文档视界 最新最全的文档下载
当前位置:文档视界 › 静电除尘用高频高压电源

静电除尘用高频高压电源

静电除尘用高频高压电源
静电除尘用高频高压电源

大功率静电除尘用高频高压电源的研制

廖谷然1,杨北革2,薛辉2,吕玉祥1

(1. 太原理工大学物理与光电工程学院,山西太原 030024;2. 山西省电力公司大同供电分公司,山

西大同 037008)

摘要:由于工频可控硅电源在静电除尘器领域中使用时的缺点,高频高压电源势必将取代工频电源成为静电除尘器的供电电源。而目前国内研制的高频高压电源的功率一般比较小,难以和主流的静电除尘设备相配套。本文介绍了采用双串联谐振回路并联的新的拓扑结构,设计出了72KV/1.6A的大功率静电除尘用高频高压电源。通过现场实验验证了72KV/1.6A高频高压电源的可行性。该电源对静电除尘设备新建或改造时降低成本和维护费用有着实际的意义。

关键词:静电除尘器;高频高压电源;串联谐振;软开关;数字信号处理

Development of a High-power High Frequency and High Voltage Power

Supply for Electrostatic Precipitator

LIAO Gu-ran1,Y ANG Bei-ge2,XUE Hui2,LV Yu-xiang1

(1. College of Physics and Optoelectronics,Taiyuan University of Technology,Taiyuan 030024,China;

2. Shanxi Datong Electric Power Supply Company,Datong 037008,China)

Abstract: Due to the disadvantage of industrial frequency power supply with SCR used in the field of electrostatic precipitator. The high frequency high voltage power supply will definitely replace industrial frequency power supply as the power supply of electrostatic precipitator. And at present the power of high frequency high voltage power supply is small, and hard to match electrostatic dust removal equipment. This paper introduces a new topology of double series resonance circuit in parallel, designs the 72KV/1.6A high power high frequency and high voltage power supply for electrostatic precipitator. The feasibility of high frequency and high voltage power supply has been verified by testing it in the real electric field. This power supply has a practical significance to reduce cost and maintenance cost of new electrostatic dust removal equipment or renovation project.

Keywords: electrostatic precipitator,high frequency high voltage power supply,series resonance,soft switching,Digital Signal Processing

0 引言

空气污染直接严重危害人体健康。而火力发电厂、钢铁、冶金、造纸、水泥、轻纺、化工等工业领域生产过程中产生的烟气是空气污染的主要来源。因此这些烟气在排放到大气之前必须对其进行除尘处理。20世纪90年代大气污染物排放标准

200mg/m3,2004年起实施的更加严格的排放标准则是50mg/m3[1],而从2012年1月1日起实施的新的火电厂大气污染排放标准中燃煤锅炉的烟尘排放标准是30mg/m3[2]。越来越严格的环保要求给除尘设备和供电电源提出了新的要求。静电除尘器(ESP)是国际上使用广泛的除尘设备,具有效率高,处理烟气量大,运行成本低,维护方便等优点。利用静电除尘器能够有效地收集粉尘,使得排放达到标准。从20世纪八十年代至今,环保领域使用的静电除尘器直流高压供电电源普遍采用工频可控硅电源,其电路结构是两相工频电源经过可控硅移相控制幅

度后经整流变压器升压整流后形成100Hz的脉动直流高压。这种供电电源适用于烟气温度高、压力大的场合。是国内外传统的静电除尘器供电方式。但随着环保排放要求的不断提高,此种供电方式也逐渐显示出一些缺点。比如:1.工作频率为50Hz,转换效率低,耗电量大,变压器体积大,需大量钢材和铜材。2.采用工频相位控制调压方法,使得功率因数低,且对电网干扰大。3.晶闸管是半控型器件,对闪络放电等实际状况响应速度慢,延时长,不能立即调整输出电压。4.输出电压脉动大,使得电晕电压低,无法适合高比电阻的粉尘[3]。以上几个缺点使得工频电源无法达到环保领域新的排放标准。

因此,研制高性能的静电除尘用高压直流电源势在必行。

随着新一代功率电子器件的发展,比如IGBT等全控型器件的出现和数字控制技术的发展,高频逆变技术在工业上的应用越来越广泛也越来越成熟。基于高频逆变技术的静电除尘器供电电源越来越受到人们的重视,是静电除尘器供电电源的发展方向[4],成为国内外除尘行业研究的重点。由于制造和控制技术上的难度,目前国内从事静电除尘用高频电源的公司研发的产品输出功率都不高。而国内绝大多数主流静电除尘设备要求配套的电源功率在60-100kW。本文分析了静电除尘用高频高压电源的工作原理,提出了采用双串联谐振回路并联的新的拓扑结构,研制了72KV/1.6A大功率静电除尘用高频高压电源。工作频率为1-30KHz。为了减小调频时IGBT的开关损耗,采用串联谐振软开关技术,使得IGBT在零电流下开通和关断。

1 整体电路框图

图1 整体电路框图

Fig.1 The circuit diagram

由整体电路框图可知,72KV/1.6A静电除尘用高频高压电源主电路由两路三相全桥整流,两路串联谐振高频逆变及高频整流变压器几个部分组成。输入380V工频电压通过三相整流,再经过电解电容稳压作用得到母线电压。母线电压通过IGBT高频全桥逆变,经过高频整流变压器升压和二次整流后得到直流高压,为静电除尘器本体供电。图2为串联谐振高压直流电源的具体拓扑电路图。其中静电除尘器本体可等效为一个电阻和一个电容并联。

图2串联谐振高压直流电源主电路图

Fig.2 The main circuit diagram of series resonance high voltage DC power supply 2 工作原理分析

图2中两个谐振回路的参数完全相同,IGBT的开关状态也完全对称,因此只对其中一回路进行分析。并推导出电流波形图。首先讨论一下基本串联谐振电路:

图3 基本串联谐振电路

Fig.3 Basic series resonance circuit 设通过谐振电感L的电流为i,谐振电容C两端的电压为U,则i和U有如下关系:

in

d i

L U U

d t

+=(1)

d U

C i

d t

=(2)由(1)、(2)可以推导出

()()

00

cos

r

i t i w t t

=-+

()

sin

in

r

r

U U

w t t

Z

-

- (3)

()()()

00

cos

in in r

U t U U U w t t

=---+

()

00

sin

r r

Z i w t t

- (4)

(3)、(4)两式中

i为

t时刻流过谐振电感L的电

流,

U为

t时刻谐振电容C两端的电压

,r

w=

为谐振角频率,

r

Z=

在图2中,设IGBT的开关频率为

s

f,谐振频

率为

r

f,根据

s

f与

r

f不同关系,图2电路有三种

不同工作方式。当

s

f小于

r

f的一半时,谐振回路工作在断续工作状态下,IGBT零电流导通,零电流

零电压关断,大大减小了IGBT 的开关损耗。两路PWM 波驱动信号互补,即当Q1、Q4导通时,Q2、Q3截止;Q1、Q4截止时,Q2、Q3导通。设母线电压为in U ,通过谐振电感电流为i ,谐振电容两端电压为U ,负载电容折算到变压器原边的电压为1U 。

图4 开关模式1 图5 开关模式2 Fig.4 Switching Mode 1

Fig.5 Switching Mode 2

图6 开关模式3 图7 开关模式4 Fig.6 Switching Mode 3 Fig.7 Switching Mode 4

(1)开关模式1,0t 时刻,Q1、Q4导通,等效电路图4所示。

在0t 时刻,

()00i t =,()00U t =,()100U t =。利用(3)、(4)可以推导出谐振回路的谐振电感上的电流和谐振电容两端的电压如下:

()()0sin in r r

U i t w t t Z =

- (5)

()()0co s in in r U t U U w t t =-- (6)

