文档视界 最新最全的文档下载
当前位置:文档视界 › 最新高中数学数列求和练习题

最新高中数学数列求和练习题

最新高中数学数列求和练习题
最新高中数学数列求和练习题

1.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10之值为

( )

A .31

B .120

C .130

D .185 解析:a 1+…+a k +…+a 10=240-(2+…+2k +…+20)=240-(2+20)×102=240-110=130.

答案:C

2.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =321

64,

则项数n 等于 ( )

A .13

B .10

C .9

D .6 解析:∵a n =1-1

2

n ,

∴S n =(1-12)+(1-14)+(1-18)+…+(1-1

2n )

=n -(12+14+18+…+1

2n )

=n -12[1-(12)n ]1-

12

=n -1+12n ,

由S n =32164=n -1+1

2n ,

观察可得出n =6. 答案:D

3.已知数列{a n }中,a 1=2,点(a n -1,a n )(n >1,且n ∈N *)满足

y =2x -1,则a 1+a 2+…+a 10=________.

解析:∵a n =2a n -1-1,∴a n -1=2(a n -1-1) ∴{a n -1}为等比数列,则a n =2n -1+1, ∴a 1+a 2+…+a 10=10+(20+21+…+29) =10+1-210

1-2=1 033.

答案:1 033

4.设函数f ()=m +的导函数′(x )=2x +1,则数列

{

1

f (n )}(n ∈N *)的前n 项和是 ( ) A.

n n +1

B.

n +2n +1

C.

n

n -1

D.

n +1n

解析:f ′(x )=mx m -1+a =2x +1,∴a =1,m =2, ∴f (x )=x (x +1),

1

f (n )=1

n (n +1)=1

n -1

n +1,用裂项法求和得S n =n

n +1. 答案:A 5.数列a n =

1

n (n +1)

,其前n 项之和为9

10

,则在平面直角坐标系

中,直线(n +1)x +y +n =0在y 轴上的截距为 ( )

A .-10

B .-9

C .10

D .9

解析:数列的前n 项和为

1

1×2+1

2×3+…+1

n (n +1)=1-1

n +1=n n +1=9

10, 所以n =9,

于是直线(n +1)x +y +n =0即为10x +y +9=0, 所以在y 轴上的截距为-9. 答案:B

6.在数列{a n }中,a n =

1n +1+2n +1+…+n n +1,又b n =2

a n ·a n +1

求数列{b n }的前n 项的和. 解:由已知得:a n =

1

n +1(1+2+3+…+n )=n

2, b n =2

n 2·n +12

=8(1

n -1n +1

),

∴数列{b n }的前n 项和为

S n =8[(1-12)+(12-13)+(13-14)+…+(1n -1n +1)]

=8(1-1

n +1)=8n

n +1.

7.求和:S n =1a +2a 2+3a 3+…+a

n .

解:当a =1时,S n =1+2+3+…+n =n (n +1)

2

当a ≠1时,S n =1a +2a 2+3a 3+…+n

a

n ,

1

a S n =1a 2+2a 3+3a 4+…+n -1a n +n

a

n +1, 两式相减得,(1-1

a )S n =1

a +

1a

2

+1a

3

+…+

1a n

n a n +1

1a [1-(1a

)n ]

1-

1a

n

a n +1

即S n =

a (a n -1)-n (a -1)

a n (a -1)2

∴S n

=?

??

??

n (n +1)2,a =1,a (a n

-1)-n (a -1)

a n

(a -1)2

,a ≠1.

8.(2010·昌平模拟)设数列{a n }满足a 1+3a 2+32a 3+…+3n -

1

a n =n

3

,n ∈N *.

(1)求数列{a n }的通项公式;

(2)设b n =n

a n

,求数列{b n }的前n 项和S n .

解:(1)∵a 1+3a 2+32a 3+ (3)

-1

a n =

n

3

∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -1

3

.

①-②得3n -1a n =13,a n =1

3

n .

在①中,令n =1,得a 1=13,适合a n =1

3n ,

∴a n =1

3

n .

(2)∵b n =n

a n

,∴b n =n 3n .

∴S n =3+2×32+3×33+…+n 3n ,

∴3S n =32+2×33+3×34+…+n 3n +1.④ ④-③得2S n =n 3n +1-(3+32+33+…+3n ), 即2S n =n 3n +1-3(1-3n )

1-3,

∴S n =(2n -1)3n +14+34

.

