文档视界 最新最全的文档下载
当前位置:文档视界 › 浅谈地震频谱分析

浅谈地震频谱分析

浅谈地震频谱分析
浅谈地震频谱分析

实验一利用DFT分析信号频谱

实验一利用DFT 分析信号频谱 一、 实验目的 1. 加深对DFT 原理的理解。 2. 应用DFT 分析信号的频谱。 3. 深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。 二、 实验设备与环境 计算机、MATLAB^件环境。 三、 实验基础理论 1. DFT 与DTFT 的关系 方法二:实际在MATLAB 十算中,上述插值运算不见得是最好的办法。 由于DFT 是DTFT 的取 样值,其相邻两个频率样本点的间距为 —,所以如果我们增加数据的长度 N,使得到的 N DFT 谱线就更加精细,其包络就越接近 DTFT 的结果,这样就可以利用 DFT 计算DTFT 如果 没有更多的数据,可以通过补零来增加数据长度。 3、利用DFT 分析连续时间函数 利用DFT 分析连续时间函数是,主要有两个处理:①抽样,②截断 对连续时间信号x a (t) 一时间T 进行抽样,截取长度为 M 则 址 ML X a (N)「-x a (t)e4dt 二「x a (nT)e jnT n=0 再进行频域抽样可得 M 4 —j 竺 n 送,T' X a (nT)e N =TX M (k) NT n =0 因此,利用DFT 分析连续时间信号的步骤如下: (1 )、确定时间间隔,抽样得到离散时间序列 x(n). (2) 、选择合适的窗函数和合适长度 M 得到M 点离散序列x M DFT 实际上是 DTFT 在单位圆上以 的抽样,数学公式表示为: N-1 _j 空 k X(k) = X(z)| 耳八 x(n)e N z” N n=0 (2 — 1) 2、利用 DFT 求DTFT 方法一:利用下列公式: 2rk X(e j )二、X(k)( ) k=0 N k= 0,1,..N - 1 (2 — 2) Sn(N ,/2) Nsin(,/2) .N A e 2为内插函数 (2— 3) (2—4) X a (r 1)|

对正弦信号的采样频谱分析.doc

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计 课程名称:课程设计2 设计题目:对正弦信号的抽样频谱分析院系:电子与信息工程学院 班级:0805203 设计者:褚天琦 学号:1080520314 指导教师:郑薇 设计时间:2011-10-15 哈尔滨工业大学

一、题目要求: 给定采样频率fs,两个正弦信号相加,两信号幅度不同、频率不同。要求给定正弦信号频率的选择与采样频率成整数关系和非整数关系两种情况,信号持续时间选择多种情况分别进行频谱分析。 二、题目原理与分析: 本题目要对正弦信号进行抽样,并使用fft对采样信号进行频谱分析。因此首先对连续正弦信号进行离散处理。实际操作中通过对连续信号间隔相同的抽样周期取值来达到离散化的目的。根据抽样定理,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。设抽样周期为TS(抽样角频率为ωS),则 可见抽样后的频谱是原信号频谱的周期性重复,当信号带宽小于奈奎斯特频率的二分之一时不会产生频谱混叠现象。 因此,我们对采样频率的选择采取fs>2fo,fs=2fo,fs<2fo三种情况进行分析。对信号采样后,使用fft函数对其进行频谱分析。为了使频谱图像更加清楚,更能准确反映实际情况并接近理想情况,我们采用512点fft。取512点fft不仅可以加快计算速度,而且可以使频谱图更加精确。若取的点数较少,则会造成频谱较大的失真。 三、实验程序: 本实验采用matlab编写程序,实验中取原信号为 ft=sin(2πfXt)+2sin(10πfXt),取频率f=1kHz,实验程序如下: f=1000;fs=20000;Um=1; N=512;T=1/fs; t=0:1/fs:0.01; ft=Um*sin(2*pi*f*t)+2*Um*sin(10*pi*f*t); subplot(3,1,1); plot(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft'); title('抽样信号的连续形式'); subplot(3,1,2); stem(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft');

基于MATLAB的地震数据的分析

基于MATLAB的地震数据的分析 孙玉柱冯光房桂梅 摘要:地震波原始数据中存在的干扰信号,会影响震相分析的准确性。为了滤除干扰信号,对地震波原始信号进行了频谱分析,给出了一种基于MATLAB的FIR数字滤波器的优化设计方案,将其用于地震波数据的分析中,并进行了仿真分析。仿真结果表明,FIR数字滤波器对地震波原始信号进行滤波处理后,提高了震相分析的准确性,得到了理想的效果,达到了预期的目的。 关键词:MATLAB;FIR数字滤波器;优化;滤波 the Analysis of Earthquake Data Based on MATLAB SUN Yuzhu,FENG Guang,FANG Guimei Abstract: The interference that existed in the earthquake data will affect the accuracy of the seismic phase analysis. In order to filter the disturbance signal, this paper carries out spectrum analysis of the earthquake data, proposes an optimum design method for FIR digital filter based on MATLAB and applies it to the analysis of earthquake data. After the filter of the noise jamming, the true information of the earthquake wave is clearly reflected. The simulation results manifest that it can

