文档视界 最新最全的文档下载
当前位置:文档视界 › 生物技术发展趋势与预测

生物技术发展趋势与预测

生物技术发展趋势与预测
生物技术发展趋势与预测

收稿日期:2006-06-23

基金项目:天津市科技发展规划项目,天津市自然科学基金项目(023614211,05YFJMJC14400),天津市农业科技成果转化与推广项目

(0504018)

作者简介:邱苗苗(1982-),女,硕士研究生,研究方向:生物技术

通讯作者:杨静慧,教授,博士,E-mail:jinghuiyang2@yahoo.com.cn,022-23781517

如果过去20年是信息时代的话,那么21世纪将成为生物技术时代,生物技术产业将以空前的速度发展和膨胀。当今生物技术爆发出的能量正在显著地推动农业、医药、信息、工程和工业工艺向更加高效和环保的方向发展,生物技术产业即将走向成熟和集约化大生产。所以对生物技术发展进行趋势预测将会对科研和生产产生积极的影响。

1生物技术的主要趋势预测

高通量成像系统、基因组学、蛋白质组学和分

子育种的相互促进将有助于生物技术产业以空前的速度发展和膨胀。

1.1人类医学领域的生物技术预见

分子育种、药物基因组学、干细胞技术将使医

学的治疗过程更加人性化。分子育种技术将促进发展高灵敏性的产品,这些药品能够更准确的满足患

者的需要;以药物基因组学为基础的治疗技术将会提高治疗的准确性,利用这些药品可对具体病人进行针对性的治疗;结合了反转录病毒治疗的胚胎干细胞治疗技术可以产生新的器官和组织,可以逐渐替代老化或患病的器官,甚至可以减慢或阻止分子老化[1]。目前,生物技术产品将开始离开实验室进人大规模的商品化生产[2]。

1.2农业生物技术领域的生物技术预见

今后会出现更多的适应性强的作物品种,也会

提高地球的承载力。农作物产品的营养会更加全面,可食用的疫苗可以免疫病毒。遗传学和基因工程学会将作物的育种周期缩短到原来育种周期的百分之一甚至是千分之一[1]。人们将利用植物大规模的生产口服疫苗、工业用酶、脂肪酸、芘物等,此外,通过基因工程的方法可以用植物生产生物塑料

生物技术发展趋势与预测

邱苗苗1

张伟玉2杨静慧2曾明1黄俊轩2李建科2

西南大学园艺园林学院,重庆400716;2天津农学院园艺系,天津300384)

摘要:预测了未来10~20年内生物技术在人类医学领域、农业生物技术领域、工业生物技术领域、生物计算学领

域、材料学领域、生物工程领域和环境生物工程领域的主要发展趋势,对生物技术的发展进程也作了预测,并对生物技术在人类疾病治疗方面、农业领域、工业领域、数学领域、材料学科、生物工程方面和环境生物工程领域作出了实际预测。

关键词:

未来

生物技术

趋势

进程

预测

TheForecastofBiotechnologyintheFuture

QiuMiaomiao1ZhangWeiyu2YangJinghui2ZengMing1HuangJunxuan2LiJianke2

(1CollegeofHorticultureandLandscape,SouthwestUniversity,Chongqing400716;2DepartmentofHorticulture,Tianjin

University,Tianjin300384)

Abstract:

Thetrendsofbiotechnologydevelopmentwasforecastedinthehumanmedicalfield,agricultural

biotechnology,industrialbiotechnology,biologicalcomputingsciencefield,thefieldofmaterialsciences,biotechnologyandenvironmentalfieldofbiologicalengineeringmajortrendsinbiotechnologydevelopmentprocess,andthedevelopmentcourseofbiotechnologywasalsoforeseen.Biotechnologywasforecastedactuallyinhumandiseasetreatment,agriculture,industrialareas,mathematicalfield,materialssciences,biologicalengineeringandenvironmentalbiotechnologyfield.

Keywords:

FutureBiotechnologyTrendsCourseForesight

生物技术通报

BIOTECHNOLOGYBULLETIN

?技术与方法?

2007年第1期

2007年第1期

的底物多羟基丁酸,从而最终避免目前所谓的“白色污染问题[3]。

1.3工业生物技术领域的生物技术预见

在50年内,生物催化制造业会生产例如布料,塑料,建筑材料等多种基本消费品。生物催化方法还会有助于一些诸如汽车等高档产品的生产。生物技术会帮助制造业形成一个更加温和的可持续性发展的环境[1]。到2020年,将有50%的有机化学品和材料将产自生物原料,而工业生物技术将起核心作用[5]。

1.4生物计算学领域的生物技术预见

随着计算机科学与生物学的综合利用,以硅为原料的芯片将快速地代替原有计算机,可穿戴的计算机,纳米信息处理技术将应用于日常生活[1]。1.5材料学领域的生物技术预见

生物技术的发展将极大地增加材料的强度,结合蜘蛛丝特性的新型纺织材料的研制和应用有可能获得成功,新型材料、新型纺织品和新型的仪器均可以用于环境检测,例如对细菌进行检测[1]。生物技术的第三次浪潮将集中在纺织、燃料、化学品等消费品的制造,由石油为基础原料转向以生物为基础原料。生物技术材料学将被描述为“由糖等衍生的塑料用于制作纤维和服装以及用在洗衣粉中的蛋白酶”[4]。

1.6生物工程领域的生物技术预见

结合了纳米技术的生物技术将在纳米机械发动机、记忆存储装置和传感器方面发挥更大的作用;生物纳米工程使人类能够进行从纳米级电路到生物发动机的设计;生物纳米工程中,核酸将被应用于纳米级电路;在原核生物发动机中,人工产能细菌可以通过鞭毛旋转而发电[1]。

1.7环境生物工程领域的生物技术预见

生物技术可以降低工业对环境所造成的破坏。微生物清洁剂可以净化被污染的土壤、净化工业排泄物、净化被污染的地下水和空气以及净化泄漏的石油化学产品。生物技术产业将有助于社会的可持续性发展[1]。随着越来越多微生物全部基因序列的解码,对各种微生物体内可降解基因的分布和表达会有更深入的了解,这方面技术的发展和成熟必将对生物降解这一过程有一个整体的、系统的和生态水平上的认识。利用功能基因组可以改善细胞工厂、发展新菌种,并在最短的时间内达到工业化生产的目的,不久以后,微生物功能基因组的解码会在新的风险评价中应用。基因组序列的广泛使用将会刺激微生物生物技术的发展[6]。

2生物技术发展进程的预测

根据现在科学技术的发展融合以及公众对生物技术的接受程度,对生物技术的预测可以分为现阶段、商品化发展初期,广泛应用时期和高速发展时期。

2.1现阶段

目前公众对生物技术的接受程度较低,加上科学技术综合应用能力也较低,导致人们对生物技术的了解较少,市场的突破力较差[1]。

2.2商品化发展初期

尽管生物技术综合了多门学科的知识,并且在走向市场或商品化方面有了极大的突破,但公众始终对生物技术持怀疑态度。生物技术产品和生物技术方法的应用市场价值较低,也比较难以被公众接受[1]。