9.(2010·长郡模拟)数列{n },已知对任意正整数n ,a 1+a 2+a 3

+…+a n =2n -1,则a 21+a 22+a 23+…+a 2n 等于

( )

A .(2n -1)2 B.13(2n -1) C.1

3(4n -1)

D .4n -1

解析:∵a 1+a 2+a 3+…+a n =2n -1, ∴a 1+a 2+a 3+…+a n -1=2n -1-1,

∴a n =2n -2n -1=2n -1,∴a 2n =4

n -1, ∴a 21+a 22+a 23+…+a 2n =

1-4n 1-4=1

3(4n -1). 答案:C

10.已知数列{a n }的通项公式为a n =log 2

n +1

n +2

(n ∈N *),设其前n

项和为S n ,则使S n <-5成立的自然数n ( )

A .有最大值63

B .有最小值63

C .有最大值32

D .有最小值32 解析:法一:依题意有a n =log 2

n +1

n +2

=log 2(n +1)-log 2(n +2),所以S n =log 22-log 23+log 23-log 24+…+log 2(n +1)-log 2(n +2)=log 22-log 2(n +2)=1-log 2(n +2),令1-log 2(n +2)<-5,解得n >62,故使S n <-5成立的自然数

n 有最小值63.

法二:S n =log 223+log 234+…+log 2n +1n +2

=log 2(23×34×…×n +1n +2)=log 22

n +2,

所以由S n <-5,得log 2

2

n +2

<-5,解得n >62,

故使S n <-5成立的自然数n 有最小值63. 答案:B

11.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,

若a 1=2,{a n }的“差数列”的通项为2n ,则数列{a n }的前n 项和S n =________. 解析:∵a n +1-a n =2n ,

∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1

=2n -1+2n -2+…+22+2+2 =2-2n 1-2+2=2n -2+2=2n . ∴S n =2-2n +1

1-2=2n +1-2.

答案:2n +1-2

12.(文)(2009·湖北高考改编)已知数列{a n }的前n 项和S n =-a n -(1

2

)n -1+2(n ∈N *).

(1)令b n =2n a n ,求证数列{b n }是等差数列,并求数列{a n }

的通项公式;

(2)令c n =n +1

n

a n ,求T n =c 1+c 2+…+c n 的值.

解:(1)在S n =-a n -(1

2

)n -1+2中,

令n =1,可得S 1=-a 1-1+2=a 1,即a 1=1

2.

当n ≥2时,S n -1=-a n -1-(1

2)n -2+2,

∴a n =S n -S n -1=-a n +a n -1+(1

2

)n -1,

∴2a n =a n -1+(1

2)n -1,即2n a n =2n -1a n -1+1.

∵b n =2n a n ,∴b n =b n -1+1, 即当n ≥2时,b n -b n -1=1. 又b 1=2a 1=1,

∴数列{b n }是首项和公差均为1的等差数列. 于是b n =1+(n -1)·1=n =2n a n , ∴a n =

n

2n

.

(2)由(1)得c n =n +1n a n =(n +1)(1

2)n ,所以

T n =2×

12+3×(

12

)2+4×(

12

)3+…+(n +1)·(

12

)n ,

12

T n =2×(

12

)2+3×(

12

)3+…+n ·(

12

)n +(n +1)·(

12

)n +1,

由①-②得12T n =1+(12)2+(12)3+…+(12)n -(n +1)·(1

2

)n +1

=1+14[1-(1

2)n -1]1-

12-(n +1)(12)n +1

=32-n +32n +1. ∴T n =3-

n +3

2n

.

(理)已知数列{a n }是首项为a 1=1

4,公比q =1

4的等比数列,设

b n +2=3log 1

4a n (n ∈N *),数列{c n }满足c n =a n ·b n .

(1)求证:{b n }是等差数列; (2)求数列{c n }的前n 项和S n ;

(3)若c n ≤1

4m 2+m -1对一切正整数n 恒成立,求实数m 的

取值范围.

解:(1)证明:由题意知,a n =(1

4)n (n ∈N *).

∵b n =3log 14

a n -2,

b 1=3log 14

a 1-2=1,

∴b n +1-b n =3log 14

a n +1-3log 14

a n =3log 1

4

a n +1a n

=3log 14

q =

3,

∴数列{b n }是首项为b 1=1,公差为d =3的等差数列. (2)由(1)知,a n =(1

4)n ,b n =3n -2(n ∈N *),

∴c n =(3n -2)×(1

4

)n ,(n ∈N *),

∴S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(1

4)n -1+(3n -

2)×(1

4

)n ,

于是1

4S n =1×(

14)2+4×(

14)3+7×(

14

)4+…+(3

n -5)×(1

4

)n +

(3n -2)×(1

4

)n +1,

两式相减得 34

S n =14

+3[(14

)2+(14

)3+…+(14

)n ]-(3n -2)×(14

)n +1=1

2

(3n +2)×(1

4

)n +1,

∴S n =23-3n +23·(14

)n (n ∈N *).

