文档视界 最新最全的文档下载
当前位置:文档视界 › 模电实验课程教案实验

模电实验课程教案实验

模电实验课程教案实验
模电实验课程教案实验

课程教案

课程名称:模拟电子技术实验

任课教师:何淑珍

所属院部:电气与信息工程学院

教学班级:自动化1301-02

教学时间:2014 —2015学年第二学期

湖南工学院课程基本信息

实验一单管共射放大电路的研究

一、本次实验主要内容

按要求连接实验电路,调试静态工作点,测量电压放大倍数、输入电阻、输出电阻,分析静态工作点对输出波形失真的影响。

二、教学目的与要求

学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响;掌握放大器各性能指标及最大不失真输出电压的测试方法;熟悉常用电子仪器及模拟电路实验设备的使用。

三、教学重点难点

1、静态工作点调试;

2、输入电阻、输出电阻的测量。

四、教学方法和手段

课堂讲授、操作、讨论;

五、作业与习题布置

完成实验报告

实验一单管共射放大电路的研究(验证性)

1. 实验目的

(1)学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响;

(2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法;

(3)熟悉常用电子仪器及模拟电路实验设备的使用。

2. 实验设备与器材

实验所用设备与器材见表1.1。

3. 实验电路与说明

实验电路如图1.1所示,为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。安装电路时,要注意电解电容极性、直流电源正负极和信号源的极性。

图1.1 共射极单管放大器实验电路(以实验的实际电路参数为准)

4. 实验内容与步骤

(1)电路安装

①安装之前先检查各元器件的参数是否正确,区分三极管的三个电极,并记录其β值。

②根据图1.1连接电路。电路连接完毕后,应认真检查连线是否正确、牢固。

(2)测试静态工作点

①电路安装完毕经检查无误后,首先将直流稳压电源调到12V,接通直流电源前,先将R P调至最大,函数信号发生器输出旋钮旋至零,再接通直流电源, 调节R P,使I C=2.0mA(即V E=2.0V)。

②测试电路的静态工作点,并将数据记录在表1.2中。

表1.2 静态工作点的测量R b2=

测试内容V CC /V V BQ /V V BEQ /V V CEQ /V I CQ /mA

测量值

理论计算值

(3)测量电路动态性能指标

①将信号发生器的输出信号调到频率为1kHz、峰峰值为30 mV左右的正弦波,接到放大电路输入端,然后用示波器观察输出信号的波形。在整个实验过程中,要保证输出信号不产生失真。如输出信号产生失真,可适当减小输入信号的幅度。

②用双踪示波器观察u O和u i的相位关系,用示波器测量下述二种情况下的U O值,并记录在表1.3中。

表1.3 电路动态性能指标的测量

(4)观察静态工作点对输出波形失真的影响

置R c=2kΩ,R L=5.1kΩ,u i=0,调节R P使I c=2.0mA,测出U ce值,再逐步加大输入信号,使输出电压u0足够大但不失真。然后保持输入信号不变,分别增大和减小R W,使波形出现失真,绘出u0的波形,并测出失真情况下的I c和U ce值,记入表1.4中。每次测I C和U CE值时都要将信号源的输出旋钮旋至零。

表1.4 静态工作点对波形影响观测

5. 实验总结与分析

(1)用理论分析方法计算出电路的静态工作点,填入表1.2中,再与测量值进行比较,并分析误差的原因。

(2)根据实验数据计算出不接负载时对输入电压U i的电压放大倍数和对信号源U s

的电压放大倍数、输入电阻、输出电阻。并与理论计算值进行比较,分析产生误差的原因。

(3)回答以下问题:

①放大电路所接负载电阻发生变化时,对电路的电压放大倍数有何影响?

②怎样用测量信号电压的方法来测量放大电路的输入电阻和输出电阻?

教学后记:

实验二负反馈放大电路的仿真(验证性)

一、本次实验主要内容

对无反馈基本放大电路的动态性能指标和负反馈放大器的动态性能指标进行仿真测试。

二、教学目的与要求

加深理解放大电路中引入负反馈的方法和负反馈对放大器性能的影响,掌握负反馈放大器性能的测试方法。

三、教学重点难点

1、由负反馈放大电路如何获得对应的基本放大电路;

2、放大电路各项动态性能指标的测试。

四、教学方法和手段

课堂讲授、操作、讨论;

五、作业与习题布置

完成实验报告

实验二负反馈放大电路的仿真(验证性)

1. 实验目的

(1)加深理解放大电路中引入负反馈的方法;

(2)研究负反馈对放大器性能的影响;

(3)掌握负反馈放大器性能的测试方法。

2. 实验设备与器材

电脑一台(仿真软件EWB5.0或multisim)

3. 实验电路与说明

由于晶体管的参数会随着环境温度改变而改变,不仅放大器的工作点、放大倍数不稳定,还存在失真、干扰等问题。为改善放大器的这些性能,常常在放大器中加入负反馈环节。

负反馈在电子电路中有着非常广泛的应用,虽然它使放大器的放大倍数降低,但能在多方面改善放大器的动态指标,如稳定放大倍数,改变输入、输出电阻,减小非线性失真和展宽通频带等。

根据输出端取样方式和输入端连接方式的不同,可以把负反馈放大器分成四种基本组态:电流串联负反馈、电压串联负反馈、电流并联负反馈、电压并联负反馈。

图2.1为带有负反馈的两级阻容耦合放大电路,在电路中通过Rf把输出电压uo引回到输入端,加在晶体管T1的发射极上,在发射极电阻Rf1上形成反馈电压uf。根据反馈的判断法可知,它属于电压串联负反馈。

图2.1 带有电压串联负反馈的两级阻容耦合放大器(参数以实验电路为准)

主要性能指标如下:

(1)闭环电压放大倍数(闭环增益)

其中:,基本放大器(无反馈)的电压增益,即开环增益。

,反馈深度,其大小决定了负反馈对放大器性能改善的程度。(2)反馈系数

(3)输入电阻

式中:为基本放大器的输入电阻。

(4)输出电阻

式中:为基本放大器的输出电阻,

为基本放大器空载时的电压放大倍数

本实验需要测量基本放大器的动态参数,怎样实现无反馈而得到基本放大器呢?不能简单地断开反馈支路,而是要去掉反馈信号作用,但又要把反馈网络的影响(即负载效应)考虑到基本放大器中去。为此:

(1)在绘制基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令,此时Rf相当于并联在Rf1上。

(2)在绘制基本放大器的输出回路时,由于输入端是串联负反馈,因此需要将反馈送至放大器的连接处(T1的射极)开路,此时相当于并接在输出端。根据上述规律,就可以得到所要求的如图3.2所示的基本放大器。

4. 实验内容与步骤

(1)启动EWB,绘制并保存图2.1所示电路。

(2)测试静态工作点

电路经检查无误后,用直流电压(流)表分别测量第一级、第二级的静态工作点,记入表2.1中。

U BQ/V U EQ/V U CQ/V

第一级

第二级

(3)测试负反馈放大器的各项性能指标

①将信号发生器的输出信号调到频率为1kHz、幅度为2mV左右的正弦波,接到负反馈放大器的输入端,然后用示波器观察输出信号的波形。在整个实验过程中,要保证输出信号不产生失真。如输出信号产生失真,可适当减小输入信号的幅度。

②在u O不失真的情况下,用交流毫伏表测量U S、U i、U o,记入表2.2中。保持U s不变,断开负载电阻R L,测量空载()时的输出电压U’o,记入表2.2中。

(4)测试基本放大器的各项性能指标

①将实验电路改接为图2.2的基本放大电路。适当减少U S(约5mV),在输出波形不失真的条件下,测量负反馈放大器的Auf、Rif和ROf,记入表2.2。保持US不变,断开负载电阻RL(注意,Rf不要断开),测量空载()时的输出电压U’o,记入表2.2中。

基本放大器US/mV Ui/mV

Uo/V

(带负载)

U'’o/V

(空载)

Au Ri/kΩRO/kΩ

负反馈放大器US/mV Ui/mV

Uo/V

(带负载)

U’o/V

(空载)

Auf Rif/kΩ ROf/kΩ

5. 实验总结与分析

(1)将基本放大器和负反馈放大器动态性能指标的测量值与理论估算值进行比较。

(2)根据实验结果,总结电压串联负反馈对放大器性能的影响。

(3)回答以下问题:

①怎样把负反馈放大器改接成基本放大器?为什么要把Rf并接在输入和输出端?

②如输入信号存在失真,能否用负反馈来改善?

(4)心得体会与其他。

图2.2 基本放大器(考虑反馈支路的负载效应)

教学后记:

实验三基本运算放大电路的设计与测试(设计性)

一、本次实验主要内容

用实验室提供的运算放大器等元件构成比例运算电路、加法减法运算电路,微积分运算电路,并测试设计电路性能。

二、教学目的与要求

熟悉各种基本运算电路的功能,并学会测试和分析方法。

三、教学重点难点

1、基本运算放大电路的设计;

2、线路中直流电源的连接。

四、教学方法和手段

课堂讲授、操作、讨论;

五、作业与习题布置

完成实验报告

实验三基本运算电路的设计与测试(设计性)

1. 实验目的

(1) 研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能;

(2) 学会上述电路的测试和分析方法。

2. 实验设备与器材

实验所用设备与器材见表3.1示。

3. 实验电路与说明

集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

基本运算电路

(1)反相比例运算电路

电路如图3.1所示。对于理想运放,该电路的输出电压与输入电压之间的关系为

f 01

i

R U U R =-

为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R2

=R1 // Rf 。

(2) 积分运算电路

反相积分电路如图3.5所示。在理想化条件下,输出电压uO(t)等于

C 0i

dt+u (0)

t

u +=-?O 11u (t)R C 式中,uC(0+)是t =0+时刻电容C 两端的电压值,即初始值。

如果ui(t)是幅值为E 的阶跃电压,并设uc(0+)=0,则

u t R C R C =-

=?t O o

111E

(t)Edt -

即输出电压 uo(t)随时间增长而线性下降。显然RC 的数值越大,达到给定的Uo 值所需的时间就越长。积分输出电压所能达到的最大值受集成运放最大输出范围的限值。

4. 实验内容与步骤

实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。

(1)反相比例运算电路

①按图3.1连接实验电路,接通±12V电源,输入端对地短路,进行调零和消振。

②输入f=100Hz,Ui P-P=0.5V的正弦交流信号,测量相应的Uo,并用示波器观察uo(t)和ui(t)的相位关系,记入表3.2中。

(2)积分运算放大电路

实验电路如图3.2所示。

取输入信号为方波信号,频率为1KH Z,幅值1-2V,观察输输出信号波形,并测量输出信号周期及幅值。

5. 实验总结与分析

(1) 整理实验数据,画出波形图(注意波形间的相位关系)。

(2) 将理论计算结果和实测数据相比较,分析产生误差的原因。

(3) 分析讨论实验中出现的现象和问题。

(4) 回答以下问题:

①在反相加法器中,如Ui1 和Ui2 均采用直流信号,并选定Ui2=-1V,当考虑到运算放大器的最大输出幅度(±12V)时,|Ui1|的大小不应超过多少伏?

②在积分电路中,如R1=100kΩ,C=4.7μF,求时间常数。假设Ui=0.5V,问要使输出电压UO达到5V,需多长时间(设uC(o)=0)?

(5) 心得体会与其他。

教学后记:

实验四功率放大器的仿真(设计性)

一、本次实验主要内容

连接乙类和甲乙类互补对称功放电路,调试电路消除交越失真并在基本不失真的前提下尽可能大的输出功率,测试功率放大器的性能参数等进行仿真。

二、教学目的与要求

进一步理解OCL功率放大器的工作原理;学会OCL电路的调试及主要性能指标的测试方法。

三、教学重点难点

1、最大不失真输出电压及输出功率的测量;

2、正确连接电路并调试电路,消除交越失真,。

四、教学方法和手段

课堂讲授、操作、讨论;

五、作业与习题布置

完成实验报告

实验四功率放大器的仿真(设计性)

一、实验目的

1、学习互补对称功率放大电路输出功率和效率的测量方法。

2、观察交越失真现象,理解克服交越失真的方法。

3、加深理解乙类和甲乙类互补对称功率放大电路的工作原理。

二、实验设备与器材

电脑一台(EWB5.0仿真软件)

