文档视界 最新最全的文档下载
当前位置:文档视界 › 2020届高考数学一轮复习通用版讲义数列求和

2020届高考数学一轮复习通用版讲义数列求和

2020届高考数学一轮复习通用版讲义数列求和
2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和

一、基础知识批注——理解深一点

1.公式法

(1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d

2

. 推导方法:倒序相加法.

(2)等比数列{a n }的前n 项和S n =?????

na 1

,q =1,a 1(1-q n )1-q ,q ≠1.

推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =

n (n +1)

2

; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法

(1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.

(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.

(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n

(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.

二、基础小题强化——功底牢一点

(一)判一判(对的打“√”,错的打“×”)

(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1

1-q

.( ) (2)当n ≥2时,

1n 2

-1=12?

???1

n -1-1n +1.( )

(3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

(4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( )

答案:(1)√ (2)√ (3)× (4)√ (二)选一选

1.已知等差数列{a n }的前n 项和为S n ,若S 3=9,S 5=25,则S 7=( ) A .41 B .48 C .49

D .56

解析:选C 设S n =An 2+Bn ,

由题知?

????

S 3=9A +3B =9,S 5=25A +5B =25,解得A =1,B =0,

∴S 7=49.

2.在数列{a n }中,a n =1n (n +1)

,若{a n }的前n 项和为2 019

2 020,则项数n 为( )

A .2 016

B .2 017

C .2 018

D .2 019

解析:选D 因为a n =

1n (n +1)=1n -1

n +1

所以S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 019

2 020,所以n =2 019.

3.数列{1+2n -

1}的前n 项和为( )

A .1+2n

B .2+2n

C .n +2n -1

D .n +2+2n

解析:选C 由题意得a n =1+2n -

1, 所以S n =n +1-2n

1-2=n +2n -1.

(三)填一填

4.数列{a n }的前n 项和为S n ,已知S n =1-2+3-4+…+(-1)n -

1·n ,则S 17=________.

解析:S 17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.

答案:9

5.已知数列{a n }的通项公式为a n =?

????

11-2n ,n ≤5,2n -11,n >5,则{a n }的前10项和S 10=________.

解析:S 10=5×9+12×5×4×(-2)+5×1+1

2×5×4×2=50.

答案:50

方法一 分组转化法求和

[典例] 已知数列{a n }的前n 项和S n =n 2+n

2,n ∈N *.

(1)求数列{a n }的通项公式;

(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和. [解] (1)当n =1时,a 1=S 1=1;

当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)

2=n .

又a 1=1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n . 记数列{b n }的前2n 项和为T 2n ,

则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2

=22n +

1-2,

B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +

1+n -2.

[解题技法]

1.分组转化求和的通法

数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前n 项和的数列求和.

2.分组转化法求和的常见类型

[题组训练]

1.已知数列{a n }的通项公式是a n =2n -????12n

,则其前20项和为( )

A .379+1

220

B .399+1

220

C .419+1

2

20

D .439+

1220

解析:选C 令数列{a n }的前n 项和为S n ,则S 20=a 1+a 2+a 3+…+a 20=2(1+2+3+…+20)-????12+122+123+…+1220=420-????1-1220=419+1

2

20. 2.(2019·资阳诊断)已知数列{a n }中,a 1=a 2=1,a n +2=?????

a n +2,n 是奇数,2a n

,n 是偶数,则数列{a n }

的前20项和为( )

A .1 121

B .1 122

C .1 123

D .1 124

解析:选C 由题意可知,数列{a 2n }是首项为1,公比为2的等比数列,数列{a 2n -1}是首项为1,公差为2的等差数列,故数列{a n }的前20项和为1×(1-210)1-2+10×1+10×9

2×2

=1 123.选C.

方法二 裂项相消法求和 考法(一) 形如a n =

1

n (n +k )

[典例] (2019·南宁摸底联考)已知等差数列{a n }满足a 3=7,a 5+a 7=26. (1)求等差数列{a n }的通项公式; (2)设c n =

1

a n a n +1

,n ∈N *,求数列{c n }的前n 项和T n . [解] (1)设等差数列的公差为d ,

则由题意可得????? a 1+2d =7,2a 1+10d =26,解得?????

a 1=3,d =2.

所以a n =3+2(n -1)=2n +1. (2)因为c n =

1a n a n +1=1

(2n +1)(2n +3)

, 所以c n =12???

?1

2n +1-12n +3,

所以T n =12????13-15+15-17+…+12n +1-12n +3=12????1

3-12n +3=

n 6n +9. 考法(二) 形如a n =

1

n +k +n

[典例] 已知函数f (x )=x α的图象过点(4,2),令a n =1

f (n +1)+f (n ),n ∈N *.记数列{a n }

的前n 项和为S n ,则S 2 019=( )

A. 2 018-1

B. 2 019-1

C. 2 020-1

D. 2 020+1

[解析] 由f (4)=2可得4α=2,解得α=1

2,

则f (x )=x 1

2

. ∴a n =

1f (n +1)+f (n )=1

n +1+n

=n +1-n ,

S 2 019=a 1+a 2+a 3+…+a 2 019=(2-1)+(3-2)+(4-3)+…+( 2 019-2 018)+( 2 020- 2 019)= 2 020-1. [答案] C

[解题技法]

1.用裂项法求和的裂项原则及消项规律

哪些项,避免遗漏.

2.常见的拆项公式 (1)1n (n +1)=1n -1n +1

; (2)1(2n -1)(2n +1)=12????1

2n -1-12n +1;

(3)

1n +n +1

=n +1-n ;

(4)2n (2n -1)(2n +1

-1)=12n -1-1

2n +1-1

.

分式差分最常见,指数根式来镶嵌; 取长补短巧改变,裂项求和公式算.

[题组训练]

1.(口诀第1、4句)在等差数列{a n }中,a 3+a 5+a 7=6,a 11=8,则数列???

