文档视界 最新最全的文档下载
当前位置:文档视界 › 熔点和沸点的变化规律

熔点和沸点的变化规律

一、分子晶体熔、沸点的变化规律

分子晶体是依靠分子间作用力即范德华力维系的,分子间作用力与化学键相比弱得多,使得分子容易克服这种力的约束,因此,分子晶体的熔、沸点较低。

1.分子构型相同的物质,相对分子质量越大,熔、沸点越高。

分子间作用力有三个来源,即取向力、诱导力和色散力。卤素单质自非极性分子构成,只存在色散力,随相对分子质量增大,分子内电子数增多,由电子和原子核的不断运动所产生的瞬时偶极的极性也就增强,因而色散力增大,导致熔、沸点升高。同理,稀有气体的熔、沸点变化也符合这规律,相对原子质量越大,熔、沸点越高。

2.分子构型相同的物质,能形成氢键时,熔、沸点升高。

在常温下,绝大多数非金属元素的氢化物都是气态的(只有H20例外),气态氢化物的熔、沸点理应遵循第1条规律,随着相对分子质量的增大而升高,但是自于NH3、H20、HF可以形成氢键,使简单分子缔合成较大的分子,在发生相变时,不仅要克服原有的分子间作用力,而且要吸收更多的能量,使缔合分子解聚,因而造成NH3、H20、HF的熔、沸点反常,特别是水分子中有2个H-O键和2对孤对电子,一个水分子可以同时形成2个氢键,所以水的熔、沸点最高,在常温下呈液态。

含有-OH或-NH2的化合物,如含氧酸、醇、酚、胺等,因分子间能形成氢键,它们的熔、沸点往往比相对分子质量相近的其它物质高。以CHCl3为例,氯仿是强极性分子,但不形成氢键,相对分子质量为119.5,熔点-63.5℃,沸点61.2℃,而相对分子质量仅有60,但含-0H的乙酸熔点为16.6℃,沸点为117.9℃。磷酸、硼酸相对分子质量都不超过100,但由于氢键的形成,使它们在常温下都呈固态。

3.相对分子质量相近时,分子的极性越强,熔、沸点越高。

表中所列氢化物的相对分子质量相近,且都是等电子体,但它们的熔、沸点却有较大差别。甲硅烷是非极性分子,熔、沸点最低,从左到右,随分子极性的增强,熔、沸点逐渐升高。怛极性最强的HCl却反常地低于H2S,这是由于氯原子半径小于硫原子半径,HCl分子小于H2S分子,使色散力变小,故熔、沸点较H2S低。

4.同分异构体的熔、沸点变化。

在中学教材中,为了突出同分异构体是不同的物质,在其结构式下面均列出了它们的沸点(这里将熔点也并列出)。

分析上表数据可知,新戊烷分子呈中心对称,接近球状,沸点最低;正戊烷分子最长,呈锯齿形链状,分子间的运动最困难,沸点最高。3种戊烷异构体的熔点相差更大,异戊烷的对称性最差,在凝结成固态时,最不容易排列整齐,熔点最低,新戊烷对称性强,熔点比其它异构体高100℃以上。同理可解释3种二甲苯的熔、沸点变化。

二、原子晶体的熔、沸点变化规律

原子晶体中各原子以共价键相结合,共价键有饱和性和方向性,只要键不被破坏,相邻的原子就不能自由地移动。由于原子晶体在熔化时必须破坏很大一部分共价键,在气化时几乎要破坏全部共价键,所以原子晶体都具有很高的熔、沸点。

原子晶体熔、沸点变化规律是原子半径越小,键长越短,键能越大,熔、沸点越高。如金刚石的熔点为3350℃,硅的熔点为1410℃,锗是937℃。由此规律可以推知SiC的熔点应介于1410℃~3350℃之间,BN是耐高温材料。

具有层状结构(如石墨、黑磷)、链状结构(如硒、碲、红磷等)的晶体在熔化时也需断裂大部分共价键,所以熔、沸点也较高。

三、金属晶体的熔、沸点变化规律

在金属晶体中,金属原子是靠自由电子和金属离子间的相互作用结合在一起的,金属熔化时,金属键并没有被破坏,只是原子间的距离略有增大,当液态金属变为气体时,金属键完全被破坏,分离成单个原子(碱金属蒸气中有少量M2分子),因此,金属的沸点往往比熔点高得多。

1.同周期金属的价电子越多,熔、沸点越高。

金属晶体内自由电子数增多,金属键合能力增强,欲使金属熔化或气化则需较高温度。如Na、Mg、Al,参与成键的电子数增多,且半径减小,故熔、沸点依次升高。

2.同主族金属的半径越大,熔、沸点越低。

同主族金属价电子数相同,半径的增大使得金属键减弱,导致熔、沸点降低,如碱金属从Li到Cs,熔点由80.5℃依次降低,Cs的熔点仅28.4℃,放在手心上就可以熔化。

以上两条规律仅对次外层是稀有气体结构的典型金属是适用的。过渡金属的熔、沸点都很高,熔点普遍超过1000℃,沸点大部分高达3000℃,其中钨的熔点是3380℃,沸点是5927℃,产生这种现象的原因是d电子参与成键,使金属键增强。铜副族因还有部分d电子较活泼,其熔、沸点仍较高,但锌副族的d电子稳定,其熔、沸点明显下降,此后进入了低熔区,低熔区金属的价电子虽不少,但活动性差,不能全部成为自自电子,金属键弱,导致熔、沸点低。

