文档视界 最新最全的文档下载
当前位置:文档视界 › 泡沫金属材料制备技术

泡沫金属材料制备技术

泡沫金属材料制备技术
泡沫金属材料制备技术

泡沫金属材料制备技术

1.引言

金属泡沫或金属多孔材料是80年代后期国际上迅速发展起来的一种具有优异的物理特性和良好的机械性能的新型工程材料。它具备的优异物理性能,如比重小、刚度大、比表面大、减震性能好、消声效果好、电磁屏蔽性能高等,使其在一些高技术领域获得了广泛应用[1-3]。泡沫铝合金材料是一种在铝合金基体中分布有大量微小气孔结构的超轻型铝合金材料。其开发研究始于20世纪40年代,最早的泡沫铝制备工艺是Sosnick于1948年提出的在铝熔体中以气化汞为气体来源制备泡沫铝合金的做法,该工艺还申请了美国专利[2]。1956年,美国科学家Elliot完善了泡沫铝制备理论,并提出以可热分解气体的发泡剂来代替汞,从而给泡沫金属材料的工艺发展指明了方向,同年他采用熔体发泡法成功制造出泡沫铝。随后人们开发使用了多种发泡剂如TiH2、ZrH2、ErH2、MgH2等。到了20世纪80年代末90年代初,泡沫铝材料的研究取得重大突破,日本九州工业研究所于1991年开发出泡沫铝工业化生产的工业路线。1992年M. F. Ashby第一次系统总结了泡沫金属的制备、性能和应用。90年代以来,国外科研机构和大学推出了多种制备高性能泡沫铝的工艺方法,如德国不来梅德夫雷霍夫实用材料研究所研制的粉末发泡法,德国的连续喷吹气体制备泡沫铝法(DE4139020),日本日立造船技术研究所的发泡法等。目前已经实现了采用金属发泡法和渗流铸造法来生产各种尺寸规模的泡沫铝部件,从高速列车到航天飞机的一系列领域都可以找到泡沫铝的身影[1]。

国内研究机构对泡沫铝的研究起步于20世纪80年代中期,目前国内主要的研究机构有东南大学、东北大学、昆明理工大学、大连理工大学等。我国学者研制了一些具有独创性的生产工艺,并进行了大量的理论和实验研究。其中东南大学材料系开展研究的时间最早,尤其在粉末冶金法制备泡沫铝工艺方面的成就较突出。

金属泡沫材料既可作为许多场合的功能材料,也可作为某些场合的结构材料,而一般情况下它兼有功能和结构双重作用,是一种性能优异的多用途工程材料。

金属泡沫材料具有一定的强度、延伸率和加工性能,可用于结构材料。目前多用在汽车工业、航空工业以及建筑工业中。一般来说,作为结构材料使用的金属泡沫材料需要闭孔结构,而作为功能材料使用的多孔材料则需要通孔结构。多孔材料的应用领域主要取决于以下几方面因素[3]:

(1) 组织形貌:孔隙类型(通孔或闭孔)、孔隙率、孔隙尺寸范围以及内表面面积;

(2) 冶金因素:金属或合金的显微组织;

(3) 工艺因素:多孔材料的加工性能以及它们与传统材料构成的复合材料的加工性能;

(4) 经济因素:生产成本以及大量生产的可行性如何。

汽车是金属泡沫材料最有希望也是最大的应用领域。目前,轻质、高刚度同时具有吸能和隔音性能的铝泡沫材料已经在汽车上得到应用,如顶盖板、底盖板以及滑动顶板等需要高刚度以避免扭曲变形和振动的构件。德国汽车制造商Karmann在跑车上采用三明治式复合泡沫铝板取代锻造钢板制造汽车的横壁板和后板,重量下降25%而刚度提高700%。另外,金属泡沫材料还具有吸能和隔音等多重功能[3-5]。

在航空领域,多孔网状金属一般用作轻质、传热的支撑结构,可用于机翼金属外壳的支撑体、导弹的防外壳高温坍塌支撑体、雷达镜的反射材料等[2]。如果采用定向凝固方法把发动机叶片制成多孔结构,不仅不会恶化叶片的力学性能(在叶片的受力方向上孔洞不会造成应力集中),而且还将极大减轻发动机重量,提高叶片的冷却能力,将有效地提高发动机性能。

在建筑领域,金属泡沫材料一般用于制造质量轻、硬度高、有耐火性能要求的元件或结构件。

另外,在生物材料方面,钛等多孔材料由于与人体组织有良好的相容性且对人体无害而广泛应用,如骨科、牙科等。如果采用定向凝固的方法制造多孔人工骨,除了有利于骨组织的生长,还能通过孔隙率来调整弹性模量,使其与人骨相近,同时具有很好的减振效果,在保证力学性能的同时能实现结构和性能上与人骨的进一步亲和[6]。

还可以采用金属泡沫材料,特别是烧结方法制备的泡沫铜来制造轴承,具有价格低、结构简单的优点,适用于多种场合。目前已在电动马达、小发动机等要求传递力矩较小的轴上使用[7]。

过滤与分离方面,金属泡沫材料具有优良的渗透性,适合于制备多种过滤器。利用通孔多孔金属的孔隙对流体介质中固体粒子的阻留和捕集作用,将气体或液体进行过滤与分离,从而达到介质的净化或分离作用。多孔金属过滤器可用于从液体(如石油、汽油、致冷剂、聚合物熔体和悬浮液等)或空气和其它气流中滤掉固体颗粒[2]。

金属泡沫材料具有很大的比表面积,也适合于制造热交换器件,通孔体适用于换热器、加热器和散热器。闭孔金属泡沫材料的导热系数很低,仅为纯金属的1/5~1/150,可用作绝热材料,其强度及耐热性能(泡沫金属,尤其是泡沫铝的耐热温度远远超过其熔点)优于相应的传统材料。

在化学工业中,催化剂的效率依赖于催化剂与气体或液体接触的表面积,传统上常采用孔隙率很高的材料或者多孔陶瓷材料。金属泡沫材料由于比表面大且有较高的强度、韧性和导热性能,可以取代这些传统材料而用作催化剂载体。如基于金属泡沫材料的催化剂可用于碳氢化物的深度氧化、乙醇的选择性氧化、石油化工中的己烷重组等反应工程。

金属泡沫材料还可用于吸声材料。吸声材料需要同时具有优良的吸声效率、透声损失、透气性、耐火性和结构强度[2]。金属泡沫材料被广泛用于建筑和自动办公设备等,兼具装饰的功能。在汽车上,可用于既要求高吸声性能又要求良好绝缘性能的零部件。

金属泡沫材料也可在流体流量控制领域得到广泛应用。一般认为,用粉末冶金方法制备的材料制造的流体限流器比传统的千分尺限流器具有更高的可靠性和精确度[3]。金属泡沫材料已用于风洞的流体校直器以及气体或液体的计量器、自动化系统中的信号控制延时器等。

金属泡沫材料还具有优异的电磁波吸收性能,可用于电磁屏蔽、电磁兼容器件。

关于金属泡沫材料的应用主要存在两个制约,一是金属泡沫材料的生产成本高,在一般的民用领域不能得到广泛应用;而是金属泡沫材料的生产工艺复杂,难以控制,要得到孔结构均匀和可再生的金属泡沫非常困难。