(3)∵c n +1-c n =(3n +1)·(14)n +1-(3n -2)·(1

4)n

=9(1-n )·(1

4)n +1,(n ∈N *).

∴当n =1时,c 2=c 1=1

4

当n ≥2时,c n +1<c n ,即c 1=c 2>c 3>c 4>…>c n , ∴c n 取得的最大值是1

4

.

又c n ≤1

4m 2+m -1对一切正整数n 恒成立,

∴14m 2+m -1≥1

4,即m 2+4m -5≥0, 得m ≥1或m ≤-5.

高中数学数列测试题附答案与解析

第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a -的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9 二、填空题 11.设f (x )=221 +x ,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+… +f (5)+f (6)的值为 . 12.已知等比数列{a n }中,

(完整版)放缩法典型例题

放缩法典型例题 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴.3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学数列练习题

数列经典解题思路 求通项公式 一、观察法 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999,… (2) K ,1716 4,1093,542,211 (3) K ,52,2 1,32 ,1 解:(1)110-=n n a (2);122++=n n n a n (3);12 +=n a n 二、公式法 例1. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是 ( D ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 例2. 已知等比数列{}n a 的首项11=a , 公比10<

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高中数学等差数列求和公式分析

高中数学等差数列求和公式分析 在数学的学习中等差求和公式是学习的重点的内容,而且哟U币极爱哦多的公式需要学生记忆,下面本人的本人将为大家带来等差求和公式的介绍,希望能够帮助到大家。 高中数学等差数列求和公式 公式Sn=(a1+an)n/2 Sn=na1+n(n-1)d/2;(d为公差) Sn=An2+Bn;A=d/2,B=a1-(d/2) 和为Sn 首项a1 末项an 公差d 项数n 通项 首项=2×和÷项数-末项 末项=2×和÷项数-首项 末项=首项+(项数-1)×公差 项数=(末项-首项)(除以)/公差+1 公差=如:1+3+5+7+……99公差就是3-1 d=an-a 性质: 若m、n、p、q∈N ①若m+n=p+q,则am+an=ap+aq ②若m+n=2q,则am+an=2aq 注意:上述公式中an表示等差数列的第n项。 高中数学一次函数知识点

一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k≠0) 二、一次函数的性质: 1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限;

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

高中数学必修5《等差数列求和公式》教学设计

《等差数列求和公式》教学设计 知识与技能目标:掌握等差数列前n 项和公式,能较熟练应用等差数列前n 项和公式求和。 过程与方法目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 情感、态度与价值观目标:体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。教学重点与难点:等差数列前n 项和公式是重点。获得等差数列前n 项和公式推导的思路是难点。 教学策略:用游戏的方法调动学生的积极性教学用具:flash ,ppt课堂系统部分:整节课分为三个阶段: 问题呈现阶段探究发现阶段公式应用阶段 问题呈现1:有10袋金币,在这10袋中有一袋金币是假的,已知,真金币的重量是2两/个, 而假币的重量是1两/个。 问:只给一个电子秤,而且只能秤一次,找出哪一袋金币是假的? S = 10 + 9 + + 2 + 1 2S =11+11+ +11+11问题1:1+2+ +8+9+10=? S =1+2+ +9+102S =11?10=110110S ==552动画演示: 由刚刚的计算我们已经知道,从10袋里面拿出 的金币数共55个,如果这10袋都是真币,那么 电子秤显示的数据应该是: (两) 55?2= 110 而实际显示的的数字是:102(两) 可见比全是真币时少了8两 又因为,每个假币比真币轻1两 所以,可知在电子秤上有8个假币 那么,第8袋全是假币。 设计说明:

这道题的设计新颖之处在于摆脱了以往以高斯算法引出的模式,用一道智力题,激发学生的学习兴趣。 动画的演示更能较直观地表现出本题的思维方式 承上启下,探讨高斯算法. 问题呈现2: 泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国 皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大 理石砌建而成的主体建筑叫人心醉神迷,成为世界七 大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。 传说陵寝中有一个三角形图案,以相同大小的圆宝 石镶饰而成,共有100层(见左图),奢靡之程度, 可见一斑。 你知道这个图案一共花了多少宝石吗? 2:图案中,第1层到第21层一共有多少颗宝石? 也就是联想到“首尾配对”摆出几何图形, , 如何将图与高斯的逆序相加结合起来, 让 , 将两个三角形拼成平行四边形. (1+21) ?21s = 212 设计说明: ?源于历史,富有人文气息. ?图中算数,激发学习兴趣. 这一个问题旨在让学生初步形成数形结合的思想, 这是在高中数学学习中非常重要的思想方法. 借助图形理解逆序相加, 也为后面公式的推导打下基础. 探究发现: 问题3:如何求等差数列{a n }的前n 项和S n ?

高中数学《数列》测试题

11会计5班《数列》数学测试卷2012.4 一、选择题(2'1836'?=) 1.观察数列1,8,27,x ,125,216,… 则x 的值为( ) A .36 B .81 C .64 D .121 2.已知数列12a =,12n n a a +=+,则4a 的值为( ) A .12 B .6 C .10 D .8 3.数列1,3,7,15,… 的通项公式n a 等于( ) A .1 2 n - B .21n - C .2n D .21n + 4.等差数列{n a }中,16a =,418a =,则公差d 为( ) A .4 B .2 C .—3 D .3 5.128是数列2,4,8,16,… 的第( )项 A .8 B .5 C .7 D .6 6.等差数列{n a }中,12a =,327S =,则3a 的值为( ) A .16 B .20 C .11 D .7 7.在等差数列中,第100项是48,公差是 1 3 ,首项是( ) A .5 B .10 C .15 D .20 8.在等差数列{n a }中,1234525a a a a a ++++=,则3a 为( ) A .3 B .4 C .5 D .6 9.已知数列0,0,0,0,… 则它是( ) A .等差数列非等比数列 B .等比数列非等差数列 C .等差数列又等比数列 D .非等差数列也非等比数列 10.在等比数列{n a }中,4520a a ?=,则27a a ?为( ) A .10 B .15 C .20 D .25 班级 姓名 学号 11.等比数列1,2,4,… 的第5项到第11项的和等于( ) A .2030 B .2033 C .2032 D .2031 12.等差数列中,第1项是 —8,第20项是106,则第20项是( ) A .980 B .720 C .360 D .590 13.在等比数列中,12a =,3q =,则4S =( ) A .18 B .80 C .—18 D .—80 14.三个正数成等差数列,其和为9,它们依次加上1,3,13后成为等比数列,则这三个数为( ) A .6,3,0 B .1,3,5 C .5,3,1 D .0,3,6 15.在等比数列中,第5项是 —1,第8项是 — 1 8 ,第13项是( ) A .13 B .1256- C .78- D .1128 - 16.若a ,b , c 成等比数列,则函数2 ()f x ax bx c =++的图像与x 轴的交点个数为( ) A .2 B .0 C .1 D .不确定 17.某农场计划第一年产量为80万斤,以后每年比前一年多种20%,第五年产量约为( ) A .199万斤 B .595万斤 C .144万斤 D .166万斤 18.把若干个苹果放到8个箱子中,每个箱子不能不装,要使每个箱子中所装的苹果个数互不相同,至少需要苹果( ) A .35个 B .36个 C .37个 D .38个 二、填空题(3'824'?=) 19.数列1,32- ,54,78-,916 ,… 的通项公式是 20.数列2,7,14,23,( ),47,… 并写出数列的通项公式

等差数列求和及练习题(整理)

等差数列求和 引例:计算1+2+3+4+……+97+98+99+100 一、有关概念: 像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。这个固定的数就叫做“公差”。 二、有关公式: 和=(首项+末项)×项数÷2 末项=首项+公差×(项数-1) 公差=(末项-首项)÷(项数-1) 项数=(末项-首项)÷公差+1 三、典型例题: 例1、聪明脑筋转转转: 判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。 判断首项末项公差项数 (1)1、2、4、8、16、32. ()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()() 例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P27例2)

