文档视界 最新最全的文档下载
当前位置:文档视界 › 极性分子与非极性分子

极性分子与非极性分子

极性分子与非极性分子
极性分子与非极性分子

极性分子与非极性分子

你知道冰为什么在4℃时密度最大吗?

这就是本讲所学内容——分子间作用力和氢键的有关知识。由于水分子间有氢键缔合这样的特殊结构。根据近代X射线的研究,证明了冰具有四面体的晶体结构。这个四面体是经过氢键形成的,是一个敞开式的松弛结构,因为5个水分子不能把全部四面体的体积占完,在冰中氢键把这些四面体联系起来,成为一个整体。这种通过氢键形成的定向有序排列,空间利用率较小,约占34%,因此冰的密度较小。

液态水不像冰那样完全是有序排列了,而是有一定程度的无序排列,即水分子间的距离不像冰中那样固定,H2O分子可以由一个四面体的微晶进入另一微晶中去。这样,分子间的空隙减少,密度就增大了。

温度升高时,水分子的四面体集团不断被破坏,分子无序排列增多,使密度增大。但同时,水分子的热运动也增加了分子间的距离,使密度又减小。这两个矛盾的因素在4℃时达到平衡,因此,在4℃时水的密度最大。过了4℃后,分子的热运动使分子间的距离增大的因素,就占优势了,水的密度又开始减小。

知识延伸

一、分子间作用力

分子型物质无论是气态、液态或固态,都是由许多分子组成的,在分子间存在着一种较弱的作用力叫分子间作用力,也叫做范德华力。它比分子内原子间的作用力(化学键)要小。

分子间的作用力是一个总的提法,按作用力产生的原因和特性可分为三种力:

l.取向力

当两个极性分子靠近时,同极相斥,异极相吸,产生相对转动,最后必然是异极相对,同极尽量远离,这叫做分子的取向。这种由于极性分子取向而产生的力叫取向力。

2.诱导力

当极性分子接近非极性分子时,极性分子的偶极电场使非极性分子发生极化从而产生正、负电荷重心不相重合,这种由于外来的影响而产生的偶极叫诱导偶极,诱导偶极与固有偶极产生的力称为诱导力。一般说来,极性分子的极性越大,诱导力越大。分子的变形性越大,诱导力也越大。

3.色散力

非极性分子之间也存在着相互吸引力,非极性分子内部的原子核和电子都在不断地运动,不断地改变它们相对的位置。在某一瞬间,分子的正电荷重心和负电荷重心可能发生某一瞬时的不相重合,这就产生了瞬间偶极。如果相邻分子也产生了相应的瞬间偶极,相互取向的瞬间偶极之间就产生了吸引力,这种吸引力叫做色散力。

因此可以近似地说,相对分子质量越大,这种力越大,它们的熔沸点就相应地增高,但必须指出;色散力不仅存在于非极性分子之间也存在于极性分子之间、极性分子与非极性分子之间。

在考虑分子的极性时,不仅要考虑键的极性,还要考虑分子的形状,有时还必须对顺反异构体加以注意。

二、氢键

l.氢键

由于与电负性极强的元素(如F、O、N等)相结合的氢原子和其他电负性极强的原子间所产生的引力而形成的。通常用X—H…Y表示,式中的虚线表示氢键。其中X和Y代表F、O、N等电负性强而

原子半径较小的非金属原子。

2.氢键的特点

(1)氢键基本上还是静电吸引作用,它的键能一般小于41.84kJ/mol,与分子间作用力的数量相近。

(2)有饱和性和方向性。

(3)X、Y电负性越大,半径越小,所形成的氢键越稳定。

3.氢键的类型

氢键可分为分子间氢键和分子内氢键两种类型。如H2O、HF、NH3分子间存在氢键,故它们比同主族其他元

素的氢化物的沸点要高。如甲酸分子间氢键:

又如邻羟基苯甲酸分子存在分子内氢键,一般会使化合物的沸点、熔点降低,

汽化热、升华热减小。

三、离子的极化与离子的变形

在离子化合物中,阴、阳离子都带有电荷,它的电荷场会对离子产生作用,我们把一个离子使另一个离子产生某些结构变化(原子核和电子云发生相对位移)的过程叫做极化。离子被极化的结果叫做变形。

1.影响离子的变形因素

(1)离子的大小是决定离子变形的主要因素,离子半径越大,核对最外层电子的吸力越弱,离子越易变形。

(2)在离子大小相近时,其变形主要由离子外层的电子数决定,例如一般外层具有9~18个电子时,其变形要比8电子型的离子大得多。

(3)离子的电荷,正离子电荷越多,其变形越小;负离子的电荷越多,其变形大。

(4)复杂的阴离子变形性通常不大,而且中心原子氧化数越高,变形性越小。如常见的一些复杂离子和简单阴离子的变形性对比如下:

2.离子的极化学说及其应用

离子是带电的粒子,它使邻近离子变形的能力叫该离子的极化力。

离子极化力的强弱主要决定于以下三个因素:

①离子的大小:离子越小,极化力越强;

②离子的电荷;电荷数越多,极化力越强;

③离子的电子层结构:外层具有18、18+2个电子的离子,极化力最强;外展具有9~17个电子的离子,极化力次之。外层具有8个电子(惰性气体型)构型的离子极化力最弱。离子的极化对无机化合物的溶解度、稳定性、熔沸点以及颜色等均有一定的影响。

(1)离子极化对金属化合物熔点的影响

我们先看下面几组金属化合物熔点数据:

从左边一组熔点数据来看,Hg2+的极化作用和变形性都很大,Be2+的极化作用大于Ca2+,所以HgCl2中的共价性成分最大,BeCl2中次之,CaCl2中最少,即HgCl2转化为由极性分子组成的分子晶体倾向最大,熔点最低,BeCl2的熔点次之,CaCl2的熔点最高。从右边一组熔点数据来看,正好说明从F到I,随着原子序数的增加X-离子半径增大,离子的变形性增大,因而键的离子性减弱,熔点下降。

(2)离子极化对金属化合物在水中溶解度的影响

离子键结合的无机化合物一般可溶于水,溶解度的大小,可用晶格能和水合能的差异来解释,而共价型的无机物晶体却难溶于水。例如AgF溶于水(18g/L),而AgCl、AgBr、AgI都难溶于水,其溶解度依次减小。这是由于离子的极化改变了彼此的电荷分布,导致离子键向共价键过渡。由于F-变形性小,所以AgF仍属于离子晶体,随着Cl—Br—I-的顺序,负离子的变形性依次增加,所以AgX的共价性也依次增加,它们的溶解度就依次减小了。

(3)离子极化对金属碳酸盐热稳定性的影响

对于离子型化合物而言,晶格能是离子晶体稳定性的量度,但下表中的数据,却不能用晶格能来解释

这些数据反映出:(1)碱金属碳酸盐的热分解温度高于碱土金属碳酸盐;(2)碱土金属碳酸盐,随原子序数的增大,热分解温度升高;(3)过渡金属碳酸盐的热稳定性差。我们可以用离子极化学说来解释:当没有外界电场(或正离子)影响时,CO32-离子中的3个O2-同样被中心的CW)所极化,但M2+(或M+)的正电场对最邻近的一个O2-也发生极化作用,这种极化作用与中心C(IV)对O2-的极化作用正好相反,叫做反极化作用。由于这种反极化作用的存在,减弱了碳氧间的键。当反极化作用相当强烈时,可以超过C(IV)对O2-的极化作用,导致碳酸根破裂,分解为MO和CO2。显然,金属离子的极化作用越强,它对碳酸根离子的反极化作用也越强,碳酸根离子越不稳定。上述碳酸盐热分解的一些规律,正说明金属离极化能力的强弱规律。

(4)离子极化导致化合物颜色的加深

离子化合物有无颜色.首先取决于组成离子化合物的离子本身有无颜色。但有时无色的离子也可以形成有色地化合物。如Pb2+、I-和S2-都是无色的离子,而PbS、PbI2分别是黑色和黄色的,这是由于Pb2+的极化作用强,而S2-、I-的变形性大,离子间的极化可以使原来离子的能级相互靠近,容易发生从阴离子到阳离子的电荷跃迁,所以PbS、PbI2可以吸收一部分可见光来完成这种电荷跃迁,从而显现其互补色。因此离子的相互极化可以使无色离子形成有色化合物,而且阴离子的半径越大,变形性越大,化合物随颜色就越深。如卤化物中以碘化物的颜色最深,硫化物的颜色比相应的氧化物的颜色深。

