文档视界 最新最全的文档下载
当前位置:文档视界 › 弯曲试验

弯曲试验

弯曲试验
弯曲试验

钢筋弯曲试验

试验目的:冷弯试验是用以检查钢材承受弯曲变形的能力,观察其缺陷。

(1)试验长度根据仪器设备确定,一般为5d+150mm,d为公称直径;(2)选择钢筋冷弯头(如下表)安装冷弯头

对于光圆钢筋弯心直径;D=d

(3)选择支问距离:(此间距在试验期问应保持不变)

L=(D+3a)±a/2

a-公称直径,D--弯心直径

(一)试验准备:

1室内温度控制在:10~35℃。(对温度要求严格时:23℃±5℃)。

2检查试验仪器是否正常运行并预热仪器。

(二)试验步骤:

1根据上面内容选择好冷弯压头,

2计算并调好间距,把样品放在支辊正中间。样品中心与冷弯头对准3调整冷弯头,使其刚好与样品接触数值清零后,开始加压。试验速

率控制在(1±0.2)mm/s

5冷全要求的角度后,停止加压,松油。取出样品,察看弯曲最大部分有无裂缝、起层利落状况,判定是否合格

6试验结束后,立即切断仪器电源,擦拭仪器并归位。

路基弯沉检测方法

路基弯沉检测方法 路面弯沉值就是从整体上反映了路面各层次的整体强度,路基的强度一般用回弹模量来反映。如果弯沉值过大,其变形也就越大,路面各层也就容易破裂。 路基弯沉检测的基本规定: 频率:测定代表弯沉值时,应以每公里每一双车道为一评定路段。每路段检查80~100个点。对多车道公路必须按车道数与双车道之比,相应增加测点数。 方法:路面弯沉的计算 路面测点的回弹弯沉值:LT=2(L1-L2) 式中LT——在路面温度T时的回弹弯沉值,0.01mm。 L1——车轮中心临近弯沉仪测头时百分表的最大读数,0.01mm。 L2——汽车驶出弯沉影响半径后百分表的终读数,0.01mm。当需要进行弯沉仪支点变形修正时,路面测点的回弹弯沉值: LT=2(L1-L2)+6(L3-L4) 式中L3——车轮中心临近弯沉仪测头时检验用弯沉仪的最大读数,0.01mm。 L4——汽车驶出弯沉影响半径后检验用弯沉仪的终读数,0.01mm。 弯沉代表值是弯沉测量值的上波动界限,用下式计算:LR=L+

ZA·S 式中LR——一个评定路段的代表弯沉,0.01mm。 L——一个评定路段内经各项修正后的各测点弯沉的平均值。 S——一个评定路段内经各项修正后的全部测点弯沉的标准差。 ZA——与保证率有关的系数,采用下列数值。 高速、一级公路ZA=2.0 二级公路ZA=1.645 二级以下公路ZA=1.5 计算平均值和标准差时,应将超出L±(2~3)S的弯沉特异值舍弃。对舍弃的弯沉值过大的点,应找出其周围界限进行处理。

T 0951—2008 贝克曼梁测定路基路面回弹弯沉试验方法

T 0951—2008 贝克曼梁测定路基路面回弹弯沉试验方法 1、目的与适用范围 1.1 本方法适用于测定各类路基路面的回弹弯沉以评定其整体承载能力,可供路面结构设计使用。 1.2 沥青路面的弯沉检测以沥青面层平均温度20℃时为准,当路面平均温度在20℃±2℃以内可不修正,在其他温度测试时,对沥青层厚度大于5cm的沥青路面,弯沉值应予温度修正。 2、仪具与材料技术要求 本方法需要下列仪具与材料: (1)标准车:双轴,后轴双侧4轮的载重车。其标准轴荷载、轮胎尺寸、轮胎间隙及轮胎气压等主要参数应符合表T0951的要求。测试车应采用后轴10t标准轴载BZZ-100的汽车。 (2)路面弯沉仪:由贝克曼梁、百分表及表架组成。贝克曼梁由合金铝制成,上有水准泡,其前臂(接触路面)与后臂(装百分表)长度比为2:1。弯沉仪长度有两种:一种长3.6m,前后臂分别为2.4m和1.2m;另一种加长的弯沉仪长5.4m,前后臂分别为3.6m和1.8m。当在半刚性基层沥青路面或水泥混凝土路面上测定时,应采用长度为5.4m的贝克曼梁弯沉仪;对柔性基层或混合式结构沥青路面可采用长度为3.6m的贝克曼梁弯沉仪测定。弯沉采用百分表量得,也可用自动记录装置进行测量。 (3)接触式路表温度计:端部为平头,分度不大于1℃。 (4)其他:皮尺、口哨、白油漆或粉笔、指挥旗等。 表T0951 弯沉测定用的标准车参数