三、实验内容与方法

1、创建实验电路

启动EWB,创建乙类互补对称功率放大电路如图4.1所示并保存。

模电实验二共集电极电路实验报告

实验二共集电极电路 班级:姓名:学号: 2015.11.11 一、实验目的 1.掌握共集电极电路的特性及测试方法。 2.进一步学习放大电路各项参数的测试方法。 二、实验仪器及器件 三、实验原理 图2-1为共集电极电路。 图2-1共集电极电路 1、输入电阻R i R i = r be+(1+β) R E 如考虑偏置电阻R B和负载R L的影响,则 R i = R B∥[r be+(1+β)(R E∥R L)]

输入电阻的测试方法与单管放大电路相同,试验线路如图2-2所示: 图2-2 共集电极电路实验图 R V -V V I V R i S i i i i == 2、输入电阻R o R o = βbe r ∥R E ≈β be r 如考虑信号源内阻R S ,则 R o = β ) ∥(B S R R +be r ∥R E ≈ β ) ∥(B S R R +be r L L 1)R -V V R ( o = 3、电压增益A V A V = ) ∥()1() ∥()1(L E L E R R R R ββ+++be r ≤1 4、电压跟随范围 V O(P-P)=22V O 四、 实验内容及实验步骤 按图2-2安装好电路。

1、静态工作点的调整 接通+12V直流电源,在B点加入f = 1KHz正弦信号v i,输出端用示波器监视输出波形,反复调整R W 及信号源的输出幅度,使在示波器的屏幕上得到一个最大不失真输出波形,然后置v i= 0,用万用表电压档测量晶体管各电极对地电位,将测得数据记入表2-1。 在下面整个测试过程中保持R W值不变(即保持静工作点I E不变)。 2、测量电压放大倍数A V 接入负载R L=4.7KΩ,在B点加f = 1KHz正弦信号v i,调节输入信号幅度,用示波器观察输出波形V O,在输出最大不失真情况下,用交流毫伏表测V i、V L值。记入表2-2。 表2-2 3、测量输出电阻R o 接上负载R L=4.7KΩ,在B点加f = 1KHz正弦信号v i,用示波器监视输出波形,测空载输出电压V O,有负载时输出电压V L,记入表2-3。 表2-3 4、测量输出电阻R i 在A点加f = 1KHz正弦信号v s,用示波器监视输出波形,用交流毫伏表分别测出A、B点对地的电位V S、V i,记入表2-4。 表2-4 5、测试跟随特性 接上负载R L=4.7KΩ,在B点加f = 1KHz正弦信号v i,逐渐增大信号v i幅度,用示波器监视输出波形直至输出波形达最大不失真,测量对应的V L值,记入表2-5。

模电课程设计报告(10)

《模拟电子技术》课程设计报告 系别:电气工程系 专业班级:09电科(一)班 学生姓名:曹海锋 指导教师:赵剑锷 2011年09月25 日 郑州科技学院

目录 1 课程设计的目的 (1) 2课程设计的题目要求 (1) 3课程设计报告内容 (1) 3.1实验设计的意义 (2) 3.2半双工对讲机实现方法 (2) 3.3 电路原理分析 (2) 3.4电子元件清单及选择 (3) 4总结 (3) 参考文献 (4)

摘要 无线对讲机是移动通信中一个重要的分支,应用非常广泛,无线电对讲机和其它无线通信工具(如手机)其市场定位各不相同,难以互相取代,还将长期使用下去。本论文研究设计了一款调频无线对讲机。首先介绍了调频无线对讲机的功能、性能指标和工作原理。从工作原理出发,通过现代电子系统设计方法,深入行业现状寻找到低成本的器件MC3363、MC2833、LM386等,确立了完整具体的方案。在具体的硬件设计实现上,分成发射和接收两部分,分别对各个功能模块以信号、控制为联系进行设计。在硬件设计上,通过主要芯片将各功能模块有机地组织起来协 同完成系统需要的功能。 1课程设计目的 对讲机在现实生活中应用广泛。这次设计制作的对讲机简单实用可以满足日常生活使用。我们学习模拟电子技术重要的在于应用,通过这次实践,可以让我们将理论与实践结合,是对我们已经学习知识的一次实际应用与巩固,更是一次升华!这对于以后学习其他知识奠定基础,我们知道学习模电就要将元件的特点,功能,使用方法等熟练掌握,组成一个合理,经济,实用的系统。总而言之,这次实践是我受益匪浅。 2 课程设计的题目要求 本对讲机成本低廉,电路简单,可用于办公室不同房间对讲、婴儿室监听等。通话距离可达2Km。 a.采用集成运放和集成功放及阻容元件等构成对讲机,实现甲、乙双方异地通话。 b.用扬声器用作话筒和喇叭,双方对讲、互不影响。 c.电源电压4.5~9.0v. 3.课程设计报告内容 3.1半双工对讲机实验设计的意义 有线对讲机在日常生活中应用广泛。有线对讲机原理简单,设计方便,制作简易,成本低。广泛用于医院病员呼叫机、门铃、室内电话等。所以有线对讲机日益成为日常生活中不可缺少的部分。我们了解了它的原理过程,正确使用操作它,可以提高我们知识的应用性。本次试验既增长了我们的知识,又让磨砺了我们的意志以及团队意识。更让我们对电子模拟更加感兴趣,为以后的研究道路

数字电子钟课程设计实验报告

中北大学 信息与通信工程学院 通信工程专业 《电子线路及系统》课程设计任务书2016/2017 学年第一学期 学生姓名:张涛学号: 李子鹏学号: 课程设计题目:数字电子钟的设计 起迄日期:2017年1月4日~2017年7月10日 课程设计地点:科学楼 指导教师:姚爱琴 2017年月日 课程设计任务书

中北大学 信息与通信工程学院 通信工程专业 《电子线路及系统》课程设计开题报告2016/2017 学年第一学期 题目:数字电子钟的设计 学生姓名:张涛学号: 李子鹏学号:

指导教师:姚爱琴 2017 年 1 月 6 日 中北大学 信息与通信工程学院 通信工程专业 《电子线路及系统》课程设计说明书2016/2017 学年第二学期 题目:数字电子钟的设计 学生姓名:张涛学号: 李子鹏学号: 指导教师:姚爱琴 2017 年月日