2.3广泛应用时期

此时公众对生物技术已经有了较高的认识,并广泛地被公众所接受,另外人们综合应用生物技术的能力也大大提高,使公众对生物技术有了比较全面的了解。同时,生物技术也广泛的应用到了农业、医学、工程、工业产品和工业生产过程中[1]。

2.4高速发展时期

在这个时期,生物技术已经融于社会,即使在生物技术还没有综合应用于工业化大生产的情况下,也会出现稀有的相关生物技术产品和相关服务业的高生产附加值或高额利润。公众会推动该技术的持续扩张[1]。

3生物技术应用的实际预测

3.1生物技术在人类疾病治疗方面的实际应用趋势

今后用于治疗的基因药物将具有高度的专一性,可以用于部分患者的治疗。使用反转录病毒治疗和胚胎干细胞技术可以替代老化或患病的器官,甚至可以减慢或阻止分子老化的进程[1]。

人类基因组计划的完成将大大促进分子病理

邱苗苗等:生物技术发展趋势与预测75

生物技术通报BiotechnologyBulletin2007年第1期

学和分子药理学的发展,也将为医药学的发展创造前所未有的机遇。基因诊断、基因治疗、器官再生与移植将越来越多地得到充分应用,一些重大疾病的攻克将使生物技术在人类疾病治疗方面出现突破性进展。将基因工程技术、酶工程技术用于制药业,会生产出安全、高效的基因疫苗。克隆技术的发展将可能诞生出生长快、抗病力强的转基因动物,也可用转基因动物生产重要的药物,建成生物工厂,为人类提供移植用的动物器官、组织和细胞[2]。

目前,随着438种基因治疗药物的发展,基因治疗产品的发展比任何时候都快。有18余种独立技术平台正在有效地应用于研究人类疾病;不断出现的分子水平的产品可以满足消费者的需要。2010年,预防乙型肝炎、疟疾和老年性痴呆症等疾病也将成为可能;基因工程还能在心脏中培育新的血管;利用干细胞创造新的器官,甚至可能调整使细胞老化的原始基因代码.从而延续人的衰老过程,延长人的自然寿命[6];基因重组产品可帮助除去死亡皮肤,注射治疗痤疮损伤,加速创伤愈合;仅仅治疗疾病不是最终目的,今后修饰人体基因组将成为常规方法,不仅修饰一个人的基因组,而且要修饰生殖细胞,这样其遗传改良就可能传给下一代[3];神经科学领域的突破进展,必将促进全人类智力的充分开发利用,将促进脑和神经系统疾病的治疗,人类期待已久的“记忆移植”也将成为可能[5]。3.2生物技术在农业领域的实际应用趋势通过遗传工程将生产出高抗逆性和高抗虫性的作物新品种。生物技术将改变植物形态结构,降低植物的能量需求,增加产量;还可以提高作物品种的营养含量;可以通过插入抗原生产出可食用疫苗;生物技术还可以实现作物的周年生长;使纺织原料作物和纤维作物育种有大的发展,还可能在其他方面有所突破[1]。使用转基因植物可以减少因使用化学制剂而对环境造成的污染[2]。

那些提升生物技术产业中医药领域的技术进展同样也推动遗传改良作物的开发,它可以促进农业的可持续性发展。尽管目前强烈反对遗传改良食品,但是今后20年内遗传改良食品将会为人们所接受。当产品安全性得到最后的证实后,消费者开始获得直接利益而不是害怕生物技术。产品性状(例如那些影响产品的味道和营养含量的性状)在7~10年内表现出来。那时,产量、质量将大大改善。最后.产品价格将会下降,将使大部分人接受转基因产品[8]。

对农业生物技术公司来说,它们将面临重大的商业变革和机遇。许多传统农作物将转变为工程作物,目前投人除草剂和杀虫剂的资金将投人种子的遗传改良,但是,更大的机遇在于培育出具有所需产品性状的农作物。在今后20年内,农业生物技术产品的市场潜力估计可能达到500~1000亿美元[9]。

3.3生物技术在工业领域的实际应用趋势在工业上,通过生物技术将生产布料,塑料,建筑材料等多种消费品;通过生物技术将生产出用生物产物装配的集合产品如装配汽车、电器用具和电子元件等高档产品,并将形成一个更加温和的可持续性发展的工业制造环境。人体内的生物催化过程是惊人的制造过程,是由酶催化的,酶可以取代工业生产中起催化作用的有害化学物质和高温,它将在工业生物技术中发挥重要的作用[1]。

生物自动化系统将为具有高灵敏度和精确度的生物传感器建立硬件和软件系统,以测定有危险性和较难测量的生物学参数;生物自动化系统将建立具有科研自主性的自动化操作系统;将建立生物加工工业的自动化操作系统。生物自动化系统将为生物处理或生产过程中的质量和消耗问题提供方法和手段,为商业生物产品成本核算和质量评价提供软件系统,特别是在餐饮业将得到广泛的应用[2]。

3.4生物技术在数学领域的实际应用趋势生物技术在数学领域的应用可以称为生物计算学,它的发展趋势是将会出现大量使用仿生学的生物计算发动机;高速生物计算机;易携带的或可穿戴的生物计算机;家用电器的高效计算机配置系统;纳米级信息系统等。关于生物计算有两个补充方法正在研究和实验中:即模拟人类大脑多元神经网络特性的具有高效计算能力的计算系统和利用带有生物化学反应的并行电路,来创造大模块并进行计算的生物发动机系统[1]。生物计算机甚至可以通过检测RNA分子浓度大小进而进行癌

76

2007年第1期

症诊断[8]。

大量的类似生物计算的发动机、家用电器的高效计算机配置系统、纳米级信息系统将得到广泛的使用。[1]在短期内,重大的突破将来自DNA阵列和微射流技术(加速流量)的进展。在20年内,这些技术将会迅速发展,其结果将是大大降低其产品投人市场的成本和时间[8]。

3.5生物技术在材料学科的实际应用趋势生物工艺材料的生产范围会更广,例如超强度材料,超轻型材料,这些材料结合进了蜘蛛丝和昆虫衬垫中的黏合剂;一些特殊的制造材料、纺织材料,设备元件,都可以进行环境检测[1]。另外利用玉米和大豆等可以生产“绿色塑料”,可以减少石油用量[9]。

3.6生物技术在生物工程方面的实际应用趋势结合了纳米技术的生物技术将在纳米机械发动机、记忆存储装置和传感器方面发挥更大的作用;生物纳米工程使人类能够进行从纳米级电路到生物发动机的设计;生物纳米工程中,核酸将被应用于纳米级电路;在原核生物发动机中,人工产能细菌可以通过鞭毛旋转而发电[1]。DNA芯片将使我们对信息的处理应用从生物体外部深入到生物体内部的生命信息领域[10]。

生物检测技术与生物芯片技术、蛋白质芯片和抗体芯片结合并同生物传感技术和纳米技术结合,将推动整个生物检测技术和与之相关的产业快速发展和升级,使实验室芯片(labonchip)的新概念得以实现[11]。

