文档视界 最新最全的文档下载
当前位置:文档视界 › 强化传热技术进展.

强化传热技术进展.

强化传热技术进展.
强化传热技术进展.

强化传热技术进展

华中科技大学能源与动力工程学院黄素逸

一概述

只要存在着温度差,热量就会自发地由高温传向低温,因此热传递过程是自然界中基本的物理过程之一。它广泛见诸如动力、化工、冶金、航天、空调、制冷、机械、轻纺、建筑等部门。大至单机功率为130万千瓦的汽轮发电机组,小至微电子器件的冷却都与传热过程密切相关。

热传递过程可以分为导热、对流换热和辐射换热等三种基本方式,它们各自有不同的传热规律,实际中遇到的传热问题都常常是几种传热方式同时起作用。实现热量由冷流体传给热流体的设备就称之为换热器。它是上述工业部门广泛应用的一种通用设备,以电厂为例,如果把锅炉也看作换热设备,则再加上冷凝器,除氧器,高、低压加热器等换热设备,换热器的投资约占整个电厂投资的70%。在炼油企业中四分之一的设备投资用于各种各样的换热器;换热器的重量占设备总重量的20%,在制冷设备中蒸发器、冷凝器的重量也要占整个机组重量的30%~40%。

由于换热器在工业部门中的重要性,因此从节能的角度出发,为了进一步减小换热器的体积,减轻重量和金属消耗,减少换热器消耗的功率,并使换热器能够在较低温差下工作,必须用各种办法来增强换热器内的传热。因此最近十几年来,强化传热技术受到了工业界的广泛重视,得到了十分迅速的发展,并且取得了显著的经济效果。如美国通用油品公司将该公司电厂汽轮机冷凝器中采用的普通铜管用单头螺旋槽管代替,由于螺旋槽管强化传热的效果,使冷凝器的管子长度减少了44%,数目减少了15%,重量减轻了27%,总传热面积节约30%,投资节省了10万美元。又如用我们研制的椭圆矩形翅片管代替圆形翅片管制作的空冷器,其传热系数可以提高30%,而空气侧的流动阻力可以降低50%。这种空冷器已在我国石化行业和火电厂得到广泛应用,取得了明显的经济效益。

二强化传热的原则

从传热学中我们知道换热器中的传热量可用下式计算,即

Q=kFΔT (1)

式中,k-传热系数[W/(m2·K)],F-传热面积[m2], ΔT-冷热液体的平均温差[K],从上式可以看出,欲增加传热量Q,可用增加k、F或ΔT来实现。下面我们对此分别加以讨论。

1. 增加冷热液体的平均温差ΔT

在换热器中冷热液体的流动方式有四种,即顺流、逆流、交叉流、混合流。在冷热流体进出口温度相同时,逆流的平均温差ΔT 最大,顺流时ΔT 最小,因此为增加传热量应尽可能采用逆流或接近于逆流的布置。

当然可以用增加冷热流体进出口温度的差别来增加ΔT 。比如某一设备采用水冷却时传热量达不到要求,则可采用氟里昂来进行冷却,这时平均温差ΔT 就会显著增加。但是在一般的工业设备中,冷热流体的种类和温度的选择常常受到生产工艺过程的限制,不能随意变动;而且这里还存在一个经济性的问题,如许多工业部门经常采用饱和水蒸气作加热工质,当压力为15.86×105Pa 时,相应的饱和温度为437K ,若为了增加ΔT ,采用更高温度的饱和水蒸气,则其饱和压力亦相应提高,此时饱和温度每增高2.5K ,相应压力就要上升105Pa 。压力增加后换热器设备的壁厚必须增加,从而使设备庞大,笨重,金属消耗量大大增加,虽然可采用矿物油,联苯等作为加热工质,但选择的余地并不大。

综上所述,用增加平均温差ΔT 的办法来增加传热只能适用于个别情况。

2. 扩大换热面积F

扩大换热面积是常用的一种增强换热量的有效方法,如采用小管径。管径越小,耐压越高,而且在金属重量相同的情况下,表面积也越大。采用各种形状的肋片管来增加传热面积其效果就更佳了。这里应特别注意的是肋片(扩展表面)要加在换热系数小的一侧,否则会达不到增强传热的效果。

一些新型的紧凑式换热器,如板式和板翅式换热器,同管壳式换热器相比,在单位体积内可布置的换热面积多得多。如管壳式换热器在1m 3体积内仅能布置换热面积150m 2左右。而在板式换热器中则可达1500 m 2,板翅式换热器中更可达5000 m 2,因此在后两种换热器中其传热量要大得多。这就是它们在制冷、石油、化工、航天等部门得以广泛应用的原因。当然紧凑式的板式结构对高温、高压工况就不宜应用。

对于高温、高压工况一般都采用简单的扩展表面,如普通肋片管、销钉管、鳍片管,虽然它们扩展的程度不如板式结构高,但效果仍然是显著的。

采用扩展表面后,如果几何参数选择合适还可同时提高换热器的传热系数,这样增强传热的效果就更好了。值得注意的是,采用扩展面常会使流动阻力增加,金属消耗增加,因此在应用时应进行技术经济比较。

3. 提高传热系数k

提高传热系数k 是强化传热的最重要的的途径,且在换热面积和平均温差给定时,是增加换热量的唯一途径。当管壁较薄时从传热学中我们知道,传热系数k 可用下式计算:

2

1111αλδα++=k (2)

式中,α1—热液体和管壁之间的对流换热系数,α2—冷流体和管壁之间的对流换热系数,δ—管壁的厚度,λ—管壁的导热系数。

一般讲金属壁很薄,导热系数很大,δ/λ可以忽略。因此传热系数k可以近似写成:k=α1α2/(α1+α2)。由此可知欲增加k,就必须增加α1和α2,但当α1和α2相差较大时,增加它们之中较小的一个最有效。

要想增加对流换热系数,就需根据对流换热的特点,采用不同的强化方法。我国学者过增元院士在研究对流换热强化时,提出了著名的场协同理论。该理论指出要获得高的对流换热系数的主要途径有:

1)提高流体速度场和温度场的均匀性;

2)改变速度矢量和热流矢量的夹角,使两矢量的方向尽量一致;

根据上述理论,目前强化传热技术有两类:一类是耗功强化传热技术,一类是无功强化传热技术。前者需要应用外部能量来达到强化传热的目的,如机械搅拌法、振动法、静电场法等。后者不需外部能量,如表面特殊处理法、粗糙表面法、强化元件法、添加剂法等。

由于强化传热的方法很多,因此在应用强化传热技术时,我们应遵循以下原则:

1)首先应根据工程上的要求,确定强化传热的目的,如减小换热器的体积和重量;提高现有换热器的换热量;减少换热器的阻力,以降低换热器的动力消耗等。因为目的不同,采用的方法也不同,与此同时确定技术上的具体要求。

2)根据各种强化方法的特点和上述要求,确定应采用哪一类的强化手段。

3)对拟采用的强化方法从制造工艺,安全运行,维修方便和技术经济性等方面进行具体比较和计算,最后选定强化的具体技术措施。

只有按上述步骤才能使强化传热达到最佳的经济效益。

三单向介质管内对流换热的强化

1 流体旋转法

强化单向介质管内对流换热的有效方法之一是使流体在管内产生旋转运动,这时靠壁面的流体速度增加,加强了边界层内流体的搅动。同时由于流体旋转,使整个流动结构发生变化,边界层内的流体和主流流体得以更好的混合。以上这些因素都使换热的到了强化。

使流体旋转的方法很多,在工艺上可行的有以下几种:

(1)管内插入物

使流体旋转最简单的方法是管内插入各种可使流体旋转的插入物。如扭带、静态混合器、螺旋片等。

a. 扭带

扭带是一种最简单而又使流体旋转的旋流发生器。它是由薄金属片(通常是铝片)扭转而成。扭带的扭转程度由每扭转3600的长度H(称为全节距)与管子内径d之比来表征。H/d称之为扭率。扭率不同强化传热的效果也不同,试验表明,扭率为5左右效果最好。

b. 错开扭带

错开扭带是将扭带剪成扭转180°的短元件,互相错开90°再点焊而成。

c. 静态混合器

由一系列左、右扭转180°的短元件,按照一个左旋、一个右旋的排列顺序,互相错开900再点焊而成。

d. 螺旋片

由宽度一定的薄金属片在预先车制出的有一定深度和一定节距的螺旋槽的心轴上绕成。

e. 径向混合器

用薄金属片冲压成具有一个圆锥形收缩环和一个圆锥形扩张环的元件,在环上开许多小孔,然后将这些元件按一定间距点焊在一根金属丝上,插入管内就成为一个径向混合器。

f. 金属螺旋线圈

用细金属丝绕制成三叶或四叶的螺旋线圈,插入管内,即可使流体旋转。

除上述常用的插入物外,还有其它一些形状的插入物。管内插入上述插入物后,由于流体的旋转,使管内流体由层流向湍流过渡的临界雷诺数Re降低,强化了管内换热。当然由于流体的旋转,流动阻力也会相应增加。实验研究证明,在低Re数区采用插入物比高Re数区强化传热的效果更加显著,这说明层流时采用插入物是很有效的。等功率和等流量的试验研究表明,各种插入物的强化效果在层流区都随Re的增加而增加。在相当于光管由层流向湍流过渡的临界Re时达到最大值,然后又随Re的增加而减小。在Re=500~10000的范围内,在相同的流量下,静态混合器可获得较强的传热效果。因此当系统压降有裕量的情况下,为强化传热可优先采用静态混合器。在要求消耗功率一定的情况下,则可选用螺旋片和扭带,此时螺旋片还有节约材料的优点。