(5)、(6

)式中,r w =

,因此谐振周期

2r T π=0t 时刻Q1、Q4开通,电流正向流动,

过1

2

r T 时间,i 过零,U 达到最大,电路进入开关

模式2。

(2)开关模式2,1t 时刻,电流i 反向,流过反并联二极管D1、D4, 等效电路图5所示。

开关模式2的初始条件为:()10i t =,

()12in U t U =,()110U t >。利用(3)、(4)可以

推导出谐振回路的谐振电感上的电流和谐振电容

两端的电压如下:

()()

11sin in

r r

U U i t w t t Z -=

- (7)

()()()111cos in in r U t U U U U w t t =+--- (8)

过1

2

r T 时间到达3t 时,i 到零,D1、D4自然关断,

开关模式2结束。在1t 与3t 中间的2t 时刻关断Q1、Q4,因为此时流过Q1、Q4的电流为0,所以实现了零电流关断,减小了关断损耗。

(3)开关模式3,4t 时刻,Q2、Q3导通,谐振电流i 增加,实现软开通,等效电路图6所示。

工作模式3的初始条件为:()40i t =,

()()4132U t U t =,()()1413U t U t =。利用(3)、

(4)可以推导出谐振回路的谐振电感上的电流和

谐振电容两端的电压如下:

()1

4()sin in r r

U U i t w t t Z +=-

- (9)

()1in U t U U =-++

()()14cos in r U U w t t +- (10)

4t 时刻Q2、Q3开通,电流反向流动,过12

r T 时,i

过零,电路进入开关模式4。

(4)开关模式4,5t 时刻, D2、D3导通,等效

电路图7所示。

工作模式4的初始条件为 ()50i t =,

()52in U t U =-,()()1514U t U t =。利用(3)、(4)

可以推导出谐振回路的谐振电感上的电流和谐振

电容两端的电压如下:

()1

5()sin in r r

U U i t w t t Z -=- (11) ()1in U t U U =---

()()15cos in r U U w t t -- (12)

过12

r T 时间到达7t 时,i 到零,D2、D3自然关断,

开关模式4结束。在5t 与7t 中间的6t 时刻关断Q2、

Q3,因为此时流过Q2、Q3 的电流为0,所以实现了零电流关断,减小了关断损耗。 上述公式我们可以得到电流断续工作方式的主要波形如图8所示

图8 谐振电感电流断续工作时的波形图 Fig.8 The current waveform of resonant inductance in discontinuous conduct mode 由谐振电流波形图可知,当增加IGBT 的开关频率时,电流有效值随之增大,因此通过改变IGBT 开关频率来改变谐振电流的有效值,供给除尘器本体。 3 控制系统 控制系统的结构框图如图9所示

图9 控制系统框图

Fig.9 Control system diagram

本电源采用脉冲频率调制的方式,为了减少

IGBT 的开关损耗,开关频率小于谐振频率的一半。由于电源功率大,主回路采用双串联谐振回路并联

而成。

控制系统采用DSP 数字信号处理器和ARM9的

双32位CPU 。DSP 采用德州仪器公司生产的

TMS320F2812,该芯片具有处理能力强,响应速度快,精度高,可靠性好等优点。DSP 事件管理器产生的PWM 波经过光纤隔离传输到驱动模块后驱动

IGBT 工作,通过调节脉冲频率来改变IGBT 的开关

频率,从而控制输出电压和输出电流。 DSP 模数转换器对母线电压,输入的一次电压

和一次电流,输出的二次电压和二次电流进行采样并做数据处理。DSP 根据采样到的二次电压和二次

电流的具体数值来控制PWM 波频率以使得加到电场本体的电压电流达到最佳工作状态。

ARM9主要负责控制系统与上位机及手操器的通信,上位机与手操器均可显示电源的实时工作状态以及对电源进行实时操作。

整个控制系统能具有完备的检测功能,完善的故障保护和报警功能。能及时显示故障或报警信

息,快速对故障做出响应和处理。 4 实验结果及分析

静电除尘用高频高压电源额定输出电压为

72KV ,电流为 1.6A ,IGBT 采用英飞凌公司的FZ900R12KS4,其额定电流为900A ,最大耐压为1200V ,IGBT 驱动模块采用西门康公司的2SD315AI ,

该模块具有短路和过流保护、欠压监测等功能[5]

。谐振电容取为0.7uF ,谐振电感使用变压器漏感,谐振周期为22us ,工作频率为30KHz 。实际工作时

的二次电流波形图如下:

图10 二次电流波形图 Fig.10 Second current waveform

实际二次电流波形图与理论分析推导出的图

8

相符,电源接入静电除尘器本体运行一段时间后数据记录如表1,由数据表明:电源运行稳定,各参数完全符合设计要求。

6结论

本文分析了采用两个串联谐振回路并联的新的拓扑结构的静电除尘用高频高压电源的工作原理,研制出了额定输出为72KV/1.6A的大功率高频电源。电源实际体积约为3m3,重量约为800KG,跟相同功率的工频电源相比,体积及重量大大减小。通过一段时间实际实验验证了电源的可行性。为静电除尘设备新建或改造时电源的选择提供了更多的选择。

表1 实验结果

Tab.1 The experiment results

测试时间8:30 9:00 9:30 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 谐振频率(us)22 22 22 22 22 22 22 22 22 22 22 22 22 22

一次电流(A)206 204 204 206 203 202 202 200 204 208 204 205 203 205 一次电压(V)361 364 364 366 368 368 368 366 368 373 370 370 370 370 二次电流(mA)1629 1633 1623 1636 1621 1615 1611 1594 1610 1631 1610 1607 1610 1610 二次电压(kV)69.9 69.7 70 70.6 70.8 71 71.1 71.4 72.7 72.2 72.2 72.2 72.4 72.5 实时频率(KHz)30 30 30 30 30 30 30 30 30 30 30 30 30 30

参考文献:

[1]胡立强,李鹤鸣,蒋云峰,张谷勋.基于TMS320F2812电除尘用高频高压逆变电的研究[J].宇航计测技术,2007,27(2):50-54.

HU Li-qiang,LI He-ming,JIANG Yun-feng,ZHANG Gu-xun. Study of High-Frequency and High-V oltage Inverter. Power Supply on TMS3202812 for Electrostatic Precipitator. Journal of A stronautic Metrology and Measurement,2007,27(2):50-54.

[2]环境保护部.GB 13223-2011[S].北京:中国环境科学出版社,2011.

Ministry of Environmental Protection. GB 13223-2011[S]. Beijing:China Environmental Science Press,2011.

[3]谢小杰.一种串联谐振高频高压电源设计[J].电力电子技术,2007,41(9):79-81.

XIE Xiao-jie. A High-frequency and High-voltage Power Conversion based on Series Resonant. Power Electronics,2007,41(9):79-81.

[4]张谷勋.电除尘器电源的发展方向-高频化和数字化[J].电源世界,2007,1:15-18.

ZHANG Gu-xun ,JIANG Yun-feng. Electric Precipitator Power Supply Development Direction High Frequency and Digitization. The World of Power Supply,2007,1:15-18. [5]郑月非,张爱玲.以2SD315AI为核心的IGBT驱动电路的设计与调试[J].电气技术,2010,3:65-67.

ZHENG Yue-fei,ZHANG Ai-ling.Design and Debugging on 2SD315AI Type Driver for IGBT. Electrical Technology,2010,3:65-67.