3.7生物技术在环境生物工程中的实际应用趋势可持续发展的、良性的工业制造过程,会减少废物的排泄和对环境造成的破坏程度;微生物清洁剂将会得到广泛的使用[1]。环保工业将会把大量清洁和健康的产品推向市场,例如高效的空气过滤器、有利于环境保护的炉子和经过基因技术改进的公园草坪—这种草坪几乎不再需要化学药剂,一种用生物工程方法制造的细菌,有可能用来降解受污染土壤中的有毒物质[12]。届时,无数的微生物和有害细菌将从家庭的空气中、有霉味的地毡上消失。人们将不再有过敏反应,因为花粉和细菌在自动净化地毯上不再有生存的机会。许多家庭将都装有精密的环境监视器和净水处理器,能很方便地将非饮用水重新变成饮用水。普遍家庭采用的垃圾处理系统能对垃圾进行自动分类、加工和处理,根本无需人用手来处置[13]。

20世纪的生物技术已经开始影响着人类的生活,而21世纪的生物技术将全面改善人类生活的各个方面。生物技术的时代即将到来!

参考文献

1BrianSager.TechnologicalForecasting&SocialChange,2001,(68):109~139.

2EmerColleran,JimmyBurke,MichaelComer.ICSTIReportonBiotechnology,http://www.forfas.ie/icsti/statements/biotech01/index.html.

3坷舟.科技信息,2001,(5):17~18.

4马晓龙,曹建华,窦峰.丝绸,2005,(2):40~44.

5欧阳平凯.江苏科技信息,2004,(12):25~28.

6余莉萍,尹华,彭辉.城市环境与城市生态,2002,(4):52~54.

7柯济.中国科技信息,2000,(13):18~20.

8RobertFallr.FORETECH,2004,(18):56~58.

9陈.技术预见报告2005[M].北京:科学出版社,2005,67~69.10程金,平秦伟,聂英超.生物学基础知识,2000,(6):1~3.

11科技世界记者报道.科技世界,2000,(6):28~30.

12张伟峰.化工文摘,2004,(5):44~45.

13陈莱.生物技术通报,2000,(5):41~42.

邱苗苗等:生物技术发展趋势与预测77

新型功能材料发展趋势

新型功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占 85 % 。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。 1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等

现代交换技术的发展与趋势

现代网络交换技术的发展与趋势 系部:计算机工程系班级: 通信13-1 班学号: 2013232020 姓名:邝鑫鑫 日期:2015年11月15日

摘要 近年来,由于通信技术的不断发展,人们对新业务需求的增加,给通信事业的发展带来了新的挑战,当前迫切需要一个能够将语音、数据和图像融合在一起的网络。通信网络正在从电路交换向以软交换为核心的下一代网络演进。下一代网络NGN(Next Generation Network) 是一个综合性的开放网络,它以分组交换技术为基础,以软交换技术为核心。NGN 需要得到许多新技术的支持,关键技术是软交换技术、高速路由/ 交换技术、大容量光传送技术和宽带接入技术。随着数据通信与多媒体业务需求的发展,适应移动数据、移动计算及移动多媒体运作需要的第四代移动通信开始兴起,2013 年12 月4 日下午,工业和信息化部向中国联通、中国电信、中国移动正式发放了第四代移动通信业务牌照TD-LTE),此举标志着中国电信产业正式进入了4G 时代,这将大大有利于下一代网络的发展,下一代网络的建设成为越来越重要的话题之一。本文探讨的是下一代网络的关键交换技术:软交换技术和光交换技术,及其所支持的下一代网络技术。 关键词】软交换光交换光纤通信下一代网络NGN

目录 一、下一代网络的关键交换技术 (1) 二、软交换 (4) 三、光交换 (8) 四、NPN 关键交换技术的发展前景...................................................................................... 1..3.. 五、参考文献 ................................................................................................................................... 1..4

(word完整版)现代农业高技术的发展现状、方向和趋势

类别:综述 现代农业高技术的发展现状、方向和趋势 龚德平 现代农业是市场化、工业化、科学化、集约化、社会化、补贴与福利化以及可持续发展的农业。发展现代农业,就是用现代物资条件装备农业,用现代科学技术武装农业,用现代产业体系组织农业,用现代经营形式管理农业,用现代市场发展理念引领农业,用培养知识文化型农民发展农业。现代农业高技术是发展现代农业的核心。 (一)、现代农业高技术的发展现状 随着生物技术、信息技术、新材料技术等高技术的不断发展,现代农业高技术发展迅速。以生物技术、信息技术为代表的高技术不断向农业科技领域渗透和融合,逐渐形成了分子育种技术、转基因技术、数字农业技术、节水农业技术、食品加工技术、航天育种技术等农业高技术体系。 1、农业生物技术发展迅速,成为经济发展新的制高点,对科学、技术、方法、理念、产业、社会与伦理产生一系列的革命性影响。现代分子育种学与传统动植物育种技术的结合,促进了新兴分子育种技术的发展。近年来由于转基因生物对生态环境和人类健康影响尚存在一些科学意义上的不确定性,科技界纷纷把研究重点转向动、植物分子标记辅助选择技术,该技术具有高效、安全的突出优点,已经展示出部分常规育种技术无法比拟的优越性。以转基因为核心的现代生物技术产业成为当今世界发展最快、最活跃的农业高技术产业领域之一。农业生物药物技术研究取得了一

批重大突破,成为农业高技术研究领域角逐的重点领域,目前以基因重组技术为代表的生物技术是农业生物药物研究的核心技术。生物技术在理论和技术上不断取得突破,为现代农业高技术的孕育、成熟、发展创造了条件。同时,生物技术的迅猛发展,越来越直接地影响着人类的精神生活,冲击着传统的伦理观念,衍生出许多新的伦理道德问题。 2、农业信息技术与数字化技术日新月异,对传统农业的改造显示出强劲的动力。农业信息化技术与数字化技术的应用主要有数据库技术、农业专家系统、3S技术、农业网络技术以及精确农业技术等。农业专家系统最早于1986年出现在美国,现在专家系统通过网络传送到田间和饲养场正成为一种趋势;以3S技术(遥感技术、地理信息系统、全球定位系统)与精确农业技术为基础的精确农业已经成为当今世界农业发展的新潮流;农业现代高技术装备迅速地吸收应用电子与信息技术、新材料技术发展成就开发出智能、高效、多功能和大型化农业现代装备。与此同时,农业信息技术与数字化技术的不断发展,对社会物资生活、精神生活方式、以及人类物资、精神文明空间的拓展与延伸产生深刻的变革。 3、高技术引领驱动和支撑农业生产方式转变,成为世界现代化农业发展的根本标志。现代生物技术、信息技术和新材料技术的迅猛发展,为解决农业资源高效利用、生态环境保护等现代农业综合发展问题提供了新的技术途径,农业资源利用与生态环境技术研究主要集中在节水农业技术、新型肥料技术、农业废弃物综合利用技术等方面。目前节水农业研究的目标是不断提高作物水分利用率和利用效率,依据作物生理需水确定作物用水;在新型肥料技术方面,目前主要研究主要集中在纵横向动态平衡施肥