(5)离子极化可以转变晶型

离子极化引起离子键向共价键过渡,在这种过渡中,离子间的距离缩短,使得r+/r-的比值减小,往往也减小晶体的配位数,导致晶型的转变。如CdS的离子半径比r+/r- = 97pm/184pm=0.53,应属于NaCl 型晶体,实际上CdS的晶体属于ZnS型。

在化学上把组成相同的物质,可以取不同晶型的现象,称为同质多晶现象。与同质多晶现象相反,有一些组成不同,但化学性质类似的物质,能够生成外形完全相同的晶体的现象,称为类质同晶现象。

这些物质互称为类质同晶体。如明矾[Kal(SO4)2·12H2O]和铬矾[KCr(SO4)2·12H2O]都形成八面体结晶,MgSO4·7H2O和NiSO4·7H2O也是类质同晶体。它们的特征是:存在于同一种溶液的这类物质能一起结晶出来,生成完全均匀的混晶。

上述的离子极化学说在无机化学中有多方面的应用,可以说是对离子键理论的一个补充,它能够帮助我们理解和记忆金属化合物的性质的变化规律。

好题妙解

例1 下列各对分子之间,存在的相互作用力分别是:

(1)CH3Cl和CH4分子间存在;

(2)CH3Cl和CH3Cl分子间存在;

(3)CCl4和CH3Cl分子之间存在;

(4)CH3OH和C2H5OH分子之间存在。

解析:先根据分子有无极性,然后根据分子间作用力的类型来判断。

(1)CH3Cl和CH4分别属于极性分子和非极性分子,故它们之间存在诱导力、色散力;同理(2)诱导力、色散力、取向力;(3)色散力、诱导力;(4)取向力、诱导力、色散力、氢键。

点评:此题先根据判断极性分子和非极性分子的一般经验规律判断分子的极性,然后根据分子间作用力的类型来判断。

例2 自然界中往往存在许多有趣也十分有意义的现象,下面列出了若干化合物的结构式、化学式、相对分子质量和沸点。

从它们的沸点可以说明什么问题?

解析:从分子间作用力及氢键加以分析。(2)、(3)、(6)均为醇类,相对分子质量越大,分子间作用力越大,沸点越高;(4)、(6)、(7)分子相对质量均为60,沸点不同,这是由于(4)、(6)分子间存在氢键。因此从表中可以得出如下结论:

(1)组成和结构相似的分子化合物,相对分子质量越大,沸点越高。

(2)分子间存在氢键、会使沸点升高,氢键越强、沸点越高。

点评:根据分子间作用力和氢键的影响因素,判断分子晶体中熔、沸点的大小是常见题型,需熟练掌握。

例3(知识探究学习)常压下,水冷却至0℃以下,即可结晶成六方晶胞的冰。日常生活中见到的冰、霜和雪等都是属于这种结构,其晶胞如图12-2所示,晶胞参数为a=4.52 × 10-10m,c=3.73×10-10m。回答下列问题

(1)晶胞中会有几个水分子?

(2)计算氢键O-H…O的长度。

(3)计算冰的密度。

解析:(1)对于给定的冰的六方晶胞,含有的水分子数为:

(2)要计算氢键的长度,就要搞清氢键在哪里。图上只标出O原子的位置,因此需要进一步认识冰的微观结构。在冰中,每个水分子周围应有4个水分子,形成四面体结构,四面体中心的水分子中的两个氢原子指向四面体的两个顶点,两对孤对电子指向四面体的另外两个顶点,图中原子4比较容易被看出是处于一个四面体中心的氧原子,所以原子4与原子3之间的距离就是氢键的长度:(3)水的密度计算比较简单,不过计算晶胞体积时应注意六方晶胞与立方晶胞的区别:

点评:解决晶体结构问题,必须具备较强的空间想象能力。本题关键是搞清氢键的位置在哪里。

竞赛样题展示

例4(2000年全国竞赛初赛试题)已经探明,我国南海跟世界上许多海域一样,海底有极其丰富的甲烷资源。其总量超过已知蕴藏在我国陆地下的天然气总量的一半。据报道,这些蕴藏在海底的甲烷是高压下形成的固体,是外观像冰的甲烷水合物。

1.试设想,若把它从海底取出,拿到地面上,它将有什么变化?为什么?它的晶体类型是分子晶体、离子晶体还是原子晶体?判断的根据是什么?

2.已知每l m3这种晶体能释放出164 m3的甲烷气体,试估算晶体中水与甲烷的分子比(不足的数据由自己假设,只要假设得合理均按正确论)。

解析:由题意知,这种固体是在高压条件下形成的甲烷的水合物,故从海底取出后,拿到地面上,甲烷水合物将熔化并放出甲烷气体。由于甲烷分子与水分子都是由有限数目的原子以共价键结合而成的小分子,水分子与甲烷分子之间只可能存在范德华力,而水分子与水分子之间存在范德华力与氢键,故该晶体是分子晶体。

第2小题具有开放性。在实践中,不可能告诉你许多已知的东西去解决某个实际的问题,而必须靠自己去挖掘、去推断、去假设,这才是解决问题的出路所在。题目中已说明,只要假设合理均按正确论,我们不妨假设164m3是标准状况下的数据.则l m3该晶体含甲烷当。因晶体的主体骨架是冰,就不妨假设其密度与冰相同(冰的密度为900 kg/m)。

说明:甲烷水合物的组成可能是6CH4·46H2O,其实,CH4·nH2O中n的值,根据假设条件不同,应有一个较宽的范围。

点评:信息给予题是以原有知识为基础的,不可能空穴来风。故在解答时,必须充分利用所给信息,加工整理,形成思路。我们未来的生活和能源可能与可燃冰有关,这是常赛题。

例5(1997年全国竞赛试题)PCl5是一种白色固体,加热到160℃不经过液态阶段就变成蒸气,测

得180℃下的蒸气密度(折合成标准状况)为9.3 g/L,极性为零,PCl键长为204 pm和211 pm两种。继续加热到250℃时测得压力为计算值的两倍。PCl5在加压下于148℃液化,形成一种能导电的熔体,测得P—Cl的键长为198pm和206 pm两种。(P、Cl相对原子质量为31.0、35.5)回答如下问题:1.180℃下PCl5蒸气中存在什么分子?为什么?写出分子式,画出立体结构。

2.在250℃下PCl5蒸气中存在什么分子?为什么?写出分子式,画出立体结构。

3.PCl5熔体为什么能导电?用最简洁的方式作出解释。

4.PBr5气态分子结构与PCl5相似,它的熔体也能导电,但经测定其中只存在一种P—Br键长。PBr5熔体为什么导电?用最简洁的形式作出解释。

解析:本题是四个虽相关却又相互独立的问题。问题1只涉及第一句话给出的信息。由折合成标准状态的蒸气密度和五氯化磷的化学式量,经过属于中学教学内容的简单的计算,就可以得出:180℃下的PCl5是单体,即PCl5就是它的分子式。PCl5分子有5个Cl原子围绕着P原子排列,信息表明其中有两种不同键长的P—Cl键,可见不可能是平面的五角形的分子(它的磷氯键是一种),一定具有三维立体结构;三维立体结构还可能有两种:三角双锥或者四角锥体,后者的极性不等于零,所以PCl5分子是三角双锥型分子。问题2的相关信息是第二句话给出的。该信息无疑表明,PCl5分子在加热到250℃时分解了,生成等物质的量(摩尔)的两种气态分子。这种分解反应从类型上说,有的学生可能是熟悉的,例如氧化铜分解生成氧化亚铜和氧气,二氧化锰分解生成四氧化三锰和氧气,三氧化硫分解生成二氧化硫和氧气等等。本题是将这种知识迁移到氯化物上来。所以,可以想到,五氯化磷的分解产物是三氯化磷和氯气。问题3涉及的是电解质的基本概念:电解质的定义之一是它的熔体能够导电。但是中学课本里对熔体的导电粒子的讨论很少。本问题首先给出PCl5熔体能导电的信息,由这个信息应当想象其中有正、负两种离子存在。那么,是哪两种离子呢?本题的信息是该熔体中有两种不同的P—Cl键长,这就排除了一种是Cl-,另一种是PCl4+的可能,因为四配位的PCl4+无论如何不会有两种不同的键长(不管它是正四面体型还是平面四边形),所以两种离子可能是PCl4+和PCl6-。这个小题在表述中避免了画出结构式之类的用语,是为减少暗示。问题4是对问题3的一个反馈性的暗示。意思无非是说,若将氯改换成溴,与PCl6_相似的PBr6-是不能形成的,因而其中的阴离子只是氯离子。如果学生脑中浮现溴离子比氯离子大得多的图像,就会想像,6个溴离子包在半径很小的p5+外面可能实在太挤了,挤不下了,而较小的氯