许多研究者提供了管内加插入物后计算流动阻力和传热的公式,这些公式大多是以实验研究为基础的。在选用这些公式时应注意这些公式的应用条件和范围。同时值得注意的是,采用管内插入物后传热增加了,但流动阻力也随之增加,因此通常在计算强化传热的同时,还应进行流动阻力的核算和经济性的比较,才能获得满意的结果。

(2)螺旋槽管和螺旋内肋管

管内插入物的方法,其结构不够牢靠,制造安装工作量大,一般宜在增强现有换热设备的传热能力上采用。

对新设计制造的换热设备,可以采用螺旋槽管或螺旋内肋管来使流体旋转。螺旋槽管可以用普通圆管滚压加工而成,它有单头和多头之分。螺旋槽管的作用也是引起流体旋转,使边界层厚度减薄并在边界层内产生扰动,从而使传热增强。

研究表明,在相同的Re及槽距、槽深的情况下,单头螺旋和三头螺旋相比,强化传热的效果差别不大,但流动阻力却减小很多,因此实际上多采用单头螺旋槽管。

采用螺旋内肋管,一方面可使流体旋转,另一方面内肋片又加大了管内换热面积,有利于增强传热或降低壁温。虽然其加工比较复杂,但仍是一种理想的强化传热管。

2. 改变流道截面形状

1)层流工况和过渡工况

流动截面形状对换热和阻力有很大的影响,特别是对层流工况而言。试验证明,当管道长度较长及雷诺数Re较小时,换热的Nu数实际上与雷诺数Re数无关。表1列出了各种不同截面的流道中最小的Nu数及阻力系数ξ的值。

从表1中可以看出,合适高度比的矩形截面的换热比三角形截面和圆形截面要高得多,以锅炉中的回转式空气预热器为例,由波纹板和平板可组成不同形状的流道,如三角形和近似矩形。计算表明在传递相同的热量时,三角形流道将比矩形流道的换热器长18%,而流动阻力矩形流道比三角形流道要低30%。

对一般圆管和矩形截面而言,在管道中温度条件相同时,采用矩形管道也能增加换热系数,但与此同时流动阻力会急剧增加。

在由层流向湍流过渡的过渡区中管道截面形状对换热也有较大的影响。例如在具有槽形截面通道的板式换热器中改用波纹板可以显著提高换热系数。

2)湍流工况

a. 横槽纹管

湍流工况时为改变管子的流道截面情况,应用最广的是所谓横槽纹管。它是由普通圆管滚轧而成。流体流过横槽纹管会形成漩涡和强烈的扰动,从而强化了传热。强化的效果取决于节距p和横槽纹的突出高度h之比。实际应用中p/h 10。与前述的螺旋槽管相比,由于横槽纹管的漩涡主要在管壁处形成,对流体主流的影响较小,所以其流动阻力比相同节距与槽深的螺旋管小。

谭盈科等对p/d=0.5,h/d=0.03 的横槽纹管的测定表明,当工质为空气时,Re=3.4×104。横槽纹管可比普通光管的换热系数提高1.7倍,阻力增加2.2倍;如工质为水,Re=4000,换热系数可提高1.4倍,阻力增加1.7倍。当流体纵向冲刷环形槽道时,为了强化传热可在管内采用横槽纹管,这样内外流体都能得到强化。

b. 扩张—收缩管

流体沿流动方向依次交替流过收缩段和扩张段。流体在扩张段中产生强烈的漩涡被流体带入收缩段时得到了有效的利用,且收缩段内流速增高会使流体层流底层变薄,这些都有利于增强传热。

一般扩缩管中扩张段和收缩段的角度应使流体产生不稳定的分离现象,从而有利于传热,而流动阻力却增加不多。扩缩管是一种很有前途的强化传热管,特别是对污染的流体,扩缩管不易产生堵塞现象。

对于非圆形槽道亦可利用扩缩管的原理使流道扩缩,如在两块平板间加入两块带锯齿表面的板,就可构成扩缩槽道。

四单向介质管束外对流换热的强化

单向介质横向或纵向掠过管束是工程上常见的对流换热过程,其最实用的强化方法是扩展换热面和采用各种异形管。

1. 扩展换热面

当换热面一侧为气体,另一侧为液体时,由于气体侧的换热系数比液体侧小得多(一般小10~50倍)。这时应用扩展换热面的方法来提高传热系数是最有效的办法。为了使换热器更加紧凑和进一步提高气侧的换热,现在各种异性扩展换热面得以迅速发展,它们可使气侧的换热系数较普通扩展面再提高0.5~1.5倍。

(1)平行板肋换热器中各种异性扩展换热面

平行板肋换热器中的异性扩展换热面发展最快,应用也最广。他们是各种普通扩展面(如矩形、三角形)的变形,其种类繁多,形状各异。最常用的有波形、叉排短肋形、销钉形、多孔形和百叶窗形。这些换热面的肋片密度都很高,一般为每米300~500片。由于通常当量直径小,气体密度小,因此它们经常处于低Re数的范围,即Re=500~1500,亦即处于层流状态。它们的特点,或者是利用流道的特殊截面形状来强化传热,如波形通道中产生的二次流;或者是使通道中流动的边界层反复形成又反复破坏来强化换热,叉排短肋形、销钉形就是如此。下面分别对常用的异性扩展面加以讨论。

a. 波形扩展换热面

波形扩展换热面能使气体流过波形表面的凹面时形成漩涡,造成反方向的旋转;而在凸面处又会形成局部的流体脱离,这两种因素会使换热得到强化。

b. 叉排短肋形扩展面

这种叉排短肋形扩展面是将通常的矩形长直肋变成短肋,并错开排列,这样在前一块短肋上形成的层流边界层在随后的叉排肋处被破坏,并在其后形成漩涡,这一过程反复进行。由于边界层开始形成时较薄(入口效应),热阻较小,因此换热得到充分的强化。一般叉排短肋要比矩形直肋换热系数高一倍,当然相应阻力也要增加,一般约增大2倍。

c. 销钉形扩展表面

销钉形扩展表面与叉排短肋类似,它使用销钉来代替短肋,其强化换热的机理也与短肋类似。

d. 多孔形扩展换热面

这种换热面是先在板上打许多孔,再将板弯成通道,当孔足够多时,由于孔的扰动可以破坏板上的流动边界层,从而强化传热。

e. 百叶窗形扩展换热面

在板上冲许多百叶窗,再将板弯成通道,这些百叶窗的凸出物能破坏边界层,从而增强传热的效果。

(2)圆管上的各种异形扩展换热面

圆管上的异形扩展换热面通常是在普通圆肋的基础上形成的,如开槽肋片,开三角孔并弯边的肋片,扇形肋片,绕圈形肋片等,它们的目的都是为了破坏流动边界层从而强化传热。

肋片的形状对换热有很大的影响。我们研究过椭圆管上套圆形肋片、椭圆形肋片和矩形翅片(其四角上带有绕流孔),结果发现矩形翅片效果最好,可使换热系数较前者提高7%。

2. 采用异形管

为了强化管束传热,在工程应用上已越来越广泛地采用异形管来代替圆管。如椭圆管、滴形管、透镜管等。其中以扁管和椭圆管应用最广。

以作者研究的椭圆矩形翅片管为例,与圆管相比,由于椭圆管的流动性好,流动阻力小,且在相同的管横截面积下,椭圆管的传热周边比圆管长;从布置上讲在单位体积内可布置更多的管子。因此单位体积的传热量高。作者研制的TZ型椭圆矩形翅片管散热器与SRZ型圆形圆翅片管散热器相比,阻力可降低59%,传热系数可增加67%,单位体积的传热量可提高80%,性能明显改进。