2. 金属泡沫材料的制备方法

铝合金泡沫金属的制备方法有很多,根据金属或合金被处理时物理状态的不同,获得金属泡沫材料的制造方法可以划分为四类[3]:液相法、粉末固相法、离子法(金属离子溶液)以及气相法(金属蒸气或气态金属间化合物),其中气体吹入法、熔体发泡法、粉末冶金法以及渗流铸造法是最常用的制备方法。

2.1 连续气体吹入法

连续气体吹入法是加拿大Alcan国际有限公司在20世纪80~90年代开发的,其原理是在液态金属中加入很细的陶瓷粉末或能与液态金属反应生成稳定颗粒的合金元素作为增稠剂以提高

液态金属的粘度,阻止金属中的气泡逸出[3,5],以制备金属泡沫材料的方法。气体吹入法的原理如图1所示。

首先在熔融的金属中加入增稠剂,加入增稠剂的体积百分数一般为10~20%,颗粒的平均尺寸为5~20μm。常用的增稠剂包括碳化硅、氧化铝以及氧化镁颗粒。增稠剂颗粒尺寸和加入量有一个适当的范围,太高或者太低均会影响金属泡沫材料的制备。随后,通过一个可以震动的喷嘴通入空气、氮气、氩气或者它们的混合气体,并不停搅拌。搅拌的作用是在液态金属中形成细小的气泡,并使气泡均匀分布。由于增稠剂的作用,产生的气泡在上升的过程中不能聚集长大,上升到泡沫-液体界面时被收集起来,通过传送带予以冷却,冷却下来后可以进行切割,可以获

金属材料与热处理教案

绪论 引入: 材料金属材料 机械行业本课程得重要性 主要内容:金属材料得基本知识(晶格结构及变性) 金属得性能(力学及工艺性能) 金属学基础知识(铁碳相图、组织) 热处理(退火、正火、淬火、回火) 学习方法:三个主线 重要概念 ①掌握 基本理论 ②成分 组织性能用途热处理 ③理论联系实际 引入:内部结构决定金属性能 内部结构? 第一章:金属得结构与结晶 §1-1金属得晶体结构 ★学习目得:了解金属得晶体结构 ★重点:有关金属结构得基本概念:晶面、晶向、晶体、晶格、单晶

体、晶体,金属晶格得三种常见类型. ★难点:金属得晶体缺陷及其对金属性能得影响. 一、晶体与非晶体 1、晶体:原子在空间呈规则排列得固体物质称为“晶体"。(晶体内得原子之所以在空间就是规则排列,主要就是由于各原子之间得相互吸引力与排斥力相平衡得结晶。) 规则几何形状 性能特点: 熔点一定 各向异性 2、非晶体:非晶体得原子则就是无规则、无次序得堆积在一起得(如普通玻璃、松香、树脂等)。 二、金属晶格得类型 1、晶格与晶胞 晶格:把点阵中得结点假象用一序列平行直线连接起来构成空间格子称为晶格. 晶胞:构成晶格得最基本单元 2、晶面与晶向 晶面:点阵中得结点所构成得平面。 晶向:点阵中得结点所组成得直线 由于晶体中原子排列得规律性,可以用晶胞来描述其排列特征。(阵点(结点):把原子(离子或分子)抽象为规则排列于空间得几何点,称为阵点或结点。点阵:阵点(或结点)在空间得排列方式称

晶体。) 晶胞晶面晶向 3、金属晶格得类型就是指金属中原子排列得规律。 7个晶系 14种类型 最常见:体心立方晶格、面心立方晶格、密排六方晶格 (1)、体心立方晶格:(体心立方晶格得晶胞就是由八个原子构成得立方体,并且在立方体得体中心还有一个原子)。 属于这种晶格得金属有:铬Cr、钒V、钨W、钼Mo、及α—铁α-Fe 所含原子数 1/8×8+1=2(个) (2)、面心立方晶格:面心立方晶格得晶胞也就是由八个原子构成得立方体,但在立方体得每个面上还各有一个原子。 属于这种晶格得金属有:Al、Cu、Ni、Pb(γ-Fe)等 所含原子数1/8×8+6×1/2=4(个) (3)、密排六方晶格:由12个原子构成得简单六方晶体,且在上下两个六方面心还各有一个原子,而且简单六方体中心还有3个原子。 属于这种晶格得金属有铍(Be)、Mg、Zn、镉(Cd)等。 所含原子数 1/6×6×2+1/2×2+3=6(个) 三、单晶体与多晶体 金属就是由很多大小、外形与晶格排列方向均不相同得小晶体组成得,

金属材料与热处理技术专业简介

金属材料与热处理技术专业简介 专业代码560107 专业名称金属材料与热处理技术 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握金属材料、热处理工艺制定及实施、生产管理与质量管理等基本知识,具备热处理操作、热处理工艺编制及实施、基本的热处理工装设计、设备保养与维护等能力,从事热处理生产操作、热处理工艺设计和实施、金属材料管理等方面工作的高素质技术技能人才。 就业面向 主要面向机械、航天航空、核工业、船舶制造、军工等企事业单位,在金属材料管理选择、金属材料改性等技术领域,从事热处理生产操作、热处理工艺设计和实施、金属材料管理、产品检验、车间生产管理等工作。 主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备编制与实施常用热处理方法的工艺及工艺规程的能力; 3.具备常用工装夹具设计的能力; 4.具备常用热处理设备安装、调试、维修和技术改造的能力; 5.具备对金属制品进行金相分析、化学分析和力学性能检测的能力; 6.具备选用各种金属材料的能力; 7.具备分析、解决热处理现场技术问题的能力; 8.掌握常用热处理方法。

核心课程与实习实训 1.核心课程 机械制图及 CAD、机械设计基础、机械制造基础、金属学及金属材料、显微组织分析技术、材料成型与控制基础、金属力学性能测试技术、热加工检测技术、热处理原理及工艺等。 2.实习实训 在校内进行机加工、钳工、材料成型与控制、金相组织分析、金属力学性能测试、机械设计基础课程设计、热处理操作技能、热处理工艺设计、应用软件技术等实训。 在机械、核工业、军工等企业进行实习。 职业资格证书举例 热处理工金相分析员 衔接中职专业举例 金属热加工金属表面处理技术应用 接续本科专业举例 金属材料工程材料成型及控制工程