四、离子晶体的熔、沸点变化规律

离子晶体阴、阳离子依靠较强的静电作用维系在一起,每个离子周围都被一定数目的带相反电荷的离子所包围,欲使离子晶体熔化,离子必须剧烈运动,使自身不被约束在固定位置,这需要较高的温度,所以离子晶体熔点较高,常温下都呈固态。欲使离子从熔体中逸出,形成离子对(如气态氯化钠含Na+、Cl-离子对),则需更高的温度,所以离子晶体的熔、沸点差值也较大,很多离子晶体在未气化时就已发生分解。

下面只讨论熔点的变化规律。

1.离子所带电荷相同,半径越大,熔点越低。

如卤化钠中,随卤离子半径的增大,阴、阳离子的核间距增大,静电作用减弱,熔点降低。

2. 离子间距离相近,离子所带电荷越多,熔点越高。

如NaF、CaF2、CaO的离子间距离相近,但它们的熔点依次升高,CaO的熔点高达2570℃,这是由静电作用的本性决定的,由此可知,MgO、AlO3的熔点更高,是良好的耐火材料。

事实上,以上规律只适用于典型的离子化合物。由于受阴、阳离子间极化作用的影响,使离子键向共价键方向过渡,离子晶体向分子晶体方向转化,导致熔点降低。如K+离子半径(133pm)比Ag+离子(126pm)大,但KCl、KBr的熔点(分别是776℃和730℃),明显高于AgCl和AgBr的熔点(分别是455℃和432℃)。一般来说,熔点低于400℃的物质,在化学上就划归为分子晶体了。

2014年高考化学知识点 熔点沸点的规律

高考化学知识点:熔点沸点的规律 学习化学要将就科学方法,不是只要埋头苦读就可以的。要讲究有效的学习方法。认真看书,嚼透细知识点。在认真看书的基础上有选择的做题。因为化学不像物理和数学,要是吃不透知识点就一点思路都没有。化学有很多细小的知识点,看到一点算一点。下面是高考信息网整理的高考化学知识点:熔点沸点的规律。 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定) 非晶体物质,如玻璃水泥石蜡塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点 沸点指液体饱和蒸气压与外界压强相同时的温度,外压力为标准压(1.01 105Pa)时,称正常沸点外界压强越低,沸点也越低,因此减压可降低沸点沸点时呈气液平衡状态 (1)由周期表看主族单质的熔沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点沸点渐高但碳族元素特殊,即C,Si,GeSn越向下,熔点越低,与金属族相似还有A族的镓熔点比铟铊低,A 族的锡熔点比铅低 (2)同周期中的几个区域的熔点规律 1.高熔点单质 C,Si,B三角形小区域,因其为原子晶体,熔点高金刚石和石墨的熔点最高大于3550,金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410) 2.低熔点单质

非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气其中稀有气体熔沸点均为同周期的最低者,而氦是熔点(-272.2,26 105Pa)沸点(268.9)最低 金属的低熔点区有两处:IAB族Zn,Cd,Hg及A族中Al,Ge,Th;A族的Sn,Pb;A族的Sb,Bi,呈三角形分布最低熔点是Hg(-38.87),近常温呈液态的镓(29.78)铯(28.4),体温即能使其熔化 (3)从晶体类型看熔沸点规律 原子晶体的熔沸点高于离子晶体,又高于分子晶体金属单质和合金属于金属晶体,其中熔沸点高的比例数很大(但也有低的) 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高判断时可由原子半径推导出键长键能再比较如熔点: 金刚石>碳化硅>晶体硅 分子晶体由分子间作用力而定,其判断思路是: 结构性质相似的物质,相对分子质量大,范德华力大,则熔沸点也相应高如烃的同系物卤素单质稀有气体等 相对分子质量相同,化学式也相同的物质(同分异构体),一般烃中支链越多,熔沸点越低烃的衍生物中醇的沸点高于醚;羧酸沸点高于酯;油脂中不饱和程度越大,则熔点越低如:油酸甘油酯常温时为液体,而硬脂酸甘油酯呈固态 上述情况的特殊性最主要的是相对分子质量小而沸点高的三种气态氢化物:NH3,H2O,HF比同族绝大多数气态氢化物的沸点高得多(主要因为有氢键) (4)某些物质熔沸点高低的规律性 同周期主族(短周期)金属熔点如