《生物医用材料》论文

《生物医用材料》课程论文生物医用材料的发展与应用 姓名 学院 专业 学号 指导教师 2015年5月16日

生物医用材料的发展与应用 摘要:随着社会文明进步、经济发展和生活水平日益提高,人类对自身的医疗康复事业格外重视。生物医用材料是近年来发展迅速的新型高科技材料,生物医用材料的应用对挽救生命和提高人民健康水平做出了重大贡献,随着现代医学飞速发展不断获得关注,发展前景广阔。本文主要介绍了近年生物医用材料的发展状况、分类以及在医学上的一些应用。 关键词:生物医用材料;发展;应用 The development and application of biomedical materials Abstract: With the progress of social civilization,economic development and the improvement of the living level,the cause of human medical rehabilitation for their attention.Biomedical materials is a new high-tech material developed rapidly in recent years,the application of biomedical materials has made great contribution to save lives and improve people's health level,along with the rapid development of modern medicine has gained attention,broad prospects for development.This paper mainly introduces the status and development of biomedical materials,classification and application in medicine. Keyword:Biomedical materials; Development; Application

生物产业发展报告

中国生物产业发展报告 一、发展现状 1、产业环境 中国具备发展生物产业的较好基础。近年来,中国生命科学与生物技术研究取得长足进展,在后基因组学、蛋白质组学、干细胞等生命科学领域具有较高的研究水平,在杂交水稻、转基因抗虫棉等生物育种领域具有一定的优势,一批具有自主知识产权的生物新药已进入临床试验。拥有一支水平较高的研发队伍。海外留学人员和华人在生命科学、生物技术领域具有重要地位和影响。当前中国生物医药、生物农业等已经初具规模,涌现出一批快速发展的企业,呈现集聚化发展趋势。 中国具备生物产业发展的资源和市场优势。中国拥有约26万种生物物种、12800 种药用动植物资源、32万份农业种质资源,是世界生物物种最丰富的国家之一,具有发展生物产业独特的资源优势。中国人口众多,随着经济快速增长,人民收入水平不断提高,对生物资源、医疗保健产品的需求将会迅速增加,具有巨大的市场潜力。 中国面临生物产业发展的有利时机。当前,世界生物产业发展处于成长期,尚未形成由少数跨国公司控制产业发展的垄断格局。中国可发挥生物资源优势、市场优势,广泛参与生命科学研究、生物技术创新和生物产业发展的国际交流与合作,加速中国生物产业发展。 2、产业规模与增长 中国生物产业起步于20世纪80年代初,经过近30年的发展,生物技术总体上在发展中国家处于领先水平,局部领域居于世界先进水平,生物产业已初具规模。当前,中国已建立国家层面的生物产业基地38个(发改委、科技部、工信部

分别审批的国家高技术产业基地、火炬计划特色产业基地、国家新型工业化示范基地),总投资超过4000 亿元。依托产业基地,中国生物产业发展呈现集群态势。在国家政策的引导和推动下,自2000年以来,中国生物产业进入快速发展阶段,2010年中国生物产业总规模已达到3156亿元。 生物产业涉及众多领域,牵涉到工业、农业、医药等方面,在部分领域中国处于世界领先水平,如杂交水稻的研究和产业化。但在大部分领域,中国都和国际水平存在差距。在企业规模上,中国还缺乏能够和国际生物产业竞争的企业。近几年,随着中国生物产业的快速发展,与国际先进水平的差距正在不断缩小。目前中国涉及生物技术的企业超过3000家,但约2/3的企业是近五年内新近成立,而且在现有企业中大部分规模较小,生物技术及研发平均人数不到35人。 近年来中国现代生物产业能够实现较快发展,主要是受到生物医药行业的大力拉动,在2006-2010年生物医药行业实现了年均14%的高速增长,带动生物产业保持高速增长;而在2008-2009年期间,生物医药行业受到金融危机冲击,也拉低了中国生物产业整体的发展速度。此外,生物农业、生物质能对于中国生物产业的带动也十分显著,尤其是伴随着转基因作物在中国获批,生物农业技术的应用范围迅速扩大,在近两年成为生物产业组成中发展最快的行业。 3、产业结构 根据国务院《促进生物产业加快发展的若干政策》,中国将以生物医药、生物农业、生物质能、生物制造和环保产业为重点,发展壮大生物产业。 生物医药在生物产业中的比重最大,达到42.5%。2006-2010年期间,生物医药产业由790亿元迅速增长到1340亿元,年平均增长率达到14%以上。 近年来随着国家对生物农业支持力度进一步加大,转基因棉花、生物农药、畜禽疫苗等农业生物技术产品的应用范围不断扩大、经济效益和社会效益日趋显著。生物技术对农业发展的支撑力不断增强,2010年中国生物农业规模大约在

现代交换技术总结

现代交换技术总结 最近发表了一篇名为《现代交换技术总结》的范文,好的范文应该跟大家分享,看完如果觉得有帮助请记得()。 XX 12356896 XXXX班 下一代网络的下一个发展目标。目前一般认为下一代网络,基于IP,支持多种,能够实现业务与传送分离,功能独立,接口开放,具有服务质量(QoS)保证和支持通用移动性的分组网。 下一代网络(Next Generation Network),又称为次世代网络。主要思想是在一个统一的网络平台上以统一管理的提供多媒体业务,整合现有的市内固定电话、移动电话的基础上(统称FMC),增加多媒体数据服务及其他增值型服务。其中话音的交换将采用软交换技术,而平台的主要实现方式为IP技术,逐步实现统一通信其中voip将是下一代网络中的一个重点。为了强调IP技术的重要性,业界的主要公司之一思科公司(Cisco Systems)主张称为IP-NGN

在亚历山大·格拉汉姆·贝尔发明了电话机后,电话网,也就是以音声传导为目的的回线交换技术被使用至今。相对于它,数据通信为主要目的的基于英特网的信息通信,分组交换通信也渐渐被使用。至2000年为止,第1代以音声为主的网络通信量占有优势。而现今,因数据通信大量增加的原因,更佳节省费用的并同样可以支持音声传送的分组交换传送通信网络渐渐被使用。音声通信与数据通信相结合的一元化信息传送的第2代网络被赋予运用。 因特网与电话网相比,简单性与安全性是一个弱点。于是,集合了ip网络的长处的下一代通信网络NGN出现了。网路除了以上说的电话网,ip网络以外,也包括播放网。以NGN为基础的流媒体服务和播放服务也在被标准化,融合了前两者网络的"通信与播放的融合网络"也正 2 在被开发中。xx年,中国传感网标准体系已形成初步框架,向国际标准化组织提交的多项标准提案被采纳。传感网标准化工作已经取得积极进展。传感网在国际上又称为"物联网",这是继计算机、互联网与移动通信网之后的又一次信息产业浪潮。物联网用途广泛,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康等多个领域。这一技术将会发展成为一个上万亿元规模的高科技市场。随着传感器、软件、网络等关键技术迅猛发展,传感网产业规模快速增长,应用