??

?

1a n +3·

a n +4的前n 项和为( )

A.n +1n +2

B.n

n +2

C.n n +1

D.2n n +1

解析:选C 因为a 3+a 5+a 7=6, 所以3a 5=6,a 5=2,又a 11=8, 所以等差数列{a n }的公差d =

a 11-a 5

11-5

=1, 所以a n =a 5+(n -5)d =n -3, 所以

1a n +3·a n +4=1n (n +1)=1n -1

n +1

因此数列??????1a n +3·a n +4的前n 项和为1-12+12-13+…+1n -1n +1=1-1

n +1=n n +1,故选

C.

2.(口诀第2、4句)各项均为正数的等比数列{a n }中,a 1=8,且2a 1,a 3,3a 2成等差数列. (1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =

1

n log 2a n

,求{b n }的前n 项和S n .

解:(1)设等比数列{a n }的公比为q (q >0). ∵2a 1,a 3,3a 2成等差数列,

∴2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q , ∴2q 2-3q -2=0,解得q =2或q =-1

2(舍去),

∴a n =8×2n -

1=2n +

2.

(2)由(1)可得b n =

1n log 22n +2=1n (n +2)=12?

???1

n -1n +2, ∴S n =b 1+b 2+b 3+…+b n

=1

2????1-13+12-14+13-15+…+1n -1n +2 =1

2????1+12-1n +1-1n +2 =34-12????1

n +1+1n +2 =34-2n +32(n +1)(n +2). 方法三 错位相减法求和

[典例] (2017·山东高考)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;

(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列?

???

??

b n a n 的前n

项和T n .

[解] (1)设{a n }的公比为q ,

由题意知:a 1(1+q )=6,a 21q =a 1q 2

.

又a n >0,解得a 1=2,q =2, 所以a n =2n . (2)由题意知, S 2n +1=

(2n +1)(b 1+b 2n +1)

2

=(2n +1)b n +1,

又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.

令c n =b n

a n

,则c n =2n +12n ,

因此T n =c 1+c 2+…+c n =32+522+7

23+…+2n -12n -1+2n +12n ,

又12T n =322+523+7

24+…+2n -12n +2n +12n +1, 两式相减得

12T n =32+????12+1

22+…+12n -1-2n +12n +1=32+1-????12n -1-2n +12n +1=52-2n +52n +1, 所以T n =5-2n +5

2n

.

[变透练清]

1.(变结论)若本例中a n ,b n 不变,求数列{a n b n }的前n 项和T n . 解:由本例解析知a n =2n ,b n =2n +1, 故T n =3×21+5×22+7×23+…+(2n +1)×2n , 2T n =3×22+5×23+7×24+…+(2n +1)×2n +

1,

上述两式相减,得,-T n =3×2+2×22+2×23+…+2×2n -(2n +1)2n +

1

=6+8(1-2n -

1)1-2

-(2n +1)2n +

1

=(1-2n )2n +

1-2

得T n =(2n -1)×2n +

1+2.

2.已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.

(1)求{a n }和{b n }的通项公式; (2)求数列{a 2n b n }的前n 项和(n ∈N *).

解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.

由已知b2+b3=12,得b1(q+q2)=12,

而b1=2,所以q2+q-6=0.

因为q>0,解得q=2,所以b n=2n.

由b3=a4-2a1,可得3d-a1=8.①

由S11=11b4,可得a1+5d=16.②

联立①②,解得a1=1,d=3,

由此可得a n=3n-2.

所以{a n}的通项公式为a n=3n-2,{b n}的通项公式为b n=2n. (2)设数列{a2n b n}的前n项和为T n,由a2n=6n-2,有

T n=4×2+10×22+16×23+…+(6n-2)×2n,

2T n=4×22+10×23+16×24+…+(6n-8)×2n+(6n-2)×2n+1,上述两式相减,得

-T n=4×2+6×22+6×23+…+6×2n-(6n-2)×2n+1

=12×(1-2n)

1-2

-4-(6n-2)×2n+1

=-(3n-4)2n+2-16,

得T n=(3n-4)2n+2+16.

所以数列{a2n b n}的前n项和为(3n-4)2n+2+16.

[解题技法]错位相减法求和的4个步骤

[易误提醒]

(1)两式相减时最后一项因为没有对应项而忘记变号.

(2)对相减后的和式的结构认识模糊,错把中间的n-1项和当作n项和.

(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比q=1和q≠1两种情况求解.

[课时跟踪检测]

A级——保大分专练

1.数列{a n }的通项公式为a n =1n +n -1

,若该数列的前k 项之和等于9,则k =( )

A .80

B .81

C .79

D .82

解析:选B a n =1

n +n -1

=n -n -1,故S n =n ,令S k =k =9,解得k =81,

故选B.

2.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12

D .-15

解析:选A a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8+a 9+a 10=-1+4-7+10-13+16-19+22-25+28=5×3=15,故选A.

3.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列?

???

??

1a n 的

前5项和为( )

A.15

8或5 B.31

16或5

C.3116

D.158

解析:选C 设{a n }的公比为q ,显然q ≠1,由题意得9(1-q 3)1-q =1-q 6

1-q ,所以1+q 3=9,

得q =2,所以????

??1a n 是首项为1,公比为1

2的等比数列,前5项和为1-????125

1-12

=3116.

4.在等差数列{a n }中,a 4=5,a 7=11.设b n =(-1)n ·a n ,则数列{b n }的前100项之和S 100

=( )

A .-200

B .-100

C .200

D .100

解析:选D 设数列{a n }的公差为d ,由题意可得????? a 1+3d =5,a 1+6d =11??

????

a 1=-1,d =2?a n =

2n -3?b n =(-1)n (2n -3)?S 100=(-a 1+a 2)+(-a 3+a 4)+…+(-a 99+a 100)=50×2=100,故选D.