3、方法与步骤 3.1 准备工作 (1)检查并保持测定用标准车的车况及制动性能良好,轮胎胎压符合规定充气压力。 (2)向汽车车槽中装载(铁块或集料),并用地中衡称量后轴总质量及单侧轮荷载,均应符合要求的轴重规定,汽车行驶及测定过程中,轴重不得变化。 (3)测定轮胎接地面积:在平整光滑的硬质路面上用千斤顶将汽车后轴顶起,在轮胎下方铺一张新的复写纸和一张方格纸,轻轻落下千斤顶,即在方格纸上印上轮胎印痕,用求积仪或数方格的方法测算轮胎接地面积,准确至0.1cm2。 (4)检查弯沉仪百分表量测灵敏情况。 (5)当在沥青路面上测定时,用路表温度计测定试验时气温及路表温度(一天中气温不断变化,应随时测定),并通过气象台了解前5d的平均气温(日最高气温与最低气温的平均值)。 (6)记录沥青路面修建或改建材料、结构、厚度、施工及养护等情况。 3.2 测试步骤 (1)在测试路段布置测点,其距离随测试需要而定。测点应在路面行车车道的轮迹带上,并用白油漆或粉笔划上标记。 (2)将试验车后轮轮隙对准测点后约3~5cm处的位置上。 (3)将弯沉仪插入汽车后轮之间的缝隙处,与汽车方向一致,梁臂不得碰到轮胎,弯沉仪测头置于测点上(轮隙中心前方3~5cm处),并安装百分表于弯沉仪的测定杆上,百分表调零,用手指轻轻叩打弯沉仪,检查百分表应稳定回零。 弯沉仪可以是单侧测定,也可以是双侧同时测定。 (4)测定者吹哨发令指挥汽车缓缓前进,百分表随路面变形的增加而持续向前转动。当表针转动到最大值时,迅速读取初读数L1。汽车仍在继续前进,表针反向回转,待汽车驶出弯沉影响半径(约3m以上)后,吹口哨或挥动指挥红旗,汽车停止。待表针回转稳定后,再次读取终读数L2。汽车前进的速度宜为5km/h左右。

ANSYS三点弯曲计算报告书

三点弯曲计算报告书 2011.3.20

1.算例说明: 三点弯曲实验是材料性能测试中常采用的一种方法,通过该方法可以方便的获得材料的弯曲强度和弯曲模量。 算例试样尺寸参考了实际实验采用的尺寸,试样的支撑及加载方式如图1所示,图2给出了试样的尺寸信息。 图1 三点弯曲示意图 图2 试样尺寸信息

2. 问题分析: 材料特性为各向同性的简支梁,其弯曲应力存在理论解,根据材料力学相关理论[1]。对于三点弯曲,各截面的应力可以通过公式(*)算出,最大拉压应力出现在集中力作用截面处 。 z I My =σ (*) 式中M 表示弯矩,y 表示截面上点到杆件中性面的距离, z I 表示截面对中性轴的惯性矩。 根据公式(*)可以方便的计算出最大应力值: MPa I y M m m I m m h y m m N FL M z z 76.1188022/4.47504 max max max 4 max max =====?==σ 3. 问题求解 从图1中可以看出试样的支撑形式属于简支梁,载荷为单点集中力,据此得到计算用模型及约束和载荷方式。图4 给出了有限元网格划分。 关材料属性信息:

弹性模量 Elastic Modulus=3.3Gpa 泊松比Poisson ratio=0.3 图3 试样的有限元模型 4.结果分析: 应力分布见图4所示,从图中可以看出,计算结果与理论分析一致,最大应力发生在集中力作用的截面处,有限元计算结果与理论解完全相同。

图4 三点弯曲应力分布图(上图为等轴视图下图为前视图)

参考文献 [1]范钦珊,殷雅俊,虞建伟 . 材料力学(第2版), 清华大学出版社, 2008, P109

GB232金属弯曲试验方法

金属弯曲试验方法 GB232–88 本标准参照采用国际标准lSO 7438–1985《金属材料–弯曲试验》。 1 主题内容与适用范围 本标准规定了金属材料弯曲试验方法的适用范围、试验原理、试样、试验设备、试验程序及试验结果评定。 本标准适用于检验金属材料承受规定弯曲角度的弯曲变形性能。 2 引用标准 GB 2975钢材力学及工艺性能试验取样规定 3 试验原理 将一定形状和尺寸的试样放置于弯曲装置上,以规定直径的弯心将试样弯曲到所要求的角度后,卸除试验力检查试样承受变形性能。 4 符号和名称 弯曲试验中使用的符号和名称如下表和图1、图2所示。

5 试验设备 5.1弯曲试验可在压力机或万能试验机上进行。试验机应具备下列装置。 5.1.1应有足够硬度的支承辊,其长度应大于试样的宽度或直径。支辊间的距离可以调节。 5.1.2具有不同直径的弯心,弯心直径由有关标准规定,其宽度应大于试样的宽度或直径,弯心应有足够的硬度。 5.2厚度不大于4mm的试样,可在虎钳上进行弯曲试验,弯心直径按有关标准规定。 6 试样 6.1试验时用圆形、方形、长方形或多边形横截面的试样。弯曲外表面不得有划痕。方形和长方形试样的棱边应锉圆,其半径不应大于2mm。 6.2试样加工时,应去除剪切或火焰切割等形成的影响区域。 6.3圆形或多边形横截面的材料作弯曲试验时,如果圆形横截面直径或多边形横截面的内切圆直径不大于35mm,试样与材料的横截面相同。若试验机能量允许时,直径不大于50mm的材料亦可用全截面的试样进行试验。当材料的直径大于35mm,则加工成直径为25mm的试样,或如图3加工成试样。并保留一侧原表面。弯曲试验时,原表面应位于弯曲的外侧。 6.4当有关标准未作具体规定时,板材厚度不大于3mm,试样宽度为20±5mm。 6.5板(带)材、型材和方形横截面材料的厚度不大于25mm时,试样厚度与材料厚度相同,试样宽度为试样厚度的2倍,但不得小于10mm;当材料厚度大于25mm时,试样厚度应加工成25mm,并保留一个原表面,其宽度应加工成30mm。当试验机能量允许时,厚度大于25mm的材料,可以全厚度的试样进行试验,其宽度为试样厚度的2倍。仲裁时,按厚度减薄加工的试样进行试验。弯曲时,原表面位于弯曲的外侧。 6.6弯曲试样长度根据试样厚度和弯曲试验装置而定,通常按下式确定试样长度: L≈5a+150mm 6.7凡经加工的试样,其宽度、厚度或直径的尺寸偏差均为±1mm。 6.8试样的端部应打印或用其他方法标记试样的代号。 6.9试样的形状和尺寸如有关标准有特殊规定,则按规定执行。 7 试验程序 7.1半导向弯曲

