文档视界 最新最全的文档下载
当前位置:文档视界 › 换底公式的证明及其应用

换底公式的证明及其应用

换底公式的证明及其应用
换底公式的证明及其应用

换底公式的证明及其应用

换底公式是对数运算、证明中重要的公式,但有些同学对其理解不深,应用不好,故下面加以补充,希望对同学们的学习能有所帮助.

一、换底公式及证明

换底公式:log b N =log a N log a b . 证明 设log b N =x ,则b x =N .两边均取以a 为底的对数,得log a b x =log a N ,∴x log a b =log a N .

∴x =log a N log a b ,即log b N =log a N log a b . 二、换底公式的应用举例

1.乘积型

例1 (1)计算:log 89·log 2732;

(2)求证:log a b ·log b c ·log c d =log a d .

分析 先化为以10为底的常用对数,通过约分即可解决.

解 (1)换为常用对数,得

log 89·log 2732=lg 9lg 8·lg 32lg 27=2lg 33lg 2·5lg 23lg 3=23×53=109.

(2)由换底公式,得

log a b ·log b c ·log c d =lg b lg a ·lg c lg b ·lg d lg c =log a d .

评注 此类型题通常换成以10为底的常用对数,再通过约分及逆用换底公式,即可解决.

2.知值求值型

例2 已知log 1227=a ,求log 616的值.

分析 本题可选择以3为底进行求解.

解 log 1227=log 327log 312=a ,解得log 32=3-a 2a . 故log 616=log 316log 36=4log 321+log 32=4×3-a 2a 1+3-a 2a

=4(3-a )3+a . 评注 这类问题通常要选择适当的底数,结合方程思想加以解决.

3.综合型

例3 设A =1log 519+2log 319+3log 219,B =1log 2π+1log 5π,试比较A 与B 的大小.

分析 本题可选择以19及π为底进行解题.

解 A 换成以19为底,B 换成以π为底,

则有A =log 195+2log 193+3log 192=log 19360<2,

B =log π2+log π5=log π10>log ππ2=2.故A <B .

评注 一般也有倒数关系式成立,即log a b ·log b a =1,log a b =1log b a .

对数的换底公式及其推论(含答案)

精心整理 对数的换底公式及其推论 一、复习引入:对数的运算法则 如果a>0,a ?1,M>0,N>0有: 二、新授内容: 1.对数换底公式: a N N m m a log log log =(a>0,a ?1,m>0,m ?1,N>0) 证明 2.① ②②例1∴1 12log 7log 42log 56 log 33333342++=++==b ab 例2计算:①3log 12.05-②2 194log 2log 3log -?解:①原式=3 15555531log 3log 52.0===

②原式=2 345412log 452log 213log 21232=+=+? 例3设),0(,,+∞∈z y x 且z y x 643== 1?求证z y x 1211=+;2?比较z y x 6,4,3的大小 证明1?:设k z y x ===643∵),0(,,+∞∈z y x ∴1>k 取对数得:3lg lg k x =,4lg lg k y =,6 lg lg k z = ∴x 1+2?x 3∴x 3又:4∴y 4∴例4由对数定义可知:b c a a x +=log b c a a a ?=log a c ?= 解法二: 由已知移项可得b c x a a =-log log ,即b c x a =log 由对数定义知: b a c x =a c x ?=∴ 解法三: 四、课堂练习: ①已知18log 9=a,b 18=5,用a,b 表示36log 45

解:∵18log 9=a ∴a =-=2log 1218log 1818 ∴18log 2=1?a ∵b 18=5∴18log 5=b ∴a b a -+=++==22log 15log 9log 36log 45log 45log 181818181836 ②若8log 3=p,3log 5=q,求lg5 解:∵8log 3=p ∴3log 32=p ?p 33log 2=?p 312log 3= 又∵1证法1则:x =∴(p a =∵0≠q 证法22.已知求证:证明:由换底公式λ====n n a b a b a b lg lg lg lg lg lg 2211 由等比定理得: λ=++++++n n a a a b b b lg lg lg lg lg lg 2121 ∴λ=)lg()lg(2121n n a a a b b b ∴λ== )lg()lg()(log 21212121n n n a a a a a a b b b b b b n