5.已知T n 为数列????

??

2n

+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为

( )

A .1 026

B .1 025

C .1 024

D .1 023

解析:选C ∵2n +12n =1+????12n

, ∴T n =n +1-12n ,

∴T 10+1 013=11-1210+1 013=1 024-1

2

10, 又m >T 10+1 013, ∴整数m 的最小值为1 024.

6.已知数列:112,214,318,…,????n +12n ,…,则其前n 项和关于n 的表达式为________. 解析:设所求的前n 项和为S n ,则

S n =(1+2+3+…+n )+????12+14+…+1

2n =n (n +1)2+12??

??

1-12n 1-12=n (n +1)2-12

n +1. 答案:

n (n +1)2-1

2

n +1 7.(2017·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,a 3=3,S 4=10,则∑k =1

n

1

S k

=________.

解析:设等差数列{a n }的首项为a 1,公差为d ,

依题意有????? a 1+2d =3,4a 1+6d =10,解得?????

a 1=1,

d =1,

所以S n =

n (n +1)2,1S n =2

n (n +1)=2???

?1n -1n +1, 因此∑k =1

n 1S k =2????1-12+12-13+…+1n -1n +1=2n

n +1.

答案:2n

n +1

8.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 018=________. 解析:∵数列{a n }满足a 1=1,a n +1·a n =2n ,① ∴n =1时,a 2=2,n ≥2时,a n ·a n -1=2n -

1,②

由①÷②得a n +1a n -1

=2,

∴数列{a n }的奇数项、偶数项分别成等比数列, ∴S 2 018=1-21 0091-2+2(1-21 009)

1-2=3·21 009-3.

答案:3·21 009-3

9.(2019·成都第一次诊断性检测)已知等差数列{a n }的前n 项和为S n ,a 2=3,S 4=16,

n ∈N *.

(1)求数列{a n }的通项公式; (2)设b n =

1

a n a n +1

,求数列{b n }的前n 项和T n . 解:(1)设数列{a n }的公差为d , ∵a 2=3,S 4=16, ∴a 1+d =3,4a 1+6d =16, 解得a 1=1,d =2. ∴a n =2n -1. (2)由题意知,b n =

1(2n -1)(2n +1)=12?

???1

2n -1-12n +1,

∴T n =b 1+b 2+…+b n

=1

2????????1-13+????13-15+…+????12n -1-12n +1 =1

2????1-12n +1 =n

2n +1

. 10.(2018·南昌摸底调研)已知数列{a n }的前n 项和S n =2n +

1-2,记b n =a n S n (n ∈N *). (1)求数列{a n }的通项公式; (2)求数列{b n }的前n 项和T n . 解:(1)∵S n =2n +

1-2,

∴当n =1时,a 1=S 1=21+

1-2=2;

当n ≥2时,a n =S n -S n -1=2n +

1-2n =2n .

又a 1=2=21,∴a n =2n .

(2)由(1)知,b n =a n S n =2·4n -2n +

1,

∴T n =b 1+b 2+b 3+…+b n =2(41+42+43+…+4n )-(22+23+…+2n +1

)=2×

4(1-4n )

1-4

-4(1-2n )1-2

=23·4n +1-2n +

2+43.

B 级——创高分自选

1.(2019·潍坊统一考试)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *). (1)证明数列{a n }为等比数列,并求a n ;

(2)若λ=4,b n =?

????

a n ,n 为奇数,log 2a n ,n 为偶数(n ∈N *),求数列{

b n }的前2n 项和T 2n .

解:(1)∵S n =2a n -λ,当n =1时,得a 1=λ,

当n ≥2时,S n -1=2a n -1-λ, ∴S n -S n -1=2a n -2a n -1, 即a n =2a n -2a n -1,∴a n =2a n -1,

∴数列{a n }是以λ为首项,2为公比的等比数列, ∴a n =λ·2n -

1.

(2)∵λ=4,∴a n =4·2n -

1=2n +

1,

∴b n =?????

2n +

1

,n 为奇数,n +1,n 为偶数,

∴T 2n =22+3+24+5+26+7+…+22n +2n +1 =(22+24+…+22n )+(3+5+…+2n +1) =4-4n ·41-4+n (3+2n +1)2

=4n +

1-4

3

+n (n +2),

∴T 2n =4n +

13+n 2+2n -4

3

.

2.已知首项为2的数列{a n }的前n 项和为S n ,且S n +1=3S n -2S n -1(n ≥2,n ∈N *). (1)求数列{a n }的通项公式; (2)设b n =

n +1

a n

,求数列{b n }的前n 项和T n . 解:(1)因为S n +1=3S n -2S n -1(n ≥2), 所以S n +1-S n =2S n -2S n -1(n ≥2),

即a n +1=2a n (n ≥2),所以a n +1=2n +

1,则a n =2n ,当n =1时,也满足,故数列{a n }的

通项公式为a n =2n .

(2)因为b n =

n +12

n =(n +1)????12n , 所以T n =2×12

+3×????122+4×????123+…+(n +1)×????12n ,① 12

T n =2×????122+3×????123+4×????124+…+n ×????12n +(n +1)×????12n +1,② ①-②得12T n =2×12+????122+????123+…+????12n -(n +1)????12n +1 =12+????121+????122+????123+…+????12n -(n +1)????12n +1 =12+12???

?1-

????12n 1-1

2

-(n +1)????12n +1

=1

2+1-?

?

?

?1

2

n-(n+1)

?

?

?

?1

2

n+1

=3

2-

n+3

2n+1

.

故数列{b n}的前n项和为T n=3-n+3 2n.