爆炸冲击作用下泡沫金属材料动态力学特性研究综述

泡沫铝材料抗爆炸冲击问题研究综述 摘要:为对泡沫铝材料在抗爆炸冲击方面应用的相关研究有全面的了解,本文从泡沫铝材料抗爆炸冲击问题所涉及到的材料本身动力学特性、材料内部冲击波传播规律和常见的抗爆炸冲击应用的材料结构形式—含泡沫铝的多层结构的抗爆特性三方面出发,对泡沫铝在爆炸冲击作用下的动力学问题的研究现状进行梳理和评价。研究可为泡沫铝在抗爆炸冲击方面的进一步应用提供有益的借鉴。 关键词:泡沫铝爆炸冲击多层结构 1前言 泡沫金属材料作为一种含有无序微结构的高孔隙率、低密度的超轻多孔金属材料,具有承载、传热、降噪、电磁屏蔽、减振、吸能等多功能特性。特别是其在静态和动态载荷下表现出应力平台效应,能吸收大量压缩能量,从而具备优良的缓冲吸能性能,故在军用车辆、舰船以及防护工程结构等防爆炸冲击方面受到广泛的关注。但在近二十年来对其力学行为所展开的广泛和深入的研究当中,以准静态加载条件下的力学行为研究最为充分,高加载速率、高应变率的动态加载条件下的材料力学行为较为复杂,研究难度也较大。国内外对泡沫铝材料在爆炸冲击载荷作用下相关问题的研究,主要集中在材料本身的动力学行为(即在冲击作用下,材料变形和失效机制等)和材料内部冲击波的传播两个方面。本文将从这两方面出发,对泡沫铝在爆炸冲击作用下的动力学问题的研究现状进行梳理,并对其常见应用形式—含泡沫铝的多层结构的抗爆特性展开评述,为泡沫铝在抗爆炸冲击方面的应用提供有益的借鉴。 2爆炸冲击作用下泡沫铝材料动态力学行为研究 2.1泡沫铝材料动态应力-应变行为 爆炸冲击作用下的泡沫铝材料的动态应力-应变行为的研究主要借助SHPB等试验方法对材料进行动态冲击加载获取相应的应力-应变曲线。与静态加载条件下的材料应力-应变行为的研究结果不同,泡沫铝动态应力-应变行为的研究,国内外不同学者存在不同的研究结论,甚至是相反的。大体而言,对于泡沫铝动态压缩力学应力-应变曲线整体特性的描述基本一致,即其应力-应变曲线表现出三个显著的阶段:线弹性区、屈服平台区和致密固化区,这也是高孔隙率泡沫铝材料具有良好吸能特性的原因所在。但对于泡沫铝动态应力-应变曲线是否与加载应变率相关,则存在不同看法。 如Deshpande和Fleck2000[1]等人在早期采用传统的分离式hopkinson压杆对泡沫铝所做的高应变率(5000s-1)条件下的冲击压缩试验结果表明高应变率范围内材料的应力应变曲线与静态曲线相似,故认为泡沫铝材料对应变率不敏感。国内王青春等2004[2]、王志华等2006[3]、郭国伟等2008[4]对孔泡沫铝进行的中等应变率以下的冲击试验,也认为试验所考察的泡沫铝材料的应力-应变曲线与应变率关系不大。 与上述研究结论不同,Dannemann2000[5]等采用与Deshpande等人完全相同的实验技术和泡沫铝试件,进行的冲击试验结果却表明泡沫铝的动态力学行为是与应变率相关的。国内曾斐2002[6]、胡时胜

金属材料与热处理课后习题答案

第1章金属的结构与结晶 一、填空: 1、原子呈无序堆积状态的物体叫,原子呈有序、有规则排列的物体称为。一般固态金属都属于。 2、在晶体中由一系列原子组成的平面,称为。通过两个或两个以上原子中心的直线,可代表晶格空间排列的的直线,称为。 3、常见的金属晶格类型有、和三种。铬属于晶格,铜属于晶格,锌属于晶格。 4、金属晶体结构的缺陷主要有、、、、、和 等。晶体缺陷的存在都会造成,使增大,从而使金属的提高。 5、金属的结晶是指由原子排列的转变为原子排列的过程。 6、纯金属的冷却曲线是用法测定的。冷却曲线的纵坐标表示,横坐标表示。 7、与之差称为过冷度。过冷度的大小与有关, 越快,金属的实际结晶温度越,过冷度也就越大。 8、金属的结晶过程是由和两个基本过程组成的。 9、细化晶粒的根本途径是控制结晶时的及。 10、金属在下,随温度的改变,由转变为的现象称为

同素异构转变。 二、判断: 1、金属材料的力学性能差异是由其内部组织结构所决定的。() 2、非晶体具有各向同性的特点。() 3、体心立方晶格的原子位于立方体的八个顶角及立方体六个平面的中心。() 4、金属的实际结晶温度均低于理论结晶温度。() 5、金属结晶时过冷度越大,结晶后晶粒越粗。() 6、一般说,晶粒越细小,金属材料的力学性能越好。() 7、多晶体中各晶粒的位向是完全相同的。() 8、单晶体具有各向异性的特点。() 9、在任何情况下,铁及其合金都是体心立方晶格。() 10、同素异构转变过程也遵循晶核形成与晶核长大的规律。() 11、金属发生同素异构转变时要放出热量,转变是在恒温下进行的。() 三、选择 1、α—Fe是具有()晶格的铁。 A、体心立方 B、面心立方 C、密排六方 2、纯铁在1450℃时为()晶格,在1000℃时为()晶格,在600℃时为 ()晶格。A、体心立方 B、面心立方 C、密排六方 3、纯铁在700℃时称为(),在1000℃时称为(),在1500℃时称为()。

(完整版)金属材料与热处理题库及答案

金属材料与热处理习题及答案 第一章金属的结构与结晶 一、判断题 1、非晶体具有各同性的特点。( √) 2、金属结晶时,过冷度越大,结晶后晶粒越粗。(×) 3、一般情况下,金属的晶粒越细,其力学性能越差。( ×) 4、多晶体中,各晶粒的位向是完全相同的。( ×) 5、单晶体具有各向异性的特点。( √) 6、金属的同素异构转变是在恒温下进行的。( √) 7、组成元素相同而结构不同的各金属晶体,就是同素异构体。( √) 8、同素异构转变也遵循晶核形成与晶核长大的规律。( √) 10、非晶体具有各异性的特点。( ×) 11、晶体的原子是呈有序、有规则排列的物质。( √) 12、非晶体的原子是呈无序、无规则堆积的物质。( √) 13、金属材料与热处理是一门研究金属材料的成分、组织、热处理与金属材料性能之间的关系和变化规律的学科。( √)

14、金属是指单一元素构成的具有特殊的光泽延展性导电性导热性的物质。( √) 15、金银铜铁锌铝等都属于金属而不是合金。( √) 16、金属材料是金属及其合金的总称。( √) 17、材料的成分和热处理决定组织,组织决定其性能,性能又决定其用途。( √) 18、金是属于面心立方晶格。( √) 19、银是属于面心立方晶格。( √) 20、铜是属于面心立方晶格。( √) 21、单晶体是只有一个晶粒组成的晶体。( √) 22、晶粒间交接的地方称为晶界。( √) 23、晶界越多,金属材料的性能越好。( √) 24、结晶是指金属从高温液体状态冷却凝固为固体状态的过程。 ( √) 25、纯金属的结晶过程是在恒温下进行的。( √) 26、金属的结晶过程由晶核的产生和长大两个基本过程组成。( √) 27、只有一个晶粒组成的晶体成为单晶体。( √) 28、晶体缺陷有点、线、面缺陷。( √) 29、面缺陷分为晶界和亚晶界两种。( √) 30、纯铁是有许多不规则的晶粒组成。( √) 31、晶体有规则的几何图形。( √) 32、非晶体没有规则的几何图形。( √)