目前国内外大规模的风冷技术中广泛应用的也是各种椭圆矩形翅片管。在国外直接空冷电厂中换热面积常常达到几十万平方米。此时椭圆管的尺寸(长、短轴之比)和翅片的形状、间距以及翅片与管子接触的紧密程度对换热性能有很重要的影响。随着技术的发展,

螺旋扁管、螺旋椭圆扁盘及交叉缩放椭圆管等也获得越来越多的应用。

五单相介质对流换热的耗功强化技术

强化单相介质对流换热,除上面介绍的普遍应用的无功方法外,针对一些特殊的换热问题,也可采用耗功的强化方法。

1. 机械搅拌法

此法主要应用于强化容器中的对流换热。容器中的单相介质对流换热主要是自然对流,这时换热系数低,温度分布很不均匀,采用机械搅拌法可以得到很好的效果。

容器中的介质粘度较低时,通常采用小尺寸的机械搅拌器。搅拌器的直径d一般为容器直径D的1/4~1/2,搅拌叶片的高度,从底部算起约为液体总高度H的1/3。容器中为高粘度介质时,则应用比容器直径略小的低速螺旋式或锚式搅拌器。在进行搅拌器计算时应区分容器中的介质是牛顿流体还是非牛顿流体,它们的计算方法是不同的。

2. 振动法

有两种振动法,一种是使换热面振动,一种是使流体脉动或振动,这两种方法均可强化传热。

(1)换热面的振动

对于自然对流,实验证明,对静止流体中的水平加热圆柱体振动,当振动强度达到临界值时,可以强化自然对流换热系数。实验还证明圆柱体垂直振动比水平振动效果好。在小振幅和高频率时,振动可使换热系数增加7~50%

对于强制对流,许多研究者证明,根据振动强度和振动系统的不同,换热系数比不振时可增大20%~400%。值得注意的是,强制对流时换热面的振动有时会造成局部地区的压力降低到液体的饱和压力,从而有产生汽蚀的危险。

(2)流体的振动

利用换热面振动来强化传热,在工程实际应用上有许多困难,如换热面有一定质量,实现振动很难;且振动还容易损坏设备,因此另一种方法是使流体振动。

对于自然对流,许多人研究了振动的声场对换热的影响,一般根据具体条件的不同,当声强超过140分贝使可使换热系数增加1~3倍。

值得注意的是,采用声振动也有不少困难。实际应用中如有可能首先应用强制对流来代替自然对流,或用机械搅拌,这样才能更有效果。

对于强制对流,由于强制对流换热系数已经很高,采用声振动时其效果并不十分显著。除了声振动外,其它的低频脉动(如泵发生的脉动)也能起到类似强化传热的作用。

众所周知,当流体横掠单管或管束时,由于漩涡脱落,湍流抖振,流体弹性激振及声共鸣等诸多原因,会引起管子产生振动。这种振动通常称之为流体诱导振动,它常常是导致换热器管子磨损、泄漏、断裂的主要原因。因此在换热器设计时,人们都尽量采用各种措施来避免流体的诱导振动。

能否利用上述诱导振动来强化传热呢?我国学者程林创新地提出并解决了这一问题。它设计了一种弹性盘管,该盘管有两个自由端及两个固定端,通过弹性盘管的曲率半径、管径、管壁厚及端部附加质量等参数的组合来得到一种最有利的固定频率,同时,程林还设计了一种脉动流发生器,它将进入换热器的水流分成两股,其中一股通过一正置三角块后,在下游方向就会产生不同强度的脉动流,该脉动流直接作用在弹性盘管的附加质量端,从而诱发弹性盘管发生周期性的振动。这种流体振动,换热面也振动的强化传热新方法,几乎不耗外功,却能极大地提高换热系数,根据这种原理设计的弹性盘管汽水加热器,在流速很低的情况下,可使传热系数达到4000~5000W/(m2·℃),是普通管壳式换热器的二倍。现在这种换热器已在供热工程中得到了广泛的应用。

3. 添加剂法

在流动液体中加入气体或固体颗粒,在气体中喷入液体或固体颗粒以强化传热是此法的特点。

有的研究者提出在上升的水流中注入氮气泡,由于气泡的扰动作用可使换热系数提高50%。在油中加入呈悬浮状态的聚苯乙烯小球,可是换热系数提高40%。

在实际应用中,在气体中喷入液体或固体颗粒是一种有前途的强化换热的方法。如在汽车散热器的冷却空气中喷入水或乙烯乙二醇后,由于液体在散热片中形成薄的液膜,液膜吸热蒸发以及蒸发时对边界层的扰动都可以增加传热。

我们研究了竖夹层空间的自然对流,此时如果在竖夹层空间加入极少量的水,由于水在竖夹层空间一侧沸腾蒸发,在另一侧凝结,从而使换热系数提高数倍。气体中加入固体颗粒亦能强化换热。Babcock公司在气体中加入石墨颗粒后发现换热系数可提高9倍。现在沸腾床的迅速发展也与气固混合流能强化传热有密切关系。

4. 抽压法

抽压法多用于高温叶片的冷却。此时冷却介质通过抽吸或压出的方法从叶片或管道的多孔壁流出,由于冷却介质和受热壁面的良好接触能带走大量热量,并且冷却介质在壁上形成的薄膜可把金属表面和高温工质隔开,从而对金属起到了保护作用。此法在燃汽轮机叶片的冷却中已得到了广泛的应用。

除了上述方法外还有使用换热面在静止流体中旋转的方法,利用静电场强化换热的方法,但它们的应用还十分有限。

在工程应用上,应尽可能地根据实际情况,同时采用多种强化传热的方法,以求获得更好的效果。

六沸腾换热的强化

沸腾是一种普遍的相变现象,在工业上有广泛的应用。沸腾换热的特点是换热系数很高,在以往的应用中人们认为已不必进行强化了,而把主要的注意力集中在单相介质对流

换热的强化上。但随着工业的发展,特别是高热负荷的出现,相变传热(沸腾和凝结)的强化日益受到重视并在工业上得到越来越多的应用。

沸腾换热的强化主要从增多汽化核心和提高汽泡脱离频率两方面着手,具体方法有粗糙表面和对表面进行特殊处理,扩展表面,在沸腾液体中加添加剂等。下面介绍常用的强化沸腾换热的方法。

1. 使表面粗糙和对表面进行特殊处理

粗糙表面可使汽化核心数目大大增加,因此和光滑表面相比其沸腾换热强度可以提高许多倍。最简单的粗糙表面的办法是用砂纸打磨表面或者采用喷砂的方法。在使壁面粗糙度增加以强化沸腾换热时,应注意存在一极限的粗糙度,超过此之后,换热系数就不再随粗糙度的增加而增加。此外增加粗糙度并不能提高沸腾的临界热负荷。

工程上为增强沸腾换热应用最多的还是对表面进行特殊处理。特殊处理的目的是使表面形成许多理想的内凹穴,这些理想的内凹穴在低过热度时就会形成稳定的汽化核心;且内凹穴的颈口半径越大,形成气泡所需的过热度就越低。因此这些特殊处理过的表面能在低过热度时形成大量的汽泡,从而大大地强化了泡状沸腾过程。实验证明,表面多孔管的沸腾换热系数可提高2~10倍。此外临界热负荷也相应得到提高。在相同热负荷下特殊处理过的表面的传热温差也比普通表面低的多。

制造上述表面多孔管的方法很多,一种是在加热面上覆盖一层多孔覆盖层;另一种是对换热面进行机械加工以形成表面多孔管。

(1)带金属覆盖层的表面多孔管

上世纪六十年代末在美国首先出现用烧结法制成的带金属覆盖层的表面多孔管。除了烧结法外还可采用火焰喷涂法、电镀法等。一般讲烧结法的效果最好。作为覆盖层的材料有铜、铝、钢、不锈钢等。用烧结法制成的多孔管已在工业部门获得广泛的应用。这种多孔管一般可使沸腾换热系数提高4~10倍,从而推迟膜态沸腾的发生。

(2)机械加工的表面多孔管

用机械加工方法可使换热表面形成整齐的T型凹沟槽。这种机械加工的表面多孔管亦能大大强化沸腾换热过程和提高临界热负荷值。对形状和尺寸不同的凹沟槽,沸腾换热系数可提高2~10倍。用机械加工的方法还可克服烧结法带来的表面孔层不均的缺点,且多孔层也不易阻塞。