高考数学第2讲数列求和及综合问题

第2讲数列求和及综合问题 高考定位 1.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求数列的和,难度中档偏下;2.在考查数列运算的同时,将数列与不等式、函数交汇渗透. 真题感悟 1.(2020·全国Ⅰ卷)数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1=________. 解析法一因为a n+2+(-1)n a n=3n-1, 所以当n为偶数时,a n+2+a n=3n-1, 所以a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41, 所以a2+a4+a6+a8+a10+a12+a14+a16=92. 因为数列{a n}的前16项和为540, 所以a1+a3+a5+a7+a9+a11+a13+a15=540-92=448.① 因为当n为奇数时,a n+2-a n=3n-1, 所以a3-a1=2,a7-a5=14,a11-a9=26,a15-a13=38, 所以(a3+a7+a11+a15)-(a1+a5+a9+a13)=80.② 由①②得a1+a5+a9+a13=184. 又a3=a1+2,a5=a3+8=a1+10,a7=a5+14=a1+24,a9=a7+20=a1+44,a11=a9+26=a1+70,a13=a11+32=a1+102,

所以a 1+a 1+10+a 1+44+a 1+102=184,所以a 1=7. 法二 同法一得a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448. 当n 为奇数时,有a n +2-a n =3n -1, 由累加法得a n +2-a 1=3(1+3+5+…+n )-n +1 2 =32(1+n )·n +12-n +12=34n 2+n +1 4, 所以a n +2=34n 2+n +1 4+a 1. 所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15 =a 1+? ????34×12+1+14+a 1+? ????34×32+3+14+a 1+? ?? ?? 34×52+5+14+a 1+ ? ????34×72+7+14+a 1+? ????34×92+9+14+a 1+? ?? ??34×112 +11+14+a 1+ ? ???? 34×132+13+14+a 1=8a 1+392=448,解得a 1=7. 答案 7 2.(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 法一 因为S n =2a n +1,所以当n =1时,a 1=2a 1+1,解得a 1=-1. 当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 所以a n =2a n -1,所以数列{a n }是以-1为首项,2为公比的等比数列, 所以a n =-2n -1. 所以S 6=-1×(1-26)1-2 =-63. 法二 由S n =2a n +1,得S 1=2S 1+1,所以S 1=-1,当n ≥2时,由S n =2a n +1得S n =2(S n -S n -1)+1,即S n =2S n -1-1,∴S n -1=2(S n -1-1),又S 1-1=-2,∴{S n -1}是首项为-2,公比为2的等比数列,所以S n -1=-2×2n -1=-2n ,所以S n =1-2n ,∴S 6=1-26=-63.

高考理科数学复习题解析 数列求和

高考数学复习 第四节 数列求和 [考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法. 1.公式法 (1)等差数列的前n 项和公式: S n =n a 1+a n 2 =na 1+n n -12 d ; (2)等比数列的前n 项和公式: 2.分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. 5.倒序相加法 如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 6.并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002 -992 +982 -972 +…+22 -12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论] 1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n = n n +1 2 ; (2)1+3+5+7+…+2n -1=n 2 ; (3)2+4+6+8+…+2n =n 2 +n . 2.常用的裂项公式 (1) 1n n +k =1k ? ?? ??1 n -1n +k ; (2)1 4n 2-1=1 2n -1 2n +1=12? ?? ??1 2n -1-12n +1; (3) 1 n +n +1 =n +1-n ; (4)log a ? ?? ??1+1n =log a (n +1)-log a n . [基础自测] 1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2-1=12? ?? ??1 n -1-1n +1.( ) (3)求S n =a +2a 2 +3a 3 +…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 2 1°+sin 2 2°+sin 2 3°+…+sin 2 88°+sin 2 89°=44.5.( ) [答案] (1)√ (2)√ (3)× (4)√ 2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1 n n +1 ,则S 5等于( ) A .1 B.56 C.16 D. 1 30 B [∵a n = 1n n +1=1n -1 n +1 , ∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5 6.] 3.若S n =1-2+3-4+5-6+…+(-1) n -1 ·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.] 4.数列112,314,518,7116,…,(2n -1)+1 2 n ,…的前n 项和S n 的值等于________.

高考数学一轮复习专题:数列求和(教案及同步练习)

1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d . 2.等比数列的前n 项和公式 S n =???? ? na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1. 3.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1) 2. (2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n (n +1). (4)12+22+…+n 2=n (n +1)(2n +1) 6. 【知识拓展】 数列求和的常用方法 (1)公式法 等差、等比数列或可化为等差、等比数列的可直接使用公式求和. (2)分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ① 1n (n +1)=1n -1 n +1 ;

②1(2n -1)(2n +1)=12????1 2n -1-12n +1; ③ 1 n +n +1 =n +1-n . (4)倒序相加法 把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法 主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( √ ) (2)当n ≥2时,1n 2-1=12(1n -1-1 n +1 ).( √ ) (3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × ) (4)数列{12n +2n -1}的前n 项和为n 2+1 2 n .( × ) (5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ ) 1.(2017·潍坊调研)设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于( ) A.n 2+7n 4 B.n 2+5n 3 C.2n 2+3n 4 D .n 2+n 答案 A 解析 设等差数列的公差为d ,则a 1=2, a 3=2+2d ,a 6=2+5d . 又∵a 1,a 3,a 6成等比数列,∴a 23=a 1·a 6.

数列求和高考专题

数列求和高考专题 1.【2017天津,理18】已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =. (Ⅰ)求{}n a 和{}n b 的通项公式; (Ⅱ)求数列221{}n n a b -的前n 项和()n *∈N . 【答案】 (1)32n a n =-.2n n b =.(2)1328 433 n n n T +-=?+. 【解析】 (II )解:设数列221{}n n a b -的前n 项和为n T , 由262n a n =-, 12124n n b --=?,有()221314n n n a b n -=-?, 故()23 245484314n n T n =?+?+?+ +-?, ()()23414245484344314n n n T n n +=?+?+?+ +-?+-?, 上述两式相减,得()2 3 1324343434314n n n T n +-=?+?+?+ +?--?