《金属材料与热处理》课程教学大纲

《金属材料与热处理》课程教学大纲 一、课程性质、目的和任务 属材料与热处理是一门技术基础课。其要紧内容包括:金属的性能、金属学基础知识、钢的热处理、常用金属材料及非金属材料的牌号等。 二、教学差不多要求 本课程的任务是使学生掌握金属材料与热处理的差不多知识,为学习专业理论,掌握专业技能打好基础。通过本课程的学习,学生应达到下列差不多要求: (1)了解金属学的差不多知识。 (2)掌握常用金属材料的牌号、性能及用途。 (3)了解金属材料的组织结构与性能之间的关系。 (4)了解热处理的一般原理及其工艺。 (5)了解热处理工艺在实际生产中的应用。 三、教学内容及要求 绪论 教学要求: 1、明确学习本课程的目的。 2、了解本课程的差不多内容。 教学内容: 1、学习金属材料与热处理的目的 2、金属材料与热处理的差不多内容 3、金属材料与热处理的进展史

4、金属材料在工农业生产中的应用 教学建议: 1、结合实际生产授课,以激发学生学习本课程的兴趣。 2、展望金属材料与热处理的进展前景。 第一章金属的性能 教学要求: 1、掌握金属的力学性能,包括强度、塑性、硬度、冲击韧性、疲劳等概念及各力学性能的衡量指标。 2、了解金属的工艺性能。 教学内容: §1—1 金属的力学性能 一、强度 二、塑性 三、硬度 四、冲击韧性 五、疲劳强度 §1-2金属的工艺性能 一、铸造性能 二、锻造性能 三、焊接性能 四、切削加工性能

第二章金属的结构与结晶 教学要求: 1、了解金属的晶体结构。 2、掌握纯金属的结晶过程。 3、掌握纯铁的同素异构转变。 教学内容: §2-1 金属的晶体结构 一、晶体与非晶体 二、晶体结构的概念 三、金属晶格的类型 §2—2纯金属的结晶 一、纯金属的冷却曲线及过冷度 二、纯金属的结晶过程 三、晶粒大小对金属力学性能的阻碍 *四、金属晶体结构的缺陷 §2—3 金属的同素异构转变 教学建议: 1、晶体结构较抽象,可使用模型配合讲课。 2、讲透同素异构转变与结晶过程之间的异同点。 *第三章金属的塑性变形与再结晶 教学要求: 1、了解金属塑性变形的差不多原理。

《金属材料与热处理》教案

基本概念: 一、晶体与非晶体 晶体:表示的是原子呈有序和有规则排列的物质。(各向异性) 非晶体:表示是原子呈无序的杂乱无章的排列形式的物质。(各向同性) 晶体和非晶体的对比 项目晶体非晶体 定义原子呈有序、有规则排列的 物质 原子呈无序、无规则堆积的物 质 性能特点 具有规则的几何形状 有一定的熔点,性能呈各向 异性 没有规则的几何形状 有固定的熔点,性能呈各向同 性 典型物质石英、云母、明矾、食盐、 硫酸铜、糖、味精 玻璃、蜂蜡、松香、沥青、橡 胶 二、晶体的结构的概念(基本概念:) 1、晶格:表示原子在晶体中排列的有规律的空间格架。 2、晶胞:能够完整地反映晶格特征的最小几何单元。 3、晶面:金属晶体中通过原子中心的平 面。 4、晶向:通过原子中心的直线,可代表 晶格空间的一定方向。

单晶体——晶体内部原子的排列位向是完全一致的晶体。 多晶体——由许多晶粒组成的晶体。 单晶体表现出各向异性,多晶体显示出各向同性,也称“伪无向性”。 五、金属的晶体结构的缺陷 晶体缺陷——由于各种原因,实际晶体中原子的规律排列受到干 扰和破坏,使晶体中的某些原子偏离正常位置,造成原子排列的不完 全性。 1. 点缺陷——空位、间隙原子 和置代原子 无论是空位、间隙原子还是置代 原子,在其周围都会使晶格产生变 形,这种现象 称为晶格畸变。 上述三种晶体缺陷造成的晶格畸变区仅限于缺陷原子周围的较小 区域,故统称 为点缺陷。 2.线缺陷——位错 位错的特点之一是很容易在晶体中移动,金属材料的塑性变形就 是通过位错的运动来实现的。 在晶体中,位错的晶格畸变发生在沿半原子面端面的狭长区域, 故称为线缺陷。 单晶体示意图 多晶体示意图

金属材料与热处理(含答案)

《金属材料与热处理》期末考试试卷(含答案) 班级数控班姓名学号分数 一、填空题:每空1分,满分30分。 1.金属材料与热处理是一门研究金属材料的、、热处理与金属材料性能之间的关系和变化规律的学科。 2.本课程的主要内容包括金属材料的、金属的、金属学基础知识和热处理的基本知识。 3.金属材料的基本知识主要介绍金属的及的相关知识。 4.金属的性能主要介绍金属的和。 5.金属学基础知识讲述了铁碳合金的和。 6.热处理的基本知识包括热处理的和。 7.物质是由原子和分子构成的,其存在状态可分为气态、、。 8.固态物质根据其结构特点不同可分为和。 9.常见的三种金属晶格类型有、、密排六方晶格。 10.常见的晶体缺陷有点缺陷、、。 11.常见的点缺陷有间隙原子、、。 12.常见的面缺陷有金属晶体中的、。 13.晶粒的大小与和有关。 14.机械零件在使用中常见的损坏形式有变形、及。 15.因摩擦而使零件尺寸、和发生变化的现象称为磨损。 二、判断题:每题1分,满分10分。 1.金属性能的差异是由其内部结构决定的。() 2.玻璃是晶体。() 3.石英是晶体。() 4.食盐是非晶体。() 5.晶体有一定的熔点,性能呈各向异性。() 6.非晶体没有固定熔点。() 7.一般取晶胞来研究金属的晶体结构。() 8.晶体缺陷在金属的塑性变形及热处理过程中起着重要作用。() 9.金属结晶时,过冷度的大小与冷却速度有关。() 10.冷却速度越快,过冷度就越小。() 三、选择题:每题2分,满分20分。 1.下列材料中不属于晶体的是() A.石英 B.食盐 C.玻璃 D.水晶 2.机械零件常见的损坏形式有() A.变形 B.断裂 C.磨损 D.以上答案都对 3.常见的载荷形式有() A.静载荷 B.冲击载荷 C.交变载荷 D.以上答案都对 4.拉伸试样的形状有() A.圆形 B.矩形 C.六方 D.以上答案都对 5.通常以()代表材料的强度指标。 A.抗拉强度 B.抗剪强度 C.抗扭强度 D.抗弯强度 6.拉伸试验时,试样拉断前所能承受的最大应力称为材料的()

