文档视界 最新最全的文档下载
当前位置:文档视界 › 有限元计算原理与方法..

有限元计算原理与方法..

有限元计算原理与方法..
有限元计算原理与方法..

1.有限元计算原理与方法

有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。

1.1. 有限元分析的基本理论

有限元单元法的基本过程如下:

1.1.1.连续体的离散化

首先从几何上将分析的工程结构对象离散化为一系列有限个单元组成,相邻单元之间利用单元的节点相互连接

而成为一个整体。单元可采用各种类

型,对于三维有限元分析,可采用四

体单元、五西体单元和六面体

单元等。在Plaxis 3D Foundation

程序中,土体和桩体主要采用包

含6个高斯点的15节点二次楔

形体单元,该单元由水平面为6

节点的三角形单元和竖直面为四

边形8节点组成的,其局部坐标

下的节点和应力点分布见图3.1,图3.1 15节点楔形体单元节点和应力点分布界面单元采用包含9个高斯点的

8个成对节点四边形单元。

在可能出现应力集中或应力梯度较大的地方,应适当将单元划分得密集些;

若连续体只在有限个点上被约束,则应把约束点也取为节点:若有面约束,则应

把面约束简化到节点上去,以便对单元组合体施加位移边界条件,进行约束处理;

若连续介质体受有集中力和分布荷载,除把集中力作用点取为节点外,应把分布

荷载等效地移置到有关节点上去。

最后,还应建立一个适合所有单元的总体坐标系。

由此看来,有限单元法中的结构已不是原有的物体或结构物,而是同样材料

的由众多单元以一定方式连接成的离散物体。因此,用有限元法计算获得的结果

只是近似的,单元划分越细且又合理,计算结果精度就越高。与位移不同,应力

和应变是在Gauss 积分点(或应力点)而不是在节点上计算的,而桩的内力则可通

过对桩截面进行积分褥到。

1.1.

2. 单元位移插值函数的选取

在有限元法中,将连续体划分成许多单元,取每个单元的若干节点的位移

作为未知量,即{}[u ,v ,w ,...]e T i i i δ=,单元体内任一点的位移为{}[,,]T

f u v w =。

引入位移函数N (x,y,z )表示场变量在单元内的分布形态和变化规律,以便用

场变量在节点上的值来描述单元内任一点的场变量。因此在单元内建立的位移模

式为: {}[]{}e f N δ= (3-1)

其中:12315[][,,......]N IN IN IN IN =,I 为单位矩阵。

按等参元的特性,局部坐标(,,)ξηζ到整体坐标,,x y z ()的坐标转换也采用

与位移插值类似的表达式。经过坐标变化后子单元与母单元(局部坐标下的规则

单元)之间建立一种映射关系。不管内部单元或边界附近的单元均可选择相同的

位移函数,则为它们建立单元特性矩阵的方法是相同的。因此,对于15节点楔

形体单元体内各点位移在整体坐标系,,x y z ()下一般取:

151151151(,,)(,,)(,,)i i i i i i i i i u N u v N v w N w ξηζξηζξηζ===?=???=?

?

?=?

?∑∑∑

32-() 上式中的(,,)i i i u v w 为整体坐标系下节点i 处的位移值,(,,)i N ξηζ为在局部

坐标系下节点相应的形函数。

1.1.3. 单元特性分析

利用几何方程、本构方程、虚功原理或位能变分方程求解单元节点力与节

点位移关系的表达式,即单元刚度矩阵。

根据几何方程可建立单元内的应变矩阵{}{,,,,,}x y z xy yz zx εεεεγγγ=:

{}[]{}e B εδ= (3-3)

其中1215[][,......]B B B B =,

/000/000/[]//00///0/i i i i i i i i i i N x N y N z B N y N x N z N y N z N x ??????????????=????????????????????????

(34)- 对于小变形线性弹性问题,根据物理方程建立单元内的应力矩阵:

{}[]{}[][]{}e D D B σεδ== (3-5)

其中,[]B 为几何矩阵,[]D 为弹性矩阵,[]S 为应力矩阵,[][][]S D B =。

根据虚功原理求出单元中的节点力{}e F :

{}[]{}e e F k δ= (3-6)

其中[]k 为单元的劲度矩阵,[][][][]T e k B D B dxdxdz =???