( )()()1 112144314 14 3248.n n n n n ++?-= ---?-=--?- 得1328 433 n n n T +-= ?+. 所以,数列221{}n n a b -的前n 项和为 1328 433 n n +-?+. 2.【2017江苏,19】 对于给定的正整数k ,若数列{}n a 满足1111n k n k n n n k n k a a a a a a --+-++-++++++ ++ 2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”. (1)证明:等差数列{}n a 是“(3)P 数列”; (2)若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 【答案】(1)见解析(2)见解析 (2)数列{}n a 既是“()2P 数列”,又是“()3P 数列”,因此, 当3n ≥时, 21124n n n n n a a a a a --+++++=,① 当4n ≥时, 3211236n n n n n n n a a a a a a a ---++++++++=.② 由①知, 3214n n n a a a ---+=- ()1n n a a ++,③ 2314n n n a a a ++++=- ()1n n a a -+,④ 将③④代入②,得112n n n a a a -++=,其中4n ≥, 所以345,,, a a a 是等差数列,设其公差为'd .

数列求通项与求和总结(精)

数列求和方法 等差数列、等比数列的求和是高考常考的内容之一,一般数列求和的基本思想是将其通项变形,化归为等差数列或等比数列的求和问题,或利用代数式的对称性,采用消元等方法来求和. 下面我们结合具体实例来研究求和的方法. 一、直接求和法(或公式法) 将数列转化为等差或等比数列,直接运用等差或等比数列的前n 项和公式求得. 例1 求22222222 12345699100-+-+-+--+L . 解:原式2 2 2 2 2 2 2 2 (21)(43)(65)(10099)3711199=-+-+-++-=++++L L . 由等差数列求和公式,得原式50(3199) 50502 ?+= =. 二、倒序相加法 此方法源于等差数列前n 项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和. 例2 求2222 2 222 2222123101102938101 ++++++++L 的和. 分析:由于数列的第k 项与倒数第k 项的和为常数1,故采用倒序相加法求和. 解:设2222 2 2222222123101102938101 S =++++++++L 则2222 2 222 2222109811012938101 S =++++++++L . 两式相加,得 2111105S S =+++=∴=L , . 小结:对某些具有对称性的数列,可运用此法. 三、裂项相消法 如果一个数列的每一项都能化为两项之差,而前一项的减数恰与后一项的被减数相同,一减一加,中间项全部相消为零,那么原数列的前n 项之和等于第一项的被减数与最末项的减数之差.多用于分母为等差数列的相邻k 项之积,且分子为常数的分式型数列的求和. 例3 已知2 2 2 1 12(1)(21)6 n n n n +++= ++L , 求 22 2222222 35721()11212312n n n * +++++∈++++++N L L 的和. 分析:首先将数列的通项公式化简,然后注意到它可写成两项的差,在求和的过程中,中间的项相 互抵消了,从而可求出原数列的前n 项和. 解:222 21216 112(1)(1)(21)6 n n n a n n n n n n ++= ==++++++Q L ,

数列求和的常用方法

数列求和的常用方法 永德二中 王冬梅 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1、等差数列的前n 项和公式 2 )1(2)(11d n n na a a n S n n -+=+= 2、等比数列的前n 项和公式 ?? ???≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、常用几个数列的求和公式 (1)、)1(213211 += +?+++==∑=n n n k S n k n (2)、)12)(1(6132122221 2++= +?+++==∑=n n n n k S n k n (3)、233331 3)]1(21[321+=+?+++==∑=n n n k S n k n 第二类:乘公比错项相减(等差?等比) 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列}{n n b a ?的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。 例1:求数列}{1-n nq (q 为常数)的前n 项和。 解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