生物医用材料未来发展趋势

生物医用材料未来发展趋势 作者:亦云来源:上海情报服务平台发布者:日期:2006-09-07 今日/总浏览:7/6023 组织工程材料面临重大突破 组织工程是指应用生命科学与工程的原理和方法,构建一个生物装置,来维护、增进人体细胞和组织的生长,以恢复受损组织或器官的功能。它的主要任务是实现受损组织或器官的修复和再建,延长寿命和提高健康水乎。其方法是,将特定组织细胞"种植"于一种生物相容性良好、可被人体逐步降解吸收的生物材料(组织工程材料)上,形成细胞――生物材料复合物;生物材料为细胞的增长繁殖提供三维空间和营养代谢环境;随着材料的降解和细胞的繁殖,形成新的具有与自身功能和形态相应的组织或器官;这种具有生命力的活体组织或器官能对病损组织或器宫进行结构、形态和功能的重建,并达到永久替代。近10年来,组织工程学发展成为集生物工程、细胞生物学、分子生物学、生物材料、生物技术、生物化学、生物力学以及临床医学于一体的一门交叉学科。 生物材料在组织工程中占据非常重要的地位,同时组织工程也为生物材料提出问题和指明发展方向。由于传统的人工器官(如人工肾、肝)不具备生物功能(代谢、合成),只能作为辅助治疗装置使用,研究具有生物功能的组织工程人工器官已在全世界引起广泛重视。构建组织工程人工器官需要三个要素,即"种子"细胞、支架材料、细胞生长因子。最近,由于干细胞具有分化能力强的特点,将其用作"种子"细胞进行构建人工器官成为热点。组织工程学已经在人工皮肤、人工软骨、人工神经、人工肝等方面取得了一些突破性成果,展现出美好的应用前景。 例如,存在于脂肪组织基质中的脂肪干细胞(ADSCs)是一类增殖能力强、具有多向分化潜能的成体干细胞,被发现不但具有与骨髓基质干细胞(BMSc)相似的向成骨、软骨、脂肪、肌肉和神经等细胞多分化的能力,而且表达与BMSc相同的表面标志如CD29、CD105、

中国生物技术的发展现状

中国生物技术的发展现状 我国第一个生物制品研究所始建于1919年,在北平天坛成立了中央防疫处--即今天的北京生物制品研究所,迄今已有80多年的历史。 我国自七十年代未开始了现代生物技术的研究。国家高度重视生物技术的发展,不仅被列为863计划之首,而且纳入七五、八五、九五国家重点攻关计划。这一系列的举措,大大促进了我国医药生物技术的发展,并形成了一定的产业规模。 我国基因工程多肽药物、单抗和新型诊断试剂在仿制的基础上向创新发展,已能生产目前国际上市的大多基因工程多肽药物,基因工程干扰素α-1b-系国际首创,重组人肿瘤坏死因子、bFGF已申请专利,首创的免疫PCR胃癌诊断试剂已获得新药证书,有望开发出一系列的高灵敏度癌症诊断试剂。 基因工程疫苗的研制取得明显进展,基因工程乙肝疫苗投放市场,对乙肝的预防起到了非常重要的作用。双价痢疾疫苗、霍乱疫苗获准试生产,血吸虫疫苗。出血热疫苗等正在进行临床试验。 基因治疗取得突破,研制成功具有高效导入功能的靶向性非病毒型载体系统,动物试验表明,该系统能在体内将基因高效导入肿瘤细胞,明显抑制肿瘤生长;血管表皮生长因子基因缝线等3种基因治疗方案已基本完成临床前试验。

获得了一批转基因动物,已获得生长激素转基因猪的第2、3、4代。获得手乳腺表达外源基因的转基因羊等。 通过研究出现一批创新性成果,克隆了大量人、动物、植物的新基因,创造了具有多种用途的新型表达载体等。 据统计,我国现有456个单位从事生物技术的研究、开发和生产,其中医药领域的有165个,占36%,专业人员约6800人,已有近二十种基因工程药物、疫苗获准进入市场,数十种医药生物技术产品正在进行临床或临床前研究。 当今世界生物技术迅猛发展,呈现出巨大活力。特别是九十年代以来,随着人类基因组计划等各类生物基因组研究工作的展开,新基因不断被发现,新技术、新手段不断涌现,生物技术进入了大发展的新时期。与此同时,生物技术产业迅速崛起,并已成为国际市场竞争的第二个热点领域。可以预言,二十一世纪生物技术将会对世界技术经济格局产生重要影响,生物技术产业将成为全球经济的支柱产业之一。 一、我国生物技术产业发展现状 近年来,我国的生物技术取得了很大的发展。初步形成了医药生物技术、农业生物技术、轻化工生物技术、海洋生物技术等门类齐全的生物技术研究、开发、生产的体系;取得了一批具有较高水平的生物技术研究开发成果,开发出一批生物技术产品并投放市场。 1、现代生物技术产品的销售额是10年前的50倍

现代交换技术论文

现代交换技术论文 ——浅谈光交换技术与其应用 本门课程主要介绍了在现代通信网络中使用的各种交换技术的原理、相关协议和应用。由浅及深的向大家介绍并讲解了目前网络中常用的各种交换技术和数据通信中使用的关键技术原理;电话通信中使用的电路交换技术;电信网信令系统;数据通信中使用的分组交换技术和帧中继技术;宽带交换中使用的ATM技术;计算机网络中使用的二层交换、IP交换和MPLS技术;光交换技术以及最新的软交换及NGN技术等问题。 随着通信技术和计算机技术的不断发展,人们要求网络能够提供多种业务,而传统的电路交换技术已经满足不了用户对于各种新业务的要求,因此各种交换技术应运而生,以满足人们不同的业务要求。经过几个月来的不断学习,查阅资料,下面从光交换的分类、技术特点以及光交换方式三方面浅谈一下光交换技术与其应用。 光交换技术是全光通信网中的核心技术,在全光通信网络技术中发挥着重要的作用。随着现代科学技术的不断发展,在现代通信网中,实现透明的、具有高度生存性的全光通信网是宽带通信网未来的发展目标。光交换技术作为全光通信网中的一个重要支撑技术,在全光通信网中发挥着重要的作用。 光交换的分类 光交换是指不经过任何光/电转换,将输入端光信号直接交换到任意的光输出端。具体来说,光交换可分为光路光交换和分组光交换2类。 (1)光路光交换 OCS基于波长上下话路OADM(Optical Add Drop Multiplexer)和交叉连接OXC(0Ptical Cross Connect),采用波长路由方式,通过控制平面的双向信令传输建立链路和分配波长,实质是一种光的电路交换方式。 在DWDM网络中,光路交换以波长交换的形式实现,即在相邻节点间的每一