数字信号课程设计 应用FFT对信号进行频谱分析

实验二应用FFT对信号进行频谱分析 一、实验目的 1.加深对离散信号的DTFT和DFT的及其相互关系的理解。 2.在理论学习的基础上,通过本次实验,加深对快速傅立叶变换 的理解,熟悉FFT算法及其程序的编写。 3.熟悉应用FFT对典型信号进行频谱分析的方法。 4.了解应用FFT进行信号频谱分析过程中可能出现的问题,以便 在实际中正确应用FFT。 二、实验原理与方法 一个连续信号x a(t)的频谱可以用他的傅立叶变换表示为: = 如果对该信号进行理想采样,可以得到采样序列:x(n)=X a(nT) 同样可以对该序列进行Z变换,其中T为采样周期:X(z)= 当Z=e jω的时候,我们就得到了序列的傅立叶变换:X(e j ω)= 其中称为数字频率,它和模拟域频率的关系为: 式中的f s是采样频率,上式说明数字频率是模拟频率对采样频率 f s的归一化。同模拟域的情况相似,数字频率代表了序列值变化的 速率,而序列的傅里叶变换为序列的频谱。序列的傅里叶变换和对应的采样信号频率具有下式的对应关系。 X(e jω)= 即序列的频谱是采样信号频谱的周期延拓。从上式可以看出,只要分析采样序列的频谱,就可以得到相应的连续信号频谱,就可以得到相应的连续信号的频谱。注意:这里的信号必须是带限信号,采样也必须满足Nyquist定理。 在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。无限长的序列也往往可以用有限长序列来逼近。对于有限长的序列我们可以使用离散傅里叶变换(DFT),这一变换可以很好地反映序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是N时,我们定义离散傅里叶变化为:X(k)=DFT[x(n)]= 其中,它的反变换定义为: x(n)=IDFT[X(k)]= 令Z=,则有:==DFT[x(n)] 可以得到,是Z平面单位圆上幅角为 的点,就是将单位圆进行N等分以后第K个点。所以,X(k)是Z变换在单位圆上的等距采样,或者说是序列福利叶变换的等距

用FFT对信号作频谱分析 实验报告

实验报告 实验三:用FFT 对信号作频谱分析 一、 实验目的与要求 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。 二、 实验原理 用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是2π/N ,因此要求2π/N 小于等于D 。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 三、 实验步骤及内容(含结果分析) (1)对以下序列进行FFT 分析: x 1(n)=R 4(n) x 2(n)= x 3(n)= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: n+1 0≤n ≤3 8-n 4≤n ≤7 0 其它n 4-n 0≤n ≤3 n-3 4≤n ≤7 0 其它 n

实验结果图形与理论分析相符。(2)对以下周期序列进行谱分析: x4(n)=cos[(π/4)*n]

x5(n)= cos[(π/4)*n]+ cos[(π/8)*n] 选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】: (3)对模拟周期信号进行频谱分析: x6(n)= cos(8πt)+ cos(16πt)+ cos(20πt) 选择采样频率Fs=64Hz,FFT的变换区间N为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。 【实验结果如下】:

具有不同频谱特性的地震波

具有不同频谱特性的地震波 对单塔悬索桥响应的影响分析 林瑞良(福州市建设委员会 350005) [提要]根据空间有限元计算模型,采用混合结构形式,以某市单塔悬索桥为研究对 象,运用时程分析法,探讨了具有不同频谱特性的地震波对单塔悬索桥响应的影响 问题。 [关键词]单塔悬索桥时程分析地震波 现行公路桥梁工程抗震设计规范《公路工程抗震设计规范》(JTJ-004-89)是以反 应谱理论为基础的,针对这些问题,本文以某市悬索桥为工程实例,采用动力时程分 析法,探讨了不同频谱特性的地震波对单塔悬索桥横向、纵向和竖向地震响应的影响。 一、动力计算模型的基本假设 (1) 缆索在纵向分析中取水平位移和竖向位移两个自由度,横向分析中取水平位移 一个自由度,竖向分析中取竖向位移一个自由度;(2)吊杆为柔性索,考虑变形; (3) 主塔在纵向和横向分析中均取水平位移和转动两个自由度;(4)加劲桁架在纵向分析 中取水平位移、竖向位移和转动三个自由度,横向分析中取水平位移和转动两个自由 度,竖向分析中取竖向位移和转动两个自由度;(5)作用于全桥纵向、横向上的地震 输入波,均取与基础相垂直的水平方向;作用于全桥竖直方向上的输入波取水平向输