泡沫金属的特点、应用、制备与发展

收稿日期:2004-09-02 作者简介:陈文革(1969-) ,男(汉),陕西澄城县人,副教授,博士学位,主要从事纳米与功能器件材料研究。泡沫金属的特点、应用、制备与发展 陈文革!,张 强" (1.西安理工大学材料科学与工程学院,陕西西安710048;2.西安惠宇金属基复合材料公司, 陕西西安710000)摘要:本文阐述了多孔泡沫金属的结构特点、性能、应用以及制备技术,并展望了泡沫金属今 后的研究与发展。 关键词:泡沫金属;性能;制备;应用;综述中图分类号:TF 125.6文献标识码:A 文章编号:1006-6543(2005)02-0037-06 CHARACTER I ST I CS APPL I CAT I ON FABR I CAT I ON AND DEVELOP M ENT OF PORO S M ETALS CHEN W en -g e 1,ZHANG O ian g 2 (1.S choo l o f M aterials S cience and En g i neeri n g ,X i ’an n ivers it y o f T echno lo gy ,X i ’an 710048,Ch i na ; 2.M etal M atri x C om p os ite M aterial C or p oration o f X i ’an H ui y u ,X i ’an 710000,Ch i na ) Abstract :T he struct ure ,characteristics ,a pp lication and f abrication o f p orous m etals are su mm a-rized.T he research and develo p m ent o f p orous m etals i n t he f ut ure are f orecast. K e y words :p orous m etal ;characteristic ;f abrication ;a pp lication ;su mm arization 多孔泡沫金属自1948年美国的S oS ni k 利用汞在熔融铝中气化而得,使人们对金属的认识发生了重大转变,认为面粉可以发酵长大,金属也可以通过类似的方法使之膨胀,从而打破了金属只有致密结构的传统概念。多孔泡沫金属材料实际上是金属与气体的复合材料,正是由于这种特殊的结构,使之既有金属的特性又有气泡特性,如比重小、比表面大、能量吸收性好、导热率低(闭孔体)、换热散热能力高(通孔体)、吸声性好(通孔体)、渗透性优(通孔体)、电磁波吸收性好(通孔体)、阻焰、耐热耐火、抗热震、气敏(一些多孔金属对某些气体十分敏感)、能再生、加工性好等。因此,作为一种新型功能材料,它在电子、通讯、化工、冶金、机械、建筑、交通运输业中,甚至在航空航天技术中有着广泛的用途。 1 泡沫金属的结构特点 图1所示常见泡沫金属的显微结构示意图,归 纳起来有以下特点。 !#!孔径大 多孔泡沫金属材料与粉末冶金多孔材料相比,孔径较大,贯通孔多。泡沫金属材料的孔径一般在0.1!10mm 之间。!#"孔隙率高 多孔泡沫金属材料的孔隙率随其种类不同而不同,在40%!98%的范围内变化。!#$密度低 随孔隙率的提高,泡沫金属的密度降低,一般为同体积金属的3/5!1/50不等。例如孔隙率大于 63%的泡沫铝合金,其密度可达1g /c m 3以下,能够浮于水面上。 2 泡沫金属的特性和用途 泡沫金属材料由于其特殊的结构、性能特点,具有 很高的开发研究价值,并在能源、交通、消声减震、过滤 第15卷第2期2005年4月 粉末冶金工业 POW DER M ETALLURGY I NDUSTRY V o l .15N o.2A p r .2005

《金属材料与热处理》课程标准

《金属材料与热处理》课程标准 一、课程性质、定位与设计思路 (一)课程性质 本课程是机械制造及自动化专业高职学生的一门必修专业基础课,讲授金属材料与热处理相关理论知识的专业课。主要内容包括:金属材料的分类,金属材料的结构,金属材料的性能测试,铁碳合金组织,金属材料的常规热处理,金属材料的表面热处理,金属材料的工程选用等。使学生初步认识材料的性能、了解晶体结构、掌握铁碳合金相图、掌握常用材料的牌号及其用途,并能够合理选择热处理方法。 (二)课程定位 通过本课程的学习,学生具有处理简单的金属材料与热处理力学性能测试和硬度性能测试的能力,具有分析金属的晶体结构、二元合金相图和铁碳合金相图的基本能力,具有初步的钢热处理知识,并应用钢热处理知识完成钢的热处理能力,具有鉴别金属材料与的能力,具有选择热处理方式的能力,具有选择机械工程常用材料的能力。同时通过对典型机械材料的分析,培养学生分析问题、解决问题的能力。 (三)课程设计思路

本课程是根据高职教育机械设计及制造专业人才培养目标,通过素质教育、金属材料与热处理知识提升、技能操作以及策略的制定与应用,充分体现素质、知识、能力“三位一体”的要求。本课程应用项目任务驱动和项目问题引入来激发学生的学习动机和兴趣,遵循以“校企合作,工学结合”的教学理念设计课程。 1.主要结构 课程教学内容根据高职学生对金属材料理论知识和应用能力的要求,精简学科理论知识,突出理论与实际的“前因后果”关系,按照“感性认识→理性认识→综合利用”对教学内容进行序化,使学生由浅入深,从具备金属材料的基本概念和初步鉴别能力,到掌握金属材料的本质和具备显微鉴别能力,再到具备金属材料及热处理的工程应用能力。 2.课程设计理念 (1)贴近生产岗位。本标准以企业需求为基本依据,加强实践性教学,以满足企业岗位对高技能人才的需求作为课程教学的出发点,使本书内容与相关岗位对从业人员的要求 相衔接。 (2)借鉴国内外先进职业教育教学模式,突出项目教学。 (3)工学结合。培养理论联系实际,学以致用,在“做中学”的优良学风。突出实践,立足于实际运用。 (4)充分应用多媒体教学的优势,很多的知识以图、表、视频、动画等方式进行展现。 (5)实施项目教学,项目制作课题的考评标准具体明确,直观实用,可操作性强。 (6)突出高职教育特点,重视实践教学环节,培养学生的创新能力和实践能力。 (四)本课程对应的职业岗位标准 本课程的学习内容,与机械加工类的职业岗位的要求是相符的,如:中高级

金属材料与热处理

金属材料的性能(材料的性能一般分为使用性能和工艺性能两大类,使用性能主要包括力学性能、物理性能、化学性能)(选择题) 1.力学性能:强度(屈服强度、抗拉强度)、塑性、弹性与刚度、硬度(布氏 硬度,洛氏硬度,维氏硬度)、冲击韧性、疲劳强度 2.物理性能:密度、熔点、热膨胀性、导热性、导电性、 3.化学性能:耐蚀性、抗氧化性 常见金属的晶格类型—— 1.体心立方晶体具有这种晶格的金属有钨(W),钼(M),铬(Cr),钒(V), α-铁(α-Fe)等 2.面心立方晶格具有这种晶格的金属有金(Au),银(Ag),铝(Al),铜(Cu),镍 (Ni),γ-铁(γ-Fe)等 3.密排六方晶格具有这种晶格的金属有镁(Mg),锌(Zn),铍(Be),α- 钛(α-Ti) 根据晶体缺陷的几何特点,可分为 1.点缺陷点缺陷是指在晶体中长,宽,高尺寸都很小的一种缺陷,常见的有 晶格空位和间隙原子 2.线缺陷线缺陷是指在晶体中呈线状分布(在一维方向上的尺寸很大,而别 的方向则很小)原子排列不均衡的晶体缺陷,主要指各种类型的位错 3.面缺陷面缺陷是指在二维方向上吃醋很大,在第三个方向上的尺寸很小, 呈面状分布的缺陷 位错:位错是指晶格中一列或若干列原子发生了某种有规律的错排现象。 铁素体:铁素体是碳溶于α-Fe中形成的间隙固溶体,为体心立方晶格,用符号F(或α)表示 简化后的Fe-Fe3C相图,画图啊亲,三个学期的铁碳相图啊有木有,都是泪啊有木有!!!书P9 共析钢由珠光体向奥氏体的转变包括以下四个阶段:奥氏体形核,奥氏体晶核长大,剩余渗碳体溶解和奥氏体成分均匀化 影响奥氏体晶粒长大的因素: 1.加热温度和保温时间加热温度愈高,保温时间愈长,奥氏体晶粒愈粗大