国内外生物技术发展现状

国内外生物技术发展概况 (2010-10-21 18:00:05) (一)国内外生物技术发展动态 1、国际生物技术发展现状生物技术是近 20 年来发展最为迅猛的高新技术,越来越广泛地应用于农业、医药、轻工食品、海洋开发、环境保护及可再生生物质能源等诸多领域,具有知识经济和循环经济特征,对提升传统产业技术水平和可持续发展能力具有重要影响。近 10 年来,生物技术获得突破性发展,生物技术产业产值以每 3 年增长 5 倍的速度递增,以生物技术为重点的第四次产业革命正在兴起,预计到 2020 年,全球生物技术市场将达到 30,000 亿美元。在发达国家,生物技术已成为新的经济增长点,其增长速度大致是 25%-30%,是整个经济增长平均数的 8-10 倍。在生物技术制药领域,包括基因工程药物、基因工程疫苗、医用诊断试剂、活性蛋白与多肽、微生物次生代谢产物、药用动植物细胞工程产品以及现代生物技术生产的生物保健品等研究成果迅速转化为生产力,其中与基因相关的产业发展最强劲。全球医药生物技术产品占生物技术产品市场的 70%以上,占药物市场的 9% 左右,以高于全球经济增长 5 个百分点的速度快速发展,仅单克隆抗体市场销售额就达 40 亿美元。农业生物技术产业已经成为各国政府未来农业发展的战略重点,应用基因工程、细胞工程等高新技术培育的农林牧渔新品种、兽用疫苗、新型作物生长调节剂及病虫害防治产品、高效生物饲料及添加剂等已推广运用,产生了巨大的经济效益。 1996 年,全球转基因作物才 170 万公顷,以后逐年直线上升,到 2004 年已经达到 8100 万公顷,8 年间全球转基因作物种植面积增加近 48 倍。照此增长速度预计 2010 年世界范围内 50%的耕地将种植转基因作物,2020 年将增至 80%。尤其是抗虫、抗除草剂转基因作物的推广,大幅度提高劳动生产率并减少化学农药施用量,经济效益极为显著。全球转基因作物市场价值 1995 年仅 7500 万美元, 1997 年达 6.7 亿美元,2002 年为 45.2 亿美元,预计到2010 年将达 200 亿美元。本文章来自生物科学博览网站,欢迎您的光临食品生物技术产业产值约占生物产业总产值的 15-20%,目前国际市场上以生物工程为基础的食品工业产值已达 2500 亿美元左右,其中转基因食品市场的销售额 2010 年将达到 250 亿美元。此外,保健食品行业是全球性的朝阳产业,市场增长迅速。环境生物技术是生物技术、工程学、环境学和生态学交叉渗透形成的新兴边缘学科,是 21 世纪国际生物技术的一大热点。环境生物技术兼有基础科学和应用科学的特点,在环境污染治理与修复、自然资源可持续再生等方面发挥着日益重要的作用。能源生物技术主要目标是利用生物质能源。生物质能一直是人类赖以生存的重要能源,是仅次于煤炭、石油和天然气而居世界能源消费总量第四位的能源。目前,全球储量为亿吨,相当于 640 亿吨石油。许多国家都制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等,主要是开发生物柴油和生物乙醇汽油。尽管生物质液化燃料开发还处于初级阶段,市场份额还不大,但由于岂疫有环保和再生性特点,前景非常广阔。 2.国内生物技术发展现状我国政府一直把生物技术作为重点支持的战略高技术领域,提出了“加强源头创

功能材料发展趋势

材料】功能材料发展趋势 功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占85%。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中,都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。 1、新型功能材料国外发展现状 当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等

高分子纳米生物材料的发展现状及前景

高分子纳米生物材料的发展现状及前景 纳米材料研究都是从20世纪80年代开始的,是在之前三次工业革命的基础上发展起来的的新兴科技领域。巨大的需求与技术支撑,使其在材料、生物、医学、高分子等领域开拓出一片片新大陆,筑起21世纪工业革命的基石。而纳米技术作为一项高新技术在高分子材料中有着非常广阔的应用前景,对开发具有特殊性能的高分子材料有着重要的实际意义 纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。 1纳米科技与高分子材料的邂逅 高分子材料学的一个重要方面就是改变单一聚合物的凝聚态,或添加填料来使高分子材料使用性能大幅提升。而纳米微粒的小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子隧道效应能在声、光、电、磁、力学等物理特性方面呈现许多奇异的物理、化学性质。金属、无机非金属和聚合物的纳米粒、纳米丝、纳米薄膜、纳米块体以及由不同组元构成的纳米复合材料,可实现组元材料的优势互补或加强。通过微乳液聚合方法得到的纳米高分子材料具有巨大的比表面积,纳米粒子的特异性能使其在这一领域的发展过程中顺应高分子复合材料对高性能填料的需求,出现了一些普通微米级材料所不具有的新性质和新功能,纳米科技与高分子材料科学的交融互助对高分子材料科学突破传统理念发挥了重要作用。 高分子纳米复合材料的应用及前景 由于高分子纳米复合材料既能发挥纳米粒子自身的小尺寸效应、表面效应和量子效应,以及粒子的协同效应,而且兼有高分子材料本身的优点,使得它们在催化、力学、物理功能(光、电、磁、敏感)等方面呈现出常规材料不具备的特性,故而有广阔的应用前景利用纳米粒子的催化特性,并用高聚物作为载体,既能发挥纳米粒子的高催化性和选择催化性,又能通过高聚物的稳定作用使之具有长效稳定性。 纳米粒子加入聚合物基体后,能够改善材料的力学性能。如纳米A-Al2O3/环氧树脂体系,粒径27nm,用量1%~5%(质量分数)时,玻璃化转变温度提高,模量达极大值,用量超过10%(质量分数)后,模量下降[79]。又如插层原位聚合制备的聚合物基有机)无机纳米级复合材料(聚酰胺/粘土纳米复合材料等)具有高强度、高模量、高热变形温度等优点,目前已有产品出现,用作自行车、汽车零部件等[55]。尤其引人注目的是高分子纳米复合材料在功能材料领域方面的应用,包括磁性、电学性质、光学性质、光电性质及敏感性质等方面。 磁性纳米粒子由于尺寸小,具有单磁畴结构,矫顽力很高,用它制作磁记录材料可以提高记录密度,提高信噪比;一般要求与聚合物复合的纳米粒子,采用单磁畴针状微粒,且不能小于超顺磁性临界尺寸(10nm)。 利用纳米粒子的电学性质,可以制成导电涂料、导电胶等,例如用纳米银代替微米银制成导电胶,可以节省银的用量;还可以用纳米微粒制成绝缘糊、介电糊等。另外可用于静电屏蔽材料,日本松下公司应用纳米微粒Fe2O3、TiO2、Cr2O3、ZnO等具有半导体特性的氧化物粒子制成具有良好静电屏蔽的涂料,而且可以调节其颜色;在化纤制品中加入金属纳米粒子可以解决其静电问题,提高安全性。 利用复合体系的光学性能,可以制成如下材料:(1)优异的光吸收材料。例如在塑料制品表面上涂上一层含有吸收紫外线的纳米粒子的透明涂层,可以防止塑料