纯弯曲实验报告

《材料力学》课程实验报告纸 实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高 度变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)内力图 分析主梁的受力特点,进行求解并画出其内力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的内力简图,如图2所示。 Page 1 of 10

《材料力学》课程实验报告纸 (3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

贝克曼梁测定路基路面回弹弯沉试验方法

贝克曼梁测定路基路面回弹弯沉试验方法 贝克曼梁法 1.试验目的和适用范围 (1)本方法适用于测定各类路基、路面的回弹弯沉,用以评定其整体承载能力,可供路面结构设计使用。 (2)本方法测定的路基、柔性路面的回弹弯沉值可供交工和竣工验收使用。 (3)本方法测定的路面回弹弯沉可为公路养护管理部门制定养路修路计划提供依据。 (4)沥青路面的弯沉以标准温度20℃时为准,在其他温度(超过20土2℃范围)测试时,对厚度大于5cm的沥青路面,弯沉值应予温度修正。 2.仪具与材料 (1)测试车:双轴:后轴双侧4轮的载重车,其标准轴荷载、轮胎尺寸、轮胎间隙及轮胎气压等主要参数应符合要求。测试车可根据需要按公路等级选择,高速公路,一级及二级公路应采用后轴100kN的BZZ-100;其他等级公路也可采用后轴60kN的BZZ-60。 (2)路面弯沉仪:由贝克曼梁、百分表及表架组成,贝克曼梁由铝合金制成,上有水准泡,其前臂(接触路面)与后臂(装百分表)长度比为2:1。弯沉仪长度有两种:一种长3.6m,前后臂分别为2.4m和1.2m;另一种加长的弯沉仪长5.4m,前后臂分别为3.6m 和1.8m。当在半刚性基层沥青路面或水泥混凝土路面上测定时,宜采用长度为5.4m的贝克曼梁弯沉仪、并采用BZZ-100标准车;弯沉值采用百分表量得,也可用自动记录装置进行测量。 (3)接触式路面温度计:端部为平头,分度不大于1℃。 (4)其它:皮尺、口哨、白油漆或粉笔、指挥旗等。 3.试验方法与步骤 1)试验前准备工作 (1)检查并保持测定用标准车的车况及刹车性能良好,轮胎内胎符合规定充气压力。 (2)向汽车车槽中装载(铁块或集料),并用地中衡称量后轴总质量,符合要求的轴重规定,汽车行驶及测定过程中,轴重不得变化。 (3)测定轮胎接地面积;在平整光滑的硬质路面上用千斤顶将汽车后轴顶起,在轮胎下方铺一张新的复写纸,轻轻落下千斤顶,即在方格纸上印上轮胎印痕,用求积仪或数方格的方法测算轮胎接地面积、精确至0.1cm2 。 (4)检查弯沉仪百分表测量灵敏情况。 (5)当在浙青路面上测定时,用路表温度计测定试验时气温及路表温度(一天中气温不断变化,应随时测定),并通过气象台了解前5d的平均气温(日最高气温与最低气温的平均值)。 (6)记录沥青路面修建或改建时材料、结构、厚度、施工及养护等情况。 2)测试步骤 (1)在测试路段布置测点,其距离随测试需要而定,测点应在路面行车车道的轮迹带上,并用白油漆或粉笔划上标记。 (2)将试验车后轮轮隙对准测点后约3 ~ 5cm处的位置上。 (3)将弯沉仪插入汽车后轮之间的缝隙处,与汽车方向一致,梁臂不得碰到轮胎,弯沉仪测头置于测点上(轮隙中心前方3 ~ 5m处),并安装百分表于弯沉仪的测定杆上,百分表调零,用手指轻轻叩打弯沉仪,检查百分表是否稳定回零。 弯沉仪可以是单侧测定,也可以双侧同时测定。 (4)测定者吹哨发令指挥汽车缓缓前进,百分表随路面变形的增加而持续向前转动。当表

实验3弯曲实验

材料的弯曲实验 一、实验目的 1、采用三点弯曲对矩形横截面试件施加弯曲力,测定其弯曲力学性能; 2、学习、掌握微机控制电子万能试验机的使用方法及工作原理。 二、实验设备 3、微机控制电子万能试验机; 4、游标卡尺。 三、实验试件 实验所用试件如下图1所示,试件截面为矩形,其中,b 为试件宽度,h 为试件高度,L 为试件长度。 图1 矩形截面试件 四、实验原理 1、三点弯曲试验装置 图2所示为三点弯曲试验的示意图。其中,F 为所施加的弯曲力,Ls 为跨距,f 为挠度。 图2 三点弯曲试验示意图

2、弯曲弹性模量b E 的测定(图解法): 通过配套软件自动记录弯曲力-挠度曲线(见图3)。在曲线上读取弹性直线段的弯曲力增量和相应的挠度增量,按式(1)计算弯曲弹性模量,其中,I 为试件截面对中性轴的惯性矩,12 3bh I =。 ??? ? ????= f F I E L s b 483 (1) 图3 图解法测定弯曲弹性模量 3、最大弯曲应力bb σ的测定: W L F s bb bb 4= σ (2) 其中,bb σ为最大弯曲应力,bb F 为最大弯曲力,W 为试件的抗弯截面系数,6 2bh W = 。 五、实验步骤及注意事项 1、试件准备:矩形横截面试件应在跨距的两端和中间处分别测量其高度和 宽度。取用三处宽度测量值的算术平均值和三处高度测量值的算术平均值,作为试件的宽度和高度。 2、试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十 分钟才可使用。运行配套软件,根据计算机的提示,设定试验方案,试验参数。 3、安装夹具,放置试件:根据试样情况选择弯曲夹具,安装到试验机上,