复合泡沫金属材料缓冲吸能性能研究

工学硕士学位论文 复合泡沫金属材料缓冲吸能性能研究 丁佰锁 哈尔滨工业大学 2006年6月

国内图书分类号:O347.3 国际图书分类号:531.6.61 工学硕士学位论文 复合泡沫金属材料缓冲吸能性能研究 硕士 研究生:丁佰锁 导师:孙毅教授 申 请 学 位:工学硕士 学科、专业:固体力学 所在单位:航天学院航天科学与力学系 答辩日期:2006年6月 授予学位单位:哈尔滨工业大学

Classified Index: O347.3 U.D.C: 531.6.61 Dissertation for the Master Degree in Engineering ENERGY ABSORPTION PROPERTY OF COMPOSITE METALLIC FOAMS Candidate:Ding Bai Suo Supervisor:Prof. Sun Yi Academic Degree Applied for: Master of Engineering Specialty:Solid Mechanics Affiliation: Dep. Of Astronautics and Mechanics Date of Defence:July, 2006 Degree-Conferring-Institution: Harbin Institute of Technology

哈尔滨工业大学工学硕士学位论文 摘要 在很多工程应用中,为了防止冲击与振动所造成的破坏,常常使用吸能材料作为防护层,在众多的吸能材料中,泡沫材料作为一种具有优越缓冲吸能性能的材料,得到了越来越广泛的关注。本文利用挤压铸造法制备了一种新型的复合泡沫金属材料,该材料由空心微珠填充铝合金基体而成,它是一种应用前景非常广阔的吸能与冲击防护材料。 本文采用理论分析、数值仿真与实验的方法对复合泡沫金属的静动态力学响应与吸能性能进行了相应的研究。 对多种不同玻璃微珠含量,不同基体合金和热处理方式的复合泡沫金属进行了准静态压缩试验和落锤式冲击试验,获得了材料的压缩杨氏模量和屈服强度等数据,得到了压缩应力应变曲线,计算了相应的吸能能力与理想吸能效率,探讨了不同因素对复合材料压缩力学响应与吸能特性的影响规律。描述了复合泡沫金属材料的吸能机制。根据刚度等效原则,将复合材料圆柱试样的轴向冲击破坏过程简化为等效均质圆柱的一维碰撞问题,应用一维应力波传播的理论描述了复合材料圆柱试样受轴向冲击的破坏过程,推倒了在冲击过程中材料吸收的冲击动能。 观察了不同复合泡沫金属材料试样的宏观破坏形貌,同时借助扫描电境,对不同复合材料准静态压缩与轴向冲击破坏后试件的切片进行了微观分析,探讨了材料的宏观与细观破坏机制。 最后,利用通用有限元软件ANSYS,对复合材料静态压缩试验进行了数值模拟,利用胞元法思想建立了复合泡沫金属材料的微观结构模型,得到了材料在静态位移载荷和静态压力载荷作用下的变形与应力分布规律,进一步探讨了材料的微观损伤机理。 本文的研究工作为复合泡沫材料失效形式的判断与行优化设计提供了相应的依据。 关键词复合泡沫金属;缓冲吸能;有限元方法;压缩;冲击, - I -

你知道泡沫金属吗

你知道泡沫金属吗? 人们熟知泡沫塑料,却很少知道泡沫金属的存在。发明泡沫金属的是美国杜克大学工程学教授富兰克林·科克斯,他是一位研究金属材料的专家,对金属材料有锐敏的嗅觉。 大多数人对金属密度的认识都比较肤浅,以为只不过是一种物理性能,只表示谁轻谁重而已。密度大的就重,像铂;密度小的就轻,如铝。科克斯对密度的认识则比别人深刻得多。他对比各种金属的密度和它们的化学性质后,意外地发现,金属的密度与其化学活性有密切的关系,即金属的密度越小,它的化学活性就越大。比如锂,是金属中密度最小的,每立方厘米才0.534克,比水还轻,因此特别活泼,在室温下就能和空气中的氧、氮起剧烈反应,所以必须保存在凡士林或石蜡中。而铂、金、铱、锇等贵金属的密度大,像铂的密度达21.45克/立方厘米,在硫酸、盐酸甚至在王水中都能“游泳”。 科克斯在20世纪60年代就宣布了这个被许多人视而不见的规律。由于这个规律的确算不上重要和深奥,在当时也没发现什么特殊的实用价值,因此没有受到人们的重视。到了20世纪90年代,科克斯提出一个新思想:在航天领域中,人们为节省燃料和各种费用,总希望用质轻而结实的材料。像锂、镁等金属在地面上不宜被用作结构材料,因为它们太活泼,易氧化着火,但它们在太空中却大有用武之地,因为在太空中没有引起锈蚀和化学反应的空气,那里几乎是真空。于是,科克斯决定对这些轻金属进行改造。他知道,塑料如果进行泡沫化,可以使密度成倍成倍地降低,变成很轻、很实用的泡沫塑料。如果把这些金属也变成泡沫金属,它们的密度也会变得更小,可以在水中浮起来。 1991年,科克斯利用“哥伦比亚号”航天飞机进行了一次在微重力条件(失重状态)下制造泡沫金属的试验。他设计了一个石英瓶,把锂、镁、铝、钛等轻金属放在一个容器里,用太阳能将这些金属熔化成液体。然后在液体中充进氢气,产生大量气泡。这个过程有点像用小管往肥皂水中吹气一样,当金属冷凝后就形成了到处是微孔的泡沫金属。 有人会问,这种泡沫金属能做结构材料吗?这一点不用担心。实验证明,用泡沫金属作为结构材料做成的梁比同样重量的实心梁刚性高得多。因为泡沫使材料的体积大大扩张,获得更大的横截面,所以用泡沫金属制造的飞行器,可以把总重量降低一半左右。用泡沫金属建立太空站还有一个优点:即当空间站结束其使命时,可以让它们重返大气层并在大气层中迅速彻底地燃烧、全部化成气体,这样可以减少空间垃圾。