现代交换技术课后答案

第一章 1.全互连式网络有何特点?为什么通信网不直接采用这种方式? 全互连式网络把所有终端两两相连;这种方式的缺点是:1)所需线路数量大且效率低。所需线路对数与通话用户数间的关系是:N(N-1)/2。2)选择困难。每一个用户和N-1个用户之间用线路连接,由电话机来选择需要通话的用户连线比较困难。3)安装维护困难。每个用户使用的电话机的通话导线上要焊接N-1对线,困难。 2.在通信网中引入交换机的目的是什么? 完成需要通信的用户间的信息转接,克服全互连式连接存在的问题。 3.无连接网络和面向连接网络各有何特点? a)面向连接网络用户的通信总要经过建立连接、信息传送、释放连接三个阶段;无连接网络不为用户的的通信过程建立和拆除连接。b)面向连接网络中的每一个节点为每一个呼叫选路,节点中需要有维持连接的状态表;无连接网络中的每一个节点为每一个传送的信息选路,节点中不需要维持连接的状态表。c)用户信息较长时,采用面向连接的通信方式的效率高;反之,使用无连接的方式要好一些。4.OSI参考模型分为几层?各层的功能是什么? 分为7层:物理层:提供用于建立、保持和断开物理接口的条件,以保证比特流的透明传输。数据链路层:数据链路的建立、维持和拆除;分组信息成帧;差错控制功能;流量控制功能。网络层:寻址、路由选择、数据包的分段和重组以及拥塞控制。运输层:1)建立、拆除和管理端系统的会话连接2)进行端到端的差错纠正和流量控制。会

话层:1)会话连接的建立与拆除;2)确定会话类型(两个方向同时进行,交替进行,或单向进行)3)差错恢复控制。表示层:数据转换:编码、字符集和加密转换;格式转换:数据格式修改及文本压缩;语法选择:语法的定义及不同语言之间的翻译。应用层:提供网络完整透明性,用户资源的配置,应用管理和系统管理,分布式信息服务及分布式数据库管理等。 5.网络分层模型的意义是什么?各层设计对交换机有什么益处? 意义是为异种计算机互联提供一个共同的基础和标准框架,并为保持相关标准的一致性和兼容性提供共同的参考连。 6.已出现的交换方式有哪些?各有何特点? 电路交换、分组交换、ATM交换。电路交换基于同步时分复接,其要点是面向连接。分组交换是数据通信的一种交换方式。它利用存储—转发的方式进行交换。基于异步时分复接。ATM即异步传送模式,ATM 基于异步时分复接。其要点是面向连接且分组长度固定(信元)。 7.交换方式的选择应考虑哪些因素? 业务信息相关程度不同,时延要求不同,信息突发率不同 9.交换机应具有哪些基本功能?实现交换的基本成分是什么? 基本功能: (1) 接入功能:完成用户业务的集中和接入,通常由各类用户接口和中继接口完成。(2) 交换功能:指信息从通信设备的一个端口进入,从另一个端口输出。这一功能通常由交换模块或交换网络完成。(3) 信令功能:负责呼叫控制及连接的建立、监视、释放等。 (4) 其它控制功能:包括路由信息的更新和维护、计费、话务统计、

现代生物技术的发展与前景

在当今世界各国纷纷建立以基因为核心的知识产权保护,抢占21世纪国际生物技术制高点的新形势下,参加北京“国际周”现代农业高层论坛的专家呼吁,要密切关注现代农业生物技术领域日益显现的研究成果商品化、研究方式规模化和基因资源争夺白热化的趋势,在即将到来的生物世纪里,真正占据自己的位置。 农业生物技术的主要研究内容包括:增强农作物以及畜禽鱼的抗性、品质改良、提高产量和生产具有特殊用途的物质等。其中以转基因作物的研究和运用最为重要,发展最快。根据统计资料,到2000年,全世界转基因作物推广面积达4420万公顷,比1996年增长了25倍;种植转基因作物的国家从1996年的6个增加到2000年的13个。这其中美国的转基因作物种植面积最广,达到了3030万公顷,占68%;其次为阿根廷,1000万公顷,占23%;加拿大300万公顷,占7%;我国为50万公顷,占1%。根据有关专家的看法,现代农业生物技术的最新发展趋势表现为:——研究成果商品化产业化进程加速。目前,农业生物技术作为一项高新技术产业在发达国家业已形成,并处于一个高速发展时期。有关专家预测,本世纪生物技术产品在国际贸易中的份额将达到10%以上,而现代农业生物技术又将占相当的比重。世界银行下属机构预测世界范围内转基因作物产业的交易额为2000年20亿美元,2005年60亿美元,2010年200亿美元;国际农业生物技术应

用机构(ISAAA)的预测则分别为30亿美元、80亿美元和280亿美元。 ——研究方式集约化、规模化明显。在政府以及公共机构对现代农业生物技术进行投资研究的同时,众多私有企业也开始注意到这一领域将是继计算机和网络技术之后的又一个潜力巨大的经济增长点,私人公司已逐步成为农业生物技术的研究主体。以美国为例,民营机构1992年对这一领域的投资为5.95亿美元,而1999年则达到15亿美元。与此同时,世界范围内出现了生物技术企业领域的兼并和收购狂潮,并购金额从1997年的12.37亿美元陡然升至1999年的138亿美元。一些资产过百亿美元的巨型跨国公司由此形成,过去分散的研究基地也随之向集中化规模化发展。 据业内人士分析,促成公司并购的原因,一方面是为合理利用资源、降低生产成本、优化人员组合,而更重要的原因,则是因为现代农业生物技术产业是一个高技术、高投入、高风险、长周期的产业,小公司在资金、技术、以及抗风险能力上均难以独立对农业生物技术产品进行研发和推广。只有强强联手的大型现代农业生物技术企业才能有效占领市场,与其它企业抗衡。 ——基因资源争夺呈白热化。在商业利益驱使下,发达国家各主要生物技术公司对生物资源及其知识产权展开了激烈争夺,其核心就是对基因的争夺。谁掌握了基因,谁就掌握了生物技术的制高点,就掌握了未来竞争的主动权。有专家称,转基因植物技术知识产权很可能就是未来国际贸易中市场准入、贸易壁垒问题产生的主要原因。