{}R 对于整体结构上的任一点 i ,建立平衡方程:

{}{}i i

e F R =∑ (37)-

{}i R 为i 节点上的外荷。上式表示{}i R 与围绕i 点的各单元在i 点上的节

点力之和相平衡。

1.1.4. 总体特性分析

对每一个位移未知的节点,都可写出3-7式的方程,利用结构力的平

衡条件和边界条件把各个单元按原来的结构重新联接起来,形成分析对象

的整体有限元平衡方程组:

[]{}{}K R δ= (3-8)

其中, 为整体劲度矩阵, ; 为整个结构的节点位移矩阵,

为整个结构的节点荷载矩阵,是已知的。由式(3-8)求出节点位移 ,

由式(3-3)、式(3-5)求出各单元的应变和应力。 1.2. 非线性有限元分析

非线性现象是在实际的结构分析中经常遇到的问题。与线性分析相

比,非线性分析中荷载与位移之间的关系已不是直线关系,而是曲线关系。

土体的非线性分析一般来说采用非线性的分析方法,选用适当的土体本构

系,进行有限元计算。

非线性问题一般有材料非线性和几何非线性两种。

几何非线性即存在大变形,其变化的几何形状可能引起结构的非线性

[]k ij ij K k =∑

{}δ{}δ

响应,即应变与位移的关系不里线性,应变不仅包括位移对坐标的一阶导

数,还要包括高阶导数。在进行小应变或者小变形分析时,假定位移和变

形总是足够小(这种假定取决于特定分析要求中的精度等级)可以忽略结

构变形对系统刚度的影响,即基于最初几何形状的结构刚度的一次迭代足

以计算出分析结果。随着变形位移增长,一个有限单元的已移动的坐标可

以多种方式改变结构的刚度,进行多次迭代来获得一个有效的解,这就是

几何非线性。

除了结构大变形引起剐度变化以外。许多与材料有关的参数同样可以

改变结构刚度。材料的非线性即是材料的应力—应交关系是非线性的。主

要有弹性非线性模型和弹塑性模型两大类。弹性非线性理论是以弹性理论

为基础,在微小的荷载增量范围内,把土看作弹性材料,从一个荷载增量

变化到另一个荷载增量,土体的弹性常数发生变化,以考虑非线性;弹塑

性模型理论认为土体的变形包括弹性和塑性变形两部分,把弹性理论和塑

性理论结合起来建立的本构模型。土体中的弹塑性本构关系都是用增量形

式表示的,因此,计算方法也宜用增量法。某级荷载增量

作用下,各单元的应力状态不同。有些可能处于弹性区,则刚度矩阵要用弹性矩阵

,有些可能产生塑性屈服,则须运用屈服准则、硬化规律和流动法则

建立的弹塑性刚度矩阵

来代替 。反映到式(3-5),其中的矩阵 不是常量其随应力或应变改变,由此推导的劲度矩阵 也随应力或

变形而变。对于相适应流动法则

,则:

[]R ?[]D []ep D []D []D []K g f =[D]{}{}[D][D ][D]{}[D]{}T ep T f f f f A σσσσ????=-??+??(38)

-

式中A 为塑性硬化模量,是硬化参数函数。因此,不管是材料非线性还是几何非线性,推出的劲度矩阵将随位移而变。

因此,不管是材料非线性还是几何非线性,推出的劲度矩阵将随位移而变。

(3-10)

这是位移的非线性方程组。直接解这样的方程组是困难的,因此简化为一系列的线性问题的解逐步逼近非线性问题的解,非线性问题可以理解为一些线性解进行迭代的结果。

1.3. 有限单元法解比奥固结方程

对于土工问题有限元分析可以采用有效应力法、总应力法和准有效应力法三种。有效应力法严格区分土体中的有效应力与孔隙水压力。将土体骨架变形与孔隙水的渗透同步考虑,因而比总应力法更真实反映土体自身特性,能更合理计算土体对荷载的响应。有效应力法有两个未知量,即土体骨架的变形和孔隙水压力。对于非饱和土还需要增加一个孔隙气压力这个变量。有效应力法基本上以Biot 动力固结方程为基础,其计算较为复杂,计算工作量也较大。

土体的总应力有限元法实际上与其他结构有限元分析在计算原理上没有大的区别,主要在材料的本构模型的选择上不同,其实质认为土体是一种由土颗粒和孔隙水组成之间的相互关系,将之合成一个整体,共同一个整体,共同研究其整体的应力与变形状态。总应力法不能反映土体固结作用。

[()]{}{}

K R δδ=

在有效应力分析中,如果采用与总应力法同样的土性参数并令孔隙水压力为0,则有效应力等于总应力,相应的有效应力法转变为总应力法。因此,总应力法是有效应力法的一个特例。在土体材料采用不捧水指标时,总应力法计算出来的是加荷瞬间或短期应力和变形,而采用排水指标进行的总应力分析则得到的是有效应力分析的最终结果,也就是孔压消散完毕,土体固结完成时的应力和交形结果。在土工问题分析中有时还用总应力和太沙基固结理论相结合的方法来进行有效应力分析(简称准有效应力法),该法是先用总应力法求得应力和变形,然后根据太沙基固结理论考虑孔压的消散以及有效应力和变形随时间的变化。这种分析法对于二维和三维渗流而已是近似的,对于只有一个方向渗水的固结问题是精确的。

在Plaxis 3D Foundation程序中,进行最终沉降分析时是材料类型为排水指标的总应力法分析,而进行固结有限元沉降分析时采用的是以Biot固结理论为基础的有效应力法.采用有效应力法可以较为全面地得到桩土的应力、变形和孔压变化的情况。