2. 采用扩展表面

用肋管代替光管可以增加沸腾换热系数。这一方面是肋管与光管相比除具有较大的换热面积外,还可以增加汽化核心;另外肋片和管子连接处受到液体润湿作用较差,是良好的吸附气体的场所;加之肋片与肋片之间的空间里的液体三面受热,易于过热。以上这些因素都促进了气泡的生长,一般换热系数可高10%左右。

对于管内强制沸腾换热,通常还采用内肋管或内外肋管。这些内肋片不但强化了沸腾换热过程,还强化了管内单相介质的对流换热。因此在制冷和化工中应用很广,其中应用

的最多的是带星形嵌入式的内肋管,一般换热系数可提高50%左右。

3. 应用添加剂

在液体中加入气体或另一种适当的液体亦可强化沸腾换热。例如在水中加入合适的添加剂(如各类聚合物),有时可使沸腾换热系数提高40%。值得注意的是,如液体和添加剂配合不当,反而会使换热系数降低。

在液体中加入固体颗粒,当颗粒层的高度恰当时亦可强化沸腾换热,有时沸腾换热系数甚至可以比无颗粒层时高2~3倍。

4 .其它强化沸腾换热的方法

前面介绍的强化单相介质对流换热的流体旋转法对于强化管内沸腾亦非常有效,这时可以在管内插入扭带,螺旋片或螺旋线圈,亦可采用螺旋槽管或内螺纹管。它们不但能使换热系数提高(如扭带可提高10~15%,螺旋槽管可提高50%~200%),还可提高临界热负荷。

七凝结换热的强化

凝结是工业中普遍遇到的另一种相变换热过程,一般认为凝结换热系数很高,可以不必采用强化措施。但对氟里昂蒸汽或有机蒸汽而言,它们的凝结换热系数比水蒸气小的多。例如对氟里昂,其凝结换热系数仅为其另一侧水冷却换热系数的1/4~1/3。在这种情况下强化凝结换热仍然是非常必要的。对空冷系统而言,由于管外侧空气的肋化系数非常之高,强化管内的水蒸气凝结换热也仍然是有利的。

1. 管外凝结换热的强化

(1)冷却表面的特殊处理

对冷却表面的特殊处理,主要是为了在冷却表面上产生珠状凝结。珠状凝结的换热系数可比通常的膜状凝结高5~10倍,由于水和有机液体能润湿大部分的金属壁面,所以应采用特殊的表面处理方法(化学覆盖法、聚合物涂层法和电镀法等),使冷凝液不能润湿壁面,从而形成珠状凝结。采用聚四氟乙烯涂层已获得一些实际应用。在冷却壁面上涂一层聚四氟乙烯,再经过热处理后可使凝结换热系数提高2~3倍,此时应注意聚四氟乙烯的老化和脱落。另外涂层不能厚,否则会增加壁的附加热阻。

用电镀法在表面涂一层贵金属,如金、铂、钯等效果很好,缺点是价格昂贵。

(2)冷却表面的粗糙化

粗糙表面可增加凝结液膜的湍流度,亦可强化凝结换热。实验证明,当粗糙高度为0.5mm时,水蒸气的凝结换热系数可提高90%。值得注意的是,当凝结液膜增厚到可将粗糙壁面淹没时,粗糙度对增强凝结换热不起作用。有时当液膜流速较低时,粗糙壁面还会滞留液膜,对换热反而不利。

(3)采用扩展表面

在管外膜状凝结中常常采用低肋管,低肋管不但增加换热面积,而且由于冷凝流体的

表面张力,肋片上形成的液膜较薄,因此其凝结换热系数可比光管高75%~100%。

日本日立公司开发了一种肋呈锯齿形的冷凝管,其肋高 1.22mm,肋片密度每厘米上13.8片,错齿凹处深度为了高的40%,凹槽宽度为肋间距的30%,这种锯齿形肋片管可比普通低肋管的凝结换热系数提高0.5~1.5倍。

此外会有一种销钉形的外肋管,它的扩展面是一系列的销钉,销钉形肋片管的凝结效应和低肋管差不多,但可节约60%的材料。

对垂直管外的凝结,采用纵槽管的效果十分显著,这是因为表面张力和重力的作用。顶部冷凝液会顺槽迅速排走,使顶部区及上部液膜变得很薄。试验表明,对某些有机蒸汽(如异丁烷)换热系数可增大4倍,在垂直管上垂直设置金属丝也可达到类似的效果。

值得注意的是对于易结垢的介质不宜采用低肋管等,因为其结垢难清除。

应用螺旋槽管和管外加螺旋线圈。螺旋槽管,管子内外壁均有螺纹槽,既可强化冷凝换热,又可强化冷却侧的单相对流换热,与光管相比其凝结强度可提高35~50%。在管外加螺旋线圈,由于表面张力使凝结液流到金属螺旋线圈的底部而排出,上部及四周液膜变薄,从而凝结换热系数有时甚至可提高2倍。

2. 管内凝结换热的强化

(1)扩展表面法

采用内肋管是强化管内凝结的最有效的方法,试验表明,其换热系数比光管高20~40%。按光面计算则换热系数可高1~2倍。

(2)采用流体旋转法

采用插入扭带,静态混合器和螺旋槽管等流体旋转法均可强化凝结换热。如插入扭带一般可使凝结换热系数提高30%,但此时流动阻力也会大为增加。

值得注意的是,在强化凝结换热之前,应首先保证凝结过程的正常进行。例如,排除不凝气体的影响,顺利地排除冷凝液等。

强化传热技术在动力、制冷、低温、化工等部门的到了日益广泛的应用。许多新的强化传热的方法正在不断出现和应用于工业界。强化传热技术的进步和推广,不但能节约大量的能源,而且能大大减少设备的重量和体积,减低金属消耗量,是当前增产节能向深度发展的重要一环。

(完整word版)强化传热技术

1、强化传热的目的是什么? (1)减小初设计的传热面积,以减小换热器的体积和重量;(2)提高现有换热器的能力;(3)使换热器能在较低温差下工作;(4)减少换热器的阻力,以减少换热器的动力消耗。 2、采用什么方法解决传热技术的选用问题? (1)在给定工质温度、热负荷以及总流动阻力的条件下,先用简明方法对拟采用的强化传热技术从使换热器尺寸大小、质轻的角度进行比较。这一方法虽不全面,但分析表明,按此法进行比较得出的最佳强化传热技术一般在改变固定换热器三个主要性能参数(换热器尺寸、总阻力和热负荷)中的其他两个,再从第三个性能参数最佳角度进行比较时也是最好的。(2)分析需要强化传热处的工质流动结构、热负荷分布特点以及温度场分布工况,以定出有效的强化传热技术,使流动阻力最小而传热系数最大。(3)比较采用强化传热技术后的换热器制造工艺、安全运行工况以及经济性问题。 3、表面式换热器的强化传热途径有哪些? (1)增大平均传热温差以强化传热;(2)增加换热面积以强化传热;(3)提高传热系数以强化传热。 4、何为有功和无功强化传热技术?包括哪些方法? 从提高传热系数的各种强化传热技术分,则可分为有功强化传热技术和无功强化传热技术两类。前者也称主动强化传热技术、有源强化技术、后者也称为被动强化技术、无源强化技术。有功强化传热技术需要应用外部能量来达到强化传热的目的;无功传热强化技术则无需应用外部能量即能达到强化传热的目的。有功强化传热技术包括机械强化法、震动强化、静电场法和抽压法等;无功强化传热技术包括表面特殊处理法、粗糙表面法、扩展表面法、装设强化元件法、加入扰动流体法等。 5、单项流体管内强制对流换热时,层流和紊流的强化有何不同? 当流体做层流运动时,流体沿相互平行的流线分层流动,各层流体间互不掺混,垂直于流动方向上的热量传递只能依靠流体内部的导热进行,因而换热强度较低。因此,对于强化层流流动的换热,应以改变流体的流动状态为主要手段。当流体做湍流运动时,流体的传热方式有两种:在层流底层区的热量传递主要依靠导热;而在底层以外的湍流区,除热传导以外,主要依靠流体微团的混合运动。除液态金属以外,一般流体导热率都很小,湍流换热时的主要热阻在层流地层区。因此对于强化湍流流动的换热,主要原则应是减薄层流底层的厚度。 6、管式换热器一般采用圆管还是矩形通道?为什么? 在管子数目、工质流量及管道横截面周界均给定的情况下,圆形管道的流通截面积最大,矩形的最小,而流速恰好相反。在个管道中温度条件相同时,矩形管道能增加换热系数,但同时阻力也剧增,这就是管式换热器一般采用圆管而不用换热效果横好的矩形管道的原因。 7、采用扩张-收缩管式如何强化传热的? 流体在扩张段中产生的强烈漩涡被流体带入收缩段时得到了有效利用,从而增强了传热。此外,在收缩段中由于流体流过收缩截面时流速增高,使流体边界层中流速也相应增高,从而也增进了传热效应。