目录 1 引言 (6) 2 数字电子钟设计方案 (6) 2.1 数字计时器的设计思想 (6) 2.2数字电路设计及元器件参数选择 (6) 2.2.2 时、分、秒计数器 (7) 2.2.3 计数显示电路 (8) 2.2.5 整点报时电路 (10) 2.2.6 总体电路 (10) 2.3 安装与调试 (11) 2.3.1 数字电子钟PCB图 (11) 3 设计单元原理说明 (11) 3.1 555定时器原理 (12) 3.2 计数器原理 (12) 3.3 译码和数码显示电路原理 (12) 3.4 校时电路原理 (12) 4 心得与体会 (12) 1 引言 数字钟是一种用数字电子技术实现时,分,秒计时的装置,具有较高的准确性和直观性等各方面的优势,而得到广泛的应用。此次设计数字电子钟是为了了解数字钟的原理,在设计数字电子钟的过程中,用数字电子技术的理论和制作实践相结合,进一步加深数字电子技术课程知识的理解和应用,同时学会使用Multisim电子设计软件。 2数字电子钟设计方案 2.1 数字计时器的设计思想 要想构成数字钟,首先应选择一个脉冲源——能自动地产生稳定的标准时间脉冲信号。而脉冲源产生的脉冲信号地频率较高,因此,需要进行分频,使得高频脉冲信号变成适合于计时的低频脉冲信号,即“秒脉冲信号”(频率为1Hz)。经过分频器输出的秒脉冲信号到计数器中进行计数。由于计时的规律是:60秒=1分,60分=1小时,24小时=1天,就需要分别设计60进制,24进制计数器,并发出驱动信号。各计数器输出信号经译码器、驱动器到数字显示器,是“时”、“分”、“秒”得以数字显示出来。 值得注意的是:任何记时装置都有误差,因此应考虑校准时间电路。校时电路一般

模电课程设计报告

模电课程设计实验报告课题:函数信号发生器 指导老师:________________ 学院:___________________ 班级:___________________ 姓名:___________________ 学号:___________________

日期:__________________ 一.设计目的与要求 1.1设计目的 1.设计电路产生RC桥式正弦波产生电路,占空比可调的矩形波电路,占空比可调的三角波电路,多用信号源产生电路,分别产生正弦波、方波、三角波 2.通过设计,可以将所学的电子技术应用到实际当中,加深对信号产生电路的理解,锻炼自己的动手能力与查阅资料的能力。使自己的对模电的理解更为透彻。 1.2设计内容及要求 1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。 (2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。

(3)占空比可调的三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 (4)多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围100Hz~3KHz、输出幅值≥5V、负载电阻1KΩ。 软件仿真部分元器件不限,只要元器件库中有即可,但需要注意合理选取。 二.单信号发生电路 2、1 RC桥式正弦波产生电路 参数计算:

器件选择: 2、2占空比可调的矩形波产生电路 参数计算: 器件选择:

2、3占空比可调的三角波产生电路 参数计算: 器件选择:

模电实验教案实验

课程教案 课程名称:模拟电子技术实验 任课教师:何淑珍 所属院部:电气与信息工程学院 教学班级:自动化1301-02 教学时间:2014 —2015学年第二学期 湖南工学院 课程基本信息

实验一单管共射放大电路的研究 一、本次实验主要内容 按要求连接实验电路,调试静态工作点,测量电压放大倍数、输入电阻、输出电阻,分析静态工作点对输出波形失真的影响。 二、教学目的与要求 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响;掌握放大器各性能指标及最大不失真输出电压的测试方法;熟悉常用电子仪器及模拟电路实验设备的使用。 三、教学重点难点 1、静态工作点调试; 2、输入电阻、输出电阻的测量。 四、教学方法和手段 课堂讲授、操作、讨论; 五、作业与习题布置 完成实验报告

实验一单管共射放大电路的研究(验证性) 1. 实验目的 (1)学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响; (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法; (3)熟悉常用电子仪器及模拟电路实验设备的使用。 2. 实验设备与器材 实验所用设备与器材见表。 表实验1的设备与器材 序号名称型号与规格数量备注 1实验台1台 2双踪示波器1台 3交流毫伏表1只 4万用表1只 5晶体管1只 6电阻若干 7电容若干 3. 实验电路与说明 实验电路如图所示,为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。安装电路时,要注意电解电容极性、直流电源正负极和信号源的极性。

模电课程设计报告

模拟电路课程设计 题目:OCL功率放大器 学院:信息学院 专业:自动化 班级学号: 学生姓名: 指导教师;

目录

一、课程设计任务及要求 1、设计目的 ①学习OCL功率放大器的设计方法 ②了解集成功率放大器内部电路工作原理 根据设计要求,完成对OCL功率放大器的设计,进一步加强对模拟电子技术的了解 ④采用集成运放与晶体管原件设计OCL功率放大器 ⑤培养实践技能,提高分析和解决实际问题的能力 2、设计指标 ①频率响应:50Hz≤f≤20KHz ②额定输出功率:P o=8W ③负载电阻:R L=8Ω ④非线性失真尽量小 ⑤输入信号:U i<=100mv

3、设计要求 (1)进行方案论证及方案比较 (2)分析电路的组成及工作原理 (3)进行单元电路设计计算 (4)画整机电路图 (5)写出元件明细表 (6)小结和讨论 (7)写出对本设计的心得体会 分析设计要求,明确性能指标;查阅资料、设计方案分析对比。 4、制作要求 论证并确定合理的总体设计方案,绘制结构框图。 5、OCL功率放大器各单元具体电路设计。 总体方案分解成若干子系统或单元电路,逐个设计,计算电路元件参数;分析工作性能。

6、完成整体电路设计及论证。 7、编写设计报告 写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 二、总体方案设计 1、设计思路 功率放大器的作用是给负载R l提供一定的输出功率,当R I一定时,希望输出功率尽可能大,输出信号的非线性失真尽可能小,且效率尽可能高。放大电路实质上都是能量转换电路。从能量控制的观点来看,功率放大电路和电压放大电路没有本质的区别。但是,功率放大电路和电压放大电路所要完成的任务是不同的。对电压放大电路的主要要求是使其输出端得到不失真的电压信号,讨论的主要指标是电压增益,输入和输出阻抗等,输出的功率并不一定大。而功率放大电路则不同,它主要要求获得一定的不失真(或失真

数电课程设计-温度计实验报告(提交版)