电除尘器高频用电源介绍

一、 电除尘器高频电源 JHGP型电除尘器高频电源介绍 概述 除尘器高频高压电源是国际上先进的电除尘器供电新型电源,具有完全自主知识 产权,佳环电子在专业生产电除尘用高压电源技术上处于领先地位。 该产品与传统的可控硅控制工频电源相比性能优异,具有输出纹波小、平均电压电流高、体积小、重量轻、集成一体化结构、转换效率与功率因数高、采用三相平衡供电对电网影响小等多项显著优点。特别是可以较大幅度地提高除尘效率,所以它是传统可控硅工频电源的革命性的更新换代产品,实现了电除尘器供电电源技术水平质的飞跃。 该产品主要开关器件采用了德国semikrom(西门康)公司的器件,控制采用数 字化控制,具有多种通讯方式,以便集中管理控制。 可控硅交流 工频 直流 电除尘器 电场 相整流变压器 工频电源 直流k交流直流电除尘器 电场 高频相 整流变压器 二、 高频电源 工频电源与高频电源原理结构图JHGP型高频电源的特点 高频 逆变器 整流 电路

▲更好的节能效果:高频电源具有高达93%以上的电能转换效率,在电场所需相同的功率下,可比常规电源更小的输入功率(约20%),具有节能效果。;有更好的荷电强度,在保证了粉尘充分荷电的基础上,可以大幅度减少电场供电功率,从而减少无效的电场电功率。 ▲三相平衡供电:高频电源为三相输入,三相供电平衡,功率因数大于0.95, 无缺相损耗,无电网污染。 ▲可提高电晕功率:高频电源的输出电压纹波系数比常规电源小(高频电源约1%,而常规电源约30%),可大大提高电晕电压(约30%),从而增加电场内粉尘的荷电能力,也减小了荷电粉尘在电场中的停留时间,从而可提高除尘效率。电晕电压的提高,同时也提高了电晕电流,增加了粉尘荷电的机率,进一步提高除尘效率,特别适用于高浓度粉尘场合。 ▲更好的电源适应性:与工频电源相比,高频电源的适应性更强。高频电源的输出由一系列的高频脉冲构成,可以根据电除尘器的工况提供最合适的电压波形。间歇供电时,供电脉宽最小可达到1ms,而工频电源最小为10ms,可任意调节占空比,具有更灵活的间歇比组合,可有效抑制反电晕现象,特别适用于高比电阻粉尘工况。 ▲更好的火花控制特性:高频电源的火花关断时间<10μs而工频电源需 10ms,火花能量很小,电场恢复快,提高了电场的平均电压,从而可提高了除尘效率。 ▲完善的保护功能:为保证设备的安全可靠运行,具有输入过流、IGBT过流过热、输出开路短路保、直流母线电压过低、IGBT散热器和变压器油过热、油箱压力过高、油箱油位过低等保护,基本上是属于免维护的产品。 ▲方便的调试界面:高频电源一般安装于除尘器顶部,JHGP高频电源装有液晶触摸人机界面,在就地可完成开停、设定参数、查看各种运行参数等功能,大大提高设备调试的方便性。 ▲标准的联络通讯能力:采用标准的MODBUS 协议通讯,可以方便与上位机系统通讯,实现远程管理和系统集成。 ▲更方便的安装方式:高频电源采用集成一体化结构,体积更小、重量更轻,高频电源直接安装在电除尘器顶部,节省配电室空间,节省大部分信号电缆和控制电缆,减少安装费用。高压出线位置及轮子位置与工频整流变压器完全一样,非常适合电源的改造。

高压静电除尘原理

2.1 主要技术参数 2.1.1 输入、输出参数 GGAJ02(GAC)高压静电除尘用整流设备常用系列产品输入、输出技术参数见附表(一)。 2.1.2 输出调节范围 输出电流调节范围:0~100%额定值。 输出电压调节范围:0~100%额定值。 2.1.3 调压方式 晶阐管调压,可控制的晶阐管导通角范围为0~172度。 2.1.4 运行方式 100%额定输出电流,连续。(负载等级“I”级)。 2.1.5 效率和功率因数 效率≥80%,功率因数≥0.8。 2.2 使用条件 ① 海拔不超过1000m。若海拔高于1000m时,其额定值应按相关标准作相应修正。 ② 对于控制柜,环境温度为-10~+40℃;对于高压整流变压器,环境温度不高于+40℃,不低于变压器油所规定的凝点温度。 ③ 空气最大相对湿度为90%(在相当于空气20±5℃时)。 ④ 无剧烈振动和冲击,垂直倾斜不超过5%。 ⑤ 运行地点无导电爆炸尘埃,没有腐蚀金属和破坏绝缘的气体或蒸气。 ⑥ 输入交流电压持续波动范围不超过额定值±10%; ⑦ 输入交流电压频率波动范围不超过±2%; 2.3 产品的功能 2.3.1 控制方式选择 本系列产品具有多种控制方式可供在不同的工况条件选择运行。 ① 火花跟踪方式:为最常用的控制方式,适用于大部分工业现场的除尘、除雾、除焦油等应用。设备的火

花率可以调节,调节范围为:4次/每分钟~120次/每分钟。高火花率状态适用于粉尘浓度高,工况恶劣的场合,能起到加强粉尘荷电率和火花清灰的作用;低火花率状态适用于除尘器末电场或工况稳定的场合,在保证除尘效率的同时又减少电场因放电而产生的二次飞扬。 ② 功率跟踪方式:适用于高比电阻粉尘,易出现反电晕的应用场合。运行功率跟踪方式时,GAC-120微机控制器综合各反馈信号的变化情况,自动寻找最佳工作点,保持向电场输入最高有效功率。 ③ 电压跟踪方式:适用范围同功率跟踪方式,保持向电场输入最高电压。 ④ 简易间歇脉冲供电方式:适用于高比电阻粉尘或粉尘浓度很低的场合。高低脉冲比例有1:2和1:4两种可选。 2.3.2 故障检测保护功能 2.3.2.1显示故障类型 系统出现下列故障时,自动报警,跳闸切断主电源,并显示故障性质。 ① 一次过电流显示器闪动显示“LOAD” ② 二次开路显示器闪动显示“OPEN” ③ 二次短路显示器闪动显示“SHORT” 2.3.2.2 开机自检 开机时,处理器对系统主要部件进行自检,若发现故障,设备无法启动,显示器显示系统故障类型:“RAM ERROR”:外部存贮器故障; “EEPROM ERROR“:电可擦除存贮器故障; “A/D ERROR”:模数转换故障; “SYSTEM ERROR”:系统故障。 2.3.2.3 变压器油温和危险气体报警 变压器油温超过设定报警值,或除尘器内易爆气体超过报警值时,输出电流、电压自动降为零。油温超报警值时,显示器闪动显示:“TEMP”;危险气体超标时,显示器闪动显示:“GAS”。当上述故障消除时,输出电流电压自动恢复。当变压器油温超过设定极限值时,跳闸并报警。 变压器油温和危险气体报警为用户可选功能。 2.3.3 闪络控制功能 高压静电除尘用整流设备的控制部分必须准确地捕捉电场的闪络信号,并迅速作出适当的处理。如果小闪络信号(闪络时,二次电流、电压波形只发生高频畸变,二次电流波形变宽,而二次电流幅度没有明显增高)无法捕捉,将导致下一个波出现二次电流幅度增高,即过渡成更强闪络;在出现闪络后如果以固定半波数关

(完整版)二期电除尘高频电源规程

二期电除尘高频电源检验规程 一、引用标准 1) JB/T8536-1997 《电除尘器机械安装技术条件》 2) GBJ148-90 《电气装置安装工程电力变压器、油浸电抗器、互感器施工 及验收规范》 3) GB5051-91 《电气装置安装工程电气设备交接试验标准》 4) GB50170-92 《电气装置安装工程盘、柜及二次回路接线施工及验收规 范》 5) GBJ131-90 《工业自动化仪表工程质量检验评定标准》 6) GB50150-91 《电气装置安装工程电气设备交接试验标准》 7) JGJ46-2005 《施工现场临时用电安全技术规范》 8) ZB J88 001.7 《电除尘器空载通电升压试验方法》 9) ZB J88 008 《电除尘器机械安装技术条件》 二、设备检验流程: 1、检验前检查: 1.1电场本体检修完毕,电场本体内部无人员施工,封锁人口门。 1.2 高压隔离开关的动作应准确到位,接触点应接触良好闭锁可靠。 1.2高频电源预调试,填写高频电源预调记录表。 1.4完成低压系统送电工作。 1.5 完成高频电源送电工作,送电顺序:①高压隔离刀闸接至运行位置; ②闭合400V电源柜内刀熔开关;③闭合上位机系统电源。 2、检验步骤:

检验步骤分为上位机通讯检测、低压系统检验、冷态检验三部分。 2.1上位机通讯检测 运行人员完成高频电源、高频电源配电柜送电工作后,进行上位机系统检测。 1)光纤、电缆、硬件连接。 2)将甲、乙两侧高频电源通过485接口分别连接。 3)两侧高频电源的最后一台分别连接到集控室的网络服务器上。 4)高频电源DSP板中的地址拨码开关及终端电阻拨码开关拨到指定位置。 5)启动上位机系统,进入运行界面。 2.2低压系统检验 1)PLC柜上电后,检查PLC程序。 2)柜内振打、加热单体回路检查。 3)低压振打阴阳极电机由于动力电缆没有改变相序,不做正反转检查。 4)通过上位机启停阴阳极振打、加热设备,确保上位机画面、状态指示灯、接 触器、就地设备状态一致。 5)对灰斗料位计状态进行核对,确保上位机显示与就地状态一致。 6)启动低压振打锤(阳极)周期运行,加热连续运行10小时。 7)阳极振打电机运行周期设置,加热运行周期设置、温度高低限设置。

电除尘器高频用电源介绍

电除尘器高频电源 JHGP 型电除尘器高频电源介绍 一、 概 述 除尘器高频高压电源是国际上先进的电除尘器供电新型电源,具有完全自主知识产权,佳环电子在专业生产电除尘用高压电源技术上处于领先地位。 该产品与传统的可控硅控制工频电源相比性能优异,具有输出纹波小、平均电压电流高、体积小、重量轻、集成一体化结构、转换效率与功率因数高、采用三相平衡供电对电网影响小等多项显著优点。特别是可以较大幅度地提高除尘效率,所以它是传统可控硅工频电源的革命性的更新换代产品,实现了电除尘器供电电源技术水平质的飞跃。 该产品主要开关器件采用了德国semikrom (西门康)公司的器件,控制采用数字化控制,具有多种通讯方式,以便集中管理控制。 高频电源 工频电源 k 交流 整 流 电 路 高频逆变器 电除尘器 电场 工 频 整流变压器 相 相 高 频整流变压器 交流 直流 可控硅 直流 直流 电除尘器 电场 工频电源与高频电源原理结构图 二、 JHGP 型高频电源的特点

▲更好的节能效果:高频电源具有高达93%以上的电能转换效率,在电场所需相同的功率下,可比常规电源更小的输入功率(约20%),具有节能效果。;有更好的荷电强度,在保证了粉尘充分荷电的基础上,可以大幅度减少电场供电功率,从而减少无效的电场电功率。 ▲三相平衡供电:高频电源为三相输入,三相供电平衡,功率因数大于0.95,无缺相损耗,无电网污染。 ▲可提高电晕功率:高频电源的输出电压纹波系数比常规电源小(高频电源约1%,而常规电源约30%),可大大提高电晕电压(约30%),从而增加电场内粉尘的荷电能力,也减小了荷电粉尘在电场中的停留时间,从而可提高除尘效率。电晕电压的提高,同时也提高了电晕电流,增加了粉尘荷电的机率,进一步提高除尘效率,特别适用于高浓度粉尘场合。 ▲更好的电源适应性:与工频电源相比,高频电源的适应性更强。高频电源的输出由一系列的高频脉冲构成,可以根据电除尘器的工况提供最合适的电压波形。间歇供电时,供电脉宽最小可达到1ms,而工频电源最小为10ms,可任意调节占空比,具有更灵活的间歇比组合,可有效抑制反电晕现象,特别适用于高比电阻粉尘工况。 ▲更好的火花控制特性:高频电源的火花关断时间<10μs而工频电源需10ms,火花能量很小,电场恢复快,提高了电场的平均电压,从而可提高了除尘效率。 ▲完善的保护功能:为保证设备的安全可靠运行,具有输入过流、IGBT过流过热、输出开路短路保、直流母线电压过低、IGBT散热器和变压器油过热、油箱压力过高、油箱油位过低等保护,基本上是属于免维护的产品。 ▲方便的调试界面:高频电源一般安装于除尘器顶部,JHGP高频电源装有液晶触摸人机界面,在就地可完成开停、设定参数、查看各种运行参数等功能,大大提高设备调试的方便性。 ▲标准的联络通讯能力:采用标准的MODBUS 协议通讯,可以方便与上位机系统通讯,实现远程管理和系统集成。 ▲更方便的安装方式:高频电源采用集成一体化结构,体积更小、重量更轻,高频电源直接安装在电除尘器顶部,节省配电室空间,节省大部分信号电缆和控制电缆,减少安装费用。高压出线位置及轮子位置与工频整流变压器完全一样,非常适合电源的改造。

恒流高压静电除尘器使用说明

目录 一、概述 (1) 二、工作原理 (1) 三、结构组成 (1) 四、主要特点 (2) 五、选型说明及参考 (2) 六、除尘器使用工作条件及环境条件 (3) 七、主要技术指标 (4) 八、设备安装 (7) 九、试车要求 (9) 十、操作规范 (9) 十一、设备的维护保养 (10) 十二、设备成套性和订货须知 (11) 十三、常见故障、原因及处理方法 (12)

一、概述 近几年来,随着国家对环保工作的日益重视,高压静电除尘设备在水泥生产中的应用越来越广泛。我公司在对国内生产的同类产品进行广泛深入的比较研究的基础上,同时运用国外先进技术,研制成功GA系列高压静电除尘器。GA系列电除尘器与同类产品相比,具有除尘效率高、占地面积小、能耗低、投资省等特点,特别是采用了恒流高压电源,运行稳定可靠,绝无结露击穿之忧,维护检修既方便又简捷。 目前GA系列产品已广泛应用于水泥、化工、冶金、电厂、机械等行业的含尘气体的净化和有用粉尘的回收。 二、工作原理 GA系列高压静电除尘器,是应用惯性碰撞沉降和静电吸附相结合的原理,对烟尘进行净化的一种除尘设备。它对烟尘进行两级收尘处理,第一级采用在进风口处设旋风分离器的方法,利用旋风分离原理,借离心力和螺旋矩不变原理将较粗颗粒粉尘分离出来,下落于灰斗;第二级采用电场吸附收尘并通过定时振打,使粉尘落于灰斗,从而达到收尘目的。 采用了外绝缘结构,将高压绝缘子系统和高压进线与烟尘彻底隔离,对工艺环境及介质入口温度、湿度等均无任何特殊要求,可一年四季长期高效运行,无后顾之忧。 电源部分采用中科院最新开发的L—C恒流高压电源,利用L—C恒流电源器产生稳定的电流,使电场充分电晕,且具有良好的电压自动跟踪性能,因而可以产生稳定的电场,长期保证稳定的沉积效率。由于L—C 恒流电源的独创性,使它能承受瞬间和长期的短路,因而它能避免除尘的结露问题。 L—C 电源加到电场本体上去的是电流源,输出电压随负载的比电阻变化而变化,而输出电流是“恒定”不变的,供给负载的电流与负载本身大小无关,这就是“恒流”的含义。