金属弯曲试验方法

金属弯曲试验方法 GB232-88 代替GB232-82 本标准参照采用国际标准IS07438-1985《金属材料弯曲试验》。 1 主题内容与适用范围 本标准规定了金属材料弯曲试验方法的适用范围、试验原理、试样、试验设备、试验程序及试验结果评定。本标准适用于检验金属材料承受弯曲角度的弯曲变形性能。 2 引用标准 GB2975 钢材力学及工艺性能试验取样规定。 3 试验原理 将一定形状和尺寸的试样放置于弯曲装置上,以规定直径的弯心将试样弯曲到所要求的角度后,卸除试验力检查试样承受变形性能。 4 符号和名称 5 试验设备 5.1弯曲试验可在压力机或万能试验机上进行。试验机应具备下列装置。 5.1.1应有足够硬度的支承辊,其长度应大于试样的宽度或直径。支辊间的距离可以调节。

5.1.2 具有不同直径的弯心,弯心直径由有关标准规定,其宽度应大于试样的宽度或直径。弯心应有足够的硬度。 5.2 厚度不大于4mm的试样,可在虎钳上进行弯曲试验,弯心直径按有关标准规定。 6 试样 6.1 试验时用圆形、方形、长方形或多边形横截面的试样。弯曲表面不得有划痕。方形和长方形试样的棱边应锉圆,其半径不应大于2mm。 6.2 试样加工时,应去除剪切或火焰切割等形成的影响区域。 6.3 圆形或多边形横截面的材料作弯曲试验时,如果圆形横截面直径或多边形横截面的内切圆直径不大于

35mm,试样与材料的横截面相同。若试验机能量允许时,直径不大于50mm的材料亦可用全截面的试样进行试验。当材料的直径大于35mm,则加工成直径为25mm的试样,或如图3加工成试样。并保留一侧原表面。弯曲试验时,原表面应位于弯曲的外侧。 6.4当有关标准未作具体规定时,板材厚度不大于3mm,试样宽度为20±5mm。 6.5板(带)材、型材和方形横截面材料的厚度不大于25mm时,试样厚度与材料厚度相同,试样宽度为试样 厚度的2倍,但不得小于10mm;当材料厚度大于25mm时,试样厚度应加工成25mm,并保留一个原表面,其宽度应加工成30mm。当试验机能量允许时,厚度大于25mm的材料,可以全厚度的试样进行试验,其宽度为试样厚度的2倍。仲裁时,按厚度减薄加工的试样进行试验。弯曲时,原表面位于弯曲的外侧。

金属弯曲试验

金属弯曲实验 计划学时:2学时 本实验按照国标《金属弯曲力学性能试验方法》(GB/T 14452--93),用INSTRON5582万能试验机测矩形试样三点弯曲的弹性模量和最大弯曲应力。 【实验目的】 (1)采用三点弯曲对矩形横截面试件施加弯曲力,测定其弯曲力学性能; (2)学习、掌握INSTRON5582万能试验机的使用方法及工作原理; (3)掌握弯曲弹性模量E b和最大弯曲应力σbb的测量方法。 【实验原理】 当一个矩形截面的金属承受弯曲载荷,其截面就出现应力。该应力可以分解为垂直于截面的正应力和平行于截面的切应力。如果梁上的载荷都处于同一平面内且垂直于梁的中轴,则截面各个点的正应力合成为一个力偶,其力矩即所谓的弯矩M,已知截面上任一点的正应力与该点至中截面的垂距以及截面上的弯矩成正比,与截面的惯矩成反比。若截面上的弯矩为正,则中截面以上各点受压应力,中截面以下各点受张应力;若截面上的弯矩为负,情况正好相反。 1. 三点弯曲试验装置 图1所示为三点弯曲试验的示意图。其中,F为所施加的弯曲力,Ls为跨距,f为挠度。 图1 三点弯曲试验示意图 2.弯曲弹性模量E b的测定(图解法):

通过配套软件自动记录弯曲力-挠度曲线(见图2)。在曲线上读取弹性直线段的弯曲力增量和相应的挠度增量,按式(1)计算弯曲弹性模量。 ??? ? ????= f F I E L s b 483 (1) 其中,I 为试件截面对中性轴的惯性矩, 123 bh I = 。 图2 图解法测定弯曲弹性模量 3.最大弯曲应力σbb 的测定: W L F s bb bb 4= σ (2) 其中,bb σ为最大弯曲应力,bb F 为最大弯曲力,W 为试件的抗弯截面系数, 62 bh W = 【实验仪器设备及材料】 INSTRON5582万能材料实验机、游标卡尺,矩形金属片(宽×厚=5mm×5mm )。 试样表面要经过磨平,棱角应作倒角,长度应保证试样伸出两个支座之外均不少于3mm 。 【实验步骤及方法】 1. 试样的制备:按照国标《金属弯曲力学性能试验方法》(GB/T 14452--93),制备试样。 2. 试样尺寸测量 矩形横截面试样应在跨距的两端和中间处分别测量其宽度和厚度。计算弯曲弹性模量时,取用三处高度测量值的算术平均值;计算弯曲应力时,取用中间处测量的厚度和宽度。