换底公式

教材: 换底公式 目的:要求学生掌握对数的换底公式,并能解决有关的化简、求值、证明问题。 过程: 一、复习:对数的运算法则 导入新课:对数的运算的前提条件是“同底”,如果底不同怎么办? 二、换底公式:a N N m m a log log log = ( a > 0 , a ≠ 1 ) 证:设 log a N = x , 则 a x = N 两边取以 m 为底的对数:N a x N a m m m x m log log log log =?= 从而得:a N x m m log log = ∴ a N N m m a log log log = 两个较为常用的推论: 1? 1log log =?a b b a 2? b m n b a n a m log log = ( a , b > 0且均不为1) 证:1? 1lg lg lg lg log log =?= ?b a a b a b b a 2? b m n a m b n a b b a m n n a m log lg lg lg lg log === 三、例一、计算:1? 3log 12.05- 2? 42 1432log 3log ? 解:1? 原式 = 153 15 5 5 553 1log 3 log 5 2.0== = 2? 原式 = 2 345412log 452log 213log 21232=+=+? 例二、已知 log 18 9 = a , 18 b = 5 , 求 log 36 45 (用 a , b 表示) 解:∵ log 18 9 = a ∴a =-=2log 12 18 log 1818 ∴log 18 2 = 1 - a

c换底公式D

换底公式:a N N m m a log log log =(a >0,a ≠1) 证:设log a N =x ,则a x =N 两边取以m 为底的对数:N a x N a m m m x m log log log log =?= 从而得:a N x m m log log =∴a N N m m a log log log = 两个较为常用的推论: 1?1log log =?a b b a 2?b m n b a n a m log log = (a ,b >0且均不为1) 例一、计算:1?3log 12.05- 2?42 1432log 3log ? 解:1?原式=153 155555 31log 3log 52.0=== 2?原式=2 345412log 452log 213log 21232=+=+? 例二、已知log 189=a ,18b =5,求log 3645(用a ,b 表示) 解:∵log 189=a ∴a =-=2log 1218log 1818 ∴log 182=1-a ∵18b =5∴log 185=b ∴a b a -+=++==22log 15log 9log 36log 45log 45log 181818181836 例三、设1643>===t z y x 求证:y x z 2111=- 证:∵1643>===t z y x ∴6 lg lg 4lg lg 3lg lg t z t y t x ===,, ∴y t t t t x z 21lg 24lg lg 2lg lg 3lg lg 6lg 11===-=- 例四、若log 83=p ,log 35=q ,求lg5 解:∵log 83=p ∴)5lg 1(32lg 33lg 33log 2-==?=p p p 又∵q ==3 lg 5lg 5log 3∴)5lg 1(33lg 5lg -==pq q ∴pq pq 35lg )31(=+∴pq pq 3135lg += 以下例题备用:

导数公式的证明(最全版)

导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) For personal use only in study and research; not for commercial use f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δ x)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx For personal use only in study and research; not for commercial use =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ x)+x^(n-1)]

=x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1) For personal use only in study and research; not for commercial use 证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx

f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx =lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx

换底公式的证明及其应用

换底公式的证明及其应 用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

换底公式的证明及其应用 换底公式是对数运算、证明中重要的公式,但有些同学对其理解不深,应用不好,故下面加以补充,希望对同学们的学习能有所帮助. 一、换底公式及证明 换底公式:log b N =log a N log a b . 证明 设log b N =x ,则b x =N .两边均取以a 为底的对数,得log a b x =log a N ,∴x log a b =log a N . ∴x =log a N log a b ,即log b N =log a N log a b . 二、换底公式的应用举例 1.乘积型 例1 (1)计算:log 89·log 2732; (2)求证:log a b ·log b c ·log c d =log a d . 分析 先化为以10为底的常用对数,通过约分即可解决. 解 (1)换为常用对数,得 log 89·log 2732=lg 9lg 8·lg 32lg 27=2lg 33lg 2·5lg 23lg 3=23×53=109. (2)由换底公式,得 log a b ·log b c ·log c d =lg b lg a ·lg c lg b ·lg d lg c =log a d . 评注 此类型题通常换成以10为底的常用对数,再通过约分及逆用换底公式,即可解决. 2.知值求值型

例2 已知log 1227=a ,求log 616的值. 分析 本题可选择以3为底进行求解. 解 log 1227=log 327log 312=a ,解得log 32=3-a 2a . 故log 616=log 316log 36=4log 321+log 32=4×3-a 2a 1+3-a 2a =4?3-a ?3+a . 评注 这类问题通常要选择适当的底数,结合方程思想加以解决. 3.综合型 例3 设A =1log 519+2log 319+3log 219,B =1log 2π+1log 5π,试比较A 与B 的大小. 分析 本题可选择以19及π为底进行解题. 解 A 换成以19为底,B 换成以π为底, 则有A =log 195+2log 193+3log 192=log 19360<2, B =log π2+log π5=log π10>log ππ2=2.故A <B . 评注 一般也有倒数关系式成立,即log a b ·log b a =1,log a b =1log b a .