高频电源在火电厂静电除尘器中的应用

高频电源在火电厂静电除尘器中的应用 发表时间:2017-01-18T08:58:54.957Z 来源:《基层建设》2016年30期作者:白凌肖亮沈成喆郝大伟 [导读] 摘要:本文介绍了电除尘器高频电源工作原理,分析了高频电源相对于传统工频电源的优越性. 神华国华三河发电有限责任公司河北三河 065201 摘要:本文介绍了电除尘器高频电源工作原理,分析了高频电源相对于传统工频电源的优越性.以三河发电公司的4台机组电除尘器改造为例,介绍了高频电源在火电厂电除尘器上的改造效果、运行控制策略及存在的问题,为其他公司的电除尘高频电源改造提供宝贵数据及经验,具有很好的应用前景。 关键词:静电除尘器;高频电源;控制;策略 概述 随着新环保法的实施,以及当下雾霾天气的加剧,人们对环保要求越来越高提高。《火电厂大气污染物排放标准》(GB13223-2011)对燃煤发电厂的烟尘排放浓度作出了更为严格的限制,重点地区烟尘排放标准变为5mg/Nm3。目前,国内部分火力发电厂电除尘器很难达到新标准要求,作者所在的三河发电公司对对4台发电机组电除尘器进行了高频电源改造,改造后运行效果良好,烟尘排放值满足国家标准。 1工作原理 1.1火电厂静电除尘器工作原理 电除尘器除尘是利用高压电建立起足以使气体发生电离的电场,使流经电场的灰尘粒子荷电(带上电子或离子),并在电场力的做用下使荷电灰尘粒子向异性电极运动,并积附在异性电极上,从而实现灰尘粒子与烟气流的分离,通过振打使阴极线、阳极板上积灰被振落,掉入下部灰斗中。 电除尘器分为本体和电气两大部分。本体部分主要包括阴极系统、阳极系统、进出口封头和气流均布板、壳体、灰斗及保温等。在绝缘子室、阴极振打瓷轴和灰斗处都设置有电加热器。电气部分为高频电源,高频电源一次部分:主断路器、主接触器、经三相整流模块(整流为580V直流)、滤波电容、IGBT模块(高频开关到5~20KHz)、谐振电容、高频整流变压器等组成,高压侧柜门装有电源指示、运行和故障指示、就地操作开关、二次电压表、二次电流表。高频电源低压控制部分:控制电源开关、主冷却风机电源、柜顶风机电源、电源板、控制器、二次控制器件,同时高频电源集成该电场阴阳极振打控制等。 1.2高频电源工作原理 高频电源是将三相交流电经整流和滤波后得到约530V左右的直流电压,经全桥逆变,形成20KHz左右的交变电流,再经高频变压器升压整流后形成高频高压脉动直流送电除尘器。 2高频电源介绍 高频高压整流电源(简称高频电源)是新一代的电除尘器供电装置,可广泛应用于电力、冶金、化工、水泥等行业的烟气粉尘治理,可实现高效除尘、保护环境的作用。该产品是我公司独立研发、拥有完全自主知识产权的高新技术产品。电除尘器高频电源是利用高频开关技术而形成的逆变式电源,其供电电流是一系列窄脉冲构成,可以给电除尘器提供具有从接近纯直流到脉动幅度很大的各种电压波形。高频电源控制方式灵活多样,可根据电除尘器运行工况选择最合适的电压波形,减少电除尘能耗,提高除尘效率;另外,高频电源还有体积小、重量轻、节省电缆用量,三相平衡供电等诸多优点。 2.1高频电源优点 从图1可以清楚的看出,使用工频电源时,二次电压峰值会高出平均值约1.3倍,电场会因较高的峰值电压而放电,从而降低了电场输入电流。而高频电源可以很好避免这一问题,提升电场输入电流,即增加集尘板电流密度。 2.2大幅提升集尘板电流密度的重要意义 单一供电分区的设计电流量=分区集尘板面积*0.35~0.38mA/m2(电流密度)。那么设计用2000mA的电源电流量其实暗指本体分区的集尘板面积比较大,但运行中工频电源基本只能运行到1000mA左右电场就有可能因为峰值电压很高而放电,这样的话实际集尘板运行电流密度仅为0.17~0.19mA/m2,较设计电流密度,或者说饱和电流密度还差距很大,这还没有考虑电场内部电流不均匀的问题。从而严重影响了工频电源运行中的除尘效率。 而改用高频电源后,如果运行电压依然达到火花放电水平时,电场输入电流较工频会有大幅提升,可以接近甚至达到设计板电流密度或饱和电流密度,从而挖掘出除尘器潜在的除尘效率。 2.3高频电源控制器 HIRCON高频电源控制器采用两块32位DSP处理器作为核心,完成所有信号采样、数学运算、产生调整触发脉冲,实现电场内火花的检测判断及控制,把火花频率维持在一个合适的状态。 低压控制---HIRCON除对电除尘器高频整流变压器进行控制外,还集成了5路DO输出,可以对振打回路和加热回路进行控制,多达8套控制定时器,用于控制振打电机或电加热器在不同时段和控制模式下的振打频率及减电压的方式等。对于电磁振打锤方式的电除尘器,

电除尘高频高压电源三种模式比对

电除尘高频高压电源三种控制模式的比对 魏文深 厦门市天源兴环保科技有限公司厦门同安工业集中区湖里园11号厂房 361100 摘要本文介绍了电除尘高频高压电源三种不同的调压控制机理,即调频控制模式;调幅控制模式;脉冲控制模式三种。从电除尘运行的角度分析了三种控制模式的特性和优势,提出几种控制模式的组合应是电除尘高频高压电源发展的方向。 关键词电除尘高频高压电源;调频控制模式;调幅控制模式;脉冲控制模式;开关频率;母线电压;间隙脉冲;闪络控制;节能模式 1 前言 近几年,随着高频高压电源在电除尘行业的应用,其功率已由原来的600—800mA/80KV发展到现在的1000---1600mA/80KV,满足了电除尘器大部分的要求,因此其应用范围和数量迅速扩大,对其应用研究也更加深入。 由于电除尘高频高压电源是一种基于高频开关技术的新型电源,与可控硅电源有着本质的不同。其体积小、节能、高效率等特性及对电除尘收尘突出的优点已被业内肯定,但由于其工作原理及控制方式也有别于其它常规电源,有必要对其控制特点作特别的分析和研究,有利于高频电源的研究和推广,满足市场的需求。 2 电除尘高频高压电源技术方案 根据国内外有关资料以及目前市场上运用的高频电源来看,电除尘高频高压电源方案虽各有特色,但总结电路上基本上相类似,主要由工频整流滤波,谐振逆变电路,高频升压整流输出以及对电源的控制部分构成。采用的开关器件有单IGBT、IGBT模块、IPM 模块;控制普遍采用DSP数字信号处理器或单片机。其不同在于触发控制模式上。 高频高压电源主回路工作原理及特点:

A 、工频整流、滤波。 三相380V 交流经三相整流得到直流电压,经LC 滤波输出530V 的直流母线电压。 B 、开关逆变:直流电压经由IPM 模块或IGBT 模块组成的全桥逆变电路。由于是大功率逆变,为减少开关损耗,降低开关模块的温升和电流电压应力,主回路均采用串联谐振拓补电路,即采用谐振电容Cs ,谐振电感Ls 及利用高频变压器漏感组成高频谐振式逆变电路。当L& C 参数选择合适,配合合适的开关频率和控制模式,能使开关模块工作在零电流开通和零电压关断模式,即软开关状态;大大降低了开关损耗,并且能有效减少进入高频变压器的高次谐波,也减少变压器及硅堆的损耗。 C 、高频升压、整流。逆变波形经高频变压器升压,再经高频整流桥整流,在ESP 负载上得到基本上纯直流电压波形。 3 电除尘高频高压电源控制方案 我们根据国内外有关资料以及目前市场上运用的高频电源分析来看,对高频触发脉冲控制主要可分为:调频控制模式;调幅控制模式;脉冲控制模式三种。 3.1 调频控制模式: 因主回路均采用串联谐振拓补电路,即软开关模式,它能大大降低开关损耗,提高逆变效能。而PWM (脉冲宽度调制)在软开关状态下较难调整,因此大多高频触发脉冲采用PFM (定脉宽调频)的方式,通过调节脉冲频率的调制控制方法将直流电压调制成一系列脉冲来调节ESP 平均电压和电流。该控制方式的核心在于控制ESP 平均电压和电流,由于频率降低相当于在单位频率下降低触发脉冲的有效占空比,通过缩短开通时间,加大关断时间来实现平均电压的调整。其特点是峰值不变,只改变平均值。其波形如下: 3.1.1谐振电流波形 20KHZ 开关频率 6KHZ 开关频率