离子则是有可能的。

1.9.5×22.4=208.3 g/mol

PCl5相对分子质量31.0+35.5×5=208.5

蒸气组成为PCl5 (结构式如图12—3所示)

呈三角双锥体。三角双锥分子无极性,有两种键长。(注:若答成四方锥体不给分,因它有极性,

与题面给的信息不符)

2.PCl5 = PCl3 + Cl2

氯分子Cl—Cl 三氯化磷分子(结构式如图12—4所示)

(压力为计算值的两倍表明l mol PCl5完全分解成l mol PCl3和l mol Cl2,共2 mol。气体由等摩PCl3和Cl2组成。)

3.

(注:含PCl4+和PCl6_两种离子,前者为正四面体,后者为正八面体,因此前者只有一种键长,后者也只有一种键长,加起来有两种键长。)

4.PBr5=PB4++Br-PBr4+结构同PCl4+

例6(1999年全国竞赛试题)A和B两种物质互相溶解的关系如图12-6所示,横坐标表示体系的总组成,纵坐标为温度,由下至上,温度逐渐升高。T1时a是B在A中的饱和溶液的组成,b是A在B 中的饱和溶液的组成(T2时相应为C、d)。T3为临界温度,此时A和B完全互溶。

图中曲线内为两相,曲线外为一相(不饱和液)。某些物质如H2O和(C2H5)3N,C3H5(OH)3和间—CH3C6NH2有低的临界温度(见示意图12-6)。请根据上述事实,回答下列问题:

1.解释图12-6中T3存在的原因。

2.说明图12—7所示的两对物质存在低的临界温度的原因。

3.描述图12—7所示的两对物质的互溶过程。

解析:此题的信息是图形,可称为图形题。考查参赛者对用图传递的

信息理解加工的能力。参赛者首先应抓住试题的主题—两种溶剂的互溶性;

然后要浮现中学化学中关于溶解性的一般性问题——为什么有的溶剂

能够互溶,有的却不能?其次要回忆中学化学中有关温度对溶解度影响的一

般原理。

若颠倒了思考的顺序,思路就会乱。中学化学有“相似相溶”的说法,

即分子间作用力的性质相近大小也相近的溶剂会相互溶解。性质相近和大小

相近也有个顺序。性质相近才能再考虑大小是否相近。性质不相近就不必再

考虑大小是否相近。图12—6和12—7给出了溶解性与温度关系相反的信息,

应归咎于两者分子间力性质不同。题面给出图12一7容剂的实例,倒过来告

诉我们图12—6的溶剂不具有这种性质,即表明图12—6是通例,图12—7

是特例,因此参赛者需首先分析图12—7特例具有什么特殊的分子间作用力,

于是就找到了解题的关键——氢键。

具体答案为:

1.物质的溶解度通常随着温度的升高而增大,所以在一定的温度下A和B两种物质能达到完全互溶。

2.某些物质如H2O和(C2H5)3N,C3H5(OH)3和间—CH3C6H4NH2存在低的临界温度的原因是它们在较低温度能形成分子间氢键,然而,随着温度的升高,分子间氢键破裂,所以溶解度反而减小。

化学键 非极性分子和极性分子

化学键 非极性分子和极性分子(上) 1. 复习重点 1.化学键、离子键、共价键的概念和形成过程及特征; 2.非极性共价键、极性共价键,非极性分子、极性分子的定义及相互关系。 B . 难点聚焦 (1) 化学键: 1.概念:化学键:相邻的原子之间强烈的相互作用. 离子键:存在于离子化合物中 2.分类: 共价键:存在于共价化合物中 金属键:存在于金属中 (2) 离子键: 一、 离子化合物:由阴、阳离子相互作用构成的化合物。如 NaCl/Na 2O/Na 2O 2/NaOH/Na 2SO 4等。 二、 离子键:使阴、阳离子结合成化合物的静电作用。 说明: (1)静电作用既包含同种离子间的相互排斥也包含异种离子间的相互吸引。是阴、阳离子间的静电吸引力与电子之间、原子核之间斥力处于平衡时的总效应。 (2)成键的粒子:阴、阳离子 (3)成键的性质:静电作用 (4)成键条件: ①活泼金属(IA 、IIA 族)与活泼非金属(VIA 、VIIA 族)之间相互化合―――― ne n me m M M X X ---+ +-???→???→ ????→吸引、排斥达到平衡 离子键(有电子转移) ②阴、阳离子间的相互结合: +-Na +Cl =NaCl (无电子转移) (5)成键原因: ①原子相互作用,得失电子形成稳定的阴、阳离子; ②离子间吸引与排斥处于平衡状态; ③体系的总能量降低。 (6)存在:离子化合物中一定存在离子键,常见的离子化合物有强碱、绝大多数盐(PbCl 2/Pb(CH 3COO)2等例外),强的金属的氧化物,如:Na 2O/Na 2O 2/K 2O/CaO/MgO 等。 三.电子式: 1.概念:由于在化学反应中,一般是原子的最外层电子发生变化,所以,为了简便起见,我们可以在元素符号周围用小黑点(或×)来表示原子的最外层电子。这种式子叫做电子式 例如: 2.离子化合物的电子式表示方法: 在离子化合物的形成过程中,活泼的金属离子失去电子变成金属阳离子,活泼的非金属离子得到电子变成非金属阴离子,然后阴阳离子通过静电作用结合成离子键,形成离子化合物。所以,在离子化合物的电子式中由阳离子和带中括号的阴离子组成且简单的阳离子不带最外

键的极性与分子的极性

2.3.1 键的极性和分子的极性 【学习目标】1、区分键的极性和分子的极性;2、掌握判断键的极性和分子的极性的方法; 3、了解分子极性的应用。 【课前案——温故而知新】 一、电负性 1、含义:用来描述不同元素的原子对键合电子的大小。 2、递变规律:在元素周期表中,同主族元素,由上到下,原子的电负性依次; 同周期元素,由左到右,原子的电负性依次。 3、判断化学键的类型:一般来说,当键合原子的电负性差值大于时,形成离子键; 当键合原子的电负性差值小于时,形成共价键。 二、键的极性 按照共价键中,将共价键分为极性共价键和非极性共价键。 1、非极性共价键:由(“相同”或“不同”)种原子形成的共价键,电子对(“有”或“无”)偏移。 2、极性共价键:由(“相同”或“不同”)种原子形成的共价键,电子对(“有”或“无”)偏移,极性键中的两个键合原子,电负性较大的原子呈(“正”或“负”,下同)电性,电负性较小的 呈电性。 【课前检测】1、写出下列物质的电子式:① CCl4;②NH3; ③H2O ;④CO2;⑤Na2O2;⑥Mg(OH)2。 2、有下列物质:①O2;②CO2;③NH3;④Na2O;⑤Na2O2;⑥NaOH;⑦CaBr2;⑧H2O2;⑨NH4Cl;⑩HBr,回答下列问题: (1)只含有极性键的是;(2)只含有非极性键的是;(3)含有极性键和非极性键的是;(4)只含有离子键的是;(5)含有非极性键的离子化合物是。 【课中案】 一、分子的极性 对于一个分子来说,可以设想它的全部正电荷集中于一点,叫做正电荷中心,它的全部负电荷集 中于一点,叫做负电荷中心,但分子是电中性的。 1、极性分子:分子中正电中心和负电中心(“不重合”或“重合”),使分子的某一部分呈正电 性(δ+),另一部分呈负电性(δ—)。 2、非极性分子:分子中正电中心和负电中心(“不重合”或“重合”)。 【注意】极性分子、非极性分子都显电中性,都不带电荷。 二、分子极性的判断方法 1、物理模型法 AB n分子,A-B键看作AB原子间的相互作用力,根据中心原子A所受合 力是否为零来判断, F合=0,为非极性分子(极性抵消); F合≠0,为极性分子(极性不抵消)。 【理解与巩固】1、完成下列表格:

非极性分子和极性分子

非极性分子和极性分子 【考纲要求】 1.理解极性键与非极性键的形成原因,并能进行化学键的极性强弱比较。 2.理解化学键的极性与分子的极性的区别与联系,掌握极性分子与非极性分子的判断依据和判断方法。 3.理解分子间作用力和氢键的概念以及对物质性质的影响。 教与学方案 【自学反馈】 一、概念辨析 1.非极性键: (1)概念:。 (2)形成条件:。 2.极性键: (1)概念:。 (2)形成条件:。 (3)共价键极性强弱比较依据:形成共价键的共用电子对偏向与偏离程度越 大,键的极性就越强。试比较下列两组共价键的强弱: ①H—H、H—F、H—O、H—N、H—C:; ②H—F、C—F、N—F、O—F、F—F:。 3.极性分子: (1)含义:。 (2)举例:。 4.非极性分子: (1)含义:。 (2)判断方法:①根据键角判断分子中的正负电荷重心是否重叠 ②根据AB n的中心原子A周围是否为完全等价的电子对 ③根据AB n的中心原子A的最外层价电子是否全部参与形成 了同样的共价键。(或A是否达最高价) (3)常见AB n型分子中极性分子与非极性分子比较:

分子类型举例键角构形分子极性 AB CO AB2(A2B)H2O CS2 BeCl2 AB3PCl3 BF3 SO3 AB4CH4 AB2C2CH2Cl2 A2B4C2H4 A2B2C2H2 A6B6C6H6 5.分子间作用力: (1)概念:。 (2)影响因素:。 (3)对物质性的影响:。 6.氢键: (1)概念:。 (2)形成条件:。 (3)对物质性质的影响:。 7.相似相溶原理: 。 .【例题解析】 [例1] ] 氰(CN)2为无色可燃气体、剧毒、有苦杏仁味,和卤素单质的性质相似。 (1)写出氰与苛性钠溶液反应的离子方程式:_______________________。 (2)已知氰分子键之间夹角为180°并有对称性,(CN)2的电子式为______________,结构式为______________,(CN)2分子为______________(填“极性”或“非极性”)分子。 (3)CN-中电子数为______________,CN-的电子式为______________。 解题思路: 。 易错点: 。

键的极性与分子极性

键的极性与分子极性 一、非极性键、极性键、非极性分子、极性分子的比较 非极性键极性键非极性分子极性分子 定义共用电子对不发 生偏移的共价键 共用电子对发生 偏移的共价键 正、负电荷重心重 合,正、负电荷分 布均匀的分子 正、负电荷重心不重 合,正、负电荷分布 不均匀的分子 研究对象属于分子组成部 分的共价键 属于分子组成部 分的共价键 分子分子 主要特征无电性无极性有电性有极性无电性无极性有电性有极性 相互关系极性键、非极性键均属于化学键中的 共价键 极性分子、非极性分子都是电中性分子。 键无极性分子也无极性,键有极性分子不 一定有极性,分子有极性必含极性键。 二、键的极性与分子极性的关系 化学键的极性是分子极性产生的原因之一。当分子中所有化学键都是非极性键时,分子为非极性分子。当分子内的化学键为由于分子中电荷的空间分布不对称,即各键的极性无法抵消时为极性分子;由于分子中电荷的空间分布对称,使各个键的极性互相抵消时,形成非极性分子。所以,原子间的极性键形成的分子如NH3,分子中的电荷空间分布不对称,键的极性无法抵消,是极性分子。极性分子中一定存在极性键。但有的极性分子中可以存在非极性键,如H2O2。由非极性键形成的双原子分子,一定是非极性分子。如C12、O2等。而CH4、CO2分子中虽然存在极性键,但由于分子中电荷空间分布对称,正负电荷重心重合,键的极性相互抵消,亦属于非极性分子。正负电荷重心是否重合,键的极性能否相互抵消,则取决于分子的空间构型。所以AB n型多原子分子的极性需视分子的空间构型而定,键的极性与 构型原子数举例结构式对称性键的极性 非极性分子 直线型双原子H2、O2、N2、X2 H-H、Cl-Cl 对称非极性直线型三原子CO2、CS2 O=C=O 对称极性 平面正三 角型 四原子BF3、BCl3 对称极性 正四面体 型 五原子CH4、CCl4 对称极性 极性分子 直线型双原子HX H-Cl 不对称极性直线型三原子HCN H-C≡N 不对称极性 折线型三原子H2O、H2S 不对称极性三角锥型四原子NH3、PCl3 不对称极性四面体型五原子CH3Cl、CH2Cl2 不对称极性

高中化学《键的极性和分子的极性》优质课教学设计、教案

键的极性和分子的极性教学设计附学案

子极性的判 。概括归纳: 极性分子 非极性分子 学生思考。 宏观现象 微观本质 抽象概括 三个层次分析分子 的极性。 环节二问题4、如何判断是否是极性分子? 方法1、据概念判断: 找出下列物质的正电荷中心和负电荷中 寻找正电荷和负电荷中心 分析分子是否对称。 总结归纳。 。 。培养学生分析能力 学会透过现象看本 质。 学会总结归纳和建 : 心。 分 断 小结: 方法2、根据分子空间构型 分析下列物质结构是否对称。 小结: ABn 型分子: 1.当分子的空间构型是时,分子 的正负电荷中心,故为非极性分子。 2.当分子的空间构型不是时,分 子的正负电荷中心,一般为极性分子

方法的核 空间对称结构有 。 方法 3、向量法(力的合成) 总结归纳三种不同的判断 心。 立模型。 小结: 在 ABn 分子中,A-B 键的极性 可以看作 A 、B 原子间的相互作用力,根 据中心原子 A 所受合力是否为零来判断: ,极性抵消,为非极性分子。 ,极性不抵消,为极性分子。 环 节三 表面活性剂和细胞膜 一切知识都应该 为现实服务,否则就会失去它存在的必要性。 听讲。 : 应 用

环 i 、NH 3 j 、BF 3 k 、H 2O 2 内容 归理 问题 1、共价键的极性是如何产生的? 问题 2、极性键构成的就是极性分子吗? 节 【实验】用带电的塑料尺吸引水流和四氯化碳流 : 现象: 键 结论: 的 问题 3、分子的极性与哪些因素有关? 概括归纳: 极性分子 极 性 非极性分子 的关系 问题 4、如何判断是否是极性分子? 方法 1、据概念判断: 节 找出下列物质的正电荷中心和负电荷中心。 : 判断 小结: 性 方法 2、根据分子空间构型 宏观现象 微观本质 抽象概括 分子的极性与 那些因素有关? 概括归理: 正负电荷中心 在什么条件下重合? 二 一 环 极 性 与 分 子 的 分 子 的 极

非极性分子和极性分子剖析

非极性分子和极性分子 1. 复习重点 1.化学键、离子键、共价键的概念和形成过程及特征; 2.非极性共价键、极性共价键,非极性分子、极性分子的定义及相互关系。 2. 难点聚焦 一.化学键: 1.概念:化学键:相邻的原子之间强烈的相互作用. 离子键:存在于离子化合物中 2.分类: 共价键:存在于共价化合物中 金属键:存在于金属中 二.离子键: 1. 离子化合物:由阴、阳离子相互作用构成的化合物。如NaCl/Na 2O/Na 2O 2/NaOH/Na 2SO 4等。 2. 离子键:使阴、阳离子结合成化合物的静电作用。 说明: (1)静电作用既包含同种离子间的相互排斥也包含异种离子间的相互吸引。是阴、阳离子间的静电吸引力与电子之间、原子核之间斥力处于平衡时的总效应。 (2)成键的粒子:阴、阳离子 (3)成键的性质:静电作用 (4)成键条件: ①活泼金属(IA 、IIA 族)与活泼非金属(VIA 、VIIA 族)之间相互化合―――― ne n me m M M X X ---+ +-???→???→ ????→吸引、排斥达到平衡 离子键(有电子转移) ②阴、阳离子间的相互结合: +-Na +Cl =NaCl (无电子转移) (5)成键原因: ①原子相互作用,得失电子形成稳定的阴、阳离子; ②离子间吸引与排斥处于平衡状态; ③体系的总能量降低。 (6)存在:离子化合物中一定存在离子键,常见的离子化合物有强碱、绝大多数盐(PbCl 2/Pb(CH 3COO)2等例外),强的金属的氧化物,如:Na 2O/Na 2O 2/K 2O/CaO/MgO 等。 三.电子式: 1.概念:由于在化学反应中,一般是原子的最外层电子发生变化,所以,为了简便起见,我们可以在元素符号周围用小黑点(或×)来表示原子的最外层电子。这种式子叫做电子式 例如:

非极性分子和极性分子

https://www.docsj.com/doc/802570899.html, 你的首选资源互助社区贵州省贵阳一中2011届高三化学一轮复习教学案第14讲: 非极性分子和极性分子 【考纲要求】 1.理解极性键与非极性键的形成原因,并能进行化学键的极性强弱比较。 2.理解化学键的极性与分子的极性的区别与联系,掌握极性分子与非极性分子的判断依据和判断方法。 3.理解分子间作用力和氢键的概念以及对物质性质的影响。 教与学方案 【自学反馈】 一、概念辨析 1.非极性键: (1)概念:。 (2)形成条件:。 2.极性键: (1)概念:。 (2)形成条件:。 (3)共价键极性强弱比较依据:形成共价键的共用电子对偏向与偏离程度越 大,键的极性就越强。试比较下列两组共价键的强弱: ①H—H、H—F、H—O、H—N、H—C:; ②H—F、C—F、N—F、O—F、F—F:。 3.极性分子: (1)含义:。 (2)举例:。 4.非极性分子: (1)含义:。 (2)判断方法:①根据键角判断分子中的正负电荷重心是否重叠 ②根据AB n的中心原子A周围是否为完全等价的电子对 ③根据AB n的中心原子A的最外层价电子是否全部参与形成 了同样的共价键。(或A是否达最高价)

(3)常见AB n型分子中极性分子与非极性分子比较: 分子类型举例键角构形分子极性 AB CO AB2(A2B)H2O CS2 BeCl2 AB3PCl3 BF3 SO3 AB4CH4 AB2C2CH2Cl2 A2B4C2H4 A2B2C2H2 A6B6C6H6 5.分子间作用力: (1)概念:。 (2)影响因素:。 (3)对物质性的影响:。 6.氢键: (1)概念:。 (2)形成条件:。 (3)对物质性质的影响:。 7.相似相溶原理: 。 .【例题解析】 [例1] ] 氰(CN)2为无色可燃气体、剧毒、有苦杏仁味,和卤素单质的性质相似。 (1)写出氰与苛性钠溶液反应的离子方程式:_______________________。 (2)已知氰分子键之间夹角为180°并有对称性,(CN)2的电子式为______________,结构式为______________,(CN)2分子为______________(填“极性”或“非极性”)分子。 (3)CN-中电子数为______________,CN-的电子式为______________。 解题思路: 。

新高中化学 2.3.1键的极性和分子的极性课后作业 新人教版选修3

第三节分子的性质第1课时键的极性和分子的极性[目标要求] 1.掌握键的极性和分子极性的实质及其相互关系。2.会判断分子的极性,并知道分子极性对物质性质的影响。 一、键的极性 1.写出下列分子的结构式 (1)H2O ____________ (2)NH3 ________________ (3)CO2 ____________ (4)CCl4________________ (5)HCN ______________ (6)CH3Cl ______________ 2.共价键有两种:________共价键和____________共价键。 3.极性共价键是指______________________共价键,电子对会____________,电负性较大的原子呈________电性,电负性较小的原子呈________电性,简称极性键。 4.非极性共价键是指由__________________共价键,电子对______________,又简称非极性键。 二、分子的极性 1.极性分子中______________________________,使分子的某一个部分呈________,另一部分呈________。 2.非极性分子是指________________________________________。 3.分子的极性是分子中化学键的________________。当分子中各个键的极性的向量和为________时,该分子是非极性分子,否则是极性分子。 4.只含非极性共价键的分子________是非极性分子。只含极性键的分子________是极性分子,________是非极性分子。如H2O是________分子,而CH4是________分子。 5.极性分子中________含有非极性键,如H2O2;非极性分子中________含有极性键,如C2H4。 1.下列说法中不正确的是( ) A.共价化合物中不可能含有离子键 B.有共价键的化合物,不一定是共价化合物 C.离子化合物中可能存在共价键 D.以极性键结合的分子,肯定是极性分子 2.下列叙述中正确的是( ) A.以非极性键结合起来的双原子分子一定是非极性分子 B.以极性键结合起来的分子一定是极性分子 C.非极性分子只能是双原子单质分子 D.非极性分子中,一定含有非极性共价键 3.根据科学人员探测,在海洋深处的沉积物中含有可燃冰,主要成分是甲烷水合物。有关其组成的两种分子的下列说法正确的是( ) A.它们都是极性键构成的极性分子 B.它们都只有π键 C.它们的成键电子的原子轨道都是sp3-s D.它们的立体结构都相同 4.下列叙述不正确的是( ) A.卤化氢分子中,卤素的非金属性越强,共价键的极性越强,稳定性也越强 B.以极性键结合的分子,不一定是极性分子 C.判断A2B或AB2型分子是极性分子的依据是:具有极性键且分子构型不对称,键角小于180°,为非直线形结构 D.非极性分子中,各原子间都应以非极性键结合 5.A、B、C、D、E是相邻三个周期中的五种元素,它们的原子序数依次增大,B、C、D

极性键与非极性键的区别

极性键 由于两个原子吸引电子的能力不同,共用电子对必然偏向吸引电子能力较强的原子一方,因而吸引电子能力较弱的原子一方相对的显正电性。这样的共价键叫做极性共价键,简称极性键。 判别 同种原子之间的是非极性键 极性键存在于不同种元素间 但是存在极性键的物质不一定是极性分子. 区分极性分子和非极性分子的方法: 非极性分子的判据:中心原子化合价法和受力分析法 1、中心原子化合价法: 组成为ABn型化合物,若中心原子A的化合价等于族的序数,则该化合物为非极性分子.如:CH4,CCl4,SO3,PCl5 2、受力分析法: 若已知键角(或空间结构),可进行受力分析,合力为0者为非极性分子. 如:CO2,C2H4,BF3 3、同种原子组成的双原子分子都是非极性分子。 不是非极性分子的就是极性分子了 常见极性分子: HX,CO,NO,H2O,H2S,NO2,SO2,SCl2,NH3,H2O2,CH3Cl,CH2Cl2,CHCl3,CH3 CH2OH 非极性键:由同种元素的原子间形成的共价键,叫做非极性键。同种原子吸引共用电子对的能力相等,成键电子云对称地分布在两核之间,不偏向任何一个原子,成键的原子都不显电性。非极性键可存在于单质分子中(如H2中H—H键、O2中O=O键、N2中N≡N键),也可以存在于化合物分子中(如C2H2中的C—C 键)。非极性键的键偶极矩为0。以非极性键结合形成的分子都是非极性分子。存在于非极性分子中的键并非都是非极性键,如果一个多原子分子在空间结构上的正电荷几何中心和负电荷几何中心重合,那么即使它由极性键组成,那么它也是非极性分子。由非极性键结合形成的晶体可以是原子晶体,也可以是混合型晶体或分子晶体。例如,碳单质有三类同素异形体:依靠C—C非极性键可以形成正四面体骨架型金刚石(原子晶体)、层型石墨(混合型晶体),也可以形成球型碳分子富勒烯C60(分子晶体)。 同种原子之间的是非极性键 极性键存在于不同种元素间 但是存在极性键的物质不一定是极性分子. 区分极性分子和非极性分子的方法: 非极性分子的判据:中心原子化合价法和受力分析法 1、中心原子化合价法: 组成为ABn型化合物,若中心原子A的化合价等于族的序数,则该化合物为非极性分子.如:CH4,CCl4,SO3,PCl5 2、受力分析法:

考点十五 非极性分子和极性分子

考点十五非极性分子和极性分子 Ⅲ.教材精讲 1.键的极性与分子的极性 (1)同种元素的原子结合成双原子的分子,因为共用电子对不偏向于任何一方,整个分子电荷分布是对称的,所以全部是非极性键形成的非极性分子。如H2、C12等单质分子。 (2)不同元素的原子结合成的双原子分子,由于共用电子对偏向吸引电子能力强的原子一方,使整个分子电荷分布不对称,所以全部是由极性键形成的极性分子。如HCl、HBr 等分子。 (3)以极性键结合的多原子分子,如果分子的空间构型是对称的,即为非极性分子,否则为极性分子。 (4)臭氧是一个特例,它属于极性分子。 2.判断AB n型分子是否有极性的经验规律 若分子中A原子的最外层电子全部参与成键,这种分子一般为非极性分子,如CO2、CH4、BF3等;若A原子的最外层电子未全部参与成键,则为极性分子,如H2O、NH3等。 上述经验规律也可表示为: 若A的化合价等于其价电子数目,则分子的空间结构对称,其分子为非极性分子;若A的化合价不等于其价电子数目,则分子的空间结构不对称,其分子为极性分子,具体分析如下表: 3.常见物质的分子构型 (1)直线型:H2、CO、NO、CO2、C2H2 (2)V型:H2O、H2S (3)平面正三角型:BF3、BCl3 (4)三角锥型:NH3、PH3、NF3、H3O+ (5)正四面体型:CH4、CCl4、SiCl4(键角109。28?)、P4(键角60。) 4.相似相溶原理 极性分子易溶于极性分子溶剂中(如:HCl、NH3、H2SO4易溶于水中),非极性分子易溶于非极性分子溶剂中(如:I2、Br2、S易溶于苯、CCl4中,白磷易溶于CS2难溶于水中)。 5.氢键 氢键是与非金属性很强的元素(如氮、氧、氟)相结合的氢原子和另一个分子中非金属极

第二章第三节第1课时键的极性和分子的极性范德华力和氢键

第三节分子的性质 第1课时键的极性和分子的极性范德华力和氢键 1.了解共价键的极性和分子的极性及产生极性的原因。 2.知道范德华力、氢键对物质性质的影响。 3.能应用分子结构的知识判断分子的极性。 键的极性和分子的极性[学生用书P28] 1.键的极性 2.分子的极性 3.键的极性和分子的极性的关系 (1)一般只含非极性键的分子是非极性分子。 (2)含有极性键的分子,若分子结构是空间对称的,则为非极性分子,否则是极性分子。 1.判断正误(正确的打“√”,错误的打“×”)。 (1)极性分子中不可能含有非极性键。( )

(2)离子化合物中不可能含有非极性键。( ) (3)非极性分子中不可能含有极性键。( ) (4)一般极性分子中含有极性键。( ) (5)H2O、CO2、CH4都是非极性分子。( ) 答案:(1)×(2)×(3)×(4)√(5)× 2.下列各组物质中,都是由极性键形成极性分子的一组是( ) A.CH4和Br2B.NH3和H2O C.H2S和CCl4D.CO2和HCl 解析:选B。CH4、CCl4、CO2都是由极性键形成的非极性分子,NH3、H2O、H2S都是由极性键形成的极性分子,Br2是由非极性键形成的非极性分子。 分子极性的判定 1.判断分子极性的一般思路 2.判断AB n型分子极性的方法 (1)化合价法:AB n型分子中,中心原子的化合价的绝对值等于该原子的价电子数时,该分子为非极性分子,此时分子的空间结构对称;若中心原子的化合价的绝对值不等于其价电子数,则分子的空间结构不对称,该分子为极性分子。具体实例如下: 分子BF3CO2SO3(g) H2O NH3SO2中心原子的化 合价的绝对值 3 4 6 2 3 4 中心原子的 价电子数 3 4 6 6 5 6 分子极性非极性非极性非极性极性极性极性 类型实例键的极性立体构型分子极性 X2H2、N2非极性键直线形非极性分子 XY HCl、NO 极性键直线形极性分子 XY2 (X2Y) CO2、CS2极性键直线形非极性分子SO2极性键V形极性分子

键的极性和分子的极性化学作业

2.3.1键的极性和分子的极性化学作业 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.下列关于化学键的叙述,正确的是() A.单质分子中均不存在化学键B.离子化合物中一定含有离子键 C.含有极性键的分子一定是极性分子D.含有共价键的化合物一定是共价化合物 2.已知正四面体形分子E和直线型分子G反应,生成四面体形分子L和直线型分子M。(组成E分子的元素的原子序数小于10,组成G分子的元素为第三周期元素)如图,则下列判断中正确的是() A.常温常压下,L是一种液态有机物B.E是一种含有极性键的非极性分子 C.G有漂白性D.上述反应的类型是加成反应 3.已知BeCl2为共价化合物,两个Be—Cl键间的夹角为180°,则BeCl2属于( ) A.由极性键构成的极性分子B.由极性键构成的非极性分子 C.由非极性键构成的极性分子D.由非极性键构成的非极性分子 4.下列物质中,属于极性分子且含有非极性键的是() A.H2O2B.HCl C.Na2O2D.NaOH 5.下列分子中,属于含有极性键的非极性分子的是() A.NH3B.H2S C.P4D.C2H4 6.下列说法正确的是() A.第二周期元素的第一电离能随原子序数递增依次增大 B.CO2、SO2都是直线形的非极性分子 C.氟元素的电负性最大 D.CH2=CH2分子中共有四个σ键和一个π键 7.下列描述中正确的是() A.CS2为V形的极性分子B.ClO3—的空间构型为平面三角形 C.SF6中有6对相同的成键电子对D.SiF4和SO32—的中心原子均为sp2杂化 8.下列叙述不正确的是() A.卤化氢分子中,卤素的非金属性越强,共价键的极性越强,稳定性也越强 B.以极性键结合的分子,不一定是极性分子 C.判断A2B或AB2型分子是极性分子的依据是:具有极性键且分子构型不对称,键角小于180°,为非直线形结构D.非极性分子中,各原子间都应以非极性键结合 二、填空题

键的极性和分子的极性氢键

题型一:键的极性和分子的极性 1.下列说法中不正确的是() A.共价化合物中不可能含有离子键 B.有共价键的化合物,不一定是共价化合物 C.离子化合物中可能存在共价键 D.原子以极性键结合的分子,肯定是极性分子 2.以极性键结合的多原子分子,分子是否有极性取决于分子的空间构型。下列分子属极性分子的是() A. H2O B.CO2 C.BCl3 D. NH3 3.下列各分子中所有原子都满足最外层8电子稳定结构且共用电子对发生偏移的是() A.BeCl2 B.PCl3 C.PCl5 D.N2 4.分子有极性分子和非极性分子之分。下列对极性分子和非极性分子的认识正确的是() A.只含非极性键的分子一定是非极性分子 B.含有极性键的分子一定是极性分子 C.非极性分子一定含有非极性键 D.极性分子一定含有极性键 5.下列四种分子中,只含极性键而没有非极性键的是() A.CH4 B.CH3CH3 C.CH2=CH2 D.CH≡CH 6.据2001年11月17日网易报道,意大利科学家使用普通氧分子和带正电的氧离子作用,制出了新型氧分子O4,它的结构很复杂,可能具有与S4相似的长方形结构,下列有关O4的说法不正确的是() A.O4与O3、O2都是氧的同素异形体 B.合成O4的反应可看做核聚变反应,即不属于化学反应 C.O4分子内存在极性共价键 D.O4的能量比普通氧分子高,将来可用做火箭燃料的更强有力的氧化剂 7.下列物质中不含非极性共价键的是() ①Na2O2②CCl4③FeS2④NH4F ⑤H—O—O—H ⑥NaOH A.①②③④B.④⑤⑥C.②④⑥D.②③⑤ 8.NH3、H2S等是极性分子,CO2、BF3、CCl4等是极性键构成的非极性分子。根据上述实例可推出AB n型分子是非极性分子的经验规律是() A.分子中不能含有氢原子 B.在AB n分子中A原子没有孤对电子 C.在AB n分子中A的相对原子质量小于B的相对原子质量() D.分子中每个共价键的键长应相等 9.把下列液体分别装在酸式滴定管中,并使其以细流流下,当用带有静电的玻璃棒接近液体细流时,细流可能发生偏转的是() https://www.docsj.com/doc/802570899.html,l4 B.C2H5OH C.CS2 D.CH2Cl2 10.下列分子中,属于含有极性键的非极性分子的一组是() A.CH4、CCl4、CO2 B.C2H4、C2H2、C6H6 C.Cl2、H2、N2 D.NH3、H2O、SO2 11.我们可把共价键按分为极性键和非极性键,而共价键产生极性的根本原因是,故此有人这样判断键的极性:凡是同种元素原子间形成的共价键属极性键,凡是异种元素原子间形成的共价键属非极性键。另外,对于键的极性与分子的极性的关系可作如下总结:在双原子分子中,如果化学键有极性则分子;如果化学键无极性,通常分子。在多原子分子中,如果所有化学键都无极性,则分子是;如果化学键是极性键,且重合,则分子是非极性分子;否则为极性分子。