一、设计项目名称 温度采集显示系统硬件与软件设计 二、设计内容及要求 1,根据设计要求,完成对单路温度进行测量,并用数码管显示当前温度值系统硬件设计,并用电子CAD软件绘制出原理图,编辑、绘制出PCB印制版。 要求: (1)原理图中元件电气图形符号符合国家标准; (2)整体布局合理,注标规范、明确、美观,不产生歧义。 (3)列出完整的元件清单(标号、型号及大小、封装形式、数量) (4) 图纸幅面为A4。 (4)布局、布线规范合理,满足电磁兼容性要求。 (5)在元件面的丝印层上,给出标号、型号或大小。所有注释信息(包括标号、型号及说明性文字)要规范、明确,不产生歧义。 2.编写并调试驱动程序。 功能要求: (1)温度范围0-100℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 3.撰写设计报告。 提示:可借助“单片机实验电路板”实现或验证软件、硬件系统的可靠性。 温度传感器 摘要:温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用,利用新型单总线式数字温度传感器 实现对温度的测试与控制得到更快的开发,随着时代的进步和发展,单 片机技术已经普及到我们生活,工作,科研,各个领域。一种数字式温 度计以数字温度传感器DS18B20作感温元件,它以单总线的连接方式, 使电路大大的简化。传统的温度检测大多以热敏电阻为传感器,这类传 感器可靠性差,测量温度准确率低且电路复杂。因此,本温度计摆脱了 传统的温度测量方法,利用单片机STC89C52对传感器进行控制。这样

易于智能化控制。 关键词:数字测温;温度传感器DS18B20;单片机STC89C52; 一.概述 传感器从功能上可分为雷达传感器、电阻式传感器、电阻应变式传感器、压阻式传感器、热电阻传感器、温度传感器、光敏传感器、湿度传感器、生物传感器、位移传感器、压力传感器、超声波测距离传感器等,本文所研究的是温度传感器。 温度传感器是最早开发,应用最广泛的一类传感器。温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。这些呈现规律性变化的物理性质主要有半导体。温度传感器是温度测量仪表的核心部分,品种繁多。 随着科学技术的发展,测温系统已经被广泛应用于社会生产、生活的各个领域,在工业、环境监测、医疗、家庭多方面均有应用。从而使得现代温度传感器的发展。微型化、集成化、数字化正成为发展的一个重要方向。 二.硬件设计 1.DS18B20 DS1820 单线数字温度计特性 ? 独特的单线接口仅需一个端口引脚进行通讯 ? 简单的多点分布应用 ? 无需外部器件 ? 可通过数据线供电 ? 零待机功耗 ? 测温范围-55~+125℃,以 0.5℃递增 ? 温度以 9 位数字量读出 ? 温度数字量转换时间 200ms (典型值) ? 用户可定义的非易失性温度报警设置 ? 报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件 ? 应用包括温度控制、工业系统、消费品、温度计或任何热感测系统 DS1820温度传感器外观图(a )和引脚图(b ) ①引脚1接地 ②引脚2数字信号输入/输出 ③引脚3接高电平5V 高电平

模电实验(附答案)

实验一 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、 信号发生器 2、 双踪示波器 3、 交流毫伏表 4、 模拟电路实验箱 5、 万用表 四、实验内容 1.测量静态工作点 实验电路如图1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +? 图1 共射极单管放大器实验电路图

I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表1中。 表1 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E =E E R U 或I C =C C CC R U U - U BE =U B -U E U CE =U C -U E 计算出放大器的静态工作点。 2.测量电压放大倍数 各仪器与放大器之间的连接图 关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。 1)检查线路无误后,接通电源。从信号发生器输出一个频率为1KHz 、幅值为10mv (用毫伏表测量u i )的正弦信号加入到放大器输入端。 2)用示波器观察放大器输出电压的波形,在波形不失真的条件下用交流毫

模电课程设计报告

模电课程设计报告 It was last revised on January 2, 2021

模拟电路课程设计 题目:OCL功率放大器 学院:信息学院 专业:自动化 班级学号: 学生姓名: 指导教师;

目录

一、课程设计任务及要求 1、设计目的 ①学习OCL功率放大器的设计方法 ②了解集成功率放大器内部电路工作原理 根据设计要求,完成对OCL功率放大器的设计,进一步加强对模拟电子技术的了解 ④采用集成运放与晶体管原件设计OCL功率放大器 ⑤培养实践技能,提高分析和解决实际问题的能力 2、设计指标 ①频率响应:50Hz≤f≤20KHz ②额定输出功率:P o=8W ③负载电阻:R L=8Ω ④非线性失真尽量小 ⑤输入信号:U i<=100mv

3、设计要求 (1)进行方案论证及方案比较 (2)分析电路的组成及工作原理 (3)进行单元电路设计计算 (4)画整机电路图 (5)写出元件明细表 (6)小结和讨论 (7)写出对本设计的心得体会 分析设计要求,明确性能指标;查阅资料、设计方案分析对比。 4、制作要求 论证并确定合理的总体设计方案,绘制结构框图。 5、OCL功率放大器各单元具体电路设计。 总体方案分解成若干子系统或单元电路,逐个设计,计算电路元件参数;分析工作性能。

6、完成整体电路设计及论证。 7、编写设计报告 写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 二、总体方案设计 1、设计思路 功率放大器的作用是给负载R l提供一定的输出功率,当R I一定时,希望输出功率尽可能大,输出信号的非线性失真尽可能小,且效率尽可能高。放大电路实质上都是能量转换电路。从能量控制的观点来看,功率放大电路和电压放大电路没有本质的区别。但是,功率放大电路和电压放大电路所要完成的任务是不同的。对电压放大电路的主要要求是使其输出端得到不失真的电压信号,讨论的主要指标是电压增益,输入和输出阻抗等,输出的功率并不一定大。而功率放大电路则不同,它主要要求获得一定的不失真(或

模电实验报告

模拟电子电路课程设计报告书 题目名称:直流稳压电源 姓名:刘海东潘天德 班级:15电科2 学号:23 26 日期:2017.6.11

目录 绪论 (2) 一设计目的 (3) 二设计要求与指标 (3) 三理论分析 (4) 四器件选择及计算 (9) 五具体制作步骤 (12) 六测试方法 (13) 七问题及总结 (15) 八心得体会 (17) 绪论 直流稳压电源一般由电源变压器,整流滤波电路及稳压电路所组成。变压器把市电交流电压变为所需要的低压交流电。整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的+/- 5v直流电,并实现电压可在8-15V连续可调。电源在生活中是非常常见的一种电器,任何电子电路都离不开电源,就像我们下学期即将学到的单片机一样,需要5V的直流电源,没有电源就不能进行正常的工作,如果用干电池进行供电,则有供电功率低,持续供电能力差,成本高等缺点。而交流电在产生、电能输送等方面具有独特的优点,发电站、各市电网中的电能传输都是以交流电的形式进行输送,如果我们对市电提供的电压进行降压整流等,把交流电转换成直流电,以获得我们所