高频电源在静电除尘器上的应用分析

高频电源在静电除尘器上的应用分析 发表时间:2015-12-03T14:13:52.597Z 来源:《电力设备》2015年4期供稿作者:姚凌飞何立刚陈崇荣 [导读] 浙江菲达环保科技股份有限公司高频电源采用现代电力电子技术,是将三相交流输入经过三相整流为直流电源,经逆变为高频交流电,最后整流输出直流高压。 姚凌飞何立刚陈崇荣 (浙江菲达环保科技股份有限公司 311800) 摘要:本文介绍了高频电源应用于静电除尘器的节能减排原理,通过工程实例的对比试验发现:高频电源与工频电源比较,节能率达到50%以上,节能减排效果显著。 关键词:高频电源;静电除尘器;应用 随着国家排放标准的趋严,以及节能减排国策的施行,大气粉尘污染治理应用行业也出现了新的特点。提高除尘效率,降低能耗,成为发电企业当前的一个主要问题。大功率高频电源是新一代静电除尘器的供电装置,与目前普遍使用的工频电源相比,可以在确保除尘效率的前提下,大幅度减少静电除尘器的电耗。某发电厂将静电除尘器由工频电源改为高频电源后,取得了显著的节能效果。 一、高频电源原理 高频电源采用现代电力电子技术,是将三相交流输入经过三相整流为直流电源,经逆变为高频交流电,最后整流输出直流高压。变换器实现直流到高频交流的转换,高频变压器和高频整流器实现升压整流输出,为除尘器提供电源,高频电源原理见图1。 1.1高频电源节能原理 静电除尘器的工频电源频率低,电源转换效率只有75%,而高频电源转换效率为95%,此项节电约20%。 静电除尘器采用工频电源供电产生电晕时,只有极少量电能用于烟尘荷电,绝大部份电能做了无效的空气电离。而用高频电源向除尘器供电时,用高频率、窄带宽(微秒级)的脉冲使烟尘荷电,其特点是荷电量大而能耗非常少,使电能大幅度下降。 高频电源是三相整流后,在纹波非常小的直流上再进行逆变,因而直流脉冲的幅值可以有效控制在非火花区内,基本不产生火花,即使产生火花,也可以在5~10100μs内自行关断快速响应,进行火化控制,而工频电源火花多而耗能大,一旦产生火花要10ms(即10000μs)内才能关断响应,所以高频电源可以达到节电的目的。高频电源的节能原理图如图2所示。 1.2高频电源除尘增效原理 高频电源由于高压转换始终工作在50kHz以上,可以控制在非火花区内把脉冲幅值调到最大,即二次电压调到最高,不会像工频电源出现放电的时间,而一直保持可荷电状态,因而烟尘总体荷电量大,特别对微细烟尘也容易荷电,所以从理论上,高频电源可达到提高除尘率的作用。 对高比电阻烟尘,若用工频电源供电,很易产生反电晕放电,一旦出现反电晕放电,会产生反电晕放电扬尘,影响出口烟尘指标,而用高频直流脉冲供电,供电的脉冲时间任意可调,具有更宽的脉冲宽度和脉冲频率选择自由度、更陡峭的电压上升率,使高比电阻烟尘在集尘极上有足够的放电时间,基本消灭了反电晕放电,使除尘效率提高。直流脉冲幅值可控,不会产生火花放电,即使产生火花,在5~10100μs内即自行关断响应,进行火化控制,不会因火花而产生扬尘,所以从理论上,高频电源可达到提高高比电阻烟尘脱除率的作用。 二、工程实例 2.1改造前的设备状况 某发电厂2×150MW机组某年投入商业运行,所配锅炉为哈尔滨锅炉厂480t/h循环流化床锅炉,配套福建龙净环保股份公司生产的BE301/-4/23/450/14.53/8×4-G型双室四电场静电除尘器,电场有效断面积301m2,最大烟气量为763235m3/h,设计除尘效率99.8%。除尘器原采用380V三相控工频电源,为了达到节能目的,拟将静电除尘器电源改造为高频电源。 2.2改造方案 2012年开始对两台机组中的一台静电除尘器进行改造,经过几天完成设备的安装,通过安装8台HEP8000高频高压自冷型数字除尘电源代替原相控工频高压电源对电场进行供电。为保证设备正常运行和便于对比验收,最大限度提高产品运行可靠性,原有8台工频电源控制柜和整流变压器均保留,通过增设一台三点式转换柜,确保新柜体与原电源及电场接口位置不变,使新旧电源通过转换柜实现方便切换,

静电除尘器的常见故障及处理方法

电除尘 一、基础知识 1、什么是电晕放电? 电晕放电是指当极间电压升高到某一临界值时,电晕电极处在的高电场强度将其附近气体局部击穿,现在电晕极周围出现淡蓝色的辉光并伴有咝咝的响声的现象。 2、什么是火花放电? 在产生电晕放电后,继续升高极间电压,妥到某一数值时,两极间产生一个接一个瞬时的,通过整个间隙的火花闪络和噼啪声的现象。 3、什么是电弧放电? 在产火花放电后,继续升高极间电压,当到某一数值时,就会使气体间隙强烈击穿,出现持续放电,爆发出强光和强烈的爆裂声,并伴有高温、强光,将贯穿阴极和阳极的整个间隙,这种现象就叫电弧放电。 4、简述电除尘器的工作原理。 电除尘器是利用高直流电压主生电晕放电,使气体电离,烟气在电除尘器中通过时,烟气中的粉尘在电场中荷电,荷电粉尘在电场力的作用下向极性相反的电极运动,到达极板

或极线时,粉尘被吸附到极板或极线上,通过振打装置打落入灰斗,而使烟气净化。 5、简述粉尘荷电的过程。 在电除尘器阴极与阳极之间施以足够高的直流电压时,两极间产生极不均匀电场,阴极附近的电场强度最高,产生电晕放电,使其周围气体电离,气体电离主生大量的电子和正离子,在电场力的作用下向异极运动,当含尘烟气通过电场时,负离子和负离子与粉尘相互碰撞,并吸附在粉尘上,使中性的粉尘带上电荷,实现粉尘荷电。 6、荷电粉尘在电场中是如何运动的? 处于收尘极和电晕极之间的荷电粉尘,受四种力的作用,其运动服从牛顿定律,这四种力是:尘粒的重力、电场作用在荷电尘粒上的静电力、惯性力和尘粒运动时的介质阻力,重力可以忽略不计,荷电尘粒在电场力作用下向收尘极运动时,电场力和介质阻力很快达到平衡,并向收尘极作等速运动,此时惯性力也可忽略。 7、荷电尘粒是如何被捕集的? 在电除器中,尘粒的捕集与许多因素有关,如尘粒的比电阻、介电常数和密度,气流速度,温度和湿度,电场的伏

静电除尘器高频电源

静电除尘器高频电源 各类高压电源的性能对比与脉冲高频电源简介 概述 在饱受雾霾之苦的今天。随着我国对环境保护的日益重视,燃煤电厂的污染排放受到人们的关注,国家和地方环保部门对燃煤电厂污染物的排放和总量有了较严格的控制,并且排放标准逐年升高。这就迫使企业对现有的静电除尘器设备进行不断的升级和改造。但是现有的问题是,很多企业的静电除尘器在当初设计时没有考虑到未来的排放标准会如此苛刻,导致一批静电除尘器在今天的环保标准下排放超标。而在静电除尘器升级改造中,增加电场又没有足够的场地,用袋式除尘器又担心后期的维护成本。所以提高静电除尘器高压电源的供电技术,才是解决这个问题最有效的捷径。下面我们就通过粉尘的荷电机理与电源工作原理来论证一款由中国自主研发的新型静电除尘器高压电源——脉冲高频电源。