欧拉函数公式及其证明

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n)。 完全余数集合: 定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然|Zn|=φ(n)。 有关性质: 对于素数p,φ(p)=p-1。 对于两个不同素数p,q,它们的乘积n=p*q满足φ(n)=(p-1)*(q-1)。 这是因为Zn={1,2,3,...,n-1}-{p,2p,...,(q-1)*p}-{q,2q,...,(p-1)*q},则φ(n)=(n-1)-(q-1)-(p-1)=(p-1)*(q-1)=φ(p)*φ(q)。 欧拉定理: 对于互质的正整数a和n,有aφ(n)≡1modn。 证明: (1)令Zn={x1,x2,...,xφ(n)},S={a*x1modn,a*x2modn,...,a*xφ(n)modn}, 则Zn=S。 ①因为a与n互质,x i(1≤i≤φ(n))与n互质,所以a*x i与n互质,所以a*x i modn∈Zn。 ②若i≠j,那么x i≠x j,且由a,n互质可得a*x i modn≠a*x j modn(消去律)。 (2)aφ(n)*x1*x2*...*xφ(n)modn

≡(a*x1)*(a*x2)*...*(a*xφ(n))modn ≡(a*x1modn)*(a*x2modn)*...*(a*xφ(n)modn)modn ≡x1*x2*...*xφ(n)modn 对比等式的左右两端,因为x i(1≤i≤φ(n))与n互质,所以aφ(n)≡1modn(消去律)。 注: 消去律:如果gcd(c,p)=1,则ac≡bcmodp?a≡bmodp。 费马定理: 若正整数a与素数p互质,则有a p-1≡1modp。 证明这个定理非常简单,由于φ(p)=p-1,代入欧拉定理即可证明。 ****************************************************** *********************** 补充:欧拉函数公式 (1)p k的欧拉函数 对于给定的一个素数p,φ(p)=p-1。则对于正整数n=p k, φ(n)=p k-p k-1 证明: 小于p k的正整数个数为p k-1个,其中 和p k不互质的正整数有{p*1,p*2,...,p*(p k-1-1)}共计p k-1-1个 所以φ(n)=p k-1-(p k-1-1)=p k-p k-1。 (2)p*q的欧拉函数 假设p,q是两个互质的正整数,则p*q的欧拉函数为 φ(p*q)=φ(p)*φ(q),gcd(p,q)=1。 证明: 令n=p*q,gcd(p,q)=1

(完整版)换底公式的说课稿

3.4.2 “换底公式”说课稿 瀛湖中学李善斌 教材分析 本课是在学习了对数的概念和运算性质的基础上来研究换底公式,利用换底公式统一对数底数,即“化异为同”是解决有关对数问题的基本思想方法,一般利用它将对数转化为常用对数或自然对数来计算;在具体解题过程中,不仅要能正用换底公式,还要能熟练地逆用换底公式.另外还安排了两个对数的应用问题,使学生进一步认识到数学在现实生活、生产中的重要作用. 教材通过实例研究引出换底公式,既明确学习换底公式的必要性,同时也在公式推导中应用对数的概念和对数的运算性质,在教学中可以根据学生的不同基础适当地增加具体实例,便于学生理解换底公式的本质,培养学生从具体的实例中抽象出一般公式的能力. 学情分析: 对数是一个全新的概念,对数运算是一种类似于但又不同于实数的加减乘除运算及指数运算的全新运算.要探究并证明对数换底公式,学生是有相当难度的,但是通过前两节的学习,学生能够利用对数定义及对数的运算性质进行对数式与指数式的相互转化、对数计算,之前学生还熟知指数的运算性质.有这些已有知识作为基础,教师再设计合理的导学案,是能让学生主动参与课堂的,并能自主完成对数换底公式其性质的探究、发现、证明、应用的全过程的. 教学目标 一、知识与技能 1.掌握换底公式,会用换底公式将一般的对数化为常用对数或自然对数,并能进行一些简单的化简和证明. 2.能将一些生活实际问题转化为对数问题并加以解答. 二、过程与方法 1.结合实例引导学生探究换底公式,并通过换底公式的应用,使学生体会化归与转化的数学思想. 2.通过师生之间、学生与学生之间互相交流探讨,培养学生学会共同学习的能力. 3.通过应用对数知识解决实际问题,帮助学生确立科学思想,进一步认识数学在现实生活、生产中的重要作用. 三、情感态度与价值观 1.通过探究换底公式的概念,使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣,培养学生严谨的科学精神. 2.在教学过程中,通过学生的相互交流,培养学生灵活运用换底公式的能力,增强学生数学交流能力,同时培养学生倾听并接受别人意见的优良品质.