高中化学重要知识点规律性的知识归纳:熔点沸点的规律

熔点沸点的规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定) 非晶体物质,如玻璃水泥石蜡塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点 沸点指液体饱和蒸气压与外界压强相同时的温度,外压力为标准压(1.01 105Pa)时,称正常沸点外界压强越低,沸点也越低,因此减压可降低沸点沸点时呈气液平衡状态 (1)由周期表看主族单质的熔沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点沸点渐高但碳族元素特殊,即C,Si,GeSn越向下,熔点越低,与金属族相似还有A族的镓熔点比铟铊低,A族的锡熔点比铅低 (2)同周期中的几个区域的熔点规律 高熔点单质 C,Si,B三角形小区域,因其为原子晶体,熔点高金刚石和石墨的熔点最高大于3550,金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410) 低熔点单质 非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气其中稀有气体熔沸点均为同周期的最低者,而氦是熔点(-272.2,26 105Pa)沸点(268.9)最低 金属的低熔点区有两处:IAB族Zn,Cd,Hg及A族中Al,Ge,Th;A族的Sn,Pb;A族的Sb,Bi,呈三角形分布最低熔点是Hg(-38.87),近常温呈液态的镓(29.78)铯(28.4),体温即能使其熔化 (3)从晶体类型看熔沸点规律 原子晶体的熔沸点高于离子晶体,又高于分子晶体金属单质和合金属于金属晶体,其中熔沸点高的比例数很大(但也有低的) 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高判断时可由原子半径推导出键长键能再比较如熔点: 金刚石>碳化硅>晶体硅 分子晶体由分子间作用力而定,其判断思路是: 结构性质相似的物质,相对分子质量大,范德华力大,则熔沸点也相应高如烃的同系物卤素单质稀有气体等 相对分子质量相同,化学式也相同的物质(同分异构体),一般烃中支链越多,熔沸点越低烃的衍生物中醇的沸点高于醚;羧酸沸点高于酯;油脂中不饱和程度越大,则熔点越低如:油酸甘油酯常温时为液体,而硬脂酸甘油酯呈固态 上述情况的特殊性最主要的是相对分子质量小而沸点高的三种气态氢化物:NH3,H2O,HF 比同族绝大多数气态氢化物的沸点高得多(主要因为有氢键) (4)某些物质熔沸点高低的规律性 同周期主族(短周期)金属熔点如 Li 碱土金属氧化物的熔点均在2000以上,比其他族氧化物显著高,所以氧化镁氧化铝是常用的耐火材料 卤化钠(离子型卤化物)熔点随卤素的非金属性渐弱而降低如:NaF>NaCl>NaBr>NaI

熔点、沸点的判断

在近年的高考试题及高考模拟题中我们常遇到这样的题目: 下列物质按熔沸点由低到高的顺序排列的是, A、二氧化硅,氢氧化钠,萘 B 、钠、钾、铯 C、干冰,氧化镁,磷酸 D 、C2H6 C(CH3)4, CH3(CH2)3CH3 在我们现行的教科书中并没有完整总结物质的熔沸点的文字,在中学阶段的解题过程中, 具体比较物质的熔点、沸点的规律主要有如下: 1. 根据物质在相同条件下的状态不同 一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族 元素特殊,即C, Si, Ge Sn越向下,熔点越低,与金属族相似;还有川A族的镓熔点比铟、铊低;IV A族的锡熔点比铅低。 3. 同周期中的几个区域的熔点规律 ①高熔点单质 C , Si, B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550 C。金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨 (3410C)。 ②低熔点单质非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀 有气体熔、沸点均为同周期的最低者,如氦的熔点(—272.2 C , 26XlO5Pa)、沸点(268.9 °C) 最低。 金属的低熔点区有两处: IA、n B族Zn, Cd, Hg及川A族中Al , Ge Th; V A族的Sn, Pb; V A族的Sb, Bi ,呈三角形分布。最低熔点是Hg( — 38.87 C ),近常温呈液态的镓(29.78 C ) 铯(28.4 C),体温即能使其熔化。 4. 从晶体类型看熔、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定) 。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 ①原子晶体的熔、沸点高于离子晶体,又高于分子晶体。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导

判断有机化合物沸点、熔点高低

有机化合物沸点的高低,主要取决于分子间引力的大小,分子间引力越大,沸点就越高,反之则越小。而分子间引力的大小受分子的偶极矩、极化度、氢键等因素的影响。具体可以归纳出4 条规律: 1、在同系物中,随着分子相对质量增加,沸点升高;直链异构体的沸点高于支链异构体;支链愈多,沸点愈低。 2、含有极性基团的化合物偶极矩增大,其沸点比母体烃类化合物沸点高。同分异构体的沸点一般是:伯异构体>仲异构体>叔异构体。 3、当分子中入能形成缔合氢键时,则沸点显著升高,且形成的氢键越多,沸点越高。 4、在顺反异构体中,一般顺式异构体的沸点高于反式。 有机化合物熔点的高低取决于晶格引力的大小,晶格引力愈大,熔点愈高,反之则越小。而晶格引力的大小,主要主要取决于分子间作用力性质、分子结构形状以及晶格的类型,其中以离子间的电性吸引力最大,偶极分子间的吸引力与分子间的缔合次之,非极性分子间的色散力最小。因此,化合物的熔点与其结构可以归纳出以下5 条规律: 1、以离子为晶格单位的无机盐、有机盐或能形成内盐的氨基酸等都有很高CH 3 CH 2 CH 2 CH 3 ; CH 3 CH 2 CH 2 CH 2 CH 3 ; CH 3 CHCH 2 CH 3 ; CH 3 C CH 3 ; CH 3 CH 3 CH 3 <<<CH 3 CH 2 CH 2 CH 3 ; CH 3 CH 2 CH 2 CH 2 Cl ; CH 3 CH 2 CH 2 CH 2 NO 2 ; 沸点:- 0.5℃78.4℃153℃CH 3 CH 2 CH 2 CH 2 OH ; CH 3 CHCH 2 CH 3 ; OH C CH 3 OH CH 3 CH 3 ; 沸点:11.7℃99.5℃82.5℃CH 3 CH 2 CH 3 ; CH 3 CH 2 CH 2 OH ; CH 2 CH 2 CH 2 ; OH OH CH 2 CHCH 2 ; OHOHOH 沸点:-45℃97℃216℃290℃H H Cl Cl CH 3 CH 3 H H CH 3 CH 3 H H C C H H Cl Cl C C 沸点:60.1℃48℃37℃29℃的熔点。 2、在分子中引入极性基团,偶极矩增大,熔点、沸点都升高,故极性化合物比相对分子质量接近的非极性化合物的熔点高。 3、在分子中引入极性基团,偶极矩增大,熔点、沸点都升高,故极性化合物比相对分子质量接近的非极性化合物的熔点高;但是当羟基上引入烃基时,则熔点降低。 4、能形成分子间氢键的比形成分子内氢键的熔点高。 5、同系物中,熔点随分子相对质量的增大而升高,且分子结构愈对称,排列愈整齐,熔点升高。 有机化合物的溶解度与分子的结构及所含的官能团密切相关,可用“相似相溶”的经验规律判断。 1、一般离子型的有机化合物如有机酸盐、胺的盐类等易溶于水。 2、能与水形成氢键极性化合物易溶于水,如:醇、醛、酮、胺等化合物,其中直链烃基<4 个碳原子,支链烃基<5 个碳原子的一般都溶于水,但是随碳原子数的增加,这些化合物在水中的溶解度将逐渐减小。 3、能形成分子内氢键的化合物在水中的溶解度将减小。 4、一般碱性化合物可溶于酸,如有机胺可溶于盐酸,一般酸性有机化合物可溶于碱,如:羧酸、酚、磺酸等可溶于NaOH 中。 四、羧酸的酸性任何使羧酸根负离子趋向于更稳定的因素都使酸性增强,任何使羧酸根负离子趋向于不稳定的因素都使酸性减弱,故连有-I 效应的原子或基团,使酸性增强,连有+I 效应的原子或基团,使酸性减弱。酚的酸性主要取决于两个因素,一是取代基的性质,当苯环上所连接的基团为-I、-C 基团时使酚的酸性增强,当连接的基团为+I、+C 基团时酸性减弱;另外一个因素是取代基的空间效应。ICH 2 COOH pK a 1.23 2.66 2.86 2.90 3.16 O 2 NCH 2 COOH FCH 2 COOH ClCH 2 COOH BrCH 2 COOH OH OH OH OH OH CH 3 NO 2 NO 2 NO 2 NO 2 NO 2 O 2 N pk a 10.26 10.0 7.15 4.09 0.25 OH OH CH 3 NO 2 NO 2 CH 3 H 3 C H 3 C pk a 8.24 7.16 胺的碱性强弱与取代基的性质有关,当分子中连有供电子基团