入波的65%加速度值[1]。 二、刚度矩阵与质量矩阵 由于悬索桥结构是由不同类型的构件组成,本文在有限元计算中采用混合结构 形式的三维有限元计算模型[2],将结构划分为如下三类单元:(1)空间梁单元,用 于加劲梁及塔架。(2)空间索单元,用于主缆。(3)杆面单元,由两根吊杆和一个虚 拟刚片组成,用来反映加劲梁与主缆之间的相互作用。单元质量矩阵采用集中(堆聚) 质量矩阵[2]。将单元刚度矩阵和单元质量矩阵经座标变换,组成总刚度矩阵和总质 量矩阵,再利用子空间迭代法计算出结构的特征值和特征向量,即可得到所需的各 阶频率和振型。 三、动力方程的建立和求解 当结构在地面运动加速度X¨g作用下,结构动力方程为 [M]*{U 1}+[C]*{U 1 }+[K]*{U 1 }=-[M]+*{I}X¨g(1) 式中:[M]*和[K]*分别为缩聚后的等效质量矩阵和等效刚度矩阵; U 1 有惯性力的位移;X¨g为输入地震加速度;[C]为阻尼矩阵,按瑞雷阻尼确定。 对于微分方程式(1),可采用逐步积分的数值解法,即求得各节点的位移量,本 文采用的是威尔逊θ法,用SAP5软件进行计算。 四、具有不同频谱特性的地震波对单塔悬索桥地震响应分析实例 某市悬索桥是福建省已建成跨径最大的钢筋砼加劲桁架单塔悬索桥(见图1所示),

DFT在信号频谱分析中的应用

DFT在信号频谱分析中的应用 目录 Ⅰ.设计题目 (1) Ⅱ.设计目的 (1) Ⅲ.设计原理 (1) Ⅳ.实现方法 (1) Ⅴ.设计内容及结果 (5) Ⅵ.改进及建议 (11) Ⅶ.思考题及解答 (14) Ⅷ.设计体会及心得 (15) Ⅸ.参考文献 (16)

Ⅰ.设计题目 DFT 在信号频谱分析中的应用 Ⅱ.设计目的 掌握离散傅里叶变换的有关性质,利用Matlab 实现DFT 变换。了解DFT 应用,用DFT 对序列进行频谱分析,了解DFT 算法存在的问题及改进方法。学习并掌握FFT 的应用。 Ⅲ.设计原理 所谓信号的频谱分析就是计算信号的傅里叶变换。连续信号与系统的傅里叶分析显然不便于直接用计算机进行计算,使其应用受到限制,而DFT 是一种时域和频域均离散化的变换,适合数值运算,成为分析离散信号和系统的有力工具。 工程实际中,经常遇到的连续信号Xa(t),其频谱函数Xa(jW)也是连续函数。数字计算机难于处理,因而我们采用DFT 来对连续时间信号的傅里叶变换进行逼近,进而分析连续时间信号的频谱。 Ⅳ.实现方法 离散傅里叶变换是有限长序列的傅里叶变换,它相当于把信号的傅里叶变换进行等频率间隔采样,并且有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。 快速傅里叶变换(FFT )并不是一种新的变换,它是离散傅里叶变换的一种快速算法,并且主要是基于这样的思路而发展起来的:(1)把长度为N 的序列的DFT 逐次分解成长度较短的序列的DFT 来计算。(2)利用WN(nk)的周期性和对称性,在DFT 运算中适当的分类,以提高运算速度。(对称性nk N nk N W W N -=+2 ,