欧拉函数公式及其证明

欧拉函数公式及其证明 Prepared on 22 November 2020

欧拉函数: 欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n)。 完全余数集合: 定义小于n且和n互质的数构成的集合为Zn,称呼这个集合为n的完全余数集合。显然|Zn|=φ(n)。 有关性质: 对于素数p,φ(p)=p-1。 对于两个不同素数p,q,它们的乘积n=p*q满足φ(n)=(p-1)*(q-1)。 这是因为Zn={1,2,3,...,n-1}-{p,2p,...,(q-1)*p}-{q,2q,...,(p-1)*q},则φ(n)=(n-1)-(q-1)-(p-1)=(p-1)*(q-1)=φ(p)*φ(q)。 欧拉定理: 对于互质的正整数a和n,有aφ(n)≡1modn。 证明: (1)令Zn={x1,x2,...,xφ(n)},S={a*x1modn,a*x2modn,...,a*xφ(n)modn}, 则Zn=S。 ①因为a与n互质,x i(1≤i≤φ(n))与n互质,所以a*x i与n互质,所以a*x i modn∈Zn。 ②若i≠j,那么x i≠x j,且由a,n互质可得a*x i modn≠a*x j modn(消去律)。 (2)aφ(n)*x1*x2*...*xφ(n)modn

≡(a*x1)*(a*x2)*...*(a*xφ(n))modn ≡(a*x1modn)*(a*x2modn)*...*(a*xφ(n)modn)modn ≡x1*x2*...*xφ(n)modn 对比等式的左右两端,因为x i(1≤i≤φ(n))与n互质,所以aφ(n)≡1modn(消去律)。 注: 消去律:如果gcd(c,p)=1,则ac≡bcmodpa≡bmodp。 费马定理: 若正整数a与素数p互质,则有a p-1≡1modp。 证明这个定理非常简单,由于φ(p)=p-1,代入欧拉定理即可证明。 ****************************************************** *********************** 补充:欧拉函数公式 (1)p k的欧拉函数 对于给定的一个素数p,φ(p)=p-1。则对于正整数n=p k, φ(n)=p k-p k-1 证明: 小于p k的正整数个数为p k-1个,其中 和p k不互质的正整数有{p*1,p*2,...,p*(p k-1-1)}共计p k-1-1个

对数的换底公式及其推论含答案

对数的换底公式及其推论 含答案 The pony was revised in January 2021

对数的换底公式及其推论 一、复习引入:对数的运算法则 如果a>0,a1,M>0,N>0有: 二、新授内容: 1.对数换底公式: a N N m m a log log log =(a>0,a1,m>0,m1,N>0) 证明:设a log N=x,则x a =N 两边取以m 为底的对数:N a x N a m m m x m log log log log =?= 从而得:a N x m m log log = ∴a N m m a log log = 2.两个常用的推论: ①1log log =?a b b a ,log log log =??a c b c b a ②b m n b a n a m log log =(a,b>0且均不为1)

证:①lg lg lg lg log log =?=?b a a b a b b a ②b m n a m b n a b b a m n n a m log lg lg lg lg log === 三、讲解范例: 例1已知2log 3=a ,3log 7=b,用a,b 表示42log 56 解:因为2log 3=a ,则 2log 13=a ,又∵3log 7=b, ∴1 312log 7log 2log 37log 42log 56log 56 log 33333342+++=++?+==b ab ab 例2计算:①3log 12.05 -②2194log 2log 3log -?解:①原式=3 15555531log 3log 52.0=== ②原式=2 345412log 452log 213log 21232=+=+? 例3设),0(,,+∞∈z y x 且z y x 643== 1求证z y x 1211=+;2比较z y x 6,4,3的大小