换热器文献综述

相变换热器文献综述 学院:材料与化学工程学院 专业:过程装备与控制工程 班级:2011-01 姓名:*** 学号:***

相变储热换热器文献综述 ***(郑州***化工学院) 摘要:本文通过对换热器发展历史的回顾,总结相变储热换热器的理论技术和结构设计,对其物性数据,相变储热材料等做了简要评述。1引言 在工业生产中,为了实现物料之间热量传递过程的一种设备,统称为换热器。它是化工、炼油、动力、原子能和其他许多工业部门广泛应用的一种通用工艺设备。对于迅速发展的化工、炼油等工业生产来说,换热器尤为重要。通常在化工厂的建设中,换热器约占总投资的10~20%。在石油炼厂中,换热器约占全部工艺设备投资的85~40%。在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝等。换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递给温度较低的流体,以满足工艺上的需要。由于使用的条件不同,换热设备又有各种各样的形式和结构。另外,在化工生产中,有时换热器作为一个单独的化工设备,有时则把它作为某一个工艺设备中的组成部分。其他如回收排放出去的高温气体中的废热所用的废热锅炉,有时在生产中也是不可缺少的。总之,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。 2换热器发展历史简要回顾 二十世纪20年代出现板式换热器,并应用于食品工业。以板代管

制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新材料料制成的换热器开始注意。60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。换热器按传热方式的不同可分为混合式、蓄热式和间壁式三类。 节能和环保已经成为当今世界的两大主题,经济高速发展、人口不断增长、过度开采和能源的利用率过低导致能源供需矛盾越来越大.能源紧缺受到人们越来越多的关注,能量存储随之引入了人们的生活。近年来,相变储换热器在太阳能利用、工业废热利用及暖通空调蓄冷和蓄热等领域获得了广泛的应用。相变储换热器有多种形式如管簇式、球形堆积床式和平板式,一些研究者对其热性能进行了模拟和实验研究。 3实验研究的主要成果 3.1相变储能材料的导热强化

简析强化传热技术及一些典型的应用应

简析强化传热技术及一些典型的应用 论文摘要:本文阐明了强化传热技术的重要性及其发展趋势;包括强化传热的分类、强化传热的途径、强化传热的应用场合等;列举了一些强化传热的典型应用,包括表面增强型蒸发管、采用波纹换热管管内强化传热、采用超声波抗垢强化传热技术、采用螺旋槽管的强化传热技术、采用小热管的强化传热技术等。通过分析得出强化传热应注意的一些问题。 论文关键词:强化传热典型应用 由于生产和科学技术发展需要强化传热从80年代起就引起了广泛的重视和发展。表现在设计和制造各类高性能热设备,航空,航天及核聚变等尖端技术,计算机里密集布置电子元件的有效冷却。正是上述原因促使人们对强化传热进行及为广泛的研究和探讨,从80年代到现在近20多的时间里,世界各国的科学领域里,有关强化传热研究报告举不胜数。 一、强化传热技术的分类 (一)导热过程的强化 导热是热量传递的三种基本方式之一,它同样也存在着强化问题。导热是依靠物体中的质童(分子,原子,或自由电子)运动来传递能量。固体内部不同温度层之间的传热就是一种典型的导热过程,但固体之间接触存在着接触热阻,降低了能量的传递,在高热流场合下,为了尽快导出热量必须设法降低接触热阻,一般可采用以下方法: 1、提高接触面之间光洁度或增加物体间的接触压力以增加接触面积 2、在接触面之间填充导热系数较高的气体(如氦气) 3、在接触面上用电化学方法添加软金属涂层或加软技术垫片 (二)辐射换热的强化 辐射换热普遍存在于自然界和许多生产过程中,只要物体温度高于绝对零度,它就能依靠电磁波向外发射能量,所以物体之间总是存在着辐射换热,在物之间温度差别不是很大的情况下,辐射换热可以忽略,但在高温设备中辐射却是换热的主要方式。而影响辐射换热的因素主耍有:表面粗糙度,固体微粒,材料。 (三)对流换热强化 对流强化传热与流体的物理特性,流动状态,流道几何形状,有无相变发生以及传热壁面的表而状况等许多因素有关。其中对流换热的有源强化又可分为:利用机械搅动加强流体与壁面间的传热,流体脉动和传热面震动时的对流换热,电磁场作用下的对流换热,经过多孔壁有质量透过时的壁面换热。而对流换热的无源换热又可分为:管内插入物对传热的增强,涡旋流动的强化传热,添加物对流换热,流化床与埋管间的传热,射流冲击。 二、强化传热的途径 在热设备中应用强化传热技术的目的一般有:(1)增加输热量;(2)减少换热面积和缩小设备体积;(3)降低载热剂输送功率的消耗;(4)降低高温部件的温度。在表面式换热器中,单位时间内的换热量Q与冷热流体的温度差At及传热面积F成正比,即Q=KFAt,式中K为传热系数,是反映传热强弱

强化传热技术

强化传热技术研究进展 1概述 由于生产和科学技术发展的需要,强化传热技术从上世纪80年代以来获得了广泛的重视和发展。 首先,随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。设计和制造各类高性能换热设备是经济地开发和利用能源的最重要手段,这对于动力、冶金、石油、化工、制冷及食品等工业部门有着极为重要的意义。 其次,随着航空、航天及核聚变等高顶尖技术的发展,各种设备的运行时的温度也不断升高为了保证各设备有足够长的工作寿命及在高温下安全运行,必须可靠经济的解决高温设备的冷却问题。 最后,随着计算机的迅速发展,密集布置的大功率电子元件在电子设备中的释能密度日益增加。电子元件的有效冷却,是电子设备性能和工作寿命的必要保证。 正是基于以上原因促使人们对强化换热进行了极为广泛的研究和探讨,力图从理论上解释各种强化传热技术的机理,从大量的实验资料中总结其规律性,以便在工业上加以推广应用,并发现新的更为经济实用的强化传热技术,因此近40年来在世界各国强化传热技术如雨后春笋般不断涌现出来。 20世纪80年代以来,我国经济发展迅速而能源生产的发展相对要滞后得多。面对改革开放带来的经济高速发展态势,能源供应难以满足迅速增长的需求,节能成为关系到能否可持续发展的重大问题,近年来我国也在节能领域取得了显著的成绩。1980年到2000年中国经济年平均增长9.7% 而能源消耗的年增长仅为4.6% 节能降耗年平均达5%。“九五”期间我国每万元国内生产总值GDP能耗1990年价由1995年的3.97吨标准煤下降到2000年的2.77 吨标准煤累计节约和少用能源达4.1亿吨标准煤;主要耗能产品单位能耗均有不同程度下降。按“九五”期间直接节能量计算节约的能源价值约660亿元;节约和少用能源相当于减排二氧化硫820万吨二氧化碳计1.8亿吨。当前中国在能源利用效率、能耗等方面与世界先进国家相比还存在较大差距,能源节约还有很大的潜力。 纵观强化传热技术的发展传热强化的研究自始至终有着明确的目标和广泛的应用背景表现出高速度、实用性以及不断迎接高技术发展的挑战等三个突出特点。现代科学技术的飞速发展和能源的严重短缺对传热强化不断提出新的要求,使得研究深度和广度日益扩大并向新的领域渗透和发展,甚至成为某些高新科技中的关键。随着世界能源出现短缺和人们环保意识的增强,节能已成为经济可持续发展的重大需求。我国的节能技术的应用远落后于发达国家,实用的高效强化传热技术,在工业应用中具有广阔的前景。强化传热技术在石油、化工和能源等领域的应用,将带来巨大的经济和社会效益。在未来的几十年,能源环境、微电子和生物技术等领域必将成为传热强化研究和应用的重要舞台。 2强化传热技术研究现状 Bergles在总结强化技术及其发展时,将强化换热技术划分为三代。从19世纪末开始,人们开始关注传热强化的研究,但是由于当时的工业生产水平对传热强化的要求不是很迫切,所以对于强化传热的研究基本上属于实验科学,还很不成熟,相应的传热强化技术属于第一代。从20世纪70年代石油危机开始,国际传热界加强了传热传质过程的机理研究,