信号的频谱分析及MATLAB实现

第23卷第3期湖南理工学院学报(自然科学版)Vol.23 No.3 2010年9月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Sep. 2010信号的频谱分析及MATLAB实现 张登奇, 杨慧银 (湖南理工学院信息与通信工程学院, 湖南岳阳 414006) 摘 要: DFT是在时域和频域上都已离散的傅里叶变换, 适于数值计算且有快速算法, 是利用计算机实现信号频谱分析的常用数学工具. 文章介绍了利用DFT分析信号频谱的基本流程, 重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施, 实例列举了MATLAB环境下频谱分析的实现程序. 通过与理论分析的对比, 解释了利用DFT分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应, 并提出了相应的改进方法. 关键词: MA TLAB; 频谱分析; 离散傅里叶变换; 频谱混叠; 频谱泄漏; 栅栏效应 中图分类号: TN911.6 文献标识码: A 文章编号: 1672-5298(2010)03-0029-05 Analysis of Signal Spectrum and Realization Based on MATLAB ZHANG Deng-qi, YANG Hui-yin (College of Information and Communication Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China) Abstract:DFT is a Fourier Transform which is discrete both in time-domain and frequency-domain, it fits numerical calculation and has fast algorithm, so it is a common mathematical tool which can realize signal spectrum analysis with computer. This paper introduces the basic process of signal spectrum analysis with DFT, emphasizes the causes of error producing in spectrum analysis process and the main ways to decrease the analysis error, and lists the programs of spectrum analysis based on MATLAB. Through the comparison with the theory analysis, the problems of spectrum aliasing, spectrum leakage and picket fence effect are explained when using DFT to analyze signal spectrum, and the corresponding solution is presented. Key words:MATLAB; spectrum analysis; DFT; spectrum aliasing; spectrum leakage; picket fence effect 引言 信号的频谱分析就是利用傅里叶分析的方法, 求出与时域描述相对应的频域描述, 从中找出信号频谱的变化规律, 以达到特征提取的目的[1]. 不同信号的傅里叶分析理论与方法, 在有关专业书中都有介绍, 但实际的待分析信号一般没有解析式, 直接利用公式进行傅里叶分析非常困难. DFT是一种时域和频域均离散化的傅里叶变换, 适合数值计算且有快速算法, 是分析信号的有力工具. 本文以连续时间信号为例, 介绍利用DFT分析信号频谱的基本流程, 重点阐述频谱分析过程中可能存在的误差, 实例列出MATLAB 环境下频谱分析的实现程序. 1 分析流程 实际信号一般没有解析表达式, 不能直接利用傅里叶分析公式计算频谱, 虽然可以采用数值积分方法进行频谱分析, 但因数据量大、速度慢而无应用价值. DFT在时域和频域均实现了离散化, 适合数值计算且有快速算法, 是利用计算机分析信号频谱的首选工具. 由于DFT要求信号时域离散且数量有限, 如果是时域连续信号则必须先进行时域采样, 即使是离散信号, 如果序列很长或采样点数太多, 计算机存储和DFT计算都很困难, 通常采用加窗方法截取部分数据进行DFT运算. 对于有限长序列, 因其频谱是连续的, DFT只能描述其有限个频点数据, 故存在所谓栅栏效应. 总之, 用DFT分析实际信号的频谱, 其结果必然是近似的. 即使是对所有离散信号进行DFT变换, 也只能用有限个频谱数据近似表示连续频 收稿日期: 2010-06-09 作者简介: 张登奇(1968? ), 男, 湖南临湘人, 硕士, 湖南理工学院信息与通信工程学院副教授. 主要研究方向: 信号与信息处理

信号的频谱分析

姓名冯浩学号222017322092029 班级电气2班 专业电气工程及其自动化实验日期2019年6月10日实验学时 3 一.实验名称 信号的频谱分析 二.实验目的 1.熟悉快速傅里叶变换的fft函数的调用; 2.熟悉频谱分析仿真的方法; 3.验证时域抽样定理。 三.实验原理(略) 四.仿真实验练习 1.显示海明窗函数时域波形与频谱,与矩形窗比较。 海明窗函数与矩形窗函数比较脚本程序: N=51; w=hamming(N); %长度为51的海明窗 W=fft(w,256); %作256点的快速傅里叶变换 subplot(221);stem([0:N-1],w);title(‘海明窗函数’) subplot(222);plot([-128:127],abs(fftshift(W))); %将零频点移到频谱中 %间并取幅值为正 title(‘海明窗频谱’) w=boxcar(N); %长度为51的矩形窗 W=fft(w,256); subplot(223);stem([0:N-1],w); title(‘矩形窗函数’) Subplot(224);plot([-128:127],abs(fftshift(W)));title(‘矩形窗频谱’)

2.编写函数,分析抽样函数的频谱,并分析在不同采样频率、不同采样时间区间、不同加窗函数情况下的频谱与理论函数的区别。 函数编写: function X = SY2(T,t0,t1,window) if winodw==[] %输入参数没有说明加窗类型时默认使用矩形窗 window=1; end t=t0:T:t1; x=sinc(100*t); N=length(x); switch window case 1 w=boxcar(N); %矩形窗 case 2 w=hamming(N); %海明窗 case 3 w=hanning(N); %汉宁窗 end x=x'.*w; %转置后相乘 X=fft(x); end ①不同的采样频率脚本程序: clc t0=-1; t1=1; T=[0.001 0.005 0.01 0.05]; %取不同采样时间(间隔) for i=1:4 X=hs(T(i),t0,t1); N=length(X); w=(0:N-1)*5/N; %频率区间为5 subplot(5,1,i);plot(w,abs(X)) ylabel({num2str(T(i))}) %y坐标标题为采样时间 end 图片显示如下