金属材料与热处理课程标准

《金属材料与热处理》课程教学标准 课程名称:金属材料与热处理 适用专业: 1.前言 1.1课程性质 《金属材料与热处理》课程是数控专业必修的技术基础课。该课程理论性较强,新概念较多,同时又与生产实际有着密切联系。该课程主要讲授金属材料典型组织、结构的基本概念,金属材料的成分、组织结构变化对性能的影响,热处理的基本类型及简单热处理工艺的制定,合金钢种类、牌号、热处理特点及应用,为学生从事机械设计、制造及相关的工作打下基础。 1.2设计思路 以“项目为主线,任务为主题”,采用“项目导向、任务驱动”相结合的教学模式,实现教、学、做、练一体化。为加强学生创造思维和工程技术素质的培养,根据学生个性特点与发展的需要,本门课程建议采用讲课、自学、习题课、辅导课、报告会等多种形式组织教学。本门课程可灵活采用全班学习、分组学习等学习形式,也可以组建课外兴趣小组进行知识拓展学习。 教师要认真研究学生特点,针对学生实际情况,结合教学内容,多种教学方法手段综合运用。在教学方法上,将项目任务引入课程,将理论讲授包含在项目训练中,使学生在实践中掌握理论、学习知识,将生产中的新工艺、新方法、新技术引入课堂。采用项目式、启发式、互动式、案例式等教学方法,提高学生的学习兴趣。在教学手段上,充分利用现代多媒体电子教学,视频教学、实物教学、现场教学、网络教学等将现代科学技术充分应用于教学改革之中。 2.课程目标 本课程的任务是使学生掌握金属材料与热处理的基本知识,为学习专业理论,掌握专业技能打好基础。通过本课程的学习,学生应达到下列基本要求: ●了解金属学的基本知识 ●掌握常用金属材料的牌号、性能及用途

金属材料及热处理教学计划

金属热处理工培训计划 1.培训目标 1.1总体目标 培养中级技术工人所必须的一门技术基础课。其内容包括金属的机械性能、金属学的基础知识及金属材料等部分。并达到一定熟练程度。 1.2理论知识培训目标 (1)本课程的任务是使学生掌握金属材料和热处理的基础知 识,为学习各门专业工艺学课及今后从事生产技术工作打下必要的基础。 (2) 通过本课程的教学,应使学生达到下列基本要求: ①基本掌握常用金属材料的牌号,成分,性能及应用范围。 ②了解金属材料的内部结构,以及成分,组织和性能三者之间的一般关系。 ③懂得金属材料热处理的一般原理。 ④明确热处理的目的,了解热处理的方法及实际应用。 1.3操作技能培训目标 ①会评价工程材料力学性能指标。 ②运用Fe-Fe3C平衡相图解决工程问题; ③能为工程零件及结构正确选材; ④能为工件制定的热处理工艺参数。 2.教学要求 2.1理论知识要求

2.1.1职业道德 2.1.2会评价工程材料力学性能指标。 2.1.3运用Fe-Fe3C平衡相图解决工程问题; 2.1.4能为工程零件及结构正确选材; 2.1.5能为工件制定的热处理工艺参数。 2.1.6热处理工艺管理知识。 2.1.7热处理各种淬火介质的冷却性能知识。 2.1.8热处理辅助设备、控温仪表知识。 2.1.9.热处理质量检验及校正知识。 2.2操作技能要求工装制作基础知识 (1)识图及绘图。 (2)钳工操作一般知识。 电工知识 (1)通用设备常用电器的种类及用途。 (2)电气传动及控制原理基础知识。 (3)安全用电知识。 安全文明生产与环境保护知识 (1)现场文明生产要求。 (2)安全操作与劳动保护知识。 (3)环境保护知识。 质量管理知识

《金属材料与热处理》教学大纲.doc

《金属材料与热处理》教学大纲 一、说明 1、课程的性质和内容 金属材料与热处理是一门技术基础课。其主要内容包括:金属的性能、金属学基础知识、钢的热处理、常用金属材料及非金属材料的牌号等。 2、课程的任务和要求 本课程的任务是使学生掌握金属材料与热处理的基本知识,为学习专业理 论,掌握专业技能打好基础。通过本课程的学习,学生应达到下列基本要求: (1)了解金属学的基本知识。 (2)掌握常用金属材料的牌号、性能及用途。 (3)了解金属材料的组织结构与性能之间的关系。 (4)了解热处理的一般原理及其工艺。 (5)了解热处理工艺在实际生产中的应用。 3、教学中应注意的问题 (1)认真贯彻理论联系实际的原则,注重学生素质的全面提高。 (2)在组织教学时,应根据所学工种,结合实际生产,选择不同的学习内容,有“*”的为选学内容。 (3)加强实验和参观,增强感性认识和动手能力。 (4)有条件的可辅以电化教学,是教学直观而生动。 二、教学要求、内容、建议及学时分配。(总学时80课时,开课时间为:高 一上期) 绪论总学时1 教学要求 1、明确学习本课程的目的。 2、了解本课程的基本内容。 教学内容

1、学习金属材料与热处理的目的。 2、金属材料与热处理的基木内容。 3、金属材料与热处理的发展史。 4、金属材料在工农业生产中的应用。 教学建议 1、结合实际生产授课,以激发学生学习本课程的兴趣。 2、展望金属材料与热处理的发展前景。 第一章金属的结构与结晶总学时2 教学要求 1、了解金属的晶体结构。 2、掌握纯金属的结晶过程。 3、掌握纯铁的同素异构转变。 教学内容 §1-1金属的晶体结构 一、晶体与非晶体 二、晶体结构的概念 三、金属晶格的类型 § 1-2纯金属的结晶 一、纯金属的冷却曲线及过冷度 二、纯金属的结晶过程 三、晶粒大小对金属力学性能的影响 四、金属晶体缺陷 § 1-3金属的同素异构转变 教学建议 1、晶体结构较抽象,可使用模型配合讲课。 2、讲透同素异构转变与结晶过程之间的异同点。

泡沫金属的现有制备方法总结

1.2.1浇注法 (A)熔体发泡法 这种方法的工艺过程是:向熔融的金属中加入增粘剂,使其粘度提高,然 后加入发泡剂,发泡剂在高温下分解产生气体,通过气体的膨胀使金属发泡, 然后使其冷却下来或者浇注可以得到泡沫金属。常用的发泡剂为TIHZ、ZrH:等金属氢化物。 (B)颗粒浇注法 这种方法通过把熔融金属浇注到充满散状颗粒的模中,而获得具有连通的 蜂窝状结构或海绵状结构的泡沫金属。这些颗粒可以是耐热和可溶的(如氯化钠)时,它们可以从铸件中被浸洗掉,形成具有连通孔隙的多孔金属;当使用 松散的非可溶性填料(如多孔陶土球、泡沫玻璃、空心刚玉球、泡沫碳等无机 填料)时,则可获得金属一颗粒复合体。 (C)球形颗粒加入法 先将金属在塔竭中熔化,然后加入颗粒或中空球并同时进行搅拌,使这些 颗粒均匀地分散到金属熔体中去,使金属的温度降低,当金属熔体的粘度足以 使金属熔体不再发生偏析和分层时,即颗粒物质在金属熔体中被固定了,此时 停止搅拌并让熔体凝固下来。这种方法适用于制备高熔点的泡沫金属,如泡沫 钨等。 (D)失蜡浇注法 此法采用液态高熔点物质充填海绵状泡沫塑料的孔隙,使之硬化后,加热 使塑料气化而获得海绵状孔隙的铸型。将液态金属浇入此铸型,冷却凝固后除 去高熔点物质后,便得到与原海绵状泡沫塑料模具有相同结构的泡沫金属。 1.2.2沉积法 (A)电镀法 该方法是将所需的金属镀到经过硬化和化学预镀的聚氨基甲酸乙脂表面 上,并达到所需的厚度,再通过热分解法将聚氨基甲酸乙脂去掉,得到具有非 常均匀孔隙分布及相当高孔隙率的泡沫金属。 (B)阴极溅镀沉积法 通过在一定的惰性气体压力下对一基片进行溅射,从而得到被捕获惰性气 体原子均匀分布的金属片,然后把它加热到高于其熔点的温度,并一直加热到 足以加热使那些被捕获的气体膨胀,形成具有封闭孔的蜂窝状的泡沫金属。(C)气相蒸发沉积法 在较高的惰性气氛中缓慢蒸发金属材料,形成金属烟。金属烟在自身重力 和惰性气流携带下沉积,疏松地堆砌起来,形成亚微米尺度的多孔泡沫结构。 1.2.3粉末冶金法 (A)粉体发泡法 该法用于一些熔点较高的金属和合金,如不锈钢、铜、镍、铁等。将少量 的发泡剂加入金属或合金的粉末中,将混匀的混合物压制成无残余通孔的密实 块体,加热到接近或高于混合物熔点的温度,发泡剂分解释放出大量的气体, 迫使致密的压实材料膨胀,形成多孔隙的泡沫材料。粉体发泡法制备泡沫铝的 工艺流程如图1一4所示。 (B)粉浆法