高考化学溶沸点比较知识讲解

高考化学溶沸点比较

主要方法有如下几种 (1)由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似。还有ⅢA族的镓熔点比铟、铊低,ⅣA族的锡熔点比铅低。 (2)同周期中的几个区域的熔点规律 ①高熔点单质 C,Si,B三角形小区域,因其为原子晶体,熔点高。金刚石和石墨的熔点最高大于3550℃,金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。 ②低熔点单质 非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,而氦是熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。 金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA 族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-38.87℃),近常温呈液态的镓(29.78℃)铯(28.4℃),体温即能使其熔化。 (3)从晶体类型看熔、沸点规律 原子晶体的熔、沸点高于离子晶体,又高于分子晶体。金属单质和合金属于金属晶体,其中熔、沸点高的比例数很大(但也有低的)。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如熔点: 金刚石>碳化硅>晶体硅

分子晶体由分子间作用力而定,其判断思路是: ①结构性质相似的物质,相对分子质量大,范德华力(分子间作用力指存在于分子与分子之间或惰性气体原子间的作用力,又称范德华力)大,则熔、沸点也相应高。如烃的同系物、卤素单质、稀有气体等。 ②相对分子质量相同,化学式也相同的物质(同分异构体),一般烃中支链越多,熔沸点越低。烃的衍生物中醇的沸点高于醚;羧酸沸点高于酯;油脂中不饱和程度越大,则熔点越低。如:油酸甘油酯常温时为液体,而硬脂酸甘油酯呈固态。 上述情况的特殊性最主要的是相对分子质量小而沸点高的三种气态氢化物:NH3,H2O,HF比同族绝大多数气态氢化物的沸点高得多(主要因为有氢键)。 (4)某些物质熔沸点高、低的规律性 ①同周期主族(短周期)金属熔点。如 LiNaCl>NaBr>NaI。 晶体的问题: 我们所常用的物质分为金属晶体(所有金属都是,例如铁、铜、镁、锌等)、原子晶体(金刚石、金刚沙等)、离子晶体(氯化钠、氯化铯等)、分子晶体(干冰等)、混合型晶体又叫过渡型晶体(石墨等),还有人造晶体,总之,晶体从科学工作者来说是具有几何形状的固体,对光有拆射率,例如红宝石、

熔沸点的比较

熔点、沸点的规律: 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 沸点指液体饱和蒸气压与外界压强相同时的温度,外压力为标准压(1.01×105Pa)时,称正常沸点。外界压强越低,沸点也越低,因此减压可降低沸点。沸点时呈气、液平衡状态。(1)由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似。还有ⅢA族的镓熔点比铟、铊低,ⅣA族的锡熔点比铅低。 (2)同周期中的几个区域的熔点规律 ①高熔点单质 C,Si,B三角形小区域,因其为原子晶体,熔点高。金刚石和石墨的熔点最高大于3550℃,金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。 ②低熔点单质 非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,而氦是熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。 金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-38.87℃),近常温呈液态的镓(29.78℃)铯(28.4℃),体温即能使其熔化。