一、静电除尘器高压电源发展的三个阶段: 第一阶段:工频电源 1、恒流源:单相交流380V输入,变压器分档调幅调压,高压硅堆整流输出。输 出 频率100Hz。 二次电压输出波形:纹波较大的直流(DC)电压波形。 2、单相可控硅电源:单相交流380V输入,可控硅调相调压,高压整流变压器输 出。输出频率100Hz。 二次电压输出波形:纹波较大的直流(DC)电压波形。 3、三相可控硅电源:三相交流380V输入,可控硅调相调压,高压整流变压器输 出。输出频率300Hz。 二次电压输出波形:纹波较小的直流(DC)电压波形。 第二阶段:高频电源 1、按输出频率可分为:10 kHz、20 kHz、50 kHz。 2、按调压方式可分为:调频高频电源、调幅高频电源。 三相交流380V输入,可控硅/二极管调相调压,IGBT全桥逆变经高压整流变压器输出。输出频率10 kHz、20 kHz、50kHz。 二次电压输出波形:基本上纯直流的(DC)电压波形。 第三阶段:工频基波脉冲电源 工频基波脉冲电源:由两组独立电源组成即基波电源和脉冲电源。基波频率300Hz,脉冲频率100pps,脉冲宽度75μs; 第四阶段:脉冲高频电源: 由多组独立高频电源叠加组成。基波频率10~50 kHz,双脉冲频率1~10000 pps,脉冲宽度8μs;脉冲电源输入电压: 三相交流380V。 二次电压输出波形:直流(DC)电压波形叠加脉冲(PULSE)电压波形。即直流叠加脉冲(DC+PULSE)电压波形。

静电除尘的新型高压直流电源的组成及原理

静电除尘的新型高压直流电源的组成及原理 电源由直流发生器(额定输出100 kV) 和脉冲电压发生器(20 kHz < f < 40 kHz ,输出峰值为10 kV) 组成。脉冲电压发生器的输出电压经隔直电容后和直流发生器的直流输出电压相叠加,使输出电压运行在闪烁包络线以下,同时输出电压平均值较高,保证了除尘效果。系统组成框图如图1 所示。 输入滤波电路将电网存在的杂波过滤掉,同时也阻碍电源产生的杂波反馈到公共电网。市电经全桥整流并滤波后变为较平滑的直流电,再经逆变器变为高频交流电,这是该电源的核心部分,频率越高,电源体积、重量与输出功率之比越小,但由于回路参数、元器件、成本、干扰、功耗等多种因素的影响,当功率较大时,频率一般选择在20~40 kHz ,电源工作频率约为37 kHz。采用集成电路CA3525 ,提供可控的驱动信号,使输出电压、电流值变为可控。高频变压器的设计是电源的难点,由于频率的升高,分布容抗变得很小,所以必须考虑足够的绝缘距离,同时原、副边匝数、回路参数与频率也必须调节到最优运行点,才能保证高频变压器工作在B - H 的线性区,保证变压器原、副边的波形。

通过调节设定电压值和电流值,可以调节直流发生器的输出电压,使它低于闪烁电压,调节脉冲电压发生器的输出电流,使它稍小于闪烁时的电流。因此系统通过反馈电压来使直流输出电压恒定,通过比较设定电流值与反馈电流值来调节输出电流。用户可根据不同情况设定,扩大电源的使用范围。 图2 中选用2 个IGBT模块作为开关型全桥直-交变逆变器,每个IGBT 模块中的2 个功率管分别由输出的2 个相位差180°的驱动信号,经光电隔离后进 行门极驱动。逆变电路工作在PWM控制方式。当G信号变为高电平时,高频变压器的两端直接接到直流电压两端,当H信号为高电平时,高频变压器的两端反相接到直流电压两端,因此,改变驱动信号的占空比将改变输出交流电压的脉冲宽度及有效值。当驱动信号占空比为0. 5 时,输出电压中的基波分量最大,幅值为U01 = 4Ud/π(Ud 为直流电压峰值) 。 脉宽可调的控制方式的主要优点为逆变器通过脉宽调制即可调节输出功率,并且逆变器工作在较高频率时,其产生的开关损耗较小,这在功率大的应用场合是很重要的。当输出电流大于设定值时,驱动脉冲信号变窄,从而使输出功率变小,输出电压、电流随之减小,通过调节脉冲宽度控制直流高压发生器的输出电压值,达到使之小于闪烁电压的目的。 电源采用CW3525A 产生逆变所需的驱动信号,CW3525A 增加了欠压锁定、软启动等电路,其输出采用图腾柱输出结构,可以更快的关断。 脉冲电压发生器工作在恒流工作方式,电流反馈端(电流已转换为电压信号) 输入到误差比较放大器的反相端IN- 与误差比较放大器的同相端IN+ 的设定电压值作比较, IN+ 和IN- 电压经CW3525A 内的误差放大器比较放大后输出小于6 V 的电压,这时将该电压和峰值为6 V 的三角波进行比较,就可以根据IN- 的反馈电流幅值输出不同占空比的驱动信号,对不同的尘埃情况都能工作在恒流方式下。当发生火花放电时,直流高压发生器通过测量电源输出电流值,利用微处理器调节电压设定值,降低直流高压发生器的输出电压,使火花放电消失,当除尘实际电流值小于设定电流值时,微处理器增加电压设定值,使直流高压发生器的输出电压增加。 3 实验结果 当直流高压发生器的高频电源变压器输出电压为15 kV 时,变压器副边输出电压如图3 所示。实际电压幅值约为50 V 乘以分压比,脉冲周期恒定为27μs ,脉宽可调。提高占空比,输出功率增加,输出电压增加。波形顶部的振荡是由变压器的分布参数所致。脉冲高压发生器的高频电源变压器输出电压 幅值为10 kV ,其脉宽可调,波形与上述波形相似。除尘电源输出电压波形如图4 所示,它是直流高压叠加脉宽变化的高频脉冲电压,直流高压由用户根据除尘要求设定为低于最低闪烁电压以下,直流高压根据除尘环境变化输出电压,设定值由微处理器控制调整变化。而脉冲电压发生器由用户设定跟踪除尘电流,以使两电压叠加后,接近闪烁电压运行。

电除尘高频电源

高频电源及其特点 高频开关式电源(SIR电源)是电除尘高压供电领域的新动向、新热点,近几年开始迅速推广应用,瑞典ALSTONG公司已生产销售SIR电源2000多台套,最大规格120kV/1.2A[1][2]。国内正处于SIR电源的研制和推广热潮,已有多家推出800(720)kV/0.4A SIR电源,福建龙净率先推出了规格为800kV/1.0A的SIR电源。SIR电源将三项交流输入整流为直流电源,经全桥逆变为高频交流,随后升压整流输出直流高压。SIR的频率为20~50kHz,加上是三相供电,所以输出到电除尘的电压几乎是纯直流,还可采用“间歇供电”。因而电源SIR电源供电具有以下突出优点: ①高频电源纯直流供电时,输出电压纹波通常小于5%,远小于普通工频电源的35~45%,闪络电压高,运行平均电压可达工频电源的1.3倍,运行电流可达工频电源的2倍,因而有利于提高除尘效率,一般可使出口排放浓度降低30以上,甚至达到70%。 ②火花放电时常规电源一般至少要关断一个半波,SIR电源大都可在2~5ms内使火花熄灭,5~15ms恢复全功率供电,在100次/min的火化率下,输出高压无下降迹象。 ③对于高比电阻烟尘,可采用类似脉冲的“间歇供电”,可随意调节脉冲宽度和脉冲频率,调节占空比,有利于抑制反电晕,因而得到好的除尘效果。 ④整流变压器限值减轻和缩小,设备重量仅为常规电源的35%左右,成本低,性价比高。 ⑤三相均衡对称供电,对电网无干扰。 ⑥电源转换效率高。 ⑦改造后除尘器高压部分可节约电耗70%以上. 高频电源提高电除尘效率的机制在于,其输出电压频率为普通T/R电源的200~400倍,输出电压近乎为纯直流,输出电压可稳定在火花电压的临界值,而普通T/R电源的供电电压峰值为火花电压临界值,所以高频电源供电电压高于普通T/R电源,电晕放电强烈,电场强度高,烟尘粒子荷电量大,因而除尘效率可比普通T/R电源高。

GM-II型电除尘高频电源说明书-2014.7.16_(2)

