFP 80KM 光功率:发射0~-5dbm,接收:《-34dbm。电频:PCEL 温度:0~70 电压:3.3~5V 可选的 5.1.25G 850nm FP 550M 光功率:发射-3~-9dbm,接收:《-18dbm。电频:PCEL 温度:0~70 电压:3.3~5V 可选的6.1.25G 1310nm FP 15KM 光功率:发射-3~-9dbm,接收:《-20dbm。电频:PCEL 温度:0~70 电压:3.3~5V 可选的7.1.25G 1310nm FP 40M 光功率:发射-3~2dbm,接收:《-23dbm。电频:PCEL 温度:0~70 电压:3.3~5V 可选的7. 1.25G 1550nmDFP 80KM 光功率:发射-2~3dbm,接收:《-23dbm。电频:PCEL 温度:0~70 电压:3.3~5V 可选的8.1.25G 1550nm DFP 120KM 光功率:发射0~4dbm,接收:《-31dbm。电频:PCEL 温度:0~70 电压:3.3~5V可选的何为GBIC?GBIC 是Giga Bitrate Interface Converter 的缩写,是将千兆位电信号转换为光信号的接口器件。GBIC 设计上可以为热插拔使用。GBIC 是一种符合国际标准的可互换产品。采用GBIC 接口设计的千兆位交换机由于互换灵活SFP 是SMALL FORM PLUGGABLE 的缩写,可以简单的理解为GBIC 的升级版本。SFP 模块体积比GBIC 模块减少一半,可以在相同的面板上配置多出一倍以上的端口数量。SFP 模块的其他功能基本和GBIC 一致。有些交换机厂商称SFP 模块为小型化GBIC

光模块和光跳线应用

光模块和光跳线应用指南发布时间:2011-06-17 12:13:04 一、光收发一体模块定义 光收发一体模块由光电子器件、功能电路和光接口等组成,光电子器件包括发射和接收两部分。发射部分是:输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路,使输出的光信号功率保持稳定。接收部分是:一定码率的光信号输入模块后由光探测二极管转换为电信号。经前置放大器后输出相应码率的电信号,输出的信号一般为PECL 电平。同时在输入光功率小于一定值后会输出一个告警信号。 二、光收发一体模块分类 按照速率分:以太网应用的100Base(百兆)、1000Base(千兆)、10GE,SDH 应用的155M、622M、2.5G、10G。 按照封装分:1×9、SFF、SFP、GBIC、XENPAK、XFP,各种封装见图1~6 1×9 封装——焊接型光模块,一般速度不高于千兆,多采用SC 接口 SFF 封装——焊接小封装光模块,一般速度不高于千兆,多采用LC 接口 GBIC 封装——热插拔千兆接口光模块,采用SC 接口 SFP 封装——热插拔小封装模块,目前最高数率可达4G,多采用LC 接口 XENPAK 封装——应用在万兆以太网,采用SC 接口 XFP 封装——10G 光模块,可用在万兆以太网,SONET 等多种系统,多采用LC 接口 按照激光类型分:LED、VCSEL、FP LD、DFB LD 按照发射波长分:850nm、1310nm、1550nm 等等 按照使用方式分:非热插拔(1×9、SFF),可热插拔(GBIC、SFP、XENPAK、XFP) 三、光纤连接器的分类和主要规格参数 光纤连接器是在一段光纤的两头都安装上连接头,主要作光配线使用。 按照光纤的类型分:单模光纤连接器(一般为G.652 纤:光纤内径9um,外径125um),多模光纤连接器(一种是G.651 纤其内径50um,外径125um;另一种是内径62.5um,外径125um);

光纤、光模块及光接口常用知识整理

光纤、光模块及光接口常用知识整理。 以太网交换机常用的光模块有SFP,GBIC,XFP,XENPAK。 它们的英文全称: SFP:Small Form-factor Pluggabletransceiver ,小封装可插拔收发器GBIC:GigaBit Interface Converter,千兆以太网接口转换器 XFP: 10-Gigabit small Form-factorPluggable transceiver 万兆以太网接口 小封装可插拔收发器 XENPAK: 10 Gigabit EtherNet TransceiverPAcKage万兆以太网接口收发器集合封装 光纤连接器