对数的换底公式

课 题:2.1 对数的换底公式及其推论 教学目的: 1.掌握对数的换底公式,并能解决有关的化简、求值、证明问题 2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力; 教学重点:换底公式及推论 教学难点:换底公式的证明和灵活应用. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入:对数的运算法则 如果 a > 0,a ≠ 1,M > 0, N > 0 有: ) ()() (3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+= 二、新授内容: 1.对数换底公式: a N N m m a log log log = ( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0) 证明:设 a log N = x , 则 x a = N 两边取以m 为底的对数:N a x N a m m m x m log log log log =?= 从而得:a N x m m log log = ∴ a N m a log log = 2.两个常用的推论: ①1log log =?a b b a , 1log log log =??a c b c b a ② b m n b a n a m log log =( a, b > 0且均不为1)证:①lg lg lg lg log log =?=?b a a b a b b a ②m n a m b n a b b a m n n a m log lg lg lg lg log === 三、讲解范例: 例1 已知 2log 3 = a , 3log 7 = b, 用 a, b 表示42log 56

导数公式证明大全(更新版)

(麻烦那些盗取他人成果的人素质点,最近总有人把我的作品抄袭过去,改改标题就作为他的东西。愤怒啊!!!!!!) 导数的定义:f'(x)=lim Δy/Δx Δx→0(下面就不再标明Δx→0了) 用定义求导数公式 (1)f(x)=x^n 证法一:(n为自然数) f'(x) =lim [(x+Δx)^n-x^n]/Δx =lim (x+Δx-x)[(x+Δx)^(n-1)+x*(x+Δ x)^(n-2)+...+x^(n-2)*(x+Δx)+x^(n-1)]/Δx =lim [(x+Δx)^(n-1)+x*(x+Δx)^(n-2)+...+x^(n-2)*(x+Δ x)+x^(n-1)] =x^(n-1)+x*x^(n-2)+x^2*x^(n-3)+ ...x^(n-2)*x+x^(n-1) =nx^(n-1)

证法二:(n为任意实数) f(x)=x^n lnf(x)=nlnx (lnf(x))'=(nlnx)' f'(x)/f(x)=n/x f'(x)=n/x*f(x) f'(x)=n/x*x^n f'(x)=nx^(n-1) (2)f(x)=sinx f'(x) =lim (sin(x+Δx)-sinx)/Δx =lim (sinxcosΔx+cosxsinΔx-sinx)/Δx =lim (sinx+cosxsinΔx-sinx)/Δx

=lim cosxsinΔx/Δx =cosx (3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx (4)f(x)=a^x 证法一: f'(x) =lim (a^(x+Δx)-a^x)/Δx

对数的换底公式及其推论(含答案)

对数的换底公式及其推论 一、复习引入:对数的运算法则 如果 a > 0,a ≠ 1,M > 0, N > 0 有: ) ()() (3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+= 二、新授内容: 1.对数换底公式: a N N m m a log log log = ( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0) 证明:设 a log N = x , 则 x a = N 两边取以m 为底的对数:N a x N a m m m x m log log log log =?= 从而得:a N x m m log log = ∴ a N m m a log log = 2.两个常用的推论: ①1log log =?a b b a , 1log log log =??a c b c b a ② b m n b a n a m log log = ( a, b > 0且均不为1) 证:①lg lg lg lg log log =?= ?b a a b a b b a ②b m n a m b n a b b a m n n a m log lg lg lg lg log === 三、讲解范例: 例1 已知 2log 3 = a , 3log 7 = b, 用 a, b 表示42log 56 解:因为2log 3 = a ,则2log 1 3=a , 又∵3log 7 = b, ∴1 3 12log 7log 2log 37log 42log 56log 56 log 33333342+++=++?+== b ab ab

对数换底公式的应用练习题基础

换底公式的应用(一) 1.(2014秋?雅安校级期末)已知2a=5b=M,且+=2,则M的值是()A.20 B.2 C.±2D.400 【考点】换底公式的应用. 【专题】函数的性质及应用. 【分析】把指数式化为对数式,再利用对数的运算法则即可得出. 【解答】解:∵2a=5b=M>0, ∴a=log2M=,. ∵+=2, ∴=, ∴M2=20. ∴=2. 故选:B. 【点评】本题考查了把指数式化为对数式、对数的运算法则,属于基础题.2.(2014秋?瑞安市校级期中)已知lg3=a,lg7=b,则lg的值为()A.a﹣b2B.a﹣2b C.D. 【考点】换底公式的应用. 【专题】函数的性质及应用. 【分析】直接利用对数的运算性质得答案. 【解答】解:∵lg3=a,lg7=b, ∴lg=lg3﹣lg49=lg3﹣2lg7=2﹣2b. 故选:B. 【点评】本题考查了对数的运算性质,是基础的会考题型. 3.(2012秋?香坊区校级期中)下列等式中一定正确的是() A.B. C.D. 【考点】换底公式的应用. 【专题】证明题. 【分析】利用对数和指数幂的运算性质即可判断出答案.