换热器1文献综述

换热器又称热交换器,是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。 换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。 换热器的发展已经有近百年的历史,被广泛应用在石油、化、冶金、电力、船舶、集中供热、制冷空调、机械、食品、制药等领域。 进入80 年代以来,由于制造技术、材料科学技术的不断进步和传热理论研究的不断完善,有关换热器的节能设计和应用越来越引起关注。按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。按照制造热交换器的材料来分:金属的、陶瓷的、塑料的、石墨的、玻璃的等。按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。按照传送热量的方法来分:间壁式、混合式、蓄热式等三大类。其中间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。 目前在发达的工业国家热回收率已达96 % ,换热设备在石油炼厂中约占全部工艺设备投资的35 %~40 %。其中管壳式换热器仍然占绝对的优势, 约70 %。其余30 %为各类高效紧凑式换热器、新型热管和蓄热器等设备, 其中板式、板翅式、热管及各类高效传热元件的发展十分迅速。随着工业装置的大型化和高效率化, 换热器也趋于大型化, 并向低温差设计和低压力损失设计的方向发展。当今换热器的发展以CFD (Computational Fluid Dynamics) 、模型化技术、强化传热技 术及新型换热器开发等形成了一个高技术体系。 管壳式换热器: 管壳式换热器又称为列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器,结构一般由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。目前,国内外工业生产中所用的换热设备中,管壳式换热器仍占主导地位,虽然它在换热效率、结构紧凑性和金属材料消耗等方面不如其它新型换热设备,但它具有结构坚固,操作弹性大,适应性强,可靠程度高,选材范围广,处理能力大,能承受高温高压等特点,所以在工程中仍得到广泛应用。以下是几种常见的管壳式强化换热器。 螺旋槽管换热器,横纹管换热器,螺旋扁管换热器,螺旋扭曲管换热器,波纹管换热器,内翅片管换热器,缩放管换热器,波节管管

换热器的研究发展现状

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2009年第28卷增刊·338· 化工进展 换热器的研究发展现状 支浩,汤慧萍,朱纪磊 (西北有色金属研究院,陕西西安 710055) 摘要:随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。 换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。随着经济的发展,各种不同结构和种类的换热器发展很快,新结构、新材料的换热器不断涌现。换热器又称热交换器,是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。本文主要介绍了现有换热器的分类,各种换热器的特点工作原理及应用情况,对目前换热器的存在问题和发展趋势进行分析。 关键词:换热器;强化换热;研究现状 随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现[1-4]。 1 换热器的分类方式 随着科学和生产技术的发展,各种换热器层出不穷,难以对其进行具体、统一的划分。虽然如此,所有的换热器仍可按照它们的一些共同特征来加以区分[5-6],具体如下。 按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。 按照制造热交换器的材料来分:金属的、陶瓷的、塑料的、石墨的、玻璃的等。 按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。 按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。 按照传送热量的方法来分:间壁式、混合式、蓄热式等三大类。其中间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。 间壁式换热器根据传热面的结构不同可分为管式和板面式。管式换热器以管子表面作为传热面,包括套管式换热器和管壳式换热器等;板面式换热器以板面作为传热面,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等。 2 管式换热器 管式换热器主要有套管式换热器和管壳式换热器两种。 2.1套管式换热器 套管式换热器是将不同直径的两根管子套成的同心套管作为元件、然后把多个元件加以连接而成的一种换热器,工作时两种流体以纯顺流或纯逆流方式流动。套管式换热器的优点是:结构简单,适用于高温、高压流体,特别是小容量流体的传热。另外,只要做成内管可以抽出的套管,就可清除污垢,所以它也使用于易生污垢的流体。他的主要缺点是流动阻力大;金属消耗量多;管间接头较多,易发生泄露;而且体积大,占地面积大,故多用于传热面积不大的换热器[5,7]。 2.2管壳式换热器 管壳式换热器又称为列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器,结构一般由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。目前,国内外工业生产中所用的换热设备中,管壳式换热器仍占主导地位,虽然它在换热效率、结构紧凑性和金属材料消耗等方面,

强化传热 文献综述

华北电力大学研究生结课作业 学年学期:2014—2015第二学期 课程名称:强化传热 学生姓名: 学号: 提交时间:2015.3.26

强化传热文献综述 摘要:研究各种传热过程的强化问题来设计新颖的紧凑式换热器,不仅是现代工业发展过程中必须解决的课题,同时也是开发新能源和开展节能工作的紧迫任务,因而研究和开发强化传热技术对于发展国民经济的意义是十分重要的。本文主要总结了管内强制对流换热和强制对流沸腾换热、管束中强制对流换热、大容器沸腾换热和凝结换热的强化方法。以及管壳式换热器和管内置扰流元件的强化传热的研究进展。 关键词:强化传热;粗糙表面法;扩展表面法;扰流元件;机械强化法;静电场法 引言 工质的流动和传热在动力、核能、制冷、化工、石油乃至航空、火箭和航空等工业中是常见的。这些工业的换热设备中广泛存在着各种传热问题。以动力工业中的火力发电厂为例,蒸汽锅炉本身就是一个大型复杂换热面。燃料在炉膛中燃烧生产的热量,需要应用多种传热方式,通过炉膛散热面、对流蒸发受热面、过热器及省煤器加热工质,是工质汽化、过热成为能输往蒸汽轮机的符合要求的过热蒸汽。此外,在锅炉尾部还装有利用排出烟气加热燃烧所需空气的空气预热器。在电厂的热力系统中还装有各式给水加热器、蒸汽凝结器、燃油加热器等。在这些设备中也都存在各种各样的传热问题。换热器的合理设计、运转和改进对于节省资金、能源、金属和空间而言是十分重要的。 1 强化传热的目的和意义 1.1目的 减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;减少换热器的阻力,以减少换热器的动力消耗。 1.2意义 研究各种传热过程的强化问题来设计新颖的紧凑式换热器,不仅是现代工业发展过程中必须解决的课题,同时也是开发新能源和开展节能工作的紧迫任务,因而研究和开发强化传热技术对于发展国民经济的意义是十分重要的。 2换热器中强化传热的途径及分类 2.1途径: 增加平均传热温差;扩大换热面积;提高传热系数。 2.2分类 从被强化的传热过程来分,可分为导热过程的强化、单相对流换热过程的强化、沸腾传热过程的强化、凝结传热过程的强化和辐射传热过程的强化。 从提高传热系数的各种强化传热技术来分,可分为有功技术和无功技术两类。有功强化传热技术包括:机械强化法、振动强化法、静电场法和抽压法等。无功强化传热技术包括:表面特殊处理法、粗糙表面法、扩展表面法、装置强化元件法和加入扰动流体法等。 3提高传热系数来强化传热的技术 3.1单相流管内强制对流换热的有效强化方法 使管内流体发生旋转运动。流体发生旋转可是贴近壁面的流体速度增加,同时还改变了整个流体的流动结构。在采用各种有效的使流体旋转的措施后,增加了旋转流体的流动路

新型换热技术

换热器最新换热技术 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可缺少的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化传热元件诞生。随着研究的深入,工业应用取得了令人瞩目的成果,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T形翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张状况。 换热器的种类繁多,有多种分类方法。 一、按原理分类: 1、直接接触式换热器 这类换热器的主要工作原理是两种介质经接触而相互传递热量,实现传热,接触面积直接影响到传热量,这类换热器的介质通常一种是气体,另一种为液体,主要是以塔设备为主体的传热设备,但通常又涉及传质,故很难区分与塔器的关系,通常归口为塔式设备,电厂用凉水塔为最典型的直接接触式换热器。 2、蓄能式换热器(简称蓄能器),这类换热器用量极少,原理是热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之到达传热量的目的。 3、间壁式换热器 这类换热器用量非常大,占总量的99%以上,原理是热介质通过金属或非金属将热量传递给冷介质,这类换热器我们通常称为管壳式、板式、板翅式或板壳式换热器。 二、按传热种类分类 1、无相变传热 一般分为加热器和冷却器。 2、有相变传热 一般分为冷凝器和重沸器。重沸器又分为釜式重沸器、虹吸式重沸器、再沸器、蒸发器、蒸汽发生器、废热锅炉。 三、按传热元件分类 1、管式传热元件: (1)浮头式换热器 (2)固定管板式换热器 (3)填料函式换热器 (4)U型管式换热器 (5)蛇管式换热器 (6)双壳程换热器 (7)单套管换热器 (8)多套管换热器 (9)外导流筒换热器 (10)折流杆式换热器

换热器文献综述(综述报告)(经典版)