光纤连接器由光纤和光纤两端的插头组成,插头由插针和外围的锁紧结构组成。根据不同的锁紧机制,光纤连接器可以分为FC型、SC型、LC型、ST型和KTRJ型。 FC连接器采用螺纹锁紧机构,是发明较早、使用最多的一种光纤活动连接器。 SC是一种矩形的接头,由NTT研制,不用螺纹连接,可直接插拔,与FC连接器相比具有操作空间小,使用方便。低端以太网产品非常常见。 LC是由LUCENT开发的一种Mini型的SC连接器,具有更小的体积,已广泛在系统中使用,是今后光纤活动连接器发展的一个方向。低端以太网产品非常常见。 ST连接器是由AT&T公司开发的,用卡口式锁紧机构,主要参数指标与FC和SC连接器相当,但在公司应用并不普遍,通常都用在多模器件连接,与其它厂家设备对接时使用较多。 KTRJ的插针是塑料的,通过钢针定位,随着插拔次数的增加,各配合面会发生磨损,长期稳定性不如陶瓷插针连接器。 光纤知识 光纤是传输光波的导体。光纤从光传输的模式来分可分为单模光纤和多模光纤。

光模块知识(详细)

光模块知识 ——转载自通信人家园 光模块的发展简述 光模块分类 按封装:1*9 、GBIC、SFF、SFP、XFP、SFP+、X2、XENPARK、300pin等。按速率:155M、622M、1.25G、2.5G、4.25G、10G、40G等。 按波长:常规波长、CWDM、DWDM等。 按模式:单模光纤(黄色)、多模光纤(橘红色)。 按使用性:热插拔(GBIC、SFP、XFP、XENPAK)和非热插拔(1*9、SFF)。封装形式

光收发一体模块(Optical Transceiver)

光收发一体模块是光通信的核心器件,完成对光信号的光-电/电-光转换。由两部分组成:接收部分和发射部分。接收部分实现光-电变换,发射部分实现电-光变换。 发射部分: 输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路(APC),使输出的光信号功率保持稳定。 接收部分: 一定码率的光信号输入模块后由光探测二极管转换为电信号,经前置放大器后输出相应码率的电信号,输出的信号一般为PECL电平。同时在输入光功率小于一定值后会输出一个告警信号。

光模块内部结构 1. 传输速率 传输速率指每秒传输比特数,单位Mb/s 或Gb/s。主要速率:百兆、千兆、2.5G、4.25G 和万兆。 2.传输距离

光模块的传输距离分为短距、中距和长距三种。一般认为2km 及以下的为短距离,10~20km 的为中距离,30km、40km 及以上的为长距离。 ■光模块的传输距离受到限制,主要是因为光信号在光纤中传输时会有一定的损耗和色散。 注意: 损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。 色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。 因此,用户需要根据自己的实际组网情况选择合适的光模块,以满足不同的传输距离要求。 3.中心波长 中心波长指光信号传输所使用的光波段。目前常用的光模块的中心波长主要有三种:850nm 波段、1310nm 波段以及1550nm 波段。 850nm 波段:多用于≤2km短距离传输 1310nm 和1550nm 波段:多用于中长距离传输,2km以上的传输。 光纤类型 1. 光纤模式(Fiber Mode) 按光在光纤中的传输模式可将光纤分为单模光纤和多模光纤两种。 多模光纤(MMF,Multi Mode Fiber),纤芯较粗,可传多种模式的光。但其模间色散较大,且随传输距离的增加模间色散情况会逐渐加重。多模光纤的传输距离还与其传输速率、芯径、模式带宽有关,具体关系请参见下表。