(3)从晶体类型看熔、沸点规律 原子晶体的熔、沸点高于离子晶体,又高于分子晶体。金属单质和合金属于金属晶体,其中熔、沸点高的比例数很大(但也有低的)。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如熔点: 金刚石>碳化硅>晶体硅 分子晶体由分子间作用力而定,其判断思路是: ①结构性质相似的物质,相对分子质量大,范德华力大,则熔、沸点也相应高。如烃的同系物、卤素单质、稀有气体等。 ②相对分子质量相同,化学式也相同的物质(同分异构体),一般烃中支链越多,熔沸点越低。烃的衍生物中醇的沸点高于醚;羧酸沸点高于酯;油脂中不饱和程度越大,则熔点越低。如:油酸甘油酯常温时为液体,而硬脂酸甘油酯呈固态。 上述情况的特殊性最主要的是相对分子质量小而沸点高的三种气态氢化物:NH3,H2O,HF比同族绝大多数气态氢化物的沸点高得多(主要因为有氢键)。 (4)某些物质熔沸点高、低的规律性 ①同周期主族(短周期)金属熔点。如:LiNaCl>NaBr>NaI。 固体的水溶性 有机物中羟基和羧基具有亲水性,烃基具有憎水性,烃基越大,则水溶性越差,反而易I溶于有机溶剂中。如:甲酸、乙酸与水互溶,但硬脂酸、油酸分子中因—COOH比例过

熔点和沸点的变化规律

一、分子晶体熔、沸点的变化规律 分子晶体是依靠分子间作用力即范德华力维系的,分子间作用力与化学键相比弱得多,使得分子容易克服这种力的约束,因此,分子晶体的熔、沸点较低。 1.分子构型相同的物质,相对分子质量越大,熔、沸点越高。 分子间作用力有三个来源,即取向力、诱导力和色散力。卤素单质自非极性分子构成,只存在色散力,随相对分子质量增大,分子内电子数增多,由电子和原子核的不断运动所产生的瞬时偶极的极性也就增强,因而色散力增大,导致熔、沸点升高。同理,稀有气体的熔、沸点变化也符合这规律,相对原子质量越大,熔、沸点越高。 2.分子构型相同的物质,能形成氢键时,熔、沸点升高。 在常温下,绝大多数非金属元素的氢化物都是气态的(只有H20例外),气态氢化物的熔、沸点理应遵循第1条规律,随着相对分子质量的增大而升高,但是自于NH3、H20、HF可以形成氢键,使简单分子缔合成较大的分子,在发生相变时,不仅要克服原有的分子间作用力,而且要吸收更多的能量,使缔合分子解聚,因而造成NH3、H20、HF的熔、沸点反常,特别是水分子中有2个H-O键和2对孤对电子,一个水分子可以同时形成2个氢键,所以水的熔、沸点最高,在常温下呈液态。 含有-OH或-NH2的化合物,如含氧酸、醇、酚、胺等,因分子间能形成氢键,它们的熔、沸点往往比相对分子质量相近的其它物质高。以CHCl3为例,氯仿是强极性分子,但不形成氢键,相对分子质量为119.5,熔点-63.5℃,沸点61.2℃,而相对分子质量仅有60,但含-0H的乙酸熔点为16.6℃,沸点为117.9℃。磷酸、硼酸相对分子质量都不超过100,但由于氢键的形成,使它们在常温下都呈固态。 3.相对分子质量相近时,分子的极性越强,熔、沸点越高。 表中所列氢化物的相对分子质量相近,且都是等电子体,但它们的熔、沸点却有较大差别。甲硅烷是非极性分子,熔、沸点最低,从左到右,随分子极性的增强,熔、沸点逐渐升高。怛极性最强的HCl却反常地低于H2S,这是由于氯原子半径小于硫原子半径,HCl分子小于H2S分子,使色散力变小,故熔、沸点较H2S低。 4.同分异构体的熔、沸点变化。 在中学教材中,为了突出同分异构体是不同的物质,在其结构式下面均列出了它们的沸点(这里将熔点也并列出)。 分析上表数据可知,新戊烷分子呈中心对称,接近球状,沸点最低;正戊烷分子最长,呈锯齿形链状,分子间的运动最困难,沸点最高。3种戊烷异构体的熔点相差更大,异戊烷的对称性最差,在凝结成固态时,最不容易排列整齐,熔点最低,新戊烷对称性强,熔点比其它异构体高100℃以上。同理可解释3种二甲苯的熔、沸点变化。 二、原子晶体的熔、沸点变化规律 原子晶体中各原子以共价键相结合,共价键有饱和性和方向性,只要键不被破坏,相邻的原子就不能自由地移动。由于原子晶体在熔化时必须破坏很大一部分共价键,在气化时几乎要破坏全部共价键,所以原子晶体都具有很高的熔、沸点。

判断有机物熔点沸点的规律

中学的有机化学知识系统性强,用归纳和演绎的方法很容易掌握各类有机物的化学性质。 但对于其物理性质总觉得杂乱无章,无规律可循,其实有机物的熔、沸点高低也是由其结构决定的。有机物的晶体大多是分子晶体,它们的熔、沸点取决于有机物分子间作用力的 大小,而分子间作用力与分子的结构(有无支键、有无极性基团、饱和程度)、分子量等有关。主要分为下面四个情况: 1.组成和结构相似的物质,分子量越大,其分子间作用力就越大。所以有机物中的同系物 随分子中碳原子个数增加,熔、沸点升高。在通常状况下分子中含四个碳原子以下的烷烃、烯烃、炔烃是气体,含四个碳原子以上的是液体,含更多碳原子的是固体。 2.分子式相同时,直键分子间的作用力要比带支键分子间的作用力大,支键越多,排列越 不规则,分子间作用力越小。如: 分子间作用力:正戊烷>异戊烷>新戊烷。 沸点: 30.07℃>27.9℃>9.5℃ 3.分子中元素种类和碳原子个数相同时,分子中有不饱和键的物质熔、沸点要低些。 如: C2H6 C2H4 硬脂酸油酸 熔点:-88.63℃>-103.7℃ 69.5℃>14.0℃ 4.分子量相近时,极性分子间作用力大于非极性分子间的作用力。分子中极性基团越多, 分子间作用力越大。如: 分子间作用力:C2H5OH>CH3OCH3 C2H5Cl>CH3CH2CH3 沸点: 78.5℃>34.51℃ 12.27℃>0.5℃ 苯同系物看取代基位置 相同的取代物,邻位>间位>对位 如:二甲苯有三种同分异构体:邻二甲苯、间二甲苯、对二甲苯。我们可以这样理解,把这些分子看作一个球体,这三种分子的体积依次增大,分子间的距离也增大,因而分子间作用力减小,熔沸点就降低。因此它们的沸点依次降低。 分子量相同看分子极性 如果有机物分子是极性分子,由于极性分子具有偶极,而偶极是电性的。因此,极性分子之间除了具有色散力外,还具有偶极之间的静电引力。这样,极性分子之间的分子间力比非极性分子要大得多,所以使沸点升高。例如分子量相同的丁烷和丙酮: 分子量结构沸点(℃) 丙酮 58 CH3COCH3 56.2 丁烷 58 CH3CH2CH2CH3 —0.5