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告 一、实验目的 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 3.XL3416 纯弯曲试验装置 4.力&应变综合参数测试仪 5.游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为 σ= My / I z 式中M为弯矩,I z 为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。 实验采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量 σ实i=E△ε实i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变 片到中性层的距离y i 。见附表1 3.拟订加载方案。先选取适当的初载荷P 0(一般取P =10%P max 左右),估 算P max (该实验载荷范围P max ≤4000N),分4~6级加载。 4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 6. 加载。均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。实验至少重复两次。见附表2 7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 附表1 (试件相关数据) 附表2 (实验数据) 载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 με 1 εP -33 -66 -99 -133 -166 △εP -33 -33 -34 -33 平均值 -33.25 2 εP -16 -3 3 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.75 3 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 0 4 εP 1 5 32 47 63 79 △εP 17 15 1 6 16 平均值 16 5 εP 32 65 9 7 130 163 △εP 33 32 33 33 平均值 32.75 五、实验结果处理 1. 实验值计算 根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算 各点的实验应力值,因1με=10-6ε,所以 各点实验应力计算: 应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mm Y 2 -10 高 度 h = 40 mm Y 3 0 跨 度 L = 620mm (新700 mm ) Y 4 10 载荷距离 a = 150 mm Y 5 20 弹性模量 E = 210 GPa ( 新206 GPa ) 泊 松 比 μ= 0.26 惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4

弯曲试验

弯曲实验 一.实验目的 测定纯弯曲梁的正应力,并与理论计算结果进行比较,以验证弯曲正应力公式。 二.实验仪器 组合实验台弯曲梁实验装置,电阻应变仪,预调平衡箱,数字测力仪。 三.实验原理 示意图请参见两端铰支的矩形截面钢梁,在距两端支座为处,分别作用相 同大小的力。梁的AB段为纯弯曲,其弯矩为。为了实测正应力,可在梁的AB段内沿横截面表面均匀粘贴7个电阻应变片(7个测点)。 当梁受到荷载作用时,可从电阻片的变形测得各点的应变值。在比例极限范围内,应力与应变之间存在着正比关系,即。因而通过测得应变值便可计算出该点正应力的数值。 关于电阻应变片和应变测量电路的原理参见电阻应变仪。 四.实验步骤 1.观察预调平衡箱后面板的接线,将测点与通道的对应关系记录下来。 2.数字测力仪的量程设为20KN,初始调零。 3.将电阻应变仪的“基零、测量”开关置在“基零”位置,调节“基零平衡”,使显示为零。 4.将电阻应变仪的“基零、测量”开关置在“测量”位置,旋转“换点开关”,调节相应的通道,使其电桥平衡(显示为零)。将所用的7个通道同时调零。

5.逐级加载,每增加0.5KN记录7个通道的应变仪读数。 6.加载到4KN后,卸载。 7.根据应变仪读数求出各测点应变差值的算术平均值,然后计算应力值。五.实验记录 宽度 高度 加力点到支座的距离Array 弹性模量

注:先求出各测点应变差值的算术平均值,然后计算应力值。 六.预习思考题 1) 分析在纯弯曲状态下,梁截面的应力分布情况。 2) 如果将电阻应变片的灵敏系数由2.0改为2.1,则测出的应变值会有什么影响? 3) 电阻应变片由金属电阻丝制成,测量应变时电阻丝是有电流的;弯曲实验中的钢梁也是金属,由于电阻应变片是直接粘贴在钢梁表面的,所以实验时钢梁中也会有电流通过,这是正常现象,不会影响测量结果。你是否同意这种看法?为什么? 4) 一位同学在操作中有这样一个过程:将电阻应变仪的“基零、测量”开关置在“基零”位置,调节“基零平衡”,使显示为零,然后旋转“换点开关”,调节所有通道,使其电桥平衡,接着就开始加载测量应变。请问,这位同学的操作正确吗?为什么?

GB 232-88-金属弯曲试验方法

中华人民共和国国家标准UDC669.2/.4:620.174 金属弯曲试验方法GB232-88 代替GB232-82 本标准参照采用国际标准IS07438-1985《金属材料弯曲试验》。 1 主题内容与适用范围 本标准规定了金属材料弯曲试验方法的适用范围、试验原理、试样、试验设备、试验程序及试验结果评定。 本标准适用于检验金属材料承受弯曲角度的弯曲变形性能。 2 引用标准 GB2975 钢材力学及工艺性能试验取样规定。 3 试验原理 将一定形状和尺寸的试样放置于弯曲装置上,以规定直径的弯心将试样弯曲到所要求的角度后,卸除试验力检查试样承受变形性能。 4 符号和名称 5 试验设备 5.1弯曲试验可在压力机或万能试验机上进行。试验机应具备下列装置。

5.1.1应有足够硬度的支承辊,其长度应大于试样的宽度或直径。支辊间的距离可以调节。 5.1.2 具有不同直径的弯心,弯心直径由有关标准规定,其宽度应大于试样的宽度或直径。弯心应有足够的硬度。 5.2 厚度不大于4mm的试样,可在虎钳上进行弯曲试验,弯心直径按有关标准规定。 6 试样 6.1 试验时用圆形、方形、长方形或多边形横截面的试样。弯曲表面不得有划痕。方形和长方形试样的棱边应锉圆,其半径不应大于2mm。 6.2 试样加工时,应去除剪切或火焰切割等形成的影响区域。 6.3 圆形或多边形横截面的材料作弯曲试验时,如果圆形横截面直径或多边形横截面的内切圆直径不大于35mm,试样与材料的横截面相同。若试验机能量允许时,直径不大于50mm的材料亦可用全截面的试样进行试验。当材料的直径大于35mm,则加工成直径为25mm的试样,或如图3加工成试样。并保留一侧原表面。弯曲试验时,原表面应位于弯曲的外侧。