需要的电压。 一设计目的 1.学习基本理论在实践中综合运用的初步经验,掌握模拟电路设计的基本方法、设计步骤,培养综合设计与调试能力。 2.学会直流稳压电源的设计方法和性能指标测试方法。 3.培养实践技能,提高分析和解决实际问题的能力。 二设计要求与指标 2.1设计要求 (1)分析电路组成及工作原理; (2)单元电路设计计算; (3)采用分立元件电路; (4)画出完整电路图; (5)调试方法; (6)小结与讨论。 2.2设计指标 (1)输出电压:8~15V可调 (2)输出电流:I O=1A (3)输入电压:交流 220V+/-10%

模电实验02_基本放大电路实验

实验二 基本放大电路实验 验证性实验——晶体管共射放大电路 1.实验目的 ①掌握放大电路的静态工作点和电压放大倍数的测量方法。 ②了解电路元件参数改变对静态工作点及电压放大倍数的影响。 ③掌握放大电路输入、输出电阻的测量方法。 2.实验电路及仪器设备 ⑴ 实验电路 单管共射放大电路如图1-6所示。 图1-6 单级共射放大电路 R b1 20k Ω R b2 10k Ω R c 、R s 、R L 3k Ω R e 2k Ω C 1、C 2 10μF C e 47μF V 3DG6 β 50~60 V CC 12V ⑵ 实验仪器设备 ①双踪示波器 1台 ②直流稳压电源 1台 ③信号发生器 1台 ④交流毫伏表 1台 ⑤数字(或指针)式万用表 1块 3.实验内容及步骤 ⑴ 测量静态工作点 ①先将直流电源调整到12V ,关闭电源。 ②按图1-6连接电路,注意电容器C 1、C 2、C e 的极性不要接反,最后连接电源线。 ③仔细检查连接好的电路,确认无误后,接通直流稳压电源。 ④按表1-5用数字万用表测量各静态电压值,并将结果记入表1-5中。 表1-5 静态工作点实验数据 ⑵ 测量电压放大倍数 ①按图1-7将信号发生器和交流毫伏表接入放大器的输入端,示波器接入放大器的输出端。调节信号 发生器为放大电路提供输入信号为1kHz 的正弦波i U ,示波器用来观察输出电压o U 的波形。适当调整信号发生器的值,确保输出电压o U 不失真时,分别测出o U 和i U 的值,求出放大电路的电压放大倍数u A 。

图1-7 实验线路与所用仪器连接图 ②观察交流毫伏表读数,保持U i 不变,改变R L ,观察负载电阻改变对电压放大倍数的影响,将测量结果记入表1-6中。 表1-6 电压放大倍数实测数据(保持U i 不变) ⑶ 观察工作点变化对输出波形的影响 调整信号发生器的输出电压幅值(增大放大器的输入电压U i ),观察放大电路的输出电压的波形,使放大电路处于最大不失真电压时,逐个改变基极电阻R b1的值,分别观察R b1变化对静态工作点及输出波形的影响,将所测结果记入表1-7中。 表1-7 R b1对静态、动态影响的实验结果 ⑷ 测量输入电阻R i 及输出电阻R o ①测量输入电阻R i 方法一:测量原理图如图1-8所示,在放大电路与信号源之间串入一固定电阻 R =3k Ω,在输入电压波形不失真的条件下,用交流毫伏表测量U s 以及相应U i 的值,并按式(1-1)计算R i i i s i U R R U U = - (1-1) 方法二:测量原理图如图1-9所示,当R =0时,在输出电压波形不失真的条件下,用交流毫伏表测出输出电压U o1;当R =3k Ω时,测出输出电压U o2,并按式(1-2)计算R i o2 i o1o2 U R R U U = - (1-2) 将两种方法的测量结果计算出的R i 与理论值比较,分析测量误差。R 的取值接近于R i 。

模电课设报告

模电课设报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

南京航空航天大学模拟电子技术课程设计报告 (频率-电压变换器) 学生姓名:田恬 学号: 班级: 0315203 电工电子实验中心 2017年6月

目录 第一章:设计指标 第二章:系统概述 第三章:单元电路设计与分析 第四章:电路调试过程 第五章:结束语 附件1:器件表 附件2:参考文献 附件3:总图

第一章设计指标 试设计一个频率-电压变换器,要求: (1)当正弦波信号的频率f i在200Hz-2kHz范围内变化时,对应输出的直流电压Vo在2-10V范围内线性变化,误差在5%左右。 (2)正弦波信号源采用函数波形发生器。 (3)采用±12V电源供电。 第二章系统概述 一、设计思想 函数波形发生器输出的正弦波经比较器变换成方波。方波经频率变换 通过反成直流电压。直流正电压经反相器变成负电压,再与参考电压V R 相加法器得到符合技术要求的Vo。 二、各功能的组成 (1)本次使用741运放设计三角波发生器作为设计函数波形发生器。调节范围为200Hz-2000Hz,在调试过程中,挑选中间的几个值进行测试。(2)电压比较器采用LM311。 (3)F/V变换采用集成块LM331构成的典型电路。通过参考书和报告上的指导书确定相关参数,测定输出的电压范围在。 (4)反相器采用比例为-1,通过集成芯片OP07实现。 的大小。使输出的(5)反相加法器同样用芯片OP07实现,通过调节V R 电压在2-10V。