《金属材料与热处理》教学方法例谈

《金属材料与热处理》教学方法例谈 作者:施玉娴 来源:《职业·中旬》2010年第12期 《金属材料与热处理》是一门与生产实践联系比较密切的专业基础课程,大部分学生对该课程不太感兴趣。那么,如何激发他们的学习热情,培养学习兴趣,为今后的专业理论与实践技能的学习打好基础呢?德国著名教育学家第斯多惠说:“我们认为教学的艺术不在于传授的本领,而在于激动、唤醒、鼓舞。”笔者结合多年的教学实践,认为以下三种教学方法效果较好。 一、设计好入门课,吸引学生 在上《金属材料与热处理》的第一节课时,笔者带了一透明塑料整理箱的“杂物”,放在讲台,学生就会产生疑问了……上课后,笔者就让学生各抒己见,说说这个宝箱的“用途”。 首先,笔者从整理箱中取出“杂物”(发夹、手表链、铝合金、不锈钢球、轴承滚珠、自行车链条、水果刀、挖耳勺、钥匙、铁锁、铜锁等),按学号顺序请学生说出这些物品的名称。这样,每一个同学都有了发言的机会。作为老师,要对他们的回答及时加以表扬、鼓励,让他们对新的老师、新的学校产生好感,从而对所学的新知识有一个良好的开端。 然后,将“杂物”分组。每组派一名同学在黑板上写出物品名称,其余的学生思考这些物品的共同点。这时,学生因急于知道结果而凝神思虑,注意力高度集中,明显提高了学生接受新知识的能力。笔者在这时恰到好处地给出金属材料的定义,并要求每人用一张白纸写出更多的金属材料的应用,看谁写得多,选出前五名。通过举例,让学生明白了金属材料的定义,更让他们发现金属材料在他们的日常生活中无处不在,从而使他们认识到这门课程的重要性和实用性。 最后,根据学生的表现给同学以奖励,将箱中一些小挂件、小装饰品赠送给学生。鼓励学生注意收集一些金属材料制品,留待以后上课讲解它们的特性、用途等。结合教材让学生讨论几个相关问题,并在轻松愉快的环境下布置文字作业以及实践性作业。 二、多种方法并用,讲解难点 以“金属和合金的晶体结构及其结晶过程;铁碳合金相图的建立、识读和运用”这部分内容为例。对这部分知识的教学,可以先用多媒体教学课件播放有关晶体和非晶体的课件;用挂图展示体心立方晶格、面心立方晶格和密排六方晶格的结构特征;教师在黑板上画出三种晶格的结构示意,然后现场用牙签、橡皮泥、塑料小球等一些手工材料动手做成模型。这样能让学生较为形象地掌握金属的晶体结构是由原子有规则的排列所形成的。原子排列的具体方式不同,便组成了几种不同类型的晶格,有助于学生加深对纯铁组织中不同类型z晶格对碳元素的溶解

金属材料与热处理教学大纲

全国技工学校机械类 金属材料与热处理教学大纲 一、说明 1、本课程的性质和内容: 金属材料与热处理是培养中级技术工人所必须的一门技术基础课。其内容包括钢铁的冶炼、金属的性能、金属学的基础知识、钢的热处理及金属材料部分。 2、本课程的任务和基本要求: (1)本课程的任务是使学生掌握金属材料和热处理的基础知识,为学习各门工艺学课程和生产实习以及今后从事生产技术工作打下必要的基础。 (2)通过本课程的教学,应使学生达到下列要求: 1)基本掌握常用金属材料的牌号、成分、性能及应用范围; 2)了解金属材料的结构及其成分、组织和性能之间的一般关系; 3)懂得金属材料处理的一般原理; 4)明确热处理的目的,了解常用热处理工艺及实际应用。 3、教学中应注意的几个问题: (1)认真贯彻理论联系实际的原则,紧密结合生产实际。 (2)正确掌握大纲的深广程度,合理处理教材内容。本大纲中,记有“*”符号的内容,供不同工种选用。 (3)加强实验和参观,增加感性认识。 (4)有条件的还可辅以电化教学(如幻灯、录像等)的手段,是教学活动直观而生动地进行。

绪论 教学的目的和要求: 1、明确学习本课程的目的。 2、了解本课程的基本内容。 教学内容: 1、学习金属材料与热处理的目的。 2、金属材料与热处理的基本内容。 3、我过金属材料与热处理方面的成就和发展概况。 教学建议: 1、尽量利用学生已有的感性认识,说明学习金属材料与热处理的重要性。 2、结合我国国情,简述金属材料与热处理的发展概况。 第一章炼铁与炼钢 教学的目的与要求 1、明确金属材料的含义; 2、了解钢铁材料的一般生产过程; 3、了解钢铁材料中常存元素的来源。 教学内容: 1、金属材料。 2、金属材料的分类。 3、炼铁。 4、炼钢。 教学建议: 1、金属材料的教学从金属的概念引入到金属材料,内容较为简单,在教学过程中要讲清。 2、以讲清钢铁冶炼的实质及基本过程为主,化学反应不作重点要求。 3、如条件许可,最好组织适合的参加。 第二章金属的性能 教学的目的与要求: 1、了解金属的物理、化学性能的概念及应用。 2、掌握金属的主要力学性能的概念及其符号的表示方法(σs、σr0.2、σb、 ψ、δ、HBS(HBW)、HRC、HV、σ-1); 3、了解金属材料的工艺性能。 教学内容: 1、金属材料的物理、化学性能。 2、金属的力学性能。 概述:金属的力学性能在机器制造业中的重要性,载荷的种类、变形形式及内力与应力。 强度、塑性(拉伸式样、拉伸曲线、强度指标、塑性指标)。 硬度(布氏、洛氏、维氏等硬度实验的原理、优缺点及应用范围)。 任性(冲击韧性的实验原理、韧性指标、小能量多冲筒介)。 疲劳强度的概念。

相关文档