1.3.1.比奥固结理论

太沙基固结理论只在一维情况下是精确的,对二维、三维问题并不精确。太沙基一伦杜立克理论(扩散方程)将应力应变关系视为常量(E=常数)的同时,假设三个主应力(总应力)之和不变,不满足变形协调条件。

比奥理论从较严格的固结机理出发推导了准确反映孔隙水压力消散

与土骨架变形相互关系的三维固结方程。该理论将水流连续条件与弹性理论结合求解了土体受力后的应力、应变、孔隙水压力的生成和消散过程,

一般称为“真三维固结理论”。

两理论均假设土骨架是线弹性体,变形为小变形,土颗粒与孔隙水均不可压缩,孔隙水渗流服从达西定律。在土工数值计算中,可使用非线性弹塑性模型代替线弹性模型与比奥固结理论耦合求解。

比奥固结理论是严格按照弹性理论,使饱和粘土在固结过程中必须满足应力平衡方程、几何方程及虎克定律,因此对于三维固结问题可导出如下三个平衡方程:

(3-11)

根据饱和土的连续性在一个元素体中,在一定的时间内单元土体积的压缩量等于流进和流出该单元体的流量变化之和,并引进达西定律,从而推导如下连续方程:

(3-12)

式(3一11)和式(3一12)联立就是比奥固结方程。 式中 、 、

— 分别为在x,y 和z 三个轴向的位移; — 孔隙水压力;

— 剪切模量;

— 泊松比; 222()012()012()12y x z x y x z y y x z z w w w G u G w v x x y z x w w w G u G w v y x y z y w w w G u G w v z x y z z γ??????-?++++=?-?????????????-?++++=?-????????????-?++++=-?-???????21()y v x z w

w w w k u t t x y z εγ????=-++=-??????z w y w x w u

G ν

— 土的重度;

— 体应变; — 渗透系数,假设土的各向渗透性相同;

— 水的容重; — 拉普拉斯算子, 比奥固结方程中含有 、 、

和 四个未知函数·在一定的边界条件和初始条件下,可以解出任何时间及任何一点的 、 、 和

。但问题远不这么简单,就是二维问题也很难求得该未知函数的解析解。因此,该理论虽早在1941年就提出来了,但未得到推广使用,直到近年来由于电子计算机的出现,才有人开始用有限元法,把上述理论运用于解决固结问题。 1.3.2. 比奥固结有限元方程

根据有效应力原理,总应力为有效应力和孔隙水压力之和,且孔隙水不承受剪应力。

(3-13)

(3-14)

(3-15) 其中: 为节点孔隙水压力,

, 为单元的节点超静水压力。

由虚位移原理可推导得出单元节点力与某一时刻已产生的位移所对应的骨架应力以及尚未消散的超静水压力两部分相平衡。

γv εk w γ2?2222

222x y z ????=++???x w y w z w u x w y w z w u

{}{}{}u σσ'=+{}[]{}e u N β'={}[D]{}[D][B]{}e

σεδ'=={}u 1215[][,,]N N N N '=??{}e β{F}[k]{}[k ]{}e e e

δβ'=+

(3-16)

式中

— 就是通常单元的劲度矩阵

— 单元节点孔隙压力所对应的那部分节点力; 对于所有位移未知的节点建立整体平衡方程,得有限单元法平衡方程:

(3-17)

将每个节点周围各单元内

的“领域”连在一起形成以节

点为中心的闭合“全领域”,

对节点i 其周围各单元的边界 向外流出的流量总和为0,即 图3-2节点i 的“全领域” 对于一个单元来说是流出,对于相邻的另一单元便是流进,可对l 节点的“全领域”建立连续性方程:

(3-18)

和 分别由单元矩阵 和 中的元素叠加而成。 的元素为节点位移所对应的“节点领域”的体积改变量:

为节点孔隙压力差所产生的水力坡降在Δt 时间内引起的从“节点领域”边界的排水量。且 [k][k ]'[K]{}[K ]{}{R}

δβ'+

=[K]{}[K]{}0δβ?+=[K][K][]k []k []k []k

matlab有限元分析实例

MATLAB: MATLAB是美国MathWorks公司出品的商业数学软件,用于数据分析、无线通信、深度学习、图像处理与计算机视觉、信号处理、量化金融与风险管理、机器人,控制系统等领域。 MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室),软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。 MATLAB有限元分析与应用:

《MATLAB有限元分析与应用》是2004年4月清华大学出版社出版的图书,作者是卡坦,译者是韩来彬。 内容简介: 《MATLAB有限元分析与应用》特别强调对MATLAB的交互应用,书中的每个示例都以交互的方式求解,使读者很容易就能把MATLAB用于有限分析和应用。另外,《MATLAB有限元分析与应用》还提供了大量免费资源。 《MATLAB有限元分析与应用》采用当今在工程和工程教育方面非常流行的数学软件MATLAB来进行有限元的分析和应用。《MATLAB有限元分析与应用》由简单到复杂,循序渐进地介绍了各种有限元及其分析与应用方法。书中提供了大量取自机械工程、土木工程、航空航天工程和材料科学的示例和习题,具有很高的工程应用价值。