三、总体工作过程 第三章 单元电路设计与分析 一、三角波发生器 电路如图所示,它由运放A1、A2,电阻R1、R2组成的同相迟滞比较器,运放A2以及R 、C 构成的反相有源积分电路组成。其输出信号周期为 二、电压比较器 LM311是一种电压比较器,它能将一个模拟电压信号和一个参考固定电压相比较,在二者幅度相等的附近,输出电压将产生跃变,相应输出高电平或低电平。 三、频率电压变换器 直接应用F/V 变换器LM331,其输出与输入的脉冲信号重复频率成正比. (1)LM331内部原理图 此时,○1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平. (2)工作波形图及工作过程 当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。此时放电管T 截止,于是Ct 由Vcc 经Rt 充电,其上电压Vct 按指数规律增大。与此同时,电流开关S 使恒流源I 与○1 Vo=2- 参考电 -2V Vo3直流 Vo2 方 f i =200- 正弦 函数波 比较 F/V/变反相反相 μF

模电课程设计实验报告分析

模电课程设计实验报告 实验内容:一、设计并制作一个能输出+5V 电压的直流稳压电源,输入电压为直流9V。二、利用课程设计(一)制作的电源、电压比较器、电压跟随器设计,驱动三 极管,通过可调电阻,控制LED灯的点亮和熄灭。 实验要求:(1)设计出+5V 直流稳压电源的电路原理图; (2)在万用板上焊接组装给定的元器件并进行调试,输入电压没有极性之分, 输出电压+5V,并点亮电源指示灯(红色); (3)设计一款电压比较器A,参考电压2.5V; (4)设计一款电压跟随器B,跟随电压比较器A 的电压; (5)驱动三极管,通过可调电阻,实现对LED(绿色)灯的控制; (6)完成课程设计报告的撰写。 实验原理: 一、制作稳定电压源 采用二极管、集成运放、电阻、稳压管、电容、二极管、LED发光二极管等元件器件。 输入电压为9V 的直流电源经桥式整流电路和滤波电路形成稳定的直流电源,稳压部分采用 串联型稳压电路。比例运算电路的输入电压为稳定电压;同时,为了扩大输出大电流,集 成运放输出端加晶体管,并保持射极输出形式,就构成了具有放大环节的串联型稳压电路。整体功能结构如图 直流9V 1、单相桥式整流电路 直流5V 为了将电压转换为单一方向的电压,通过整流电路实现。查阅资料可知单相整流电路有单相桥式整流电路(全波整流电路)。桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根据变压器次级电压的极性分别导通,将变压器次级电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。单相桥式整流电路,具有输出电压高,变压器利用率高、脉动系数小等优点。所以在电路中采用单相桥式整流电路。 2、滤波电路 整流电路滤波电路稳压电路

模电实验报告答案2

简要说明:本实验所有内容是经过十一年的使用并完善后的定稿;已经出版的较为成熟的内容,希望同学们主要参考本实验内容进行实验。 实验一常用电子仪器使用 为了正确地观察电子技术实验现象、测量实验数据,实验人员就必须学会常用电子仪器及设备的正确使用方法,掌握基本的电子测试技术,这也是电子技术实验课的重要任务之一。在电子技术实验中,所使用的主要电子仪器有:SS-7804型双踪示波器,EE-1641D函数信号发生器,直流稳压电源,DT890型数字万用表和电子技术实验学习机。学习上述仪器的使用方法是本实验的主要内容,其中示波器的使用较难掌握,是我们学习的重点,要进行反复的操作练习,达到熟练掌握的目的。 一、实验目的 1.学习双踪示波器、函数信号发生器、直流稳压电源的正 确使用方法。 2.学习数字万用表的使用方法及用数字万用表测量元器 件、辩别二极管和三极管的管脚、类型。 3.熟悉实验装置,学会识别装置上各种类型的元件。 二、实验内容 (一)、示波器的使用

1.示波器的认识 示波器是一种测量、观察、记录电压信号的仪器,广泛应用于电子技术等领域。随着电子技术及数字处理技术的发展,示波器测量技术日趋完善。示波器主要可分为模拟示波器和数字存贮示波器两大种类。 模拟示波器又可分为:通用示波器、取样示波器、光电存储示波器、电视示波器、特种示波器等。数字存贮示波器也可按功能分类。 即便如此,它们各有各的优点。模拟示波器的优点是: ◆可方便的观察未知波形,特别是周期性电压波形; ◆显示速度快; ◆无混叠效应; ◆投资价格较低廉。 数字示波器的优点是: ◆捕捉单次信号的能力强; ◆具有很强的存储被测信号的功能。 示波器的主要技术指标: ①. 带宽:带宽是衡量示波器垂直系统的幅频特性,它指的是输入信号的幅值不变而频率变化,使其显示波形的幅度下降到3dB时对应的频率值。 ②. 输入信号范围: ③. 输入阻抗: ④. 误差: ⑤. 垂直灵敏度:指垂直输入系统的每格所显示的电压

数电课程设计

一、数字电子钟 1.设计目得 (1)培养数字电路得设计能力。 (2)掌握数字电子钟得设计、组装与调试方法。 2.设计内容及要求 (1)设计一个数字电子钟电路。要求: ①按24小时制直接显示“时”、“分”、“秒”。 ②当电路发生走时误差时具有校时功能。 ③具有整点报时功能,报时音响为4低1高,即在59分51秒、53秒、55秒、57秒输出500Hz信号,在59分59秒时输出1000 Hz信号,音响持续时间为1秒,最后一响结束时刻正好为整点。 (2)用中小规模集成电路组成电子钟,并在实验仪上进行组装、调试。 (3)画出各单元电路图、整机逻辑框图与逻辑电路图,写出设计、实验总结报告。 (4)选作部分:①闹钟系统。②日历系统。 3.数字电子钟基本原理及设计方法 数字电子钟得逻辑框图如图1411所示。它由振荡器、分频器、计数器、译码器、显示器、校时电路与整点报时电路组成。振荡器产生得脉冲信号经过分频器作为秒脉冲,秒脉冲送入计数器计数,计数结果通过“时”、“分”、“秒”译码器显示时间。有得数字电子钟还加有定时响铃、日历显示等其它功能,需增加相应得辅助电路。 图1411 数字电子钟得基本逻辑框图 (1)振荡分频电路 振荡器就是数字电子钟内部用来产生时间标准“秒”信号得电路。构成振荡器得电路很多,图1412(a)就是RC环形多谐振荡器,其振荡周期T≈2、2RC。作为时钟,最主要得就是走时准确,这就要求振荡器得频率稳定。要得到频率稳定得信号,需要采用石英晶体振荡器。石英晶体振荡器电路如图1412(b)所示,这种电路得振荡频率只取决于石英晶体本身得固有频率。 图1412 振荡器