实验二连续时间信号的频域分析

实验二 连续时间信号的频域分析 一、实验目的 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因; 3、掌握连续时间傅里叶变换的分析方法及其物理意义; 4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质; 5、学习掌握利用Matlab 语言编写计算CTFS 、CTFT 和DTFT 的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 、DTFT 的若干重要性质。 基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用Matlab 编程完成相关的傅里叶变换的计算。 二、原理说明 1、连续时间周期信号的傅里叶级数CTFS 分析 任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。 三角傅里叶级数为: ∑∞ =++=1 000)]sin()cos([)(k k k t k b t k a a t x ωω 2.1 或: ∑∞=++=1 00)cos()(k k k t k c a t x ?ω 2.2 其中1 02T πω=,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、 余弦分量幅度和正弦分量幅度,k k c ?、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ?-0ωk 图像为相位谱。 三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量 (Sinusoid component),其幅度(amplitude )为k c 。也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。 指数形式的傅里叶级数为:

信号的频谱分析

实验三信号的频谱分析 方波信号的分解与合成实验 一、任务与目的 1. 了解方波的傅立叶级数展开和频谱特性。 2. 掌握方波信号在时域上进行分解与合成的方法。 3. 掌握方波谐波分量的幅值和相位对信号合成的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 信号的傅立叶级数展开与频谱分析 信号的时域特性和频域特性是对信号的两种不同的描述方式。对于一个时域的周期信号f(t),只要满足狄利克莱条件,就可以将其展开成傅立叶级数: 如果将式中同频率项合并,可以写成如下形式: 从式中可以看出,信号f(t)是由直流分量和许多余弦(或正弦)分量组成。其中第一项A0/2是常数项,它是周期信号中所包含的直流分量;式中第二项A1cos(Ωt+φ1)称为基波,它的角频率与原周期信号相同,A1是基波振幅,φ1是基波初相角;式中第三项A2cos(Ωt+φ2)称为二次谐波,它的频率是基波的二倍,A2是基波振幅,φ2是基波初相角。依此类推,还有三次、四次等高次谐波分量。 2. 方波信号的频谱 将方波信号展开成傅立叶级数为: n=1,3,5… 此公式说明,方波信号中只含有一、三、五等奇次谐波分量,并且其各奇次谐波分量的幅值逐渐减小,初相角为零。图3-1-1为一个周期方波信号的组成情况,由图可见,当它包含的分量越多时,波形越接近于原来的方波信号,还可以看出频率较低的谐波分量振幅较大,它们组成方波的主体,而频率较高的谐波分量振幅较小,它们主要影响波形的细节。

(a)基波(b)基波+三次谐波 (c)基波+三次谐波+五次谐波 (d)基波+三次谐波+五次谐波+七次谐波 (e)基波+三次谐波+五次谐波+七次谐波+九次谐波 图3-1-1方波的合成 3. 方波信号的分解 方波信号的分解的基本工作原理是采用多个带通滤波器,把它们的中心频率分别调到被测信号的各个频率分量上,当被测信号同时加到多路滤波器上,中心频率与信号所包含的某次谐波分量频率一致的滤波器便有输出。在被测信号发生的实际时间内可以同时测得信号所包含的各频率分量。本实验便是采用此方法,实验中共有5路滤波器,分别对应方波的一、三、五、七、九次分量。 4. 信号的合成 本实验将分解出的1路基波分量和4路谐波分量通过一个加法器,合成为原输入的方波信号,信号合成电路图如图3-1-2所示。 图3-1-2 三、内容与步骤 本实验在方波信号的分解与合成单元完成。 1. 使信号发生器输出频率为100Hz、幅值为4V的方波信号,接入IN端。 2. 用示波器同时测量IN和OUT1端,调节该通路所对应的幅值调节电位器,使该通路输出方波的基波分量,基波分量的幅值为方波信号幅值的4/π倍,频率于方波相同并且没有相位差.(注意:出厂时波形调节电位器已调到最佳位置,其波形基本不失真,基本没有相位差。若实验中发现存在波形失真或有相位差的现象,请适当调节波形调节电位器,使波形恢复正常。) 3. 用同样的方法分别在OUT3、OUT5、OUT7、OUT9端得到方波的三、五、七、九此谐波分量(注意其他谐波分量各参数应当满足式3-1-1所示)。 4. 完成信号的分解后,先后将OUT1与IN1、OUT3与IN2、OUT5与IN3、OUT7与IN4、OUT9与IN5连接起来,即进行谐波叠加(信号合成),分别测量(1)基波与三次谐波;(2)基波、三次谐波与五次谐波;(3)基波、三次谐波、五次谐波与七次谐波;(4)基波、三次谐波、五次谐波、七次谐波与九次谐波合成后的波形。并分别保