板式换热器综述报告 院系:机械工程学院 姓名:xxxxxx 学号:xxxxxxxxxx 班级:过控10-3班 日期:2012年12月28日

前言 用来使热量从热流体传递到冷流体,以满足规定工艺要求的装置统称为换热器。随着生产和科学技术的发展,化工、动力机械、原子能工业,特别是汽车、火车、航空等工业部门迫切要求高效、轻巧而又紧凑的换热设备,这就促使新结构形式的热交换设备的出现和不断发展。板式换热器就是在这种形式下发展起来的新产品。 国内外板式换热器的发展是欧美发达国家于20世纪80年代起开始竞相开发、研制各种型式的板式换热器。其中具有代表性的为法国Packinox公司,该公司于20世纪80年代首次在催化重整装置中用一台大型板式换热器替代传统的管壳式换热器组。20世纪90年代末期,Packinox公司又将大型板式换热器用于加氢装置。该公司的产品得到UOP(美国联合油)的认证,其产品主要用于的催化重整、芳烃及加氢装置。而板式换热器在中国的起步比较晚。1999年兰州石油机械研究所研制成功大型板式换热器,该产品(专利号:ZL98249056.9)具有国际先进水平、首创独特结构的全焊式板式换热器,并已在炼油厂重整装置,化肥厂水解解吸装置及集中供热换热站等场合得到应用。 近年来,随着我国石化、钢铁等行业的快速发展,换热器的需求水平大幅上涨,但国内企业的供给能力有限,导致换热器行业呈现供不应求的市场状态,巨大的供给缺口需要进口来弥补。 同时,我国出口的换热器均价平均不到进口均价的一半。可以想见,我国出口的产品多是附加值低的中、低端产品,而进口的产品多是附加值高的高端产品。这充分说明我国对高端换热器产品需求旺盛但供给不足的市场现状。 作为一个高效紧凑式换热器,在加热、冷却、冷凝、蒸发和热回收过程中,

换热器文献综述

管壳式换热器强化传热研究 摘要:从管程强化和壳程强化两方面论述了管壳式换热器强化传热技术的机理,指出了管壳式换热器今后发展中的主要方向;同时对换热器的防腐措施以及改进动向作了介绍。 关键词:强化传热;管壳式换热器;防腐 Abstract: shell and tube heat exchanger was discussed from two aspects of the strengthening of the tube side and the strengthening of the shell to strengthen the mechanism of heat transfer technology, pointing out that the main direction of future development of the shell and tube heat exchanger; heat exchanger anti-corrosion measures well as improved trends were introduced. Keywords: heat transfer enhancement; shell and tube heat exchanger; anti-corrosion 引言 管壳式换热器是当今应用最广泛的换热设备,它具有高的可靠性和简单易用性。特别是在较高参数的工况条件下,管壳式更显示了其独有的长处“目前在提高该类换热器性能所开展的研究主要是强化传热,适应高参数和各类有腐蚀介质的耐腐材料以及为大型化的发展所作的结构改进。 一、换热器的强化传热研究 换热器的强化传热就是采用一定的措施增大换热设备的传热速率,力图用较少的传热面积或体积的设备来完成传热任务。各种强化型换热器在石油、化工、制冷、航空、车辆、动力机械等工业部门己得到广泛应用。强化传热已被学术界称为第二代传热技术。换热器的强化途径主要有:提高传热系数,扩大传热面积,增大传热温差等[1]。其中提高传热系数是当今强化传热的重点。传热系数的大小主要取决于换热器中两种流体的对流传热系数、污垢层的热阻和换热管管壁的热阻等。一般情况下热管管壁的热阻比较小,可以忽略不计,而主要通过在管内装入各种强化添加物(内插物),设置挡板,增强湍流强度和延缓污垢层的形成等措施,达到提高传热系数的目的。在实际的操作过程中可以通过强化管程传热和强化壳程传热两个方面强化换热器的传热[12]。 1.1强化管程传热 目前管程强化传热[26]的研究主要集中在开发异型传热管,如:螺旋槽纹管、横纹槽管和缩放管等。国内外已经有许多研究单位和生产厂家成功的应用了技术。 (l)螺旋槽纹管换热器 其管内强化传热主要由两种方式起决定作用:流体在管内流动时受螺旋槽纹的引导,使靠近壁面的部分流体顺槽旋流,产生局部的二次流,增加流体的湍动性;还有一部分流体顺壁面轴向流动,由于螺旋槽导致形体阻力,产生逆向压力梯度,引起边界层分层及边界层中流体质量的扰动,从而加快由壁面至流体主体的热量传递。据有关文献报道美国国家Argonne实验室和GA技术公司设计、制造的螺旋槽纹管换热器,其传热性能比光管提高24倍。我国上海溶剂厂把螺旋槽纹管应用到甲醛余热锅炉中,使传热系数提高了60%[2]。目前,

管壳式换热器强化传热综述

管壳式换热器强化传热综述 摘要根据国内外强化侍热技术的研究现状,着重介绍了管壳式换热嚣在壳程强化待热方面开展的工作及取得的成果。 关键词管壳式换热器壳程强化传热 Abstract In the light of the present statns of study of the technology for intensification of heat transfer both at home and abroad.The work on the intensification of heat transfer in the shell side of the shell and tube heat exchanger is mainly presented as well as the result obtained.Keywords shell and tube heat exchanger shell side intensification of heat transfer 中图分类号:TE965文献标识码:A 随着现代工业的快速发展,对能源的需求越来越大.而利用高效换热器可以吸收化工、石油生产过程中存在的大量余热,既节约了能源,又减少了污染。与板式、板翅式换热器相比,管壳式换热器由于其适用性广、坚固耐用、密封性较好以及其结构简单、清洗方便是石油、化工等领域应用最普遍的一种换热器(占整个换热器设备的70%以上)[1]。因此.如何最大限度地利用热能和回收热能,强化管壳式换热器成为人们所研究的重点之一。 (一)强化传热的途径 单位时间内的换热量Q与冷热流体的温差△t及传热面积F成正比,即:Q=k·F·△t.可见强化传热可以通过增加传热面积F、加大传热温差△t,提高传热系数K3个途径来实现。 1.1增加传热面积F 增加传热面积不应理解为单一扩大设备体积或台数,而应是采用改变传热表面结构或材料性能合理提高设备单位体积的传热面积.使设备高效、紧凑、轻巧。如采用螺旋螺纹管、翅片管、波纹管、粗糙表面管、异形管等方法都能使传热面积增加。 1.2加大传热温差△t 在考虑到实际工艺或设备是否允许的情况下,改变冷热流体温度或改变换热流体同的流动方式如逆流、错流等,就可改变传热温差血,但这种方法受生产工艺、设备条件、环境条件及经济性等方面限制,实际操作时有一定局限性。 1.3提高传热系数k 提高传热系数小的一侧传热面之传热系数.就可使设备总传热系数大幅度提高。当今世界上强化传热研究的重点就是提高传热系数,有一种趋势是改善流体自身流动状态,加强湍

换热器文献综述

浅谈换热器 摘要:文章对换热器进行了简单的分类,对部分换热器特点作了讲解,简单的介绍了换热器的发展过程,并论述了我国换热器的发展及前景。 关键词:换热器;分类;发展 前言: 换热器又称热交换器是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。 换热器的发展已经有近百年的历史,被广泛应用在石油、化工、冶金、电力、船舶、集中供热、制冷空调、机械、食品、制药等领域。进入80年代以来,由于制造技术、材料科学技术的不断进步和传热理论研究的不断完善,有关换热器的节能设计和应用越来越引起关注。按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。按照制造热交换器的材料来分:金属的、瓷的、塑料的、石墨的、玻璃的等。按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。按照传送热量的方法来分:间壁式、混合式、蓄热式等三大类。其中间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。 1 换热器分类及其特点 换热器的用途很广泛,可用于各种不同的换热过程,例如:加热、冷却、冷凝和蒸发等。而换热器可做如下分类: 按设备结构来分:有板片式换热器和管壳式换热器两大类。板片式换热器是由板片和密封垫片组合而成,通常有波纹平板式、板翅式、螺旋板式和板克式。管壳式换