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

有限元法的基本思想及计算 步骤

有限元法的基本思想及计算步骤 有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处相互联接,称这些联接点为结点。离散化的组合体与真实弹性体的区别在于:组合体中单元与单元之间的联接除了结点之外再无任何关联。但是这种联接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠。显然,单元之间只能通过结点来传递内力。通过结点来传递的内力称为结点力,作用在结点上的荷载称为结点荷载。当连续体受到外力作用发生变形时,组成它的各个单元也将发生变形,因而各个结点要产生不同程度的位移,这种位移称为结点位移。在有限元中,常以结点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似地表示单元内位移的分布规律,再利用力学理论中的变分原理或其他方法,建立结点力与位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程,从而求解结点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着缩小单元的尺寸,增加求解区域内单元的数目,解的近似程度将不断改进,近似解最终将收敛于精确解。 用有限元法求解问题的计算步骤比较繁多,其中最主要的计算步骤为: 1)连续体离散化。首先,应根据连续体的形状选择最能完满地描述连续体形状的单元。常见的单元有:杆单元,梁单元,三角形单元,矩形单元,四边形单元,曲边四边形单元,四面体单元,六面体单元以及曲面六面体单元等等。其次,进行单元划分,单元划分完毕后,要将全部单元和结点按一定顺序编号,每个单元所受的荷载均按静力等效原理移植到结点上,并在位移受约束的结点上根据实际情况设置约束条件。 2)单元分析。所谓单元分析,就是建立各个单元的结点位移和结点力之间的关系式。现以三角形单元为例说明单元分析的过程。如图1所示,三角形有三个结点i,j,m。在平面问题中每个结点有两个位移分量u,v和两个结点力分量F x,F y。三个结点共六个结点位移分量可用列

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元实例分析

作业一:有限元分析实例 实例:请对一个盘轴配合机构进行接触分析。轴为一等直径空心轴,盘为等厚度圆盘,其结构及尺寸如图所示。盘和轴为一种材料,材料参数为:弹性模量Ex=2.5E5,泊松比NUXY=0.3,摩擦系数MU=0.25,试采用有限元计算方法分析轴和盘在过盈配合时的应力应变分布以及将轴从盘心拔出时轴和盘的接触情况。 问题分析说明 (1)本题主要分析装配过程中结构的静态响应,所以分析步选择通用静态分析步。由于为过盈配合,属于大变形,故应考虑几何 非线性的影响。 (2)模型具有轴对称性,所以可以采取轴对称模型来进行分析,先建立二维模型计算,再转换为三维模型计算,这样可以节省计

算时间。分析过程由两个载荷步组成, 第一个载荷步为过盈分 析, 求解过盈安装时的情况。第二个载荷步为将轴从盘心拔出 时的接触分析, 分析在这个过程中盘心面和轴的外表面之间的 接触应力。它们都属于大变形问题, 属于非线性问题。在分析 时需要定义一些非线性选项来帮助问题的收敛。 (3)接触面之间有很大的相对滑动,所以模型要使用有限滑移。 模型建立的分析说明 (1)进定义单元类型此项实例分析的问题中涉及到大变形, 故选用So li d185 单元类型来建立本实例入部件模块,的模型。盘 轴接触问题属于面面接触, 目标面和接触面都是柔性的, 将使用接触单元T ARGET 170 和CO NTAT17 4来模拟接 触面。分别创建名为为part1、part2的部件。 (2)定义材料属性,在线性各向同性材料属性对话框中的EX (弹性模量) 文本框中输入 2 . 5E5,PRX Y (泊松比) 文本框中输入 0 . 3,并将定义的材料属性赋予给part1和part2。如下图所示。 (3)进入装配模块,创建两者间的装配关系。