【解答】解:A.取x=2,y=1,则左边==,右边==+1,∴左边≠右边,故不成立; B.log89×log2732===.故正确; C.∵有意义,∴﹣a≥0,∴a≤0. ∴====≠ (a≠0),故C不正确; D.=log a|x|≠log a x.(x≠1) 【点评】熟练掌握指数幂和对数的运算性质是解题的关键. 4.已知lg2=m,lg3=n,则log83用m,n来表示的式子是()A.B.C.D. 【考点】换底公式的应用. 【专题】函数的性质及应用. 【分析】直接利用换底公式化简求解即可. 【解答】解:lg2=m,lg3=n, 则log83==. 故选:B. 【点评】本题考查换底公式的应用,基本知识的考查. 5.(2014?苏州校级学业考试)化简可得() A.log34 B.C.3 D.4 【考点】换底公式的应用. 【专题】函数的性质及应用. 【分析】直接利用换底公式化简求解即可. 【解答】解:=log28=log223=3. 故选:C. 【点评】本题考查换底公式的应用,基本知识的考查. 6.(2012秋?浏阳市校级期中)若lg5=a,lg7=b,则log57=() A.a+b B.b﹣a C.D. 【考点】换底公式的应用. 【分析】利用对数的换底公式即可求得答案.

初中数学定义定理公理公式证明汇编

初中数学定义、定理、公理、公式 直线、线段、射线 七上p128 1. 过两点有且只有一条直线. (简:两点决定一条直线) 七上p132 2.两点之间线段最短 七上p142 3.同角或等角的补角相等. 同角或等角的余角相等. 七下p4 4. 过一点有且只有一条直线和已知直线垂直七下p6 5. 直线外一点与直线上各点连接的所有线段中,垂线段最短. (简:垂线段最短) 平行线的判断 七下p13 1.平行公理经过直线外一点,有且只有一条直线与这条直线平行. 七下p13 2.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行) 七下p14 3.同位角相等,两直线平行. 七下p14 4.内错角相等,两直线平行. 七下p15 5.同旁内角互补,两直线平行. 平行线的性质 七下p20 1.两直线平行,同位角相等. 2.两直线平行,内错角相等. 3.两直线平行,同旁内角互补. 三角形三边的关系 七下p64 1.三角形两边的和大于第三边、三角形两边的差小于第三边. 三角形角的关系 七下p73 1. 三角形内角和定理三角形三个内角的和等于180°. 2.直角三角形的两个锐角互余. 已知:Rt ABC ,∠C=90° 求证:∠A+∠B=90° 证明:∵∠C=90°,∠A+∠B+∠C=180°∴∠A+∠B=90° 七下p75 3.三角形的一个外角等于和它不相邻的两个内角的和. 4. 三角形的一个外角大于任何一个和它不相邻的内角. 全等三角形的性质、判定 八上p3 1.全等三角形的对应边、对应角相等. 八上p9 2.边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等. 八上p11 3.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等. 八上p12 4.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等. 八上p7 5. 边边边公理(SSS)有三边对应相等的两个三角形全等. 八上p14 6.斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等. 角的平分线的性质、判定 八上p20 性质:在角的平分线上的点到这个角的两边的距离相等. 八上p21 判定:到一个角的两边的距离相同的点,在这个角的平分线上. 等腰三角形的性质 八上p50 1.等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角). 2.推论 1 等腰三角形顶角的平分线平分底边

对数的换底公式及其推论含参考答案

精心整理 对数的换底公式及其推论 一、复习引入:对数的运算法则 如果a>0,a ≠1,M>0,N>0有: 二、新授内容: 1.对数换底公式: a N N m m a log log log =(a>0,a ≠1,m>0,m ≠1,N>0) 2.① ②②例1∴1 12log 7log 42log 33333342++++b ab 例2计算:①3log 12.05-②2 194log 2log 3log -?解:①原式=3 155555 31log 3log 52.0=== ②原式=2 45412log 452log 213log 21232=+=+?