(完整word版)认识交换机光模块

认识交换机光模块 一、光模块定义 光模块由光电子器件、功能电路和光接口等组成。 光电子器件包括发射和接收两部分。 发射部分是:输入一定码率的电信号经内部的驱动芯片处理后驱动半导体激光器(LD)或发光二极管(LED)发射出相应速率的调制光信号,其内部带有光功率自动控制电路,使输出的光信号功率保持稳定。 接收部分是:一定码率的光信号输入模块后由光探测二极管转换为电信号。经前置放大器后输出相应码率的电信号,输出的信号一般为PECL 电平。同时在输入光功率小于一定值后会输出一个告警信号。 二、光模块分类 按照速率分:以太网应用的100Base(百兆)、1000Base(千兆)、10GE,SDH应用的155M、622M、2.5G、10G; 按照封装分:1×9、SFF、SFP、GBIC、XENPAK、XFP,各种封装见图1~6。

1×9 封装,焊接型光模块,一般速度不高于千兆,多采用SC 接口; SFF 封装,焊接小封装光模块,一般速度不高于千兆,多采用LC 接口; GBIC 封装,热插拔千兆接口光模块,采用SC 接口; SFP 封装,热插拔小封装模块,目前最高数率可达4G,多采用LC 接口; XENPAK 封装,应用在万兆以太网,采用SC 接口; XFP 封装,10G 光模块,可用在万兆以太网,SONET 等多种系统,多采用LC 接口。 按照激光类型分:LED、VCSEL、FP LD、DFB LD; 按照发射波长分:850nm、1310nm、1550nm等等; 按照使用方式分:非热插拔(1×9、SFF),可热插拔(GBIC、SFP、XENPAK、XFP)。

三、光纤连接器的分类和主要规格参数 光纤连接器是在一段光纤的两头都安装上连接头,主要作光配线使用。 按照光纤的类型分: 单模光纤连接器(一般为G.652 纤:光纤内径9um,外径125um); 多模光纤连接器(一种是G.651 纤其内径50um,外径125um;另一种是内径62.5um,外径125um); 按照光纤连接器的连接头形式分:FC,SC,ST,LC,MU,MTRJ 等等,目前常用的有FC,SC,ST,LC,见图7~10。 FC 型,最早由日本NTT 研制。外部加强件采用金属套,紧固方式为螺丝扣。测试设备和光端机选用该种接头较多。 SC 型,由日本NTT 公司开发的模塑插拔耦合式连接器。其外壳采用模塑

光模块的一些常识知识

光纤模块的构成:发射(TOSA),接收(ROSA) 线路板 IC 外部配件 光纤模块接口分为FC型、SC型、LC型、ST型和FTRJ型。RJ45 光收发一体模块分类 按照速率分:以太网应用的100Base(百兆)、1000Base(千兆)、10GE SDH 应用的155M、622M、2.5G、10G 按照封装分:1×9、SFF、SFP、GBIC SFP+ XFP X2 XENPAK 1×9封装--焊接型光模块,一般速率有52M/155M/622M/1.25G,多采用SC接口SFF封装--焊接小封装光模块,一般速率有155M/622M/1.25G/2.25G/4.25G,多采用LC接口 GBIC封装--热插拔千兆接口光模块,采用SC接口 SFP封装--热插拔小封装模块,目前最高数率可达155M/622M/1.25G/2.125G/4.25G/8G/10G,多采用LC接口 XENPAK封装--应用在万兆以太网,采用SC接口 XFP封装--10G光模块,可用在万兆以太网,SONET等多种系统,多采用LC接口 按照激光类型分:LED、VCSEL、FP LD、DFB LD 按照发射波长分:850nm、1310nm、1550nm等等 按照使用方式分:非热插拔(1×9、SFF),可热插拔(GBIC、SFP、XENPAK、XFP) 光纤模块又分单模和多模 单模光纤使用的光波长为1310nm或1550 nm。单模光纤的尺寸为9-10/125μm 它的传输距离一般 10KM 20kM 40KM 70KM 120KM 多模光纤使用的光波长多为850 nm或1310nm.多模光纤50/125μm或62.5/125μm两种,它的传输距离也不一样,一般千兆环境下50/125μm线可传输550M,62.5/125μm只可以传送330M。(2KM 550M) 从颜色上可以区分单模光纤和多模光纤。单模光纤外体为黄色,多模光纤外体为橘红色。 光纤模块的电频:PECL 电流:18豪安,电压:3.3V ,5V 温度:0~70 ,-40~70(工业级) 光模块常用的一些符号:SX MM(850nm 550M) LX SM(1310nm 15KM) LHSM(1310nm 40km) ZX(1550nm 70KM) EZX(1550nm120KM) SR LR ER ZR 长用光模块的一些技术参数: 1.155M 1310nm FP 2KM 光功率:发射-8~-19dbm,接收:《-31dbm。电频:PCEL 温度:0~70 电压:3.3~5V可选的 2.155M 1310nm FP 15KM 光功率:发射-8~-15dbm,接收:《-31dbm。电频:PCEL 温度:0~70 电压: 3.3~5V可选的 3.155M 1310nmFP 40KM 光功率:发射0~-5dbm,接收:《-35dbm。电频:PCEL 温度:0~70 电压:3.3~5V可选的 4.155M 1550nmDFP 80KM 光功率:发射0~-5dbm,接收:《-34dbm。电频:PCEL 温度:0~70 电压:3.3~5V可选的 5.1.25G 850nm FP 550M 光功率:发射-3~-9dbm,接收:《-18dbm。电频:PCEL 温度:0~70 电压:3.3~5V可选的