数列的通项公式与求和的常见方法

数列的通项公式与求和 的常见方法 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常见数列通项公式的求法 类型一:公式法1(或定义法) 例1. 已知数列{}n a 满足11a =, 12n n a a +-=*()n N ∈,求数列{}n a 的通项公式。 例2.已知数列{}n a 满足12a =,13n n a a += *()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足12a =, 110n n a a +-+=*()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 满足16a =-, 13n n a a +=+*()n N ∈,求数列{}n a 的通项公式。 3. 已知数列{}n a 满足11a =,2 1 2=a , 11112n n n a a a -++=(2)n ≥,求数列{}n a 的通项公式。 4.已知数列{}n a 满足11a =,13n n a a +=*()n N ∈,求数列{}n a 的通项公式。 类型二:(累加法))(1n f a a n n +=+ 解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解 例:已知数列{}n a 满足121n n a a n +=++*()n N ∈, 11a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足21 1=a ,n a a n n 21+=+, * ()n N ∈求数列{}n a 的通项公式。 2.已知数列{}n a 满足11a =,11 (1) n n a a n n -=+-, (2)n ≥,求数列{}n a 的通项公式。 3.已知数列{}n a 满足1231n n n a a +=+?+, * ()n N ∈,13a =,求数列{}n a 的通项公式。 4.已知数列{}n a 中,12a =,11 ln(1)n n a a n +=++, 求数列{}n a 的通项公式。 类型三:(叠乘法)n n a n f a )(1=+ 解法:把原递推公式转化为)(1 n f a a n n =+,利用累乘法(逐商相乘法)求解 例:在数列{}n a 中,已知11a =,1(1)n n na n a -=+, (2)n ≥,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足321= a ,n n a n n a 1 1+=+,* ()n N ∈,求数列{}n a 的通项公式。 2.已知31=a ,n n a n n a 2 3131 +-=+ )1(≥n ,求数列{}n a 的通项公式。 3.已知数列 {}n a 满足125n n n a a +=?* ()n N ∈, 13a =,求数列{}n a 的通项公式。 类型四:递推公式为n S 与n a 的关系式()n n S f a = 解法:这种类型一般利用 与)()(11---=-=n n n n n a f a f S S a 消去n S )2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。 例. 已知数列{}n a 的前n 项和为n S ,12a =且 12n n S a +=(2)n ≥.求数列{}n a 的通项公式。 1. 已知数列{}n a 的前n 项和为n S ,42n n S a =+, 求数列{}n a 的通项公式。 2.已知数列{}n a 的前n 项和为n S ,251n S n n =+- 求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,23n n S =+, 求数列{}n a 的通项公式。 类型五:待定系数法 q pa a n n +=+1(其中p ,q 均为常数, )0)1((≠-p pq ) 解法:构造新数列{}n b ; p a a n n =+++λ λ 1解出λ,可 得数列λ+=n n a b 为等比数列 例:已知数列{}n a 中,11=a ,121+=+n n a a ,求数列{}n a 的通项公式。 变式练习: 1. 已知数列{}n a 满足13a =,121n n a a +=- *()n N ∈,求数列{}n a 的通项公式。 2.已知数列{}n a 中,11=a ,6431+=+n n a a ,求数列{}n a 的通项公式。 3.已知数列{}n a 的前n 项和为n S ,且 232n n S a n =-*()n N ∈.求数列{}n a 的通项公式。 类型六:交叉项问题 解法:一般采用求倒数或除以交叉项得到一个新 的等差数列。 例:已知数列{}n a 满足11a =, 122 n n n a a a +=+*()n N ∈,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足11a =, 1(1)n n na n a +=++(1)n n +, *()n N ∈,求数列{} n a 的通项公式。 2. 已知首项都为1的两个数列{}n a 、{}n b (0n b ≠*n N ∈),满足 11120n n n n n n a b a b b b +++-+=,令n n n a c b = 求数列{}n c 的通项公式。 类型七:(公式法2) (n n n p pa a ?+=+λ1)p>0; 解法:将其变形为p p a p a n n n n λ =-++11,即数列?? ????n n p a 为以 p λ 为公差的等差数列; 例. 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 变式练习: 1.已知数列{}n a 满足1155+++=n n n a a ,11=a ,求数列{}n a 的通项公式 2.已知数列{}n a 满足n n n a a 3431?+=+,11=a ,求数列{}n a 的通项公式。 数列求和的常用方法 类型一:公式法 例 .已知3 log 1log 23=x ,求32x x x ++???++???+n x 的前n 项和. 变式练习 1.数列}{n a 中,12+=n a n ,求n S . 2.等比数列}{n a 的前n 项和12-=n n S ,求 2 232221n a a a a ++++ . 类型二:分组求和法 例. 求数列的前n 项和: 2321 ,,721,421,1112-+???+++-n n ,… 变式练习 1.已知数列}{n a 中,n n n a 32+=,求n S . 2.已知数列}{n a 中,n n n a 21 )12(++=,求n S . 类型三:倒序相加法 例.求 88sin 3sin 2sin 1sin 2 222+???+++ 89sin 2 +的值. 1.已知x x f += 11 )(,求)3()2()1(f f f ++ 类型四:错位相减法: 例.数列}{n a 中,12)12(-?-n n n a ,求n S . 变式练习 1.求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 2.数列}{n a 的前n 项和为2 2n S n =,}{n b 为等比数列, 且.)(,112211b a a b b a =-= (1)求数列}{n a 和}{n b 的通项公式;

高考数学一轮复习:30 数列求和

高考数学一轮复习:30 数列求和 姓名:________ 班级:________ 成绩:________ 一、单选题 (共12题;共24分) 1. (2分) (2018高二上·莆田月考) 已知数列满足,是等差数列,则数列 的前10项的和() A . 220 B . 110 C . 99 D . 55 2. (2分) (2017高一下·宜昌期中) 已知函数f(x)=xa的图象过点(4,2),令(n∈N*),记数列{an}的前n项和为Sn ,则S2017=() A . B . C . D . 3. (2分) (2018高一下·石家庄期末) 已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是,接下来的两项是,,再接下来的三项是,,,依此类推,则该数列的前94项和是() A . B . C .

D . 4. (2分)(2017·泉州模拟) 若数列{an}的前n项和为Sn , S2n﹣12+S2n2=4(a2n﹣2),则2a1+a100=() A . ﹣8 B . ﹣6 C . 0 D . 2 5. (2分) (2019高一下·哈尔滨月考) 对于任意实数x,符号[x]表示不超x的最大整数,例如[3]=3,[﹣1.2]=﹣2,[1.2]=1.已知数列{an}满足an=[log2n],其前n项和为Sn ,若n0是满足Sn>2018的最小整数,则n0的值为() A . 305 B . 306 C . 315 D . 316 6. (2分)在数列{an}中,a1=﹣56,an+1=an+12(n≥1),则它的前()项的和最小. A . 4 B . 5 C . 6 D . 5或6 7. (2分)(2017·辽宁模拟) 定义为n个正数P1 ,P2…Pn的“均倒数”,若已知正整数数列{an}的前n项的“均倒数”为,又bn= ,则 + +…+ =() A .