例3设),0(,,+∞∈z y x 且z y x 643== 1?求证z y x 1211=+;2?比较z y x 6,4,3的大小证明1?:设k z y x ===643∵),0(,,+∞∈z y x ∴1>k 取对数得:3lg lg k x =,4lg lg k y =,6 lg lg k z = ∴ x 12?x 3∴x 3又:∴y 4∴例b 解法二: 由已知移项可得b c x a a =-log log ,即b c x a =log 由对数定义知: b a c x =a c x ?=∴ 解法三: 四、课堂练习: ①已知18log 9=a,b 18=5,用a,b 表示36log 45 解:∵18log 9=a ∴a =-=2log 1218log 1818∴18log 2=1-a

∵b 18=5∴18log 5=b ∴a b a -+=++==22log 15log 9log 36log 45log 45log 181818181836 ②若8log 3=p,3log 5=q,求lg5 解:∵8log 3=p ∴3log 32=p ?p 33log 2=?p 312log 3= 1证法1则:x =∴(p a =∵0≠q 证法22.已知求证:n n a a a lg lg lg 2211λ=++++++n n a a a b b b lg lg lg lg lg lg 2121ΛΛ∴λ=) lg()lg(2121n n a a a b b b ΛΛ ∴λ==)lg()lg()(log 21212121n n n a a a a a a b b b b b b n ΛΛΛΛ

换底公式及其应用

对数与对数运算 第三课时 换底公式及其应用 复习巩固: 1.对数运算有哪三个常用结论? ____)3(___,log )2(___,log )1(log 1 ===N a a a a a 2.对数运算有哪三条基本性质? 如果a >0且a ≠1,M >0,N >0,那么: (1)()______________log =MN a (对数的加法) (2)_____________log =N M a (对数的减法) (3)()R n b n a m ∈=_________log (对数的数乘) 讲授新课: 问题:同底数的两个对数可以进行加、减运算,可以进行乘、除运算吗? 思考1:b b a c b c a a c c y x log log ,log ,,表示用已知== 结论:,0(log log log >=a a c b c b a 且0,1>≠c a 且)0;1>≠b c 思考2:该公式有什么特征? 思考3:若c b =,有什么结论? 思考4:证明b b a c a c log log log =? 例1、 求值 ())4)(log 9(log 132 ())2log )(log 3log 3(log 292 384++

())9)(log 4)(log 25(log 3532 例2、12log ,,3lg ,2lg 5表示试用已知b a b a == 练习:45 36918log ,,518,log 表示试用已知b a a b == 例3、的值求若x x x -+=44,14log 3 例4、的值。,求设b a b a 1 2 3643+== 练习:z y x z y x 1 111632=+≠==,求证设 课堂练习: 1、32 2798log log ?=______ 2、)log log (log )log log (log 8 12542525582541252++?++=_____ 3、4.1log ,35log 75表示用已知m m =

对数换底公式

换底公式四 一.课题:对数(4)——换底公式 二.教学目标:1. 要求学生会推导并掌握对数的换底公式; 2.能运用对数的换底公式解决有关的化简、求值、证明问题。 三.教学重、难点:1.会推导并掌握对数的换底公式; 2.能运用对数的换底公式解决有关的化简、求值、证明问题。 四.教学过程: (一)复习:对数的运算法则。 导入新课:对数的运算性质的前提条件是“同底”,如果底不同怎么办? (二)新课讲解: 1.换底公式:log log log m a m N N a = ( a > 0 , a 1 ;0,1m m >≠) 证明:设log a N x =,则x a N =, 两边取以m 为底的对数得:log log x m m a N =,∴log log m m x a N =, 从而得:a N x m m log log = , ∴ a N N m m a log log log =. 说明:两个较为常用的推论: (1)log log 1a b b a ?= ; (2)log log m n a a n b b m = (a 、0b >且均不为1). 证明:(1) 1lg lg lg lg log log =?=?b a a b a b b a ; (2) lg lg log log lg lg m n n a m a b n b n b b a m a m ===. 2.例题分析: 例1.计算:(1) 0.21log 35 -; (2)4492log 3log 2log 32?+. 解:(1)原式 = 0.251log 3log 3555151553===; (2) 原式 = 2345412log 452log 213log 21232=+=+?. 例2.已知18log 9a =,185b =,求36log 45(用 a , b 表示). 解:∵18log 9a =, ∴a =-=2log 12 18log 1818 , ∴18log 21a =-, 又∵185b =,

对数公式的推导(全)