板式换热器文献综述

文献综述 1.前言 用来使热量从热流体传递到冷流体,以满足规定工艺要求的装置统称为换热器。随着生产和科学技术的发展,化工、动力机械、原子能工业,特别是汽车、火车、航空等工业部门迫切要求高效、轻巧而又紧凑的换热设备,这就促使新结构形式的热交换设备的出现和不断发展。板式换热器就是在这种形式下发展起来的新产品。 2.板式换热器的简介 板式换热器由多片通道板、一片盲板、一片端板和端封及通道密封组成。换热器的两端分别是盲板和端板,中间部分则全是通道板,密封分别夹在通道板及端板之间,使之形成了许多隔开的容腔,通道板的四角开有圆孔。允许加热介质和被加热介质在此流过,由于板片是具有特定形状,周边及孔的周围压有密封垫片槽,所以一种介质只能留到隔一个容腔中,而不会留到相邻的容腔中,这样就使加热介质和被加热介质充分接触,从而达到换热目的。传热部分的人字形波纹板、水平平直波纹板或瘤形板片交成网状,并形成众多触点。几何形状复杂的板间流道断面使得其具有较高的传热系数,这是因为介质经过时,流动方向和流动速度在不断变化,流速最低时还会产生湍流,强化了传热效果。 2.1板式换热器的特点(板式换热器与管壳式换热器的比较) a.传热系数高由于不同的波纹板相互倒置,构成复杂的流道,使流体在波纹板间流道内呈旋转三维流动,能在较低的雷诺数(一般Re=50~200)下产生紊流,所以传热系数高,一般认为是管壳式的3~5倍。 b.对数平均温差大,末端温差小在管壳式换热器中,两种流体分别在管程和壳程内流动,总体上是错流流动,对数平均温差修正系数小,而板式换热器多是并流或逆流流动方式,其修正系数也通常在0.95左右,此外,冷、热流体在板式换热器内的流动平行于换热面、无旁流,因此使得板式换热器的末端温差小,对水换热可低于1℃,而管壳式换热器一般为5℃。 c.占地面积小板式换热器结构紧凑,单位体积内的换热面积为管壳式的2~5倍,也不像管壳式那样要预留抽出管束的检修场所,因此实现同样的换热量,板式换热器占地面积约为管壳式换热器的1/5~1/10。 d.容易改变换热面积或流程组合,只要增加或减少几张板,即可达到增加或减少换热面积的目的;改变板片排列或更换几张板片,即可达到所要求的流程组合,适应新的换热工况,而管壳式换热器的传热面积几乎不可能增加。 e.重量轻板式换热器的板片厚度仅为0.4~0.8mm,而管壳式换热器的换热管的厚度为 2.0~2.5mm,管壳式的壳体比板式换热器的框架重得多,板式换热器一般只有管壳式重量的1/5左右。 f. 价格低采用相同材料,在相同换热面积下,板式换热器价格比管壳式约低40%~60%。

换热器综述

换热器的综述 前言 随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。换热器按用途不同可分为加热器、冷却器、冷凝器、蒸发器、再沸器、深冷器、过热器等。 换热器组内的传热过程目的一般可以分为两类: 一类是为了热功转换, 另一类是为了加热或者冷却物体. 相应地, 传热过程也包含熵产最小以及火积耗散极大这两种不同的优化原理.通过分析换热器组内的传热过程, 并在一定约束条件下利用不同的原理对换热器组的面积分配进行优化, 得出熵产最小原理适用于包含在热力循环中的换热器优化问题, 而火积耗散极大原理则更适合分析仅涉及传热过程的换热器优化问题. 并且, 在使用熵产最小原理优化热力循环中的换热器时, 除了需要考虑冷、热端换热器产生的熵产外, 也应考虑乏汽排放到外部环境引起的熵产.在换热器的设计中,很多因素都将影响到换热器的设计是否优化合理、安全可靠,是否能正常运转、高效耐用。本文通过对管壳式换热器设计的综述,增强对换热器设计环节的重视与考虑,使设计更加准确、完善。 一、换热器 1.1换热器的介绍 换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。换热器被应用于超过80%的能源利用系统, 它是热能和化工等工程领域中最重要的设备之一. 因此, 提高换热器的换热性能通常被认为是提高能源利用效率的关键因素之一. 经过长期的不懈努力,科研人员已经提出了多种不同的主动/被动式强化换热技术来提高换热性能。在石油、化工、轻工、制药、能源等工业生产中,常常需要把低温流体加热或者把高温流体冷却,把液体汽化成蒸汽或者把蒸汽冷凝成液体。这些过程均和热量传递有着密切联系,因而均可以通过换热器来完成。随着经济的发展,各种不同型式和种类的换热器发展很快,新结构、新材料的换热器不断涌现。为了适应发展的需要,我国对某些种类的换热器已经建立了标准,形成了系列。换热器的应用广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。它还广泛应用于化工、石油、动力和原子能等工业部门。它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。换热器既可是一种单元设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如氨合成塔内的换热器。换热器是化工生产中重要的单元设备,根据统计,热交换器的吨位约占整个工艺设备的20%有的甚至高达30%,其重要性可想而知。 换热器的发展已经有近百年的历史,被广泛应用在石油、化、冶金、电力、船舶、集中供热、制冷空调、机械、食品、制药等领域。进入80 年代以来,由于制造技术、材料科学技术的不断进步和传热理论研究的不断完善,有关换热器的节能设计和应用越来越引起关注。按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。按照制造热交换器的材料来分:金属的、陶瓷的、塑料的、石墨的、玻璃的等。按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。按照传送热量的方法来分:间壁式、混合式、蓄热式等三大类。其中间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热

换热器强化传热技术的研究进展_李安军

收稿日期:2007-08-09李安军(1979~ ),研究生;114051 辽宁省鞍山市。 换热器强化传热技术的研究进展 李安军 邢桂菊 周丽雯 (辽宁科技大学材料科学与工程学院) 摘 要 介绍了被动式强化传热技术的研究进展,简述了典型和新型传热元件的开发和应用,针对换热器传热管表面处理技术,管的内插件和管束支撑结构的发展状况展开分析和论述;探讨了强化传热技术的发展方向,数值模拟和场协同原理技术的应用使换热器结构趋于最优化,强化传热技术由单一型向复合型方向发展,逐渐形成第三代传热技术。关键词 强化传热 传热元件 管束支撑 换热器 节能技术 P r o g r e s s i n s t u d y o n t e c h n o l o g y o f h e a t t r a n s f e r e n h a n c e m e n t f o r h e a t e x c h a n g e r L i A n j u n X i n g G u i j u Z h o u L i w e n (U n i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y L i a o n i n g ) A b s t r a c t P r o g r e s s i n s t u d y o nt e c h n o l o g y o f h e a t t r a n s f e r e n h a n c e m e n t w a s i n t r o d u c e d ,d e v e l o p m e n t a n d a p p l i c a t i o n o f t y p i c a l a n d n e wt y p e h e a t t r a n s f e r c o m p o n e n t s w e r e d e s c r i b e d b r i e f l y ,a n d t h e d e v e l -o p m e n t s t a t u s o f t h e t e c h n o l o g y o f h e a t e x c h a n g e t u b e 's s u r f a c e t r e a t m e n t ,t u b e p l u g g e d -i n o b j e c t s a n d t u b e b u n d l e s u p p o r t w e r e a n a l y z e da n ds t u d i e d .T h ed e v e l o p m e n t d i r e c t i o no f h e a t t r a n s f e r e n h a n c e -m e n t w a s d i s c u s s e d .T h ea p p l i c a t i o no f n u m e r i c a l s i m u l a t i o na n df i e l ds y n e r g yp r i n c i p l e sm a d et h e s t r u c t u r e s o f h e a t e x c h a n g e r o p t i m i z e d ,t h et e c h n o l o g yo f h e a t t r a n s f e r e n h a n c e m e n t d e v e l o p e df r o m s i n g l e t oc o m p o u n d a n dg r a d u a l l y f o r m e d t h e t h i r d -g e n e r a t i o no f h e a t t r a n s f e r t e c h n o l o g y . K e y w o r d s h e a t t r a n s f e r e n h a n c e m e n t h e a t t r a n s f e r c o m p o n e n t s t u b eb u n d l es u p p o r t h e a t e x -c h a n g e r e n e r g y c o n s e r v a t i o n t e c h n o l o g y 随着现代工业的迅速发展,以能源为中心的 环境、生态等问题日益加剧,节能是非常重要的,也是当务之急,世界各国都在寻找新能源和节能新途径。换热器作为换热设备,广泛应用于冶金、化工等各个工业领域中,强化传热技术的应用不但节能环保,而且节约了投资和运营成本,所以,换热器的强化传热技术一直以来都是一个重要课题,受到研究人员的重视,各种研究成果不断涌现。 20世纪80年代以来,强化传热技术被誉为 第二代传热技术〔1〕 ,并得到充分的发展。它是 能够显著改善传热性能的节能技术,其主要内容是强化传热元件和改变壳程的支撑结构,用以提高换热效率,达到生产的最优化。 强化传热技术通常分为主动式和被动式两大类。主动式强化传热需要消耗外部能量,如采用电场、磁场、光照射、搅拌、喷射等手段。被动式强化传热则不需要消耗外部能量,是换热器强化传热主要采用的方法,如传热管的表面处理、传热管的形状变化、管内加入插入物,改变支撑物等 〔2〕 。这里主要介绍被动式传热。

相关文档