高三一轮复习数列求和教案及练习

数列求和 特殊数列求和 1.可化为等差数列等比数列自然数列的求和 1){}12+n 的前100项和为_____________, 2) =++++n a a a 21__________ 3) 求9,99,999,9999,….的前100项和 4)求{ } 12-+n n 的前2m 的和 5)已知}{n a ,601-=a ,31+=+n n a a ,求数列}{n a 的前30项的绝对值的和 6)在数列{ } )12()1(+-n n 中,求301713S S S -+ 7)求{ } )34()1(--n n 的前n 项和 8)已知[] n n n a )1(2---=,求n S 9)一个数列}{n a ,当n 为奇数时15+=n a n ,当n 为偶数时n n a 2=,求这个数列的前 2n 项的和。 (二)裂项求和 1) 求) 1(1431,321,211+???n n 的前n 项和 2) 求) 12)(12(1751531311+-++?+?+?n n 3) ) 23)(13(11071741411+-++?+?+?n n

4) 1 1 23(31)(31)i n i i i +=--∑ 5) {}n a 是正项的等差数列, 1 3 22 1111+++ +++ +n n a a a a a a 6) 11!22!33!!n n ++++ (三)错位相减法 1.求数列? ?? ???-n n 212的前n 项和 2.已知n n x a x a x a x a x f ++++= 33221)((* N n ∈),且n a a a a 321,,构成一个 数列,又2 )(n x f = 求数列}{n a 的通项公式;证明:1)3 1(

2020届高考数学一轮复习通用版讲义数列求和

第四节数列求和 一、基础知识批注——理解深一点 1.公式法 (1)等差数列{a n }的前n 项和S n =n (a 1+a n )2=na 1+n (n -1)d 2 . 推导方法:倒序相加法. (2)等比数列{a n }的前n 项和S n =????? na 1 ,q =1,a 1(1-q n )1-q ,q ≠1. 推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n = n (n +1) 2 ; ②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法 (1)分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减. (2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和. (3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n (4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 二、基础小题强化——功底牢一点 (一)判一判(对的打“√”,错的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1 1-q .( ) (2)当n ≥2时, 1n 2 -1=12? ???1 n -1-1n +1.( ) (3)求S n =a +2a 2+3a 2+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( )

数列求通项公式及求和9种方法

数列求通项公式及求和 9种方法 -CAL-FENGHAI.-(YICAI)-Company One1

数列专题1:根据递推关系求数列的通项公式 根据递推关系求数列的通项公式主要有如下几种类型一、 n S是数列{}n a的前n项的和 1 1 (1) (2) n n n S n a S S n - = ? =? -≥ ? 【方法】:“ 1 n n S S - -”代入消元消n a 。 【注意】漏检验n的值 (如1 n=的情况 【例1】.(1)已知正数数列{} n a的前n项的和为n S, 且对任意的正整数n满足1 n a =+,求数列{} n a 的通项公式。 (2)数列{} n a中,1 1 a=对所有的正整数n都 有2 123n a a a a n ????=,求数列{}n a的通项公式 【作业一】 1-1.数列{} n a满足 21* 123 333() 3 n n n a a a a n N - ++++=∈,求数列{}n a的通项公式. (二).累加、累乘型如 1 () n n a a f n - -=, 1 () n n a f n a - =

1()n n a a f n --= ,用累加法求通项公式(推导等差数列通项公式的方法) 【方法】 1()n n a a f n --=, 12(1)n n a a f n ---=-, ……, 21(2)a a f -=2n ≥, 从而1()(1)(2)n a a f n f n f -=+-+ +,检验1n =的情 况 ()f n =,用累乘法求通项公式(推导等比数列通项公式的方法) 【方法】2n ≥,12 121 ()(1)(2)n n n n a a a f n f n f a a a ---???=?-?? 即1 ()(1)(2)n a f n f n f a =?-??,检验1n =的情况 【小结】一般情况下,“累加法”(“累乘法”)里只有1n -个等式相加(相乘). 【例2】. (1) 已知2 11=a ,)2(1 1 21≥-+=-n n a a n n ,求 n a . (2)已知数列 {}n a 满足1 2 n n n a a n +=+,且32 1=a ,求n a .

高考数学一轮复习: 专题6.4 数列求和(练)

专题6.4 数列求和 【基础巩固】 一、填空题 1.数列112,314,518,7116,…,(2n -1)+1 2n ,…的前n 项和S n =________. 【答案】n 2 +1-12 n 【解析】该数列的通项公式为a n =(2n -1)+1 2 n ,则S n =[1+3+5+…+(2n -1)]+ ? ?? ??12+122+…+12n =n 2+1-12n . 2.(·南通调研)若等差数列{a n }的前n 项和为S n ,a 4=4,S 4=10,则数列???? ?? 1a n a n +1的前2 017 项和为________. 【答案】2 017 2 018 3.数列{a n }的通项公式为a n =(-1)n -1 ·(4n -3),则它的前100项之和S 100=________. 【答案】-200 【解析】S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 4.(·江西高安中学等九校联考)已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________. 【答案】7 【解析】根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数字重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0. 又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 5.(·泰州模拟)数列{a n }满足a n +a n +1=12 (n ∈N * ),且a 1=1,S n 是数列{a n }的前n 项和,则S 21

高中数列求和公式

数列求和的基本方法和技巧 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 3、 )1(21 1 +==∑=n n k S n k n 自然数列 4、 )12)(1(611 2++==∑=n n n k S n k n 自然数平方组成的数列 [例1] 已知3log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 12log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++=n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+= n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64 342++n n n =n n 64 341 ++=50)8 (12+-n n 50 1≤ ∴ 当 8 8-n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).

数列的通项及求和公式

数列的通项及求和公式专题课内导学案11 一、基本公式法:等差数列,等比数列。 例1、(1)若{}n a 是等差数列,公差0d ≠, 236,,a a a 成等比,11a =,则n a =_________。 (2)若{}n a 是等比数列,243,,a a a 成等差, 13a =,则n a =_________。 二、已知n S 求n a :11 (2) (1)n n n S S n a S n --≥?=? =?。 类型1、(1)已知2 1n S n n =++,求n a 。 (2)已知101n n S =-,求n a 。 类型2、(1)已知32n n S a =-,求n a ; (2)已知3 32 n n S a =-,求n a ; (3)已知22n n S a +=,求n a 。 类型3、(1)2 24n n n a a S +=,0n a >,求n a ; (2)2 1056n n n S a a =++,0n a >,求n a ; (3)2111 424 n n n S a a = ++,0n a >,求n a 。 类型4、(1)11a =,12n n a S +=,求n a ; (2)11a =,12n n S a +=,求n a ; (3)13a =,11n n S a +=+,求n a 。