非极性分子和极性分子

非极性分子和极性分子 1. 复习重点 1.化学键、离子键、共价键的概念和形成过程及特征; 2.非极性共价键、极性共价键,非极性分子、极性分子的定义及相互关系。 2. 难点聚焦 一.化学键: 1.概念:化学键:相邻的原子之间强烈的相互作用. 离子键:存在于离子化合物中 2.分类: 共价键:存在于共价化合物中 金属键:存在于金属中 二.离子键: 1. 离子化合物:由阴、阳离子相互作用构成的化合物。如NaCl/Na 2O/Na 2O 2/NaOH/Na 2SO 4等。 2. 离子键:使阴、阳离子结合成化合物的静电作用。 说明: (1)静电作用既包含同种离子间的相互排斥也包含异种离子间的相互吸引。是阴、阳离子间的静电吸引力与电子之间、原子核之间斥力处于平衡时的总效应。 (2)成键的粒子:阴、阳离子 (3)成键的性质:静电作用 (4)成键条件: ①活泼金属(IA 、IIA 族)与活泼非金属(VIA 、VIIA 族)之间相互化合―――― ne n me m M M X X - - -+ +- ???→???→ ????→吸引、排斥 达到平衡 离子键(有电子转移) ②阴、阳离子间的相互结合: + - Na +Cl =NaCl (无电子转移) (5)成键原因: ①原子相互作用,得失电子形成稳定的阴、阳离子; ②离子间吸引与排斥处于平衡状态; ③体系的总能量降低。 (6)存在:离子化合物中一定存在离子键,常见的离子化合物有强碱、绝大多数盐(PbCl 2/Pb(CH 3COO)2等例外),强的金属的氧化物,如:Na 2O/Na 2O 2/K 2O/CaO/MgO 等。 三.电子式: 1.概念:由于在化学反应中,一般是原子的最外层电子发生变化,所以,为了简便起见,我们可以在元素符号周围用小黑点(或×)来表示原子的最外层电子。这种式子叫做电子式 例如: 2.离子化合物的电子式表示方法: 在离子化合物的形成过程中,活泼的金属离子失去电子变成金属阳离子,活泼的非金属离子得到电子变成非金属阴离子,然后阴阳离子通过静电作用结合成离子键,形成离子化合物。所以,在离子

极性分子与非极性分子

极性分子与非极性分子 你知道冰为什么在4℃时密度最大吗? 这就是本讲所学内容——分子间作用力和氢键的有关知识。由于水分子间有氢键缔合这样的特殊结构。根据近代X射线的研究,证明了冰具有四面体的晶体结构。这个四面体是经过氢键形成的,是一个敞开式的松弛结构,因为5个水分子不能把全部四面体的体积占完,在冰中氢键把这些四面体联系起来,成为一个整体。这种通过氢键形成的定向有序排列,空间利用率较小,约占34%,因此冰的密度较小。 液态水不像冰那样完全是有序排列了,而是有一定程度的无序排列,即水分子间的距离不像冰中那样固定,H2O分子可以由一个四面体的微晶进入另一微晶中去。这样,分子间的空隙减少,密度就增大了。 温度升高时,水分子的四面体集团不断被破坏,分子无序排列增多,使密度增大。但同时,水分子的热运动也增加了分子间的距离,使密度又减小。这两个矛盾的因素在4℃时达到平衡,因此,在4℃时水的密度最大。过了4℃后,分子的热运动使分子间的距离增大的因素,就占优势了,水的密度又开始减小。 知识延伸 一、分子间作用力 分子型物质无论是气态、液态或固态,都是由许多分子组成的,在分子间存在着一种较弱的作用力叫分子间作用力,也叫做范德华力。它比分子内原子间的作用力(化学键)要小。 分子间的作用力是一个总的提法,按作用力产生的原因和特性可分为三种力: l.取向力 当两个极性分子靠近时,同极相斥,异极相吸,产生相对转动,最后必然是异极相对,同极尽量远离,这叫做分子的取向。这种由于极性分子取向而产生的力叫取向力。 2.诱导力 当极性分子接近非极性分子时,极性分子的偶极电场使非极性分子发生极化从而产生正、负电荷重心不相重合,这种由于外来的影响而产生的偶极叫诱导偶极,诱导偶极与固有偶极产生的力称为诱导力。一般说来,极性分子的极性越大,诱导力越大。分子的变形性越大,诱导力也越大。 3.色散力 非极性分子之间也存在着相互吸引力,非极性分子内部的原子核和电子都在不断地运动,不断地改变它们相对的位置。在某一瞬间,分子的正电荷重心和负电荷重心可能发生某一瞬时的不相重合,这就产生了瞬间偶极。如果相邻分子也产生了相应的瞬间偶极,相互取向的瞬间偶极之间就产生了吸引力,这种吸引力叫做色散力。 因此可以近似地说,相对分子质量越大,这种力越大,它们的熔沸点就相应地增高,但必须指出;色散力不仅存在于非极性分子之间也存在于极性分子之间、极性分子与非极性分子之间。 在考虑分子的极性时,不仅要考虑键的极性,还要考虑分子的形状,有时还必须对顺反异构体加以注意。 二、氢键 l.氢键 由于与电负性极强的元素(如F、O、N等)相结合的氢原子和其他电负性极强的原子间所产生的引力而形成的。通常用X—H…Y表示,式中的虚线表示氢键。其中X和Y代表F、O、N等电负性强而

分子极性判断

分子概述 如果分子的构型不对称,则分子为极性分子。 如:氨气分子,HCl分子等。 区分极性分子和非极性分子的方法: 非极性分子的判据:中心原子化合价法和受力分析法 1、中心原子化合价法: 组成为ABn型化合物,若中心原子A的化合价等于族的序数,则该化合 物为非极性分子.如:CH4,CCl4,SO3,PCl5 2、受力分析法: 若已知键角(或空间结构),可进行受力分析,合力为0者为非极性分 子.如:CO2,C2H4,BF3 3、非极性分子: 同种原子组成的双原子分子都是非极性分子。 不是非极性分子的就是极性分子了! 高中阶段知道以下的就够了: 极性分 子:HX,CO,NO,H2O,H2S,NO2,SO2,SCl2,NH3,H2O2,CH3Cl,CH2Cl2,CHCl3,CH3CH2OH 非极性分 子:Cl2,H2,O2,N2,CO2,CS2,BF3,P4,C2H2,SO3,CH4,CCl4,SiF4,C2H4,C6H6,PCl5,汽油 简单判断方法 对于AnBm型 n=1 m>1 若A化合价等于主族数 则为非极性 有机极性判断 弱极矩μ 有机化合作大多难溶于水,易溶于汽油、苯、酒精等有机溶剂。 原因何在?中学课本、大学课本均对此进行了解释。尽管措词不同,但 中心内容不外乎是:有机化 合物一般是非极性或弱极性的,它们难溶 于极性较强的水,易溶于非极性的汽油或弱极性的酒精等有机溶剂。汽 油的极性在课本中均未做详细说明,故而在教学中常 常做如下解释: 所有的烷烃,由于其中的O键的极性极小,以及结构是对称的,所以其 分子的偶极矩为零,它是一非极性分子。烷烃易溶于非极性溶剂,如碳 氢化合 物、四氯化碳等。以烷烃为主要成分的汽油也就不具有极性 了。 确切而言,上述说法是不够严格的。 我们知道,分子的极性(永 久烷极)是由其中正、负电荷的“重心”是否重合所引起的。根据其分 子在空间是否绝对对称来判定极性,化学键极性的向量和——弱极 矩 μ则是其极性大小的客观标度.