电磁仿真算中的有限元法

1电磁仿真算法中的有限元法 1.1常规的电磁计算方法简介 从上世纪50年代以来,伴随着计算机技术的进步,电磁仿真算法也蓬勃发展起来,这其中主要包括:单矩法、矩量法和有限元法等属于频域技术的算法; 传输线矩阵法、时域积分方程法以及时域有限差分法等属于时域技术的算法。除了这些以外, 还有属于高频技术的集合衍射理论等。本文根据国内外计算电磁学的发展状况,对日常生活中比较常用的电磁计算方法做了介绍,并对有限元法做了重点说明。 ⑴矩量法 矩量法属于电磁场的数值计算方法中频域技术的一种, 它的基本原理是利用把待解的微积分方程转化成的算子方程, 然后将由一组线性组合表示的待求函数代入第一步中的算子方程, 然后将算子方程转化成矩阵方程, 最后再通过计算机进行大量的数值计算从而得到数值结果。该方法在求解非均勻和不规则形状对象时,面很广,但会生成病态矩阵,所以会在一定程度上受到限制。矩量法的特点就是适用于求解微积分方程, 并且求解方法统一简单。但缺点就是会占用大量计算机内存,影响计算速度。 (2)单矩法 单矩法是一种解析方法和数值方法相结合的混合数值算法法,该方法的关键在于,如何合理的选择一个球面最小的半径,使得能够将分析对象的结构全部包含在内,以便将内外场进行隔离。外边的散射场单独使用其他函数表示,而包围的内部区域使用有限元法亥姆赫兹(Helmholtz)方程。此方法对于计算复杂形体乃至复杂埋入体内的电磁散射是种极为有效的手段。 (3)时域有限差分法 时域有限差分法(FDTD)近几年来越来越受到各方的重视, 因为一方面它处理庞大的电磁福射系统方面和复杂结构的散射体时很突出,另外一方面则在于它不是传统的频域算法, 它是种时域算法, 直接依靠时间变量求解麦克斯韦方程组,可以在有限的时间和体积内对场进行数据抽样, 这样同时也能够保证介质边界

船舶结构强度有限元计算分析中的技巧

船舶结构强度有限元计算分析中的技巧 陈有芳、章伟星 中国船级社北京科研所

船舶结构强度有限元计算分析中的技巧 Skills of Ship Structural Strength Analysis By FEM 陈有芳、章伟星 (中国船级社北京科研所) 摘要:在对船舶结构进行有限元计算分析和评估中,一般采用的是舱段板梁模型,不可避免要面临应力的选取问题。对于弯曲板单元,有限元计算输出的应力包括上下表面的应力,我们在评估中一般采用中面应力作为工作应力,中面应力应该是上下表面应力的平均,如果在实际操作中采用上下表面应力的平均的方法来得到中面应力,将比较麻烦,也不直观。本文对在船舶结构有限元分析评估中采用中面应力作为工作应力的原理、方法以及如何在MSC.Patran中如何得到中面应力的技巧做一介绍,供船舶结构分析工程师参考使用。并做了一些测试和分析。 关键词:船舶结构有限元强度中面应力 MSC.Patran Abstract: In analyzing and evaluating of ship structures by FEM, a plate-beam FE model within holds is generally used and it is unavoidable to solve how to select the stress used. For bending plate, the output stresses include the stresses of up-surface and lower-surface, but in ship structure strength analysis, the mid-surface stress is used as applied stress in general. As we know, the mid-surface stress is the average value of up-surface stress and the lower-surface stress. It is discommodious to obtain the mid-surface stress by the up-surface stress and lower-surface stress in practice. The paper introduces the theory and method of using the mid-surface stress as the applying stress in ship structure strength analysis, and the skills about how to obtain the mid-surface stress in MSC/PATRAN. Some tests and analysis have also been carried in this paper. Keys:Ship Structure Finite Element Strength Mid-surface Stress MSC.patran 1 概述 一般来讲,对承受面外压力的板进行强度校核时,应对板的上下表面应力进行校核,相应的强度标准也是对应的上下表面应力,这些均应该建立在能对板的应力精确计算的基础上。在工程应用上,强度标准建立在相对假设的基础上的,即所谓的相对强度标准,所采用的强度标准也应该根据所采用的强度理论和采用的有限元模型简化程度来选取对应的应力。

有限元理论与方法-第3讲

讲 授 内 容 备 注 第3讲(第3周) 3. θ i i U u , 为例, 作用于杆单元的节点力是[U ij V ij ]T ,而作用于节点i 的节点力是[-U ij -V ij ]T 。将节点脱离出来,受力分析如图1-4b 所示,在水平和垂直方向的节点受力平衡方程为 ? ?? =---=---00ip im ij i ip im ij i V V V Y U U U X (1-2-15) 由式(1-2-14)知道杆单元ij 在节点i 的节点力为 j ij i ii ij ij ij V U δK δK F +=? ?? ???= (1-2-16) 其它单元施于节点i 的节点力同样可以写出,一起代入式(1-2-15),得到 i p ip m im j ij i e ii P δK δK δK δK =+++?? ? ??∑ (1-2-17) 每个节点都有一对平衡方程如上,对于全部节点i =1,2,…,N 的结构,得到2N 阶线性方程组,即结构的 节点平衡方程组 P δK = (1-2-18) 其中 T 21],...,,[N δδδδ= T 21],...,,[N P P P P = 式中,δ为全部节点位移组成的列阵;P 为全部节点荷载组成的列阵;K 为结构的整体刚度矩阵。 4.总体刚度矩阵的合成 由单元刚度矩阵合成结构的整体刚度矩阵通常采用两种方法,一种为编码法,一种为大域变换矩阵法,前者对自由度较少的结构简单明了,后者特别适合计算机编程运算。下面重点阐述后者。 结构总体刚度矩阵[K ]与单元刚度矩阵[K ]e 之间的关系为 () e e e e G K G K ∑=T (1-2-19)