(看ppt,推出公式) 例3、计算1+3+5+7+……+35+37+39 练习2:计算下列各题 (1)6+10+14+18+22+26+30 (3)1+3+5+7+……+95+97+99 (2)3+15+27+39+51+63 (4)2+4+6+8+……+96+98+100 (3)已知一列数4,6,8,10,…,64,共有31个数,这个数列的和是多少? 例5、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。这堆圆木共有多少根?(博易P27例3)(看ppt) 练习3: 丹丹学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了26个。丹丹在这些天中共学会了多少个单词? 等差数列求和练习题 一、判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项 及公差写出来,如果不是请打“×”。 判断首项末项公差 1. 2、4、6、8、10、12、14、16.()()()() 2. 1、3、6、8、9、11、12、14. ()()()() 3. 5、10、15、20、25、30、35. ()()()() 4. 3、6、8、9、12、16、20、26.()()()() 二、请计算下列各题。 (1)3+6+9+12+15+18+21+24+27+30+33 (2)4+8+12+16+20+24+28+32+36+40 (3)求3、6、9、12、15、18、21、这个数列各项相加的和。 (4)2+4+6+8+……+198+200 ★(5)求出所有三位数的和。 (其他作业:练习册B 1题、4题、6题)

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

高中数学数列测试题(免费下载)

数学高中必修5习题 第二章 数列 1.{a n }是首项a 1=1,公差为d =3的等差数列,如果a n =2 005,则序号n 等于( ). A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=( ). A .33 B .72 C .84 D .189 3.如果a 1,a 2,…,a 8为各项都大于零的等差数列,公差d ≠0,则( ). A .a 1a 8>a 4a 5 B .a 1a 8<a 4a 5 C .a 1+a 8<a 4+a 5 D .a 1a 8=a 4a 5 4.已知方程(x 2-2x +m )(x 2-2x +n )=0的四个根组成一个首项为 41的等差数列,则 |m -n |等于( ). A .1 B .43 C .21 D . 8 3 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ). A .81 B .120 C .168 D .192 6.若数列{a n }是等差数列,首项a 1>0,a 2 003+a 2 004>0,a 2 003·a 2 004<0,则使前n 项和S n >0成立的最大自然数n 是( ). A .4 005 B .4 006 C .4 007 D .4 008 7.已知等差数列{a n }的公差为2,若a 1,a 3,a 4成等比数列, 则a 2=( ). A .-4 B .-6 C .-8 D . -10 8.设S n 是等差数列{a n }的前n 项和,若 35a a =95,则59S S =( ). A .1 B .-1 C .2 D .2 1 9.已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,则 212b a a 的值是( ). A .21 B .-21 C .-21或21 D .4 1 10.在等差数列{a n }中,a n ≠0,a n -1-2n a +a n +1=0(n ≥2),若S 2n -1=38,则n =( ). A .38 B .20 C .10 D .9

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

高中数学数列求和

第四节数列求和 [备考方向要明了] 考什么怎么考 熟练掌握等差、等比数 列的前n项和公式. 1.以选择题或填空题的形式考查可转化为等差或等比数列的数列 求和问题,如2012年新课标全国T16等. 2.以解答题的形式考查利用错位相减法、裂项相消法或分组求和法 等求数列的前n项和,如2012年江西T16,湖北T18等. [归纳·知识整合] 数列求和的常用方法 1.公式法 直接利用等差数列、等比数列的前n项和公式求和 (1)等差数列的前n项和公式: S n= n(a1+a n) 2=na1+ n(n-1) 2d; (2)等比数列的前n项和公式: S n= ?? ? ??na1,q=1, a1-a n q 1-q = a1(1-q n) 1-q ,q≠1. 2.倒序相加法 如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.3.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.4.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[探究] 1.应用裂项相消法求和的前提条件是什么? 提示:应用裂项相消法求和的前提条件是数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后抵消. 2.利用裂项相消法求和时应注意哪些问题?

提示:(1)在把通项裂开后,是否恰好等于相应的两项之差; (2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项. 5.分组求和法 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050. [自测·牛刀小试] 1. 11×4+14×7+17×10+…+1 (3n -2)(3n +1) 等于( ) A.n 3n +1 B.3n 3n +1 C .1-1 n +1 D .3-1 3n +1 解析:选A ∵1(3n -2)(3n +1)=13????1 3n -2-13n +1, ∴ 11×4+14×7+17×10+…+1 (3n -2)(3n +1) =13?? ? ???1-14+????14-17+???? 17-110+…+ ??????13n -2-13n +1=13????1-13n +1=n 3n +1 . 2.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =321 64,则项数n 等于( ) A .13 B .10 C .9 D .6 解析:选D ∵a n =2n -12n =1-1 2n , ∴S n =????1-12+????1-122+…+????1-1 2n =n -????12+12 2+ (12)

相关文档
相关文档 最新文档