材料物理性能 实验一材料弯曲强度测试

实验一 复合材料弯曲强度测定 一、实验目的 了解复合材料弯曲强度的意义和测试方法,掌握用电子万能试验机测试聚合物材料弯曲性能的实验技术。 二、实验原理 弯曲是试样在弯曲应力作用下的形变行为。弯曲负载所产生的盈利是压缩应力和拉伸应力的组合,其作用情况见图1所示。表征弯曲形变行为的指标有弯曲应力、弯曲强度、弯曲模量及挠度等。 弯曲强度f σ,也称挠曲强度(单位MPa ),是试样在弯曲负荷下破裂或达到规定挠度时能承受的最大应力。挠度s 是指试样弯曲过程中,试样跨距中心的顶面或底面偏离原始位置的距离(㎜)。弯曲应变f ε是试样跨度中心外表面上单元长度的微量变化,用无量纲的比值或百分数表示。挠度和应变的关系为:h L s f 62ε=(L 为试样跨度,h 为试样厚度)。 当试样弯曲形变产生断裂时,材料的极限弯曲强度就是弯曲强度,但是,有些聚合物在发生很大的形变时也不发生破坏或断裂,这样就不能测定其极限弯曲强度,这时,通常是以试样外层纤维的最大应变达到5%时的应力作为弯曲屈服强度。 与拉伸试验相比,弯曲试验有以下优点。假如有一种用做梁的材料可能在弯曲时破坏,那么对于设计或确定技术特性来说,弯曲试验要比拉伸试验更适用。制备没有残余应变的弯曲试样是比较容易的,但在拉伸试样中试样的校直就比较困难。弯曲试验的另一优点是在小应变下,实际的形变测量大的足以精确进行。 弯曲性能测试有以下主要影响因素。 ① 试样尺寸和加工。试样的厚度和宽度都与弯曲强度和挠度有关。 ② 加载压头半径和支座表面半径。如果加载压头半径很小,对试样容易引起较大的剪切力而影响弯曲强度。支座表面半径会影响试样跨度的准确性。 ③ 应变速率。弯曲强度与应变速率有关,应变速率较低时,其弯曲强度也偏低。 ④ 试验跨度。当跨厚比增大时,各种材料均显示剪切力的降低,可见用增大跨厚比可减少剪切应力,使三点弯曲更接近纯弯曲。 ⑤ 温度。就同一种材料来说,屈服强度受温度的影响比脆性强度大。 三、实验仪器 WDW1020型电子万能试验机 图1 支梁受到力的作用而弯曲的情况

纯弯曲实验报告

实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高度 变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)力图 分析主梁的受力特点,进行求解并画出其力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的力简图,如图2所示。 Page 1 of 10

(3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

弯沉检验方法

弯沉检测——贝克曼法 一、概述 国内普遍采用弯沉检测来验证路基、路面的承载能力,回弹弯沉值越大,承载能力越小,反之则越大。弯沉检测是道路工程的主控项目,所以掌握正确的测试方法具有重要的意义。 二、术语 1.弯沉值:荷载对路基/路面作用前后,路基/路面发生变形的大小,用 (0.01mm)作计算单位。 2.计算弯沉值:路基、垫层、基层各层、路面各层的设计计算值,在 各层完成时,要通过现场测定各层弯沉代表值与其比对,以判定是否满足设计要求。 3.弯沉代表值:使用弯沉仪现场测定,并按照计算要求计算所得。 4.设计弯沉值:即路面设计控制弯沉值。是路面竣工后第一年不利季 节,路面在标准轴载作用下,所测得的最大回弹弯沉值,理论上是路面使用周期中的最小弯沉值。 5.竣工验收弯沉值:竣工验收弯沉值是检测路面是否达到设计要求的 指标之一。当路面厚度计算以设计弯沉值为控制指标时,则路面的竣工验收弯沉值应小于或等于计算弯沉值;当路面厚度计算以层底拉应力为控制指标时,应根据拉应力计算所得的结构厚度,重新计算路面弯沉值,计算所得即为竣工验收弯沉值。

三、贝克曼法 1.适用范围 1)本方法适用于测定各类路基、路面的回弹弯沉,用以评定其整体 承载能力,可供路面结构设计使用。 2)本方法测定的路基、柔性路面的回弹弯沉值可供交工和竣工验收 使用。 3)本方法测定的路面回弹弯沉可为道路养护管理部门制定养路修 路计划提供依据。 4)沥青路面的弯沉以标准温度20℃时为准,在其他温度(超过20 ±2℃范围)测试时,对厚度大于5cm的沥青路面,弯沉值应予 温度修正。 2.仪具与材料 1)标准车 轴载等级 BZZ-100 BZZ-60 后轴轴载(kN) 100±1 60±1 一侧双轮荷载(kN) 50±0.5 30±0.5 后轮充气压力(MPa) 0.70±0.05 0.50±0.05 后轮单轮传压面当量圆直径(cm) 21.30±0.5 19.50±0.5 轮隙宽度 应满足能自由插入弯沉仪测头 2)路面弯沉仪:由贝克曼梁、百分表及表架组成,贝克曼梁由铝合 金制成,上有水准泡,其前臂(接触路面)与后臂(装百分表) 长度比为2:1。弯沉仪长度有两种:一种长3.6m,前后臂分别为 2.4m和1.2m;另一种加长的弯沉仪长5.4m,前后臂分别为

弯曲试验方法

金属弯曲试验方法 GB232–2010 本标准参照采用国际标准lSO 7438–1985《金属材料–弯曲试验》。 1 主题内容与适用范围 本标准规定了金属材料弯曲试验方法的适用范围、试验原理、试样、试验设备、试验程序及试验结果评定。 本标准适用于检验金属材料承受规定弯曲角度的弯曲变形性能。 2 引用标准 GB 2975钢材力学及工艺性能试验取样规定 3 试验原理 将一定形状和尺寸的试样放置于弯曲装置上,以规定直径的弯心将试样弯曲到所要求的角度后,卸除试验力检查试样承受变形性能。 4 符号和名称 弯曲试验中使用的符号和名称如下表和图1、图2所示。