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

有限元原理与步骤

2.1.1 有限元法基本原理(Basic Theory of FEM) 有限元法的基本思想是离散的概念,它是指假设把弹性连续体分割成数目有限的单元,并认为相邻单元之间仅在节点处相连。根据物体的几何形状特征、载荷特征、边界约束特征等,选择合适的单元类型。这样组成有限的单元集合体并引进等效节点力及节点约束条件,由于节点数目有限,就成为具有有限自由度的有限元计算模型,它替代了原来具有无限多自由度的连续体[24][25]。 有限元法从选择基本未知量的角度来看,可分为三类:位移法、力法和混合法。以节点位移为基本未知量的求解方法称为位移法;以节点力为基本未知量的求解方法称为力法;一部分以节点位移,另一部分以节点力作为基本未知量的求解方法称为混合法。由于位移法通用性强,计算机程序处理简单、方便,成为应用最广泛的一种方法[26]。 有限元法的求解过程简单、方法成熟、计算工作量大,特别适合于计算机计算。再加上它有成熟的大型软件系统支持,避免了人工在连续体上求分析解的数学困难,使其成为一种非常受欢迎的、应用极广泛的数值计算方法[27]。 2.1.2 有限元法基本步骤(Basic Process of FEM) 有限元法求解各种问题一般遵循以下的分析过程和步骤[28][29]: 1. 结构的离散化 结构的离散化是进行有限元法分析的第一步,它是有限元法计算的基础。将结构近似为具有不同有限大小和形状且彼此相连的有限个单元组成的计算模型,习惯上称为有限元网格划分。离散后单元与单元之间利用单元的节点相互连接起来,而单元节点的设置、性质、数目等应视问题的性质、描述变形形态的需要和计算精度而定。所以有限元法分析的结构已不是原有的物体或结构物,而是同种材料的由众多单元以一定方式连接成的离散物体。这样,用有限元分析计算所获得的结果是近似的。显然,单元越小(网格越密)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此结构的离散化是有限元法的核心技术之一。有限元离散过程中又一重要环节是单元类型的选择,这应根据被分析结构的几何形状特点、载荷、约束等因素全面考虑。 2. 位移模式的选择 位移模式是表示单元内任意点的位移随位置变化的函数,位移模式的选择是有限元特性分析的第一步。由于多项式的数学运算比较简单、易于处理,所以通常是选用多项式作为位移函数。选择合适的位移函数是有限元分析的关键,它将决定有限元解的性质与近似程度。位移函数的选择一般遵循以下原则(有限元解的收敛条件):

有限元理论与方法

第一章 绪论 有限元发展过程: 有限元法在西方起源于收音机和导弹的结构设计,发表这方面文章最早而且最有影响的是西德教授,于1954—1955年间分阶段在《Aircraft Engineering 》上发表上许多有关这方面的论文,并在此基础上写成了《能量原理与结构分析》,此书内容提供了有限元法的理论基础。美国的、 、 和等人于1956年发表了了篇题为《复杂结构的刚度和挠度分析》一文,此文提出了计算复杂结构刚度影响系数的方法,并说明了如何利用计算机进行分析。美国于1960年在一篇介绍平面应力分析的论文中,首先提出了有限元的名字。1965年英国及其合作者解决了将有限元法应用于所有场的问题,使有限元法的应用更加广泛。 有限元法的基本思路: 有限元法的基本思路和基本原理以结构力学中的位移法为基础,把复杂的结构或连续体看成为有限个单元的组合,各单元彼此在节点处连续而组成整体,把连续体分成有限个单元和节点,称之为离散化,先对单元进行特性分析,然后根据各单元在节点处的平衡协调条件建立方程,综合后作整体分析。 这样一分一合,先离散再综合的过程,就把复杂结构或连续体的计算问题转化为简单单元的分析与综合问题。 有限元分析中可采取三种方法: 位移法——取节点位移作为基本未知数 力 法——取节点力作为基本未知数 混合法—— 有限元法分析过程: 1、结构离散化(单元划分) 2、选择位移模式 为了能用节点位移表示单元体的位移、应变和应力,在分析连续体时,必须对单元中位移的分布做出一定的假定,也就是假定位移是坐标的某种简单函数,这种函数称为位移模式或位移函数(形函数)。 {}[]{}e u N δ= (1) 3、分析单元的力学特性 (1)利用几何方程:由位移表达式导出用点位移表示单元应变的关系式 {}[]{} e εδ=B {}ε为单元内任一点的应变列阵 (2) 非线性有限元 线性有限元 几何非线性 材料非线性 有限元