物质熔沸点高低的所有规律及原因

物质熔沸点高低的判断规律及原因 熔点是固体将其物态由固态转变(熔化)为液态的温度。熔点是一种物质的一个物理性质,物质的熔点并不是固定不变的,有两个因素对熔点影响很大,一是压强,平时所说的物质的熔点,通常是指一个大气压时的情况,如果压强变化,熔点也要发生变化;另一个就是物质中的杂质,我们平时所说的物质的熔点,通常是指纯净的物质。 沸点指液体饱和蒸气压与外界压强相同时的温度。外压力为标准压(1.01×105Pa)时,称正常沸点。外界压强越低,沸点也越低,因此减压可降低沸点。沸点时呈气、液平衡状态。 在近年的高考试题及高考模拟题中我们常遇到这样的题目: 下列物质按熔沸点由低到高的顺序排列的是( D ), A、二氧化硅,氢氧化钠,萘 B、钠、钾、铯 C、干冰,氧化镁,磷酸 D、C2H6,C(CH3)4,CH3(CH2)3CH3 在我们现行的教科书中并没有完整总结物质的熔沸点的文字,在中学阶段的解题过程中,具体比较物质的熔点、沸点的规律主要有如下: 1、根据物质在相同条件下的状态不同 一般熔、沸点:固>液>气,如:碘单质>汞>CO2 2. 由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似;还有ⅢA族的镓熔点比铟、铊低;ⅣA族的锡熔点比铅低。 3. 同周期中的几个区域的熔点规律 ①高熔点单质C,Si,B三角形小区域,因其为原子晶体,故熔点高,金刚石和石墨的熔点最高大于3550℃。金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。 ②低熔点单质 非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,如氦的熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。 金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Tl;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-38.87℃),近常温呈液态的镓(29.78℃)铯(28.4℃),体温即能使其熔化。 如何比较物质的熔、沸点的高低,首先分析物质所属的晶体类型,其次抓住同一类型晶体熔、沸点高低的决定因素,现总结如下供同学们参考: 一、不同类型晶体熔沸点高低的比较 一般来说,原子晶体>离子晶体>分子晶体;金属晶体(除少数外)>分子晶体.例如:SiO2>NaCL>CO2(干冰)金属晶体的熔沸点有的很高,如钨、铂等;有的则很低,如汞、镓、铯等. 二、同类型晶体熔沸点高低的比较 同一晶体类型的物质,需要比较晶体内部结构粒子间的作用力,作用力越大,熔沸点越高.影响分子晶体熔沸点的是晶体分子中分子间的作用力,包括范德华力和氢键. 1.同属分子晶体 ①组成和结构相似的分子晶体,一般来说相对分子质量越大,分子间作用力越强,熔沸点越高.例如:I2>Br2>Cl2>F2. ②组成和结构相似的分子晶体,如果分子之间存在氢键,则分子之间作用力增大,熔沸点出现反常.有氢键的熔沸点较高.例如,熔点:HI>HBr>HF>HCl;沸点:HF>HI>HBr>HCl. H2O>H2Te>H2Se>H2S,C2H5OH>CH3—O—CH3

单质的熔点和沸点的周期性变化

单质的熔点和沸点的周期性变化 熔点和沸点都是既定的物理量,我们经常在实验室中观测到它们的特征。比如,熔点是指液体物质在被加热到一定温度时开始融化,而沸点则是指一定温度时气体物质开始沸腾。本文将针对这些物理量的周期性变化,以及它们之间有何关联性,进行探讨。 首先,关于熔点的变化,我们可以观察到,单质的熔点随着它们化学结构的复杂程度而发生变化。比如,由单一元素组成的物质,如氯、氢、碳、氧等,其熔点都很低,而由复杂分子组成的有机物质,其熔点往往较高。此外,熔点的变化也受到温度的影响,温度越高,熔点越低。 其次,沸点的变化也有一定的规律性。我们知道,沸点的变化受到温度的影响,而根据分子的不同,温度下沸点也有很大的差异。例如,氢分子,由一个原子组成,沸点十分低,而氯分子,由两个原子组成,沸点较高,由三个原子组成的氧分子,沸点更高。另外,沸点受到大气压力的影响也很大,即大气压力升高时,沸点也随之升高,反之亦然。 再次,单质的熔点和沸点也有一定的联系性。研究发现,单质的熔点和沸点之间存在着一定的正相关关系。当单质的熔点升高,其沸点也随之升高,反之亦然。这是基于一定的物理原理,即熔点和沸点的变化受到非极性内部键的影响,当内部键越来越强大时,熔点和沸点均会相应变高。 最后,我们可以总结出,单质物质的熔点和沸点都是不断变化的,