对数函数公式的推导(全) 由指数函数 (01)n a a a b >≠=且,可推知:log a n b =,从而: ()log a b a b =对数恒等式 性质1、log ()log log a a a MN M N =+ <证法1> 由于m n m n a a a +?= 设 ,m n M a N a == 则: log a M m = l o g a N n = m n MN a += 于是: ()log log log a a a M N MN m n =+=+ <证法2> log log log a a a M N M N M N M N a a a =?=?对数恒等式 即: log log log a a a MN M N a a +=由于指数函数是单调函数,故: log ()log log a a a MN M N =+ 性质2、log log log M a a a N M N =- <证明> log log log log log M M N a a a a N a M N a M M N N a a a -== =对数恒等式 由于指数函数是单调函数,故:log log log M a a a N M N =- 性质3、log log ()(0,1)log b b a N N a b b >≠= 换底公式 特例:1log log a b b a = <证明> 由对数恒等式可知:log log a b N N N a b ==,log b a a b = log log log log a b b a N a N a N b b ???→==?? log log log b b a N a N N b b ?→== 由于指数函数是单调函数,故:log log log b b a N a N =? 故:log log log b b a N N a = 性质4、log log n a a M n M = 特例:1 log log n a a n M M =

实用文库汇编之初中数学各种公式(完整版)

*作者:角狂风* 作品编号:1547510232155GZ579202 创作日期:2020年12月20日 实用文库汇编之数学各种公式及性质 1.乘法与因式分解 ①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3; ④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+ b)2-4ab。 2.幂的运算性质 ①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤(a b )n = n n a b ; ⑥a-n=1 n a ,特别:()-n=()n;⑦a0=1(a≠0)。 3.二次根式 ①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。 4.三角不等式 |a|-|b|≤|a±b|≤|a|+|b|(定理); 加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b) |a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ; |a-b|≥|a|-|b|;-|a|≤a≤|a|;

5.某些数列前n项之和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2; 2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+…n3=n2(n+1)2/4; 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3; 6.一元二次方程 对于方程:ax2+bx+c=0: ①求根公式是x△=b2-4ac叫做根的判别式。当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。 ②若方程有两个实数根x1和x2,则二次三项式ax2+bx+c可分解为a(x -x1)(x-x2)。 ③以a和b为根的一元二次方程是x2-(a+b)x+ab=0。 7.一次函数 一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标,称为截距)。

排列组合公式和恒等式推导、证明[版]

排列组合公式及恒等式推导、证明(word 版) 说明:因公式编辑需特定的公式编辑插件,不管是word 还是pps 附带公式编辑经常是出错用不了。下载此word 版的,记得下载MathType 公式编辑器哦,否则乱码一堆。如果想偷懒可下截同名的截图版。另外,还有PPt 课件(包含了排列组合的精典解题方法和精典试题)供学友们下载。 一、排列数公式: !(1)(2)(1)()!m n n A n n n n m n m =---+= - (1)(1)321n n A n n n =--创 推导:把n 个不同的元素任选m 个排次序或n 个全排序,按计数原理分步进行: 第一步,排第一位: 有 n 种选法; 第二步,排第二位: 有(n-1) 种选法; 第三步,排第三位: 有(n-2) 种选法; ┋ 第m 步,排第m 位: 有(n-m+1)种选法; ┋ 最后一步,排最后一位:有 1 种选法。 根据分步乘法原理,得出上述公式。 二、组合数公式: (1)(2)(1)! !!()!m m n n m m A n n n n m n C A m m n m ---+=== - 1n n C =

推导:把n 个不同的元素任选m 个不排序,按计数原理分步进行: 第一步,取第一个: 有 n 种取法; 第二步,取第二个: 有(n-1) 种取法; 第三步,取第三个: 有(n-2) 种取法; ┋ 第m 步,取第m 个: 有(n-m+1)种取法; ┋ 最后一步,取最后一个:有 1 种取法。 上述各步的取法相乘是排序的方法数,由于选m 个,就有m!种排排法,选n 个就有n!种排法。故取m 个的取法应当除以m!,取n 个的取法应当除以n!。遂得出上述公式。 证明:利用排列和组合之间的关系以及排列的公式来推导证明。 将部分排列问题m n A 分解为两个步骤: 第一步,就是从n 个球中抽m 个出来,先不排序,此即定义的组合数问题m n C ; 第二步,则是把这m 个被抽出来的球全部排序,即全排列m m A 。 根据乘法原理,m m m n n m A C A = 即: (1)(2)(1)!!!()!m m n n m m A n n n n m n C A m m n m ---+=== -

相关文档