(a)RC环形多谐振荡器 (b)石英晶体多谐振荡器 由于石英晶体振荡器产生得频率很高,要得到秒信号,需采用分频电路。例如,振荡器输出4 MHz信号,先经过4分频变成1 MHz,再经过6次10分频计数器,便可得到1Hz得方波信号作为秒脉冲。 (2)计数器 把秒脉冲信号送入秒计数器个位得CP输入端,经过6级计数器,分别得到“秒”个位、十位,“分”个位、十位,以及“时”个位、十位得计时。“秒”、“分”计数器为60进制,“时”计数器为24进制。 24进制计数器如图1413所示。当“时”个位计数器输入端CP来到第10个触发脉冲时,该计数器归零,进位端Q D5向“时”十位计数器输出进位信号。当第24个“时”脉冲(来自“分”计数器输出得进位信号)到来时,十位计数器得状态为0010,个位计数器得状态位0100,此时“时”十位计数器得Q B6与“时”个位计数器得Q C5输出为1。两者相与后送到两计数器得清零端R0A与R0B,通过74LS90内部得R0A与R0B与非后清零,完成24进制计数。同理可构成60进制计数器。 CP 来自分计数器 的进位信号 图1413 24进制计数器 (3)译码显示电路 译码驱动器采用8421 BCD码七段译码驱动器74LS48,显示器采用共阴极数七段数码显示器,有关74LS48与七段显示器得使用方法前面已经作了介绍,这里不再赘述。 (4)校时电路 当数字电子钟出现走时误差时,需要对时间进行校准。实现校时电路得方法很多,如图1414所示电路即可作为时计数器或分计数器得校时电路。 图1414 校时电路 现设用该电路作为分计数器得校时电路,图中采用RS触发器作为无抖动开关。通过开关K得接入位置,可以选择就是将“1 Hz信号”还就是将“来自秒计数器得进位信号”送至分计数器得CP端。当开关K置于B端时,RS触发器得输出、,“来自秒计数器得进位信号”被送至分计数器得CP端,分计数器正常工作;需要校正分计数器时,将开关K置于A端,这时RS触发器得输出、,“1 Hz信号”被送至分计数器得CP端,分计数器在“1Hz信号”得作用下快速计数,直至正确得时间,再将开关K置于B端,达到了校准时间得目得。 (5)整点报时电路 电路得设计要求在差10 s为整点时开始每隔1 s鸣叫一次,每次持续时间为1 s,共鸣叫5次,前4次为低音500 Hz,最后一次为高音1 kHz。因为分计数器与秒计数器从59分51秒计数到59分59秒得过程中,只有秒个位计数器计数,分十位、分个位、秒十位计数器得状态不变,分别为Q D4Q C4Q B4Q A4=0101,Q D3Q C3Q B3Q A3=1001,Q D2Q C2Q B2Q A2=0101,所以Q C4=Q A4=Q D3=Q A3=Q C2=Q A2=1不变。设Y1=Q C4Q A4Q D3Q A3Q C2Q A2,又因为在51、53、55、57秒时Q A1=1,Q D1=0,输出500Hz信号f2;59秒时Q A1=1,Q D1=1,输出1kHz信号f1,由此可写出整点报时电路得逻辑表达式为:

模电课设实验报告

河北科技大学 课程设计报告 学生姓名:xxx学号:120701103 专业班级:xxx 课程名称:模拟电子技术基础 学年学期:2 013 —2 014 学年第一学期指导教师:王彦朋蔡明伟 2 0 1 3 年12 月

课程设计成绩评定表

目录 一任务.................................................................................................................. - 1 - 二电路原理图...................................................................................................... - 1 - 三单元电路设计.................................................................................................. - 1 - 1.稳压电源单元电路设计............................................................................... - 1 - 2.正弦波单元电路设计................................................................................... - 2 - 3.方波单元电路设计....................................................................................... - 3 - (1)过零比较器及限幅电路.................................................................. - 3 - (2)反相比例运算放大电路.................................................................. - 4 - 4.三角波单元电路设计................................................................................... - 5 - 四元件明细表...................................................................................................... - 6 - 五安装与调试...................................................................................................... - 7 - 六收获体会.......................................................................................................... - 7 - 七附录.................................................................................................................. - 8 - 八参考文献.......................................................................................................... - 8 -

模电课程设计报告hlx

太原理工大学现代科技学院 模拟电子技术基础课程设计 设计名称信号发生器 专业班级自动化11—4 学号2011101202 姓名许海龙 指导教师秦建中

课程设计任务书

一、设计题目: 信号发生器设计 二、设计目的: 掌握方波-三角波-正弦波的设计方法和调试技术。 三、设计内容与要求: 信号发生器是常用的测试仪器,常用的信号源有正弦波、方波、三角波、锯齿波、阶梯波等。 ①RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz,输出幅值300mV~5V可调、负载1KΩ。 ②矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 ③三角波电路,频率1KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。 ④多用信号源产生电路,分别产生正弦波、方波、三角波,频率范围100Hz~3KHz、输出幅值≥5V、负载电阻1KΩ。 四、设计思路及实验原理: 1、正弦波产生电路(由放大电路、选频网络和反馈网络组成) 从结构上看,RC正弦波振荡电路就是一个没有输入信号的带选频网络的正反馈放大电路。振幅平衡和相位平衡是正弦波振荡电路产生持续振荡的两个条件。其中,振荡频率是由相位平衡条件所决定的。刚开始时,Rf略大于R1的两倍,这样放大倍数才会略大于3,电路才

能够起振。一段时间后,可以利用非线性元件来自动调整反馈的强弱以维持输出电压恒定,也可以将Rf 用滑动变阻器代替,人为调节放大倍数,从而使电路能够产生幅度稳定、几乎不失真的正弦波。 其选频网络的频率特性如下: 121 1,; 11r j cr r j c Z r Z j c j c j c r j c ωωωωωω+=+===++ 反馈网络的反馈系数为 2212(); 13()v Z j cR F s Z Z j cR j cR ωωω= =+++ 由此可得RC 串并联选频网络的幅频响应及相频响应 v F = 0( )arctan ; 3 f ωωωω ?-=- 可以计算,当 00112f f rc rc ωωπ== ==或 时,幅频响应的幅值为最大,即 max 1 ; 3F = 相应的相频响应的相位

相关文档
相关文档 最新文档