而它们之间也存在着一定的联系性,它们的周期性变化受到多种因素的影响,包括分子的结构复杂程度、温度以及大气压力等。因此,如果想要获得准确的物理量数据,就必须考虑到这些变化的因素,进行相应的控制。 总之,单质的熔点和沸点的周期性变化受到多个因素的影响,其中,它们之间也存在着一定的联系性。研究它们的变化也有助于我们更好地理解化学反应、电化学反应等,从而为未来的研究提供参考。

人教版九年级化学第八单元金属的熔点和沸点 知识点总结

人教版九年级化学第八单元金属的熔点和 沸点知识点总结 金属的熔点和沸点是金属性质的重要特征之一,也是我们了解金属的重要指标。以下是金属熔点和沸点的相关知识点总结: 1. 熔点和沸点的定义: - 熔点是指物质由固态转变为液态时的温度。 - 沸点是指物质由液态转变为气态时的温度。 2. 影响金属熔点和沸点的因素: - 金属的晶体结构:金属的熔点和沸点与其晶体结构有关,通常具有紧密排列的金属原子结构,使金属具有较高的熔点和沸点。 - 原子间的相互作用力:金属原子之间的金属键强度越大,对外加热的抵抗能力越强,熔点和沸点也就越高。 3. 金属熔点和沸点的规律: - 周期表上熔点和沸点的变化趋势:从左至右在同一周期内,金属的熔点和沸点逐渐升高。这是因为电子层数增加,原子半径减

小,金属原子之间的静电吸引力增强,导致金属键变强,熔点和沸 点升高。 - 周期表上同一族元素的熔点和沸点的变化趋势:从上到下在 同一族元素中,金属的熔点和沸点逐渐降低。这是因为随着原子序 数增加,核电荷增大,原子半径增加,金属原子之间的静电吸引力 减弱,导致金属键变弱,熔点和沸点降低。 4. 金属的熔点和沸点对比: 不同金属的熔点和沸点有较大差异,这与金属的特性有关。一 般来说,金属的熔点和沸点较高,如铁的熔点为1535℃,沸点为2750℃;钨的熔点为3410℃,沸点为5660℃。而一些特殊金属如 汞具有较低的熔点和沸点,汞的熔点为-38.87℃,沸点为356.58℃。 总结:金属的熔点和沸点是金属重要的物理特性,受到金属晶 体结构和原子间相互作用力的影响。在周期表上,金属熔点和沸点 的变化与元素的位置有关,从左至右逐渐升高,从上至下逐渐降低。不同金属的熔点和沸点存在较大差异,反映出金属的性质差别。 参考资料: - 《人教版九年级化学》

判断有机物熔点沸点的规律

有机物熔沸点规律 中学的有机化学知识系统性强,用归纳和演绎的方法很容易掌握各类有机物的化学性质。但对于其物理性质总觉得杂乱无章,无规律可循,其实有机物的熔、沸点高低也是由其结构决定的。有机物的晶体大多是分子晶体,它们的熔、沸点取决于有机物分子间作用力的大小,而分子间作用力与分子的结构(有无H键、有无极性基团、饱和程度)、分子量等有关。主要分为下面四个情况: 1.组成和结构相似的物质,分子量越大,其分子间作用力就越大。所以有机物中的同系物随分子中碳原子个数增加,熔、沸点升高。在通常状况下分子中含四个碳原子以下的烷烃、烯烃、炔烃是气体,含四个碳原子以上的是液体,含更多碳原子的是固体。 2.℃℃℃ 3.℃℃℃℃ 4℃℃℃℃ 苯同系物看取代基位置 相同的取代物,邻位>间位>对位 如:二甲苯有三种同分异构体:邻二甲苯、间二甲苯、对二甲苯。我们可以这样理解,把这些分子看作一个球体,这三种分子的体积依次增大,分子间的距离也增大,因而分子间作用力减小,熔沸点就降低。因此它们的沸点依次降低。 分子量相同看分子极性 如果有机物分子是极性分子,由于极性分子具有偶极,而偶极是电性的。因此,极性分子之间除了具有色散力外,还具有偶极之间的静电引力。这样,极性分子之间的分子间力比非极性分子要大得多,所以使沸点升高。例如分子量相同的丁烷和丙酮: 分子量结构沸点〔℃〕 丙酮 58 CH3COCH3 56.2 丁烷 58 CH3CH2CH2CH3 —0.5 丙酮分子中含有羰基,由于碳氧电负性不同,碳原子上带有局部正电荷,氧原子上带有局部负电荷。当这样的极性分子相互接近时,势必产生较大的分子间力,从而表现出沸点值较大程度地升高。