5 试验设备 5.1弯曲试验可在压力机或万能试验机上进行。试验机应具备下列装置。 5.1.1应有足够硬度的支承辊,其长度应大于试样的宽度或直径。支辊间的距离可以调节。 5.1.2具有不同直径的弯心,弯心直径由有关标准规定,其宽度应大于试样的宽度或直径,弯心应有足够的硬度。 5.2厚度不大于4mm的试样,可在虎钳上进行弯曲试验,弯心直径按有关标准规定。 6 试样 6.1试验时用圆形、方形、长方形或多边形横截面的试样。弯曲外表面不得有划痕。方形和长方形试样的棱边应锉圆,其半径不应大于2mm。 6.2试样加工时,应去除剪切或火焰切割等形成的影响区域。 6.3圆形或多边形横截面的材料作弯曲试验时,如果圆形横截面直径或多边形横截面的内切圆直径不大于35mm,试样与材料的横截面相同。若试验机能量允许时,直径不大于50mm的材料亦可用全截面的试样进行试验。当材料的直径大于35mm,则加工成直径为25mm的试样,或如图3加工成试样。并保留一侧原表面。弯曲试验时,原表面应位于弯曲的外侧。 6.4当有关标准未作具体规定时,板材厚度不大于3mm,试样宽度为20±5mm。 6.5板(带)材、型材和方形横截面材料的厚度不大于25mm时,试样厚度与材料厚度相同,试样宽度为试样厚度的2倍,但不得小于10mm;当材料厚度大于25mm时,试样厚度应加工成25mm,并保留一个原表面,其宽度应加工成30mm。当试验机能量允许时,厚度大于25mm的材料,可以全厚度的试样进行试验,其宽度为试样厚度的2倍。仲裁时,按厚度减薄加工的试样进行试验。弯曲时,原表面位于弯曲的外侧。 6.6弯曲试样长度根据试样厚度和弯曲试验装置而定,通常按下式确定试样长度: L≈5a+150mm 6.7凡经加工的试样,其宽度、厚度或直径的尺寸偏差均为±1mm。 6.8试样的端部应打印或用其他方法标记试样的代号。 6.9试样的形状和尺寸如有关标准有特殊规定,则按规定执行。 7 试验程序 7.1半导向弯曲

纯弯曲正应力分布实验报告

竭诚为您提供优质文档/双击可除纯弯曲正应力分布实验报告 篇一:弯曲正应力实验报告 一、实验目的 1、用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律; 2、验证纯弯曲梁的正应力计算公式。 3、初步掌握电测方法,掌握1/4桥,1/2桥,全桥的接线方法,并且对试验结果及误差进行比较。 二、实验仪器和设备 1、多功能组合实验装置一台; 2、Ts3860型静态数字应变仪一台; 3、纯弯曲实验梁一根。 4、温度补偿块一块。三、实验原理和方法 弯曲梁的材料为钢,其弹性模量e=210gpa,泊松比μ =0.29。用手转动实验装置上面的加力手轮,使四点弯上压 头压住实验梁,则梁的中间段承受纯弯曲。根据平面假设和纵向纤维间无挤压的假设,可得到纯弯曲正应力计算公式为:?? m

yIx 式中:m为弯矩;Ix为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。由上式可知,沿横截面高度正应力按线性规律变化。 实验时采用螺旋推进和机械加载方法,可以连续加载,载荷大小由带拉压传感器的电子测力仪读出。当增加压力?p 时,梁的四个受力点处分别增加作用力?p/2,如下图所示。 为了测量梁纯弯曲时横截面上应变分布规律,在梁纯弯曲段的侧面各点沿轴线方向布置了3片应变片,各应变片的粘贴高度见弯曲梁上各点的标注。此外,在梁的上表面和下表面也粘贴了应变片。 如果测得纯弯曲梁在纯弯曲时沿横截面高度各点的轴 向应变,则由单向应力状态的虎克定律公式??e?,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,以验证弯曲正应力公式。 σ实=eε 式中e是梁所用材料的弹性模量。 实 图3-16 为确定梁在载荷Δp的作用下各点的应力,实验时,可采用“增量法”,即每增加等量的载荷Δp测定各点相应的应变增量一次,取应变增量的平均值Δε

三点抗弯强度

第18讲教学方案——弯曲切应力、弯曲强度条件

§7-3 弯曲切应力 梁受横弯曲时,虽然横截面上既有正应力 σ,又有剪应力 τ。但一般情况下,剪应力对 梁的强度和变形的影响属于次要因素,因此对由剪力引起的剪应力,不再用变形、物理和静力关系进行推导,而是在承认正应力公式(6-2)仍然适用的基础上,假定剪应力在横截面上的分布规律,然后根据平衡条件导出剪应力的计算公式。 1.矩形截面梁 对于图6-5所示的矩形截面梁,横截面上作用剪力Q 。现分析距中性轴z 为y 的横线1aa 上的剪应力分布情况。根据剪应力成对定理,横线1aa 两端的剪应力必与截面两侧边相切,即与剪力Q 的方向一致。由于对称的关系,横线1aa 中点处的剪应力也必与Q 的方向相同。根据这三点剪应力的方向,可以设想1aa 线上各点剪应力的方向皆平行于剪力Q 。又因截面高度h 大于宽度b ,剪应力的数值沿横线1aa 不可能有太大变化,可以认为是均匀分布的。基于上述分析,可作如下假设: 1)横截面上任一点处的剪应力方向均平行于剪力 Q 。 2)剪应力沿截面宽度均匀分布。 基于上述假定得到的解,与精确解相比有足够的精确度。从图6-6a 的横弯梁中截出dx 微段,其左右截面上的内力如图6-6b 所示。梁的横截面尺寸如图6-6c 所示,现欲求距中性轴z 为y 的横线1aa 处的剪应力 τ。过1aa 用平行于中性层的纵截面11cc aa 自dx 微段中截出一微块(图6-6d )。根据剪应力成对定理,微块的纵截面上存在均匀分布的剪应力 τ'。微块左右侧面上正应力的合力分别为1N 和2N ,其中 * 1I 1** z z A z A S I M dA I My dA N == =??σ (a )