地震波的频率和振幅

地震波的频率和振幅 时间:2010-06-05 20:18来源:unknown 作者:wowglad 点击:7次 2008年12月19日 地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。 频谱分 2008年12月19日 地震波的频率和振幅 1、地震波的频谱及其分析 频谱:谐和振动的振幅和初相位则随频率的改变而改变的关系,统称为地震波的频谱。 频谱分为: 振幅谱:振幅随频率变化的关系称为振幅谱。 相位谱:初相位随频率的变化关系称为相位谱。 作用:频率分析,根据有效波和干扰波的频段差异 ①指导野外工作方法的选择 ②给数字滤波和资料等工作提供依据。 频谱分析的方法: 为了研究地震波的频谱特征,可用傅立叶变换把波形函数a(t)变换到频率域中,得到振幅随频率的变化函数A(f),这个变换过程称之为频谱分析方法。 假设波形函数a(t) ------------------(1.3.1)--

--傅氏正变换 --------------------(1.3.2)-- --傅氏反变换 这两式是等价的,即A(f)与a(t)是一一对应的。 ① δ脉冲函数Aδ(t) ② 函数: ③ 函数: 可以看出:不同时间函数具有不同的频谱。 图1.3.52、地震波的频率特征 地震波是人工激发的振动,具有连续的频谱,如图1.3.6所示。

图1.3.6主频f0:振幅谱曲线极大值所对应的频率。 频带的宽度:若|A(f)|最大值为1,则可找|A(f)|=0.707的两个频率f1和f2,两者之差△f=f2-f1为频带宽度。 大量的实际观测和分析,各种不同类型的地震波的能量主要分布频带是不同的。如图1.3.7所示。 图1.3.7 3、地震波的振幅及其衰减规律 影响地震波激发和接收时振幅和波形的因素: ① 激发条件。 ② 地震波在传播过程中受到影响。 ③ 接收条件的影响。 ④ 其它如地下岩层界面的形态和平滑状态。

DFT信号频谱分析

一,实验名称: DFT 的频谱分析 二,实验目的: 1. 加深对 DFT 原理的理解,熟悉DFT 的性质。 2. 掌握离散傅里叶变换的有关性质,利用Matlab 实现DFT 变换 3. 深刻理解利用 DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法 三,实验原理: 所谓信号的频谱分析就是计算信号的傅里叶变换。连续信号与系统的傅里叶分析显然不便于直接用计算机进行计算,使其应用受到限制,而DFT 是一种时域和频域均离散化的变换,适合数值运算,成为分析离散信号和系统的有力工具。工程实际中,经常遇到的连续信号Xa(t),其频谱函数Xa(jW)也是连续函数。数字计算机难于处理,因而我们采用DFT 来对连续时间信号的傅里叶变换进行逼近,进而分析连续时间信号的频谱。 离散傅里叶变换是有限长序列的傅里叶变换,它相当于把信号的 傅里叶变换进行等频率间隔采样,并且有限长序列的离散傅里叶变换和周期序列的离散傅里叶级数本质是一样的。快速傅里叶变换(FFT )并不是一种新的变换,它是离散傅里叶变换的一种快速算法,并且主要是基于这样的思路而发展起来的:(1)把长度为N 的序列的DFT 逐次分解成长度较短的序列的DFT 来计算。(2)利用WN(nk)的周期性和对称性,在DFT 运算中适当的分类,以提高运算速度。(对称性 nk N nk N W W N -=+2 ,12 -=N N W ;周期性nk N nk N nrN N k rN n N W W W W ---==)(,r 为任意整数

,1=nrN N W ) 离散傅里叶变换的推导: 离散傅里叶级数定义为 nk j N k p p e k x N n x N 21 )(1 )(π∑-== (1-1) 将上式两端乘以nm j N e π2-并对n 在0~N-1 求和可得 ?? ??? ?==∑∑∑∑∑-=---=-=-=---=-1 )(1 1 0101 )(1 0N 2 N 2N 2 )()(1)(N n m k n j N N k p N n N k m k n j p N n nm j p e k X e k X N e n x πππ 因为 { m k 1m k 0)(N )(1 ) (N 2 N 2N 2-1-1N 11=≠---=-==∑m k j m k j N n m k n j e e e N πππ 所以∑∑-=-=--=1 10 )()()(N 2N k p N n nm j p m k k X e n x δπ 这样∑-=-=10 N 2)()(N n nm j p p e n x m X π用k 代替m 得 ∑-=-=10 N 2)()(N n nk j p P e n x k X π (1-2) 令N 2πj N e W -=,则(1-2)成为DFS []∑-===10 )()()(N n nk N p p p W n x k X n x (1-3) (1-1)成为 IDFS [] ∑-=-= =1 )(1 )()(N n nk N p p p W k X N n x k X (1-4) 式(1-3)、(1-4)式构成周期序列傅里叶级数变换关系。其中 )()(k X n x p p 、都是周期为N 的周期序列,DFS[·]表示离散傅里叶级数 正变换,IDFS[·]表示离散傅里叶级数反变换。习惯上,对于长为N 的周期序列,把0≤n ≤N-1区间称为主值区,把)1(~)0(-N x x p p 称为)(n x p 的主值序列,同样也称)1(~)0(-N X X p p 为)(k X p 的主值序列。由于 )()()(n R n x n x N p =,对于周期序列)(n x p 仅有N 个独立样值,对于任何一 个周期进行研究就可以得到它的全部信息。在主值区研究)(n x p 与)(n x 是等价的,因此在主值区计算DFS 和DFT 是相等的,所以DFT 计算公式形式与DFS 基本相同。其关系为