键的极性和分子的极性

键的极性和分子的极性 1.下列关于化学键的叙述中正确的是( ) A.化学键存在于原子之间,也存在于分子之间 B.两个原子之间的相互作用叫做化学键 C.离子键是阴、阳离子之间的相互吸引力 D.化学键通常是指相邻的两个或多个原子之间强烈的相互作用2.下列各组物质中,化学键类型都相同的是( ) A.CaCl2和NaOH B.Na2O和Na2O2 C.CO2和CS2 D.HCl和NaOH 3.下列物质中,既有离子键又有共价键的是( ) A.CaCl2 B.KBr C.H2O D.NH4F 4.下列分子中,含有极性键和非极性键的是( ) A.H2S B.N2 C.CS2 D.H2O2 5.下列物质中含有非极性键且为盐的是( ) A.CH3COONa B.NH4Cl C.CaCl2 D.H2O2 6.下列物质中含有非极性键的共价化合物是( ) A.HCl B.Na2O2 C.C2H2 D.CH4 7.下列各组分子中,按共价键极性由强到弱排序正确的是( ) A.HF H2O NH3CH4 B.CH4NH3H2O HF C.H2O HF CH4NH3 D.HF H2O CH4NH3 8.下列叙述正确的是( ) A.含有非极性键的分子一定是非极性分子 B.非极性分子中一定含有非极性键 C.由极性键形成的双原子分子一定是极性分子 D.键的极性与分子的极性有关

9.下列化合物中,化学键的类型和分子的极性(极性或非极性)皆相同的是( ) A.CO2和SO2 B.CH4和SiO2 C.BF3和NH3 D.HCl和HI 10.判断AB2型分子是极性分子的主要依据是( ) A.分子中存在离子键 B.分子中存在极性键 C.分子为直线形 D.分子为非直线形 11.X、Y为两种不同元素,由它们组成的下列物质的分子中,肯定有极性的是( ) A.XY4 B.XY3 C.XY2 D.XY 12.根据物质溶解性“相似相溶”的一般规律,能说明碘、溴单质在CCl4中比在水中溶解度大的是( ) A.溴、碘单质和CCl4中都含有卤素 B.溴、碘是单质,CCl4是化合物 C.Cl2、Br2、I2是非极性分子,CCl4也是非极性分子,而水为极性分子 D.以上说法都不对 13.下列物质在水中的溶解度比在苯中的溶解度大的是( ) A.NH3 B.CH4 C.C2H4 D.CO2 14.下列变化过程中,原物质分子内共价键被破坏,同时有离子键形成的是( ) A.盐酸和NaOH溶液反应 B.氯化氢溶于水 C.溴化氢与氨反应 D.锌和稀H2SO4反应 15.氮化钠(Na3N)是一种重要的化合物,它与水作用可产生NH3。请回答下列问题: (1)Na3N的电子式为______________________,该化合物是通过________键形成的。 (2)Na3N与盐酸反应生成________种盐,其电子式是_________________。 (3)Na3N与水的反应属于________反应。 (4)比较Na3N中两种粒子的半径大小________________________________。 16.短周期元素D、E、X、Y、Z原子序数逐渐增大。它们的最简氢化物分子的空间构型依次是正四面体、三角锥形、正四面体、角形(V形)、直线形。回答下列问题: (1)Y的最高价氧化物的化学式为__________;Z的核外电子排布式是__________。 (2)D的最高价氧化物与E的一种氧化物为等电子体,写出E的氧化物的化学式________。 (3)D和Y形成的化合物,其分子的空间构型为________________;D原子的轨道杂化方式是________________。X与Z构成的分子是____________分子(填“极性”或“非极性”) (4)写出一个验证Y与Z的非金属性强弱的离子反应方程式________________________。

非极性分子和极性分子

第五节非极性分子和极性分子 教学目标: 知识目标: 1.使学生了解非极性键、极性键、非极性分子和极性分子的概念。 2.通过对简单的非极性分子、极性分子结构的分析,了解化学键的极性与分子极性的关系。 3.使学生初步了解分子间作用力的概念。以及它的作用力对物质熔点沸点和溶解度的影响。 能力目标: 1.培养实践能力和空间想象能力。 2.使学生认知主要矛盾和次要矛盾的关系,对学生进行辨证唯物主义教育。 教学重点:非极性分子和极性分子。 教学难点:分子结构与分子极性的关系。 教学方法:实验激疑、引导、探究、讲练结合。 教学过程: [复习引入] (1)离子键、共价键的本质有何不同? (2)写出HCl、CO2、H2O的电子式,并指出HCl、CO2、H2O分子结构中电子对分别偏向什么原子?为什么? (3)为什么在氢气分子结构中,电子对不偏向任何一个原子? 由问题引出课题,边讨论边板书。 [板书] 第五节非极性分子和极性分子 一、非极性键和极性键 1.非极性键:同种元素原子之间形成的共价键(A—A型)。 2.极性键:不同种元素原子之间形成的共价键(A—B型)。 A和B对电子吸引力相差越大,极性就越强。

离子键极性共价键 3.化学键共价键 金属键非极性共价键 课堂练习: 1.下列物质中,含有非极性共价键的化合物是()A.Na2O2 B.Cl2C.Na2SO4 D.HI 2.下列共价键中,极性最强的是()A.HF B.HCl C.HBr D.HI [过渡] 分子是否有极性呢? [板书] 二、非极性分子和极性分子 分别以H2、Cl2、HCl、H2O为例分析非极性分子和极性分子的概念。 [板书] 1.非极性分子:如果分子内电子云颁均匀,没有部分显正负电的现象,这种分子叫做非极性分子。(整个分子里电荷分布是对称的) 2.极性分子:如果分子内电子云分布不均匀,就有部分显正负电的现象,这样的分子叫做极性分子。(整个分子里电荷分布不对称) [讲述] 分子是否有极性,决定于整个分子内电子云分布是否均匀,而电子云均匀与否,则由化学键的性质和分子结构的对称性来决定。 4

第四课时 非极性分子和极性分子

第四课时非极性分子和极性分子 【考纲要求】 1.理解极性键与非极性键的形成原因,并能进行化学键的极性强弱比较。 2.理解化学键的极性与分子的极性的区别与联系,掌握极性分子与非极性分子的判断依据和判断方法。 3.理解分子间作用力和氢键的概念以及对物质性质的影响。 教与学方案 【自学反馈】 一、概念辨析 1.非极性键: (1)概念:。 (2)形成条件:。 2.极性键: (1)概念:。 (2)形成条件:。 (3)共价键极性强弱比较依据:形成共价键的共用电子对偏向与偏离程度越 大,键的极性就越强。试比较下列两组共价键的强弱: ①H—H、H—F、H—O、H—N、H—C:; ②H—F、C—F、N—F、O—F、F—F:。 3.极性分子: (1)含义:。 (2)举例:。 4.非极性分子: (1)含义:。 (2)判断方法:①根据键角判断分子中的正负电荷重心是否重叠 ②根据AB n的中心原子A周围是否为完全等价的电子对 ③根据AB n的中心原子A的最外层价电子是否全部参与形成 了同样的共价键。(或A是否达最高价) (3)常见AB n型分子中极性分子与非极性分子比较:

分子类型举例键角构形分子极性 AB CO AB2(A2B)H2O CS2 BeCl2 AB3PCl3 BF3 SO3 AB4CH4 AB2C2CH2Cl2 A2B4C2H4 A2B2C2H2 A6B6C6H6 5.分子间作用力: (1)概念:。 (2)影响因素:。 (3)对物质性的影响:。 6.氢键: (1)概念:。 (2)形成条件:。 (3)对物质性质的影响:。 7.相似相溶原理: 。 .【例题解析】 [例1] ] 氰(CN)2为无色可燃气体、剧毒、有苦杏仁味,和卤素单质的性质相似。 (1)写出氰与苛性钠溶液反应的离子方程式:_______________________。 (2)已知氰分子键之间夹角为180°并有对称性,(CN)2的电子式为______________,结构式为______________,(CN)2分子为______________(填“极性”或“非极性”)分子。 (3)CN-中电子数为______________,CN-的电子式为______________。 解题思路: 。 易错点: 。

相关文档
相关文档 最新文档