熔点和沸点变化规律的实验研究

熔点和沸点变化规律的实验研究 熔点和沸点是物质的重要性质,是判断物质状态的基本依据。通过实验可以发现,熔点和沸点会受到许多因素的影响而发生变化。本文将从实验研究的角度,探讨这些变化规律。 首先,我们来介绍熔点和沸点。熔点是指物质从固态到液态的转化温度,在熔 点以下,物质为固态;沸点是指物质从液态到气态的转化温度,在沸点以上,物质为气态。熔点和沸点是一个物质的固有属性,受物质的种类、结构、组成、纯度、压强、环境温度等因素的影响而发生变化。 其次,我们来分析熔点和沸点变化的原因。首先,物质的纯度会影响其熔点和 沸点。纯度较高的物质熔点和沸点比较低,反之则高。其次,物质的环境温度也会影响其熔点和沸点。在高温环境下,物质的熔点和沸点会相应升高;在低温环境下,物质的熔点和沸点会相应降低。第三,物质的压强也是影响其熔点和沸点的因素之一。在高压环境下,物质的熔点和沸点会相应升高;在低压环境下,物质的熔点和沸点会相应降低。最后,物质的组成和结构也会影响其熔点和沸点。例如,在同一温度和压强下,简单的分子化合物往往具有较低的熔点和沸点,而具有复杂结构的分子化合物往往具有较高的熔点和沸点。 接下来,我们将通过实验来验证这些变化规律。本实验将以某种物质的熔点和 沸点为例。 材料:某种物质,热水浴,温度计,烧杯,桶。 实验步骤: 1. 在烧杯中加入适量的某种物质,将烧杯放在热水浴中,并在热水浴的温度计 中测量温度。随着热水浴温度的逐渐升高,观察物质在热水浴中的状态变化,当物质完全转化为液体时,记录此时的温度为物质的熔点。

2. 取一个桶,将烧杯放入其中,向其中加入适量的水,并使水的高度超过烧杯 中物质的高度。用温度计测量桶中水的温度,并用火炉加热桶中的水。随着水温的逐渐升高,观察物质在烧杯中的状态变化,当物质完全转化为气体时,记录此时的温度为物质的沸点。 3. 在上述实验中,可以通过改变热水浴或火炉的温度来改变环境温度,进而观 察对物质熔点和沸点的影响;还可以通过改变桶中水的高度,从而改变水的压强,观察对物质熔点和沸点的影响。 实验结果: 通过上述实验,我们获得了某种物质的熔点和沸点,并验证了纯度、环境温度、压强等因素对物质熔点和沸点的影响。 总结: 本文从实验研究的角度探讨了熔点和沸点变化规律。熔点和沸点是物质的固有 属性,受纯度、环境温度、压强、组成、结构等因素的影响而发生变化。通过实验可以验证这些变化规律。实验结果可作为物质研究和应用时的重要参考。

化学学习中物质的熔点、沸点规律

化学学习中物质的熔点、沸点规律 晶体纯物质有固定熔点;不纯物质凝固点与成分有关(凝固点不固定)。 非晶体物质,如玻璃、水泥、石蜡、塑料等,受热变软,渐变流动性(软化过程)直至液体,没有熔点。 沸点指液体饱和蒸气压与外界压强相同时的温度,外压力为标准压(1.01×105Pa)时,称正常沸点。外界压强越低,沸点也越低,因此减压可降低沸点。沸点时呈气、液平衡状态。 (1)由周期表看主族单质的熔、沸点 同一主族单质的熔点基本上是越向下金属熔点渐低;而非金属单质熔点、沸点渐高。但碳族元素特殊,即C,Si,Ge,Sn越向下,熔点越低,与金属族相似。还有ⅢA族的镓熔点比铟、铊低,ⅣA族的锡熔点比铅低。 (2)同周期中的几个区域的熔点规律 ①高熔点单质 C,Si,B三角形小区域,因其为原子晶体,熔点高。金刚石和石墨的熔点最高大于3550℃,金属元素的高熔点区在过渡元素的中部和中下部,其最高熔点为钨(3410℃)。 ②低熔点单质 非金属低熔点单质集中于周期表的右和右上方,另有IA的氢气。其中稀有气体熔、沸点均为同周期的最低者,而氦是熔点(-272.2℃,26×105Pa)、沸点(268.9℃)最低。 金属的低熔点区有两处:IA、ⅡB族Zn,Cd,Hg及ⅢA族中Al,Ge,Th;ⅣA族的Sn,Pb;ⅤA族的Sb,Bi,呈三角形分布。最低熔点是Hg(-38.87℃),近常温呈液态的镓(29.78℃)铯(28.4℃),体温即能使其熔化。 (3)从晶体类型看熔、沸点规律 原子晶体的熔、沸点高于离子晶体,又高于分子晶体。金属单质和合金属于金属晶体,其中熔、沸点高的比例数很大(但也有低的)。 在原子晶体中成键元素之间共价键越短的键能越大,则熔点越高。判断时可由原子半径推导出键长、键能再比较。如熔点:金刚石>碳化硅>晶体硅分子晶体由分子间作用力而定,其判断思路是: ①结构性质相似的物质,相对分子质量大,范德华力大,则熔、沸点也相应高。如烃的同系物、卤素单质、稀有气体等。 ②相对分子质量相同,化学式也相同的物质(同分异构体),一般烃中支链越多,熔沸点越低。烃的衍生物中醇的沸点高于醚;羧酸沸点高于酯;油脂中不饱和程度越大,则熔点越低。如:油酸甘油酯常温时为液体,而硬脂酸甘油酯呈固态。 上述情况的特殊性最主要的是相对分子质量小而沸点高的三种气态氢化物:NH3,H2O,HF比同族绝大多数气态氢化物的沸点高得多(主要因为有氢键)。 (4)某些物质熔沸点高、低的规律性 ①同周期主族(短周期)金属熔点。如Li ②碱土金属氧化物的熔点均在2000℃以上,比其他族氧化物显著高,所以氧化镁、氧化铝是常用的耐火材料。 ③卤化钠(离子型卤化物)熔点随卤素的非金属性渐弱而降低。如:

相关文档
相关文档 最新文档