现代生物技术产业化发展的现状与趋势

现代生物技术产业化发展的现状与趋势 摘要:综述了现代生物技术的发展现状,介绍了农业生物技术的疫苗、工业生物技术、医药生物技术及其在生物技术领域中的应用情况,介绍了生物技术领域重点攻关课题研究进展,展望了今后的发展方向。 关键词:现代生物技术产业化现状与趋势 1 前言 生物技术也称生物工程,它是在分子生物学基础上建立的、为创建新的生物类型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物。具体而言,生物工程技术包括转基因植物、动物生物技术、农作物的分子育种技术、医药生物技术、纳米生物技术、重要疾病的生物治疗等。当前,世界生物技术发展已进入大规模产业化的起始阶段,蓬勃兴起和迅猛发展的生物医药、生物农业、生物能源、生物制造、生物环保等领域,正在促使生物产业成为世界经济中继信息产业之后又一个新的主导产业[1]。 现代生物技术以20世纪70年代DNA重组技术的建立为标志,以世界上第一家生物技术公司——Gene-Tech的诞生(1976)年为纪元[2]。此后,越来越多的科学家投身于分子生物学研究领域,并取得了许多重大的进展。至此,以基因工程为核心的技术上的革命带动了现代发酵工程、酶工程、细胞工程以及蛋白质工程的发展,形成了具有划时代意义和战略价值的现代生物技术。生物技术的最大特点是具有再生性,可以循环利用生物体为操作对象,在节约原材料和能源方面有巨大的潜力,而且投资少、周期短、经济效益大,并且没有污染。他是推动经济发展、社会进步的一项关键技术,在解决人类社会面临的一系列重大问题,如粮食、健康、环境和能源方面已经取得并将取得更大进展,对促进社会经济诸领域的发展有着不可估量的影响。 2 全球现代生物技术的发展现状 产值继续增长 2013年,全球生物工程药品市场规模为2705亿美元,2014年增长至3051亿美元。基于疾病诊断和治疗对重组技术、医药生物技术以及DNA测序技术等的需求不断增加,全球生物技术市场预计以%的年复合增长率增长,至2020年全球

生物医用高分子材料的发展现状、前景和趋势

生物医用高分子材料的发展现状、前 景和趋势 据相关研究调查显示,我国生物医用高分子材料研制和生产发展迅速。随着我国开始慢慢进入老龄化社会和经济发展水平的逐步提高,植入性医疗器械的需求日益增长,对生物医用高分子材料的需求也将日益旺盛。 根据evaluate MedTech公司基于全球300家顶尖医疗器械生产商的公开数据而得出的报告《2015-2020全球医疗器械市场》预测,2020年全球医疗器械市场将达到4775亿美元,2016-2020年间的复合年均增长率为4.1%。世界医疗器械格局的前6大领域包括:诊断、心血管、影像大型设备、骨科、眼科、内窥镜,其中生物医用高分子材料在其中都得到了广泛的应用,主要体现在人工器官、医用塑料和医用高分子材料 3个领域。 1. 人工器官人工器官指的是能植入人体或能与生物组织或生物流体相接触的材料;或者说是具有天然器官组织或部件功能的材料,如人工心瓣膜、人工血管、人工肾、人工关节、人工骨、人工肌腱等,通

常被认为是植入性医疗器械。人工器官主要分为机械性人工器官、半机械性半生物性人工器官、生物性人工器官 3种。第1种是指用高分子材料仿造器官,通常不具有生物活性;第2种是指将电子技术和生物技术结合;第3种是指用干细胞等纯生物的方法,人为“制造”出器官。生物医用高分子材料主要应用在第1种人工器官中。 目前,植入性医疗器械中骨科占据约为38%的市场份额;随后是心血管领域的 36% ;伤口护理和整形外科分别为 8%左右。人工重建骨骼在骨科产品市场中占据了超过31%的市场份额,主要产品是人工膝盖,人工髋关节以及骨骼生物活性材料等,主要应用的生物医用高分子材料有聚甲基丙烯酸甲酯、高密度聚乙烯、聚砜、聚左旋乳酸、乙醇酸共聚物、液晶自增强聚乳酸、自增强聚乙醇酸等。心血管产品市场中支架占据了一半以上的市场份额,此外还有周边血管导管移植、血管通路装置和心跳节律器等。 目前各国都认识到了人工器官的重要价值,加大了研发力度,取得了一些进展。2015年,美国康奈尔大学的研究人员开发出了一种轻量级的柔性材料,并准备将其用于创建一个人工心脏。在我国,3D打印人工髋关节产品获得国家食品药品监督管理总局(CFDA)

关于生物技术在食品领域中的运用和前景

关于生物技术在食品领域中的运用和前景 摘要:在追求绿色生态环境、和谐社会建设的过程中,人们更加重视自身生活的综合质量,因此,在饮食方面更注重选择纯天然、绿色等种类,并且在购买各类食品的过程中,会十分关注其是否含有添加剂、色素等,但是以往的食品制作过程,为了使得所生产的食品的卖相更加好看,难免存在不同程度的安全问题,但随着生物技术的研发、进步以及其在食品生产等领域中的实际应用,使得这一问题能够有所缓解,可以将食品的安全性能与营养价值提升到较高的层面。对此,本文将探究有关生物技术在食品领域中的运用以及今后的发展前景。 关键词:生物技术;食品安全;绿色;价值;应用; 生物技术作为一种新兴的技术,尽管其发展的历程不是特别悠久,而且应用的领域还有待进一步扩展,但其在短暂的时间里依然取得了不错的成绩,并且获得人们的青睐,当然,其总体的发展情况与西方发达国家相比还存在较大的差距,但这更成为发展过程中的一大动力,近来,食品安全问题屡见不鲜,在某种程度上引起了人们的饮食恐慌,将生物技术科学有效的应用到食品生产等不同的领域可有效解决这一问题,下文将进行详细的分析。 一、生物技术概述 (一)概念探究 目前,人们所认同的现代生物技术发展的理论基础为分子生物学,并在其现有根基上形成的新型生物种类或新型生物机能的高新技术,综合了生物学理论知识与现代科学技术两者的优势[1]。 首先,其能够优化食品原材料的选择。即借助基因重组或DNA改良等技术将动植物等自身原有的结构发生改变,从而获得更有价值的食品材料。与此同时,

还可以有效缩短食品制作所需的时间,提高食品质量;其次,当综合运用生物技术与其他新兴技术时,可以更好的对食品安全性能进行检测。以包含基因芯片、蛋白质芯片为代表的生物芯片技术来讲,在现有生物探针的帮助下这些芯片可以参照特殊的方式进行有序排列,这样便可以形成具备反应特性的“固相载体”,当条件成熟时,那些经过荧光标记的待检测的食品与其发生反应时,便能够检测出食品的安全性能程度。 (二)特征分析 第一,实践第一的特性。尽管生物技术是在理论发展的基础上经过一步步尝试形成的,但其余其他学科知识的发展具有紧密的关系,而且其生物技术的好坏最终要在食品等行业的实际应用中才可以加以检测,目前其已经在食品生产与加工、医疗卫生保健等各方面均取得了一定的成效[2]。 第二,不确定性较大,难以有效的进行控制。利用各种菌类细菌完成食品的发酵工作已经在实际食品生产中得到了广泛的应用,但这项技术实施的一个前提要求便是“环境因素”,一旦量或某种因素把控不当,就有可能出现大规模微生物污染现象的发生,甚至可能会引发不同程度的病毒与传染性细菌的扩散(如果所用的菌类属于病毒或传染性细菌的话),那么后果将不堪设想。 第三,自身发展存在弊端。这主要是由于生物技术自身的成长历程较为短暂,还属于一门新兴技术,所以在应用过程中还存在一些弊端。例如,克隆技术、基因重组技术等确实能够带来一定的好处,但是否会出现生物入侵等突发性问题还存在很大的不确定性[3]。 二、食品领域的发展现状与问题分析 (一)发展现状探究

相关文档
相关文档 最新文档