周期信号的频谱分析

信号与系统 实验报告 实验三周期信号的频谱分析 实验报告评分:_______ 实验三周期信号的频谱分析 实验目的: 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;

3、掌握各种典型的连续时间非周期信号的频谱特征。 实验内容: (1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图: 其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t)和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。 程序如下: clear,%Clear all variables close all,%Close all figure windows dt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t); N=input('Type in the number of the harmonic components N='); x=0; for q=1:N; x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; end subplot(221) plot(t,x1)%Plot x1 axis([-2 4 -2 2]); grid on, title('signal cos(w0.*t)') subplot(222) plot(t,x2)%Plot x2 axis([-2 4 -2 2]); grid on, title('signal cos(3*w0.*t))') subplot(223) plot(t,x3)%Plot x3 axis([-2 4 -2 2])

应用FFT实现信号频谱分析

电信类课程试验报告

2.2 clear all N=100; n=0:N-1; xn=cos(2*pi*n/N); XK=fft(xn,N); magXK=abs(XK); phaXK=angle(XK); subplot(1,2,1); plot(n,xn); xlabel('n');ylabel('x(n)'); title('x(n)N=100') subplot(1,2,2) k=0:length(magXK)-1; title('x(n)N=100') subplot(1,2,2) k=0:length(magXK)-1; k=k*(2/100) stem(k,magXK,'.'); xlabel('k');ylabel('|X(k)|');

2.3复合函数 clear all N=100; n=0:N-1; xn=0.9*sin(2*pi*n/N)+0.6*sin(2*pi*n/(N/3)); XK=fft(xn,N); magXK=abs(XK); phaXK=angle(XK); subplot(1,2,1); plot(n,xn); xlabel('n');ylabel('x(n)'); title('x(n)N=100') subplot(1,2,2) k=0:length(magXK)-1; title('x(n)N=100') subplot(1,2,2) k=0:length(magXK)-1; k=k*(2/100) stem(k,magXK,'.'); xlabel('k');ylabel('|X(k)|'); title('X(k)N=100');

希尔伯特_黄变换谱及其在地震信号分析中的应用

第34卷第2期福州大学学报(自然科学版)Vol.34No.2 2006年4月Journal of Fuzhou University(Natural Science)Apr.2006 文章编号:1000-2243(2006)02-0260-05希尔伯特-黄变换谱及其在地震信号分析中的应用 陈子雄,吴琛,周瑞忠 (福州大学土木建筑工程学院,福建福州350002) 摘要:介绍了希尔伯特-黄变换(HHT)这一非线性、非平稳信号处理方法,并利用HHT处理了地震工程中 常用的El Centro地震波,得到了该信号的Hilbert谱、边际谱和能量谱,提取了该信号的主要动力特性,并与 该信号的Fourier分析结果进行了对比,显示出HHT这一方法的优越性. 关键词:希尔伯特-黄变换;经验模态分解;固有模态函数;地震信号 中图分类号:TU311.3文献标识码:A Hilbert-Huang transform spectru m and its application in seismic signal analysis CHEN Zi-xiong,W U Chen,ZHOU Rui-zhong (College of Civil Engineering and Architecture,Fuzhou University,Fuzhou,Fujian350002,China) Abstract:HHT is a ne w method to deal with non-linear and non-stationary data.El Centro earth- quake wave is analyzed by HHT.Through the way,Hilbert spectrum,marginal spectrum and energy spec trum are got and dynamic property is extrac ted.The comparison between HHT spectrum and Fourier spec trum is made and the superiority of HHT is demonstrated. Keyw ords:Hilbert-Huang transform;empirical mode decomposition;intrinsic mode function;seismic signal 地震信号具有短时、突变等特点,是一种典型的非平稳随机信号,必须对其进行分析与处理,才可以提取信号的主要特征.传统的Fourie r变换能够表述信号的频率特性,但不提供任何时域信息[1],而小波分析虽然在时域和频域都具有很好的局部化性质,但本质上仍是一种窗口可调的Fourier变换,在小波窗内的信号必须是平稳的,因而没有根本摆脱Fourier分析的局限[2].小波基的选择也是信号分析中的一个重要问题,另外,小波基的有限长会造成信号能量的泄漏,使信号的能量-频率-时间分布很难定量表述. Hilbert-Huang变换(HH T)的信号处理方法被认为是近年来对以Fourier变换为基础对线性和稳态谱分析的一个重大突破[2].它由经验模态分解(E mpirical Mode Decomposition,E MD)方法和Hilbert变换(H T)两部分组成,其核心是E MD分解.该方法采用了固有模态函数(Intrinsic Mode Function,I MF)概念以及将任意信号分解为I MF组成的思想,即E MD法,使得瞬时频率具有实际的物理意义[3].它不受Fourier分析的局限,可依据数据本身的时间尺度特征进行模态分解,分解过程中保留了数据本身的特性,再对各I MF分量进行Hilbert变换,得到信号能量在时间尺度上的分布规律,实现地震动力特性的提取. 1Hilbert-Huang变换 1.1经验模态分解和固有模态函数 经验模态分解(EMD)的目的是通过对非线性非平稳信号的分解获得一系列表征信号特征时间尺度的固有模态函数(I MF),使得各个I MF是窄带信号,可以进行Hilbert分析.首先设定两个条件:1整个时间序列的极大极小值数目与过零点数目相等或最多相差一个;o时间序列的任意点上,由极大值确 收稿日期:2005-07-27 作者简介:陈子雄(1981-),男,硕士研究生;通讯联系人:周瑞忠,教授. 基金项目:教育部博士点专项科研基金资助项目(20040386004)