有限元例题

【1】图示弹性力学平面问题,采用三角形常应变元,网格划分及单元、节点编号如图1所示。试求: (1) 计算系统刚度矩阵的最大带宽; (2) 根据图中结构的边界约束状态,给出约束节点位移值。 【解】 (1) 相邻节点号的最大差为d = 4; 所以,半带宽为B = 2 ? (4 + 1) = 10。 (2) u1 = 0,v1 = 0,u4 = 0,v4 = 0。 【2】弹性力学平面问题4节点等参元,其单元自由度是多少?单元刚度矩阵是多少阶的?单元刚度矩阵有多少个元素? 【解】平面问题4节点等参元,其单元自由度是4 ?2 = 8个;单元刚度矩阵是8 ? 8 阶的,单元刚度矩阵有64个元素。

【3】平面刚架结构梁单元(考虑轴向和横向变形)的自由度是多少?单元刚度矩阵是多少阶的?单元刚度矩阵有多少个元素? 【解】平面刚架结构梁单元(考虑轴向和横向变形)的自由度是2 ? 3 = 6个;单元刚度矩阵是6 ? 6阶的;单元刚度矩阵有36个元素。 【4】已知一等截面直杆中某一微段的起始点坐标为0.5m,终点坐标为0.6m,起始点的位移为0.2mm,终点的位移为0.3mm。假定直杆内的位移是线性分布的。求该微段等截面直杆的位移表达式f(x)。 【解】已知:x i = 0.5m, x j= 0.6m, u i = 0.2mm = 0.2?10-3m, u j= 0.3mm = 0.3?10-3m。 即

【5】已知4节点一维问题中单元①(1, 2)的应力矩阵为 结构总体位移列阵为 求单元①的应力(用矩阵计算)。 【解】由总体结构位移列阵知,单元①的位移列阵为 由{σ} = [C] {?}e可求得单元①的应力

有限元分析方法

百度文库- 让每个人平等地提升自我 第1章有限元分析方法及NX Nastran的由来 有限元分析方法介绍 计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。 有限单元法的形成 近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE(Computer Aided Engineering)。这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性: ?CAE仿真可有效缩短新产品的开发研究周期。 ?虚拟样机的引入减少了实物样机的试验次数。 ?大幅度地降低产品研发成本。 ?在精确的分析结果指导下制造出高质量的产品。 ?能够快速对设计变更作出反应。 ?能充分和CAD模型相结合并对不同类型的问题进行分析。 ?能够精确预测出产品的性能。 ?增加产品和工程的可靠性。 ?采用优化设计,降低材料的消耗或成本。 ?在产品制造或工程施工前预先发现潜在的问题。 ?模拟各种试验方案,减少试验时间和经费。 ?进行机械事故分析,查找事故原因。 当前流行的商业化CAE软件有很多种,国际上早在20世纪50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。其中最为著名的是由美国国1

骨强度的有限元分析.

骨强度的有限元分析 曾一鸣编译 上海交通大学医学院附属第九人民医院骨科 局部骨密度的双能X线测定已广泛用于骨质疏松症诊断和骨折风险评估。然而,临床观察表明双能X线吸收法预测骨折风险在敏感性和特异性方面存在缺陷。从生物力学角度来看,一种能准确表现骨三维几何形状及骨材料属性异质性分布的研究方法能更好地对骨强度进行评估。因此,人们对于利用有限元分析评估骨的生物力学行为产生了越来越多的兴趣。本文以此为视角,描述有限元法并综述其在骨研究方面的应用,讨论此方法的优点和缺陷,评价其评估骨折风险的临床应用前景,提出未来研究的方向。我们着重阐述该领域的发展趋势及今后的发展重点,而不是针对这一主题作一全面的综述。 一、有限元方法简介 在20世纪50年代,有限元法首次应用于结构分析[1],之后广泛用于几乎每一个工程及相关领域。在固体及结构力学方面(包括骨力学),可选择有限元法作为计算和模拟的工具。因为有限元法具有良好的准确性,可评估研究对象受到外加负荷时复杂的几何学表现(例如一块完整的骨头或骨小梁网络)。 概念上看,用有限元法处理固体及结构力学问题是通过将物体划分为有限个构件或单元,每一个单元由一些少量的参考点或节点来定义(图1)。有限元法就应这种离散化而得名。应力负荷引起每个单元的变形可通过多种简单的方程式,即所谓的形态方程式来表现。其中唯一未知的是节点位移,因此只要计算出节点位移,就能得到每个单元处的应变分布,由此确定整个物体各处的应变分布。要计算出这些位移,研究者还必须规定两个附加的条件:1)边界条件,为外加负荷和/或位移。2)材料属性:包括每个单元的弹性模量及泊松比。然后分析一系列能满足物体几何学、边界条件、材料属性力学平衡的节点位移。随后用节点位移和材料属性来计算整个物体各处的应力分布。 除了能得到应力及应变分布,节点位移还能用于计算其他一些量,如物体的整体刚度及应变能密度。如果研究者指定某些材料特性,包括破坏特性,这种方法还可用于计算物体在什么时候、什么部位、怎样遭到破坏,但这需要使用非线性建模方法进行大量的计算。因此,有限元法可估计那些可通过力学试验得到的量(例如,整骨刚度),还可以估计那些很难进行实验测量的量(例如,应变能密度分布)。