类型5、(1)122n n a a a ++???+=,则n a =_____ (2)123n a a a a n ?????=,则n a =_____ (3)12323n a a a na n +++???+=,则n a =_____ (4) 3 12123n a a a a n n +++???+=,则n a =_____ (5)231233333n n a a a a n +++???+=,n a =___ 三、形如1()n n a a f n +-=的递推数列求通项公式,使用累加法。 例1、(1)数列{}n a 中满足12a =,1n n a a n +=+,求n a 的通项公式。 (2)已知数列{}n a 中满足13a =, 12n n n a a +=+,求n a 的通项公式。 (3)求数列2,4,9,17,28,42,???的通项公式。 四、形如 1 ()n n a f n a +=的递推数列求通项公式,使用累乘法。 例1、(1)数列{}n a 中满足15a =,12n n n a a +=?, 求n a 的通项公式。 (2)数列{}n a 中满足14a =,11 n n n a a n +=?+,求n a 的通项公式。 (3)112a = ,111 n n n a a n --=+(2n ≥),求n a 的通项公式。 五、构造法 例1、(1)14a = 2=,求n a ; (2)14a =,22 12n n a a +-=,求n a ; (3)14a =, 144 2n n a a +-=,求n a ; (4)12a =,112(1)n n a a +-=-,求n a ; (5)11a =,1(1)3n n n a na ++=,求n a ; (6)11a =,121n n a a n n +-=+,求n a 。

高考数学一轮复习: 专题6.4 数列求和(测)

专题6.4 数列求和 一、填空题 1.(·皖西七校联考)在数列{a n }中,a n =2n -12n ,若{a n }的前n 项和S n =321 64 ,则n =______ 【解析】由a n =2n -12n =1-12n 得S n =n -12+122+…+12n =n -? ????1-12n ,则S n =32164=n -? ?? ??1-12n ,将各选项中的值代入验证得n =6. 2.已知等差数列{a n }的各项均为正数,a 1=1,且a 3,a 4+5 2 ,a 11成等比数列.若p -q =10,则 a p -a q =______ 3.在数列{a n }中,a 1=1,a 2=2,a n +2-a n =1+(-1)n ,那么S 100的值为______ 【解析】当n 为奇数时,a n +2-a n =0,所以a n =1,当n 为偶数时,a n +2-a n =2,所以a n =n , 故a n =??? ?? 1n 为奇数, n n 为偶数, 于是S 100=50+ 2+100×50 2 =2 600. 4.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为______ 【解析】因为a n +2S n -1=n ,n ≥2,所以a n +1+2S n =n +1,n ≥1,两式相减得a n +1+a n =1,n ≥2.又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009 5.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2,若函数f (x )=sin 2x +2cos 2x 2, 记y n =f (a n ),则数列{y n }的前9项和为______ 【解析】由已知可得,数列{a n }为等差数列,f (x )=sin 2x +cos x +1,∴f ? ?? ??π2=1.∵f (π- x )=sin(2π-2x )+cos(π-x )+1=-sin 2x -cos x +1,∴f (π-x )+f (x )=2.∵a 1+a 9 =a 2+a 8=…=2a 5=π,∴f (a 1)+…+f (a 9)=2×4+1=9,即数列{y n }的前9项和为9. 6.设S n 是公差不为0的等差数列{a n }的前n 项和,S 1,S 2,S 4成等比数列,且a 3=-5 2,则数 列?? ? ? ?? 12n +1 a n 的前n 项和T n =______ 【解析】设{a n }的公差为d ,因为S 1=a 1,S 2=2a 1+d =2a 1+ a 3-a 12=3 2a 1-5 4 ,S 4=3a 3+a 1=a 1-

高中数学数列求和

第四节数列求和 [备考方向要明了] 考什么怎么考 熟练掌握等差、等比数 列的前n项和公式. 1.以选择题或填空题的形式考查可转化为等差或等比数列的数列 求和问题,如2012年新课标全国T16等. 2.以解答题的形式考查利用错位相减法、裂项相消法或分组求和法 等求数列的前n项和,如2012年江西T16,湖北T18等. [归纳·知识整合] 数列求和的常用方法 1.公式法 直接利用等差数列、等比数列的前n项和公式求和 (1)等差数列的前n项和公式: S n= n(a1+a n) 2=na1+ n(n-1) 2d; (2)等比数列的前n项和公式: S n= ?? ? ??na1,q=1, a1-a n q 1-q = a1(1-q n) 1-q ,q≠1. 2.倒序相加法 如果一个数列{a n}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的.3.错位相减法 如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的.4.裂项相消法 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.[探究] 1.应用裂项相消法求和的前提条件是什么? 提示:应用裂项相消法求和的前提条件是数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后抵消. 2.利用裂项相消法求和时应注意哪些问题?

提示:(1)在把通项裂开后,是否恰好等于相应的两项之差; (2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项. 5.分组求和法 一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法 一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050. [自测·牛刀小试] 1. 11×4+14×7+17×10+…+1 (3n -2)(3n +1) 等于( ) A.n 3n +1 B.3n 3n +1 C .1-1 n +1 D .3-1 3n +1 解析:选A ∵1(3n -2)(3n +1)=13????1 3n -2-13n +1, ∴ 11×4+14×7+17×10+…+1 (3n -2)(3n +1) =13?? ? ???1-14+????14-17+???? 17-110+…+ ??????13n -2-13n +1=13????1-13n +1=n 3n +1 . 2.已知数列{a n }的通项公式是a n =2n -12n ,其前n 项和S n =321 64,则项数n 等于( ) A .13 B .10 C .9 D .6 解析:选D ∵a n =2n -12n =1-1 2n , ∴S n =????1-12+????1-122+…+????1-1 2n =n -????12+12 2+ (12)

相关文档
相关文档 最新文档