弯曲试验作业指导书

弯曲试验作业指导书 1. 前言 1.1 本作业指导书规定了金属材料弯曲试验操作规程及试验结果评定. 1.2 本作业指导书是根据GB/T232-1999《金属弯曲试验方法》并结合实际操作而制定的. 1.3 本岗位任务是正确检测金属材料弯曲试验,自接收样品后,2天内完成检验并报告结果. 2.适用范围 本作业指导书适用于金属材料,焊接接头,镍及镍合金焊条,压力容器用钢焊条的弯曲试验. 3. 引用标准 GB/T228-2002《金属材料室温拉伸试验方法》 GB/T13814-92《镍及镍合金焊条》 GB/T2653-2008《焊接接头弯曲试验方法》 GB/T4747-2002《压力容器用钢焊条订货技术条件》 4. 符号 本作业指导书符号及说明见表1 5. 检验方法 5.1 试验前准备工作 a 首先检查仪器设备运转是否正常. b 检查试样外观、数量是否符合有关标准规定. 5.2 支辊间距离 除非另有规定,支辊间距离应照式(2)定: L=(d+3a)±0.5a (2) 此距离在试验期间应保持不变. 注:熔敷金属纵向弯曲试验支辊间距离为63mm. 5.3 根据试样品种,规格选取不同的弯心直径和弯心角度. 5.4 启动仪器把试台升起所要求的位置,按规定调整支辊间距离,根据弯心直径(d)调换压

头. 5.5 把试件放在支辊上开动仪器,打开送油阀缓慢施加弯曲力直至达到规定的弯曲角度打开回 油阀,卸荷取下试件. 5.6 试验结果 a 弯曲结束后,试样的外表面和侧面都应进行检验. b 依据相关标准对弯曲试样进行评定并记录. c 除非另有规定,在试样表面上小于3mm长的缺欠应判为合格. 5.7 实验报告 a 依据的国家标准,例如:GB/T232-1999 b 试样说明. c 试样的尺寸. d 弯曲试验的类型和代号(正弯和背弯、横行弯曲或纵向弯曲、侧弯等). e 试验条件 ———试验方法; ———压头直径; ———辊筒间或支座间距离. f 试验温度. g 观察到的缺欠的类型和尺寸. h 弯曲角度. 批准:审核:起草:

弯沉检测步骤

现场弯沉检测 1、检测频率: 每一双车道评定路段(不超过1km)检查80~100个点,多车道公路必须按车道数与双车道之比,相应增加测点。(依据JTG F80/1-2004)2、贝克曼梁弯沉仪检测目的与适用范围: 本方法适用于测定各类路基路面的回弹弯沉以评定其整体承载能力,可供路面结构设计使用。 3、仪具与材料技术要求和适用范围: ①标准车:采用后轴10t标准轴载BZZ-100的汽车,参数应符合JTG E60-2008 T0951-2008 表T0951规定。 标准轴载等级BZZ-100 后轴标准轴载P(kN)100±1 一侧双轮荷载(kN)50±0.5 轮胎充气压力(MPa)0.70±0.05 单轮传压面当量圆直径(cm)21.30±0.5 轮隙宽度应满足能自由插入弯沉仪测头的要求 ②路面弯沉仪:由贝克曼梁、百分表及表架组成,按长度分为2种。 ⑴总长度3.6m,前后臂分别为2.4m和1.2m;适用于柔性基层和混合式结构沥青路面。 ⑵总长度5.4m,前后臂分别为3.6m和1.8m;适用于半刚性基层沥青路面和水泥混凝土路面。

4、主要准备工作: ①检查标准车车况及制动性能,轮胎胎压符合规定要求。 ②标准车后轴总质量及单侧轮荷载应符合轴重规定。 ③测定测定轮胎接地面积,用求积仪或数方格的方法测算轮胎接地面积,准确值0.1cm2。 ④检查弯沉仪百分表量测灵敏情况。 ⑤当在沥青路面上测定时,用路表温度计测定试验时气温及路表温度,记录沥青路面修建或改建材料、结构、厚度、施工及养护等情况。 5、测试步骤: ①在测试路段布置测点,测点应在路面行车车道的轮迹带上,并画上记号。 ②将试验车后轮轮隙对准测点后约3~5cm处的位置上。 ③将弯沉仪插入汽车后轮的缝隙处,与汽车方向一致,梁臂不得碰轮胎,弯沉仪测头置于测点上(轮隙中心前方3~5cm处),用手轻轻叩打弯沉仪,检查百分表应稳定回零。弯沉仪可以单侧测定,也可以双侧同时测定。 ④汽车缓缓前进,百分表随路面变形的增加而持续向前转动,当表针转动到最大值时,迅速记录初读数L1,汽车继续前进,表针反向回转,待汽车驶出弯沉影响半径(约3m以上)后,汽车停止。待表针回转稳定后,再次读取终读数L2。汽车前进的速度宜为5km/h左右。 ⑤弯沉仪支点变形修正:3.6m弯沉仪需要支点变形修正,5.4m弯沉仪不需支点变形要修正。

相关文档