有限元法基本原理与应用

有限元法基本原理与应用 班级机械2081 姓名方志平 指导老师钟相强 摘要:有限元法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 关键词:有限元法;变分原理;加权余量法;函数。 Abstract:Finite element method is based on the variational principle and the weighted residual method, the basic idea is to solve the computational domain is divided into a finite number of non-overlapping units, each unit, select some appropriate function for solving the interpolation node points as , the differential variables rewritten or its derivative by the variable value of the selected node interpolation functions consisting of linear expressions, by means of variational principle or weighted residual method, the discrete differential equations to solve. Different forms of weight functions and interpolation functions, it constitutes a different finite element method. Keywords:Finite element method; variational principle; weighted residual method; function。 引言 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计

有限元方法理论及其应用

有限元方法理论及其应用

1 课程论文:弹性力学有限元位移法原理(30分) 撰写一篇论文,对有限元位移法的原理作一般性概括和论述。要求论文论及但不 限于下列内容:1)弹性力学有限元位移法的基本思想和数学、力学基础;2)有限元法求解的原理和过程,推导计算列式;对基本概念和矩阵符号进行解释和讨论;3)等参单元的概念、原理和应用。 1.1 对一维杆单元有限元形式的理解 将一维杆单元分成三段加以推导,并应用驻值条件0p D ?∏=?,我们得到节点的平衡 方程[K]{D}{R}=,即: 12 2341100112106012112600118u u AE cL u L u -?? ???? ?? ????--??????= ??????--??????????-???? ?? 我对此提出了几点疑问: 1) 为什么边界条件u 1=0,就要划去刚度矩阵[K]中对应的行列再解方程? 2) 为什么刚度矩阵[K]会奇异? 3) 为什么平衡方程本身是矛盾的,而加上边界条件u 1=0之后就能解出一个唯一的近似解? 4) 为什么刚度矩阵[K]是对称的? 下面我谈谈自己的理解:节点平衡方程是在u 1不定的前提下,假设单元内位移都是线性变化推导出来的,由此u 1相当于一个不确定的定值约束,再加上中间两个节点的连续性要求,系统实际上只有三个独立的自由度(广义坐标)。 对于第一个问题,其实刚度矩阵[K]中的元素不是一成不变的,相反它是伴随边界条件动态变化的。当u 1=0时由刚度矩阵的推导过程可以知道,刚度矩阵的第一行和第一列都会变为0,所以此时第一行和第一列对于求解方程是没有作用的。 对于第二个问题,由于系统自由度(广义坐标)只有三个,而我们的方程却列出了四个,显然这四个方程不可能线性无关,所以刚度矩阵奇异。

ansys有限元建模与分析实例-详细步骤

《有限元法及其应用》课程作业ANSYS应用分析 学号: 姓名: 专业:建筑与土木工程

角托架的有限元建模与分析 一 、模型介绍 本模型是关于一个角托架的简单加载,线性静态结构分析问题,托架的具体形状和尺寸如图所示。托架左上方的销孔被焊接完全固定,其右下角的销孔受到锥形压力载荷,角托架材料为Q235A 优质钢。角托架材料参数为:弹性模量366E e psi =;泊松比0.27ν= 托架图(厚度:0.5) 二、问题分析 因为角托架在Z 方向尺寸相对于其在X,Y 方向的尺寸来说很小,并且压力荷载仅作用在X,Y 平面上,因此可以认为这个分析为平面应力状态。 三、模型建立 3.1 指定工作文件名和分析标题 (1)选择菜单栏Utility Menu → 命令.系统将弹出Jobname(修改文件名)对话框,输入bracket (2)定义分析标题 GUI :Utility Menu>Preprocess>Element Type>Add/Edit/Delete 执行命令后,弹出对话框,输入stress in a bracket 作为ANSYS 图形显示时的标题。 3.2设置计算类型 Main Menu: Preferences … →select Structural → OK 3.3定义单元类型 PLANE82 GUI :Main Menu →Preprocessor →Element Type →Add/Edit/Delete 命令,系统将弹出Element Types 对话框。单击Add 按钮,在对话框左边的下拉列表中单击Structural Solid →Quad 8node 82,选择8节点平面单元PLANE82。单击ok ,Element Types 对话框,单击Option ,在Element behavior 后面窗口中选取Plane strs w/thk 后单击ok 完成定义单元类型。 3.4定义单元实常数 GUI :Main Menu: Preprocessor →Real Constants →Add/Edit/Delete ,弹出定义实常数对话框,单击Add ,弹出要定义实常数单元对话框,选中PLANE82单元后,单击OK →定义单元厚度对话框,在THK 中输入0.5.

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La grange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插

相关文档