光模块简介

光模块简介 光纤: 光纤作为光通信的传播媒介,分为多模光纤和单模光纤。 多模光纤(橘红色)的纤芯直径为50um~62.5um,包层外直径125um,适用于短距离传输(2KM-5KM); 单模光纤(黄色)的纤芯直径为8.3um,包层外直径125um,多用于中长距离传输(20KM-120KM)。 光纤通信的主要优点:大容量,损耗低,中继距离长,保密性强,体积小,重量轻,光纤的原材料取之不竭。 缺点:易折断,连接困难,怕弯曲。 目前常规通用的光模块主要包括:光发送器,光接收器,Transceiver(光收发一体模块)以及Transponder(光转发器)。 光收发一体模块 Transceiver的主要功能是实现光电/电光变换,包括光功率控制、调制发送,信号探测、IV转换以及限幅放大判决再生功能,此外还有些防伪信息查询、TX-disable等功能,常见的有:SIP9、SFF、SFP、GBIC、XFP等。 光转发器 Transponder除了具有光电变换功能外,还集成了很多的信号处理功能,如:MUX/DEMUX、CDR、功能控制、性能量采集及监控等功能。常见的Transponder有:200/300pin,XENPAK,以及X2/XPAK等。 传输距离 光模块的传输距离分为短距、中距和长距三种。一般认为2km及以下的为短距离,10~20km的为中距离,30km、40km及以上的为长距离。 光模块的传输距离受到限制,主要是因为光信号在光纤中传输时会有一定的损耗和色散。 损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。 色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。 损耗和色散:损耗是光在光纤中传输时,由于介质的吸收散射以及泄漏导致的光能量损失,这部分能量随着传输距离的增加以一定的比率耗散。色散的产生主要是因为不同波长的电磁波在同一介质中传播时速度不等,从而造成光信号的不同波长成分由于传输距离的累积而在不同的时间到达接收端,导致脉冲展宽,进而无法分辨信号值。这两个参数主要影响光模块的传输距离,在实际应用过程中,1310nm光模块一般按0.35dBm/km计算链路损耗,1550nm光模块一般按0.20dBm/km计算链路损耗,色散值的计算非常复杂,一般只作参考。 因此,用户需要根据自己的实际组网情况选择合适的光模块,以满足不同的传输距离要求。 中心波长 中心波长指光信号传输所使用的光波段。目前常用的光模块的中心波长主要有三种:850nm波段、1310nm波段以及1550nm波段。 850nm波段:多用于短距离传输;

相关文档