大连电子研究所 GM-II 型 电除尘高频高压电源 产品说明书

目录 前言 (1) 一、使用条件 (2) 二、用途和适用范围 (2) 三、技术特点 (2) 四、控制功能介绍 (4) 五、基本操作与参数设置 (5) 六、常见故障判断 (17) 七、起吊、安装及存储 (18) 八、设备维护和保养 (19) 九、主要规格及技术参数 (19) 十、附图/表 (20)

前言 电除尘用高压整流设备作为电除尘系统的关键设备,它的主要作用是通过向电场提供直流高压和直流电流,使进入电场的粉尘在荷电后被捕集到极板,从而达到清灰的目的。随着国家环保排放标准的不断提高,只有不断的提高电除尘用高压整流设备的控制精度和控制水平,才能有效的提高除尘效率,做到达标排放。 大连电子研究所设计生产的GM-II型电除尘高频高压电源是我公司在传统电除尘用高压整流设备的基础上,结合国内、外高压电源的先进研发经验和技术研发出的新一代产品。该产品与传统的可控硅常规工频电源相比,性能优异,具有输出纹波小、平均电压电流高、体积小、重量轻、集成一体化结构、转换效率与功率因数高、三相平衡、对电网影响小等多项显著优点,特别是可以较大幅度地提高除尘效率,降低高压整流设备能耗,实现了电除尘器供电电源技术质的飞跃。目前,GM-II型电除尘高频高压电源已广泛应用于燃煤电厂、冶金、建材、化工等领域的电除尘系统中。 作为新一代电除尘用高压整流设备,GM-II型电除尘高频高压电源以它的高可靠性、高抗干扰能力、高效的节能减排效果、友好的人机界面、人性化的结构设计等受到了用户的普遍欢迎。我们相信:GM-II型电除尘高频高压电源必将成为您在电除尘工业系统中的首选。

静电除尘器脉冲高频电源 各类高压电源性能对比

静电除尘器脉冲高频电源 各类高压电源的性能对比与脉冲高频电源简介 概述 在饱受雾霾之苦的今天。随着我国对环境保护的日益重视,燃煤电厂的污染排放受到人们的关注,国家和地方环保部门对燃煤电厂污染物的排放和总量有了较严格的控制,并且排放标准逐年升高。这就迫使企业对现有的静电除尘器设备进行不断的升级和改造。但是现有的问题是,很多企业的静电除尘器在当初设计时没有考虑到未来的排放标准会如此苛刻,导致一批静电除尘器在今天的环保标准下排放超标。而在静电除尘器升级改造中,增加电场又没有足够的场地,用袋式除尘器又担心后期的维护成本。所以提高静电除尘器高压电源的供电技术,才是解决这个问题最有效的捷径。下面我们就通过粉尘的荷电机理与电源工作原理来论证一款由中国自主研发的新型静电除尘器高压电源——脉冲高频电源。

一、静电除尘器高压电源发展的三个阶段: 第一阶段:工频电源 1、恒流源:单相交流380V输入,变压器分档调幅调压,高压硅堆整流输出。输 出 频率100Hz。 二次电压输出波形:纹波较大的直流(DC)电压波形。 2、单相可控硅电源:单相交流380V输入,可控硅调相调压,高压整流变压器输 出。输出频率100Hz。 二次电压输出波形:纹波较大的直流(DC)电压波形。 3、三相可控硅电源:三相交流380V输入,可控硅调相调压,高压整流变压器输 出。输出频率300Hz。 二次电压输出波形:纹波较小的直流(DC)电压波形。 第二阶段:高频电源 1、按输出频率可分为:10 kHz、20 kHz、50 kHz。 2、按调压方式可分为:调频高频电源、调幅高频电源。 三相交流380V输入,可控硅/二极管调相调压,IGBT全桥逆变经高压整流变压器输出。输出频率10 kHz、20 kHz、50kHz。 二次电压输出波形:基本上纯直流的(DC)电压波形。 第三阶段:工频基波脉冲电源 工频基波脉冲电源:由两组独立电源组成即基波电源和脉冲电源。基波频率300Hz,脉冲频率100pps,脉冲宽度75μs; 第四阶段:脉冲高频电源: 由多组独立高频电源叠加组成。基波频率10~50 kHz,双脉冲频率1~10000 pps,脉冲宽度8μs;脉冲电源输入电压: 三相交流380V。 二次电压输出波形:直流(DC)电压波形叠加脉冲(PULSE)电压波形。即直流叠加脉冲(DC+PULSE)电压波形。

静电除尘用高压供电电源特性浅析

静电除尘用高压供电电源特性浅析 朝泽云,徐至新,钟和清,康 勇 (华中科技大学电气与电子工程学院,武汉430074) 摘 要:为提高除尘效率,针对静电除尘器对供电电源的特殊要求,对其高压供电技术综合分析并讨论了多种高压供电方式、电源运行方式和控制方式的基本原理及对除尘效果的影响,指出脉冲供电方式和微机控制技术是当今静电除尘高压供电技术的主要发展方向和研究热点。 关键词:静电除尘器;高压电源;除尘效率;微机控制 中图分类号:TM910.1文献标识码:A文章编号:100326520(2006)022******* Characteristic Analysis of High Voltage Pow er Supply for Electrostatic Precipitation CHAO Zeyun,XU Zhixin,ZHON G Heqing,KAN G Y ong (School of Elect rical and Elect ronic Engineering,Huazhong U niversity of Science and Technology,Wuhan430074,China) Abstract:To select the effective power supply mode and advanced control strategy which is based on the precondition of safely running,a high voltage power supply technique used in ESP is generally analyzed according to the special demand.The f undamental principle and dedusting effects of different kinds of power supply,operation modes and controlling modes are discussed.The developing of high voltage power supply and digital control technology for ESP are pointed out. K ey w ords:electrostatic precipitation;high voltage power supply;collection efficiency;microcomputer control 0 引 言 治理工业粉尘污染的高压静电除尘器(EPS)因除尘效率高、能耗低、维修管理方便等,越来越受到人们的重视。静电除尘的机理是使空间电场发生电晕放电,产生大量的自由电子和负离子,它们与污染空气中的粉尘碰撞形成的带负电粒子受到空间电场静电吸引而被呈正极性的集尘极捕集,再由清灰装置定时清理,从而净化空气[1]。 目前,在安全可靠运行的前提下如何提高除尘效率是静电除尘器的研究热点。高压供电电源是静电除尘器的核心部分,其供电方式、运行方式及其控制方式的不同,对静电除尘器的除尘效率和运行稳定性具有重要的影响[226]。 1 静电除尘电源的供电方式 1.1 晶闸管相控直流供电 采用晶闸管相控交流调压式供电装置结构简单、容量大、投资少(原理图见图1),是目前国内外传统静电除尘供电方式[7],不足为:①晶闸管是半控型器件,火花放电或短路时不能立即调整输出电压,动态响应速度慢。②电源的输入、输出端都含有大量难以滤除的低次谐波污染。③变压器工频工作频率使供电装置笨重 。 图1 晶闸管相控交流调压式供电电路原理图Fig11 Principle of thyristor phase2controlled alternating voltage2adjusting pow er supply circuit 1.2 间歇供电 常规全波整流波形间歇供电波形见图2。电源调控原有全波整流输出,周期性的阻断某些供电波。较之常规直流供电,间歇供电可降低极间平均电压,增强了振打的清灰效果,减小极板平均积灰厚度,从而提高了电极放电性能,有效抑制反电晕的产生,故适于高比电阻粉尘和易产生反电晕的静电除尘器。间歇供电所消耗的平均功率远低于常规工频整流,具有节能效果,但要求变压器的容量和瞬间输出功率提高且在低比电阻时,降低电场平均电压反而可能增大二次扬尘,故其应用有一定的局限性。 1.3 脉冲供电 图3为脉冲供电电路结构图,晶闸管相控交流调压电源提供基础直流电,辅助电源通过控制开关管S的通断,使脉冲发生电路产生谐振,从而在基础 ? 1 8 ? 第32卷第2期 2006年 2月 高 电 压 技 术 High Voltage Engineering Vol.32No.2 Feb. 2006

相关文档