信号的频谱分析及MATLAB实现

信号的频谱分析及MATLAB 实现(实例) 摘自:张登奇,杨慧银.信号的频谱分析及MATLAB 实现[J].湖南理工学院学报(自然科学版),2010,(03) 摘 要:DFT 是在时域和频域上都已离散的傅里叶变换,适于数值计算且有快速算法,是利用计算机实现信号频谱分析的常用数学工具。文章介绍了利用DFT 分析信号频谱的基本流程,重点阐述了频谱分析过程中误差形成的原因及减小分析误差的主要措施,实例列举了MATLAB 环境下频谱分析的实现程序。通过与理论分析的对比,解释了利用DFT 分析信号频谱时存在的频谱混叠、频谱泄漏及栅栏效应,并提出了相应的改进方法。 关键词:MATLAB ;频谱分析;离散傅里叶变换;频谱混叠;频谱泄漏;栅栏效应 3 分析实例 对信号进行频谱分析时,由于信号不同,傅里叶分析的频率单位也可能不同,频率轴有不同的定标方式。为了便于对不同信号的傅里叶分析进行对比,这里统一采用无纲量的归一化频率单位,即模拟频率对采样频率归一化;模拟角频率对采样角频率归一化;数字频率对2π归一化;DFT 的k 值对总点数归一化。同时,为了便于与理论值进行对比,理解误差的形成和大小,这里以确定信号的幅度谱分析为例进行分析说明。假设信号为:)()(t u e t x t -=,分析过程:首先利用CTFT 公式计算其模拟频谱的理论值;然后对其进行等间隔理想采样,得到)(n x 序列,利用DTFT 公式计算采样序列的数字连续频谱理论值,通过与模拟频谱的理论值对比,理解混叠误差形成的原因及减小误差的措施;接下来是对)(n x 序列进行加窗处理,得到有限长加窗序列)(n xw ,再次利用DTFT 公式计算加窗后序列)(n xw 的数字连续频谱,并与加窗前)(n x 的数字连续频谱进行对比,理解截断误差形成的原因及减小误差的措施;最后是对加窗序列进行DFT 运算,得到加窗后序列)(n xw 的DFT 值,它是对)(n xw 数字连续频谱进行等间隔采样的采样值,通过对比,理解栅栏效应及DFT 点数对栅栏效应的影响。利用MATLAB 实现上述分析过程的程序如下: clc;close all;clear; %CTFT 程序,以x(t)=exp(-t) t>=0 为例 %利用数值运算计算并绘制连续信号波形 L=4, %定义信号波形显示时间长度 fs=4,T=1/fs; %定义采样频率和采样周期 t_num=linspace(0,L,100);%取若干时点,点数决定作图精度 xt_num=exp(-1*t_num);%计算信号在各时点的数值 subplot(3,2,1);plot(t_num,xt_num),%绘信号波形 xlabel('时间(秒)'),ylabel('x(t)'),%加标签 grid,title('(a) 信号时域波形'),%加网格和标题 %利用符号运算和数值运算计算连续信号幅度谱的理论值 syms t W %定义时间和角频率符号对象 xt=exp(-1*t)*heaviside(t),%连续信号解析式 XW=fourier(xt,t,W),%用完整调用格式计算其傅氏变换 %在0两边取若干归一化频点,点数决定作图精度 w1=[linspace(-0.5,0,50),linspace(0,1.5,150)];

相关文档