文档视界 最新最全的文档下载
当前位置:文档视界 › 【免费下载】 习题-第四章病毒基因组

【免费下载】 习题-第四章病毒基因组

【免费下载】 习题-第四章病毒基因组
【免费下载】 习题-第四章病毒基因组

第四章病毒基因组

一、A型题:

1. 只含小分子量RNA而不含蛋白质的病毒称()

A. 类病毒(Viroids)

B. 卫星(Satellites)

C. 类病毒(viroid)

D. 朊病毒(Prions)

E. 拟病毒(virusoid)

2. 只含蛋白质而不含核酸的的病毒称()

A. 类病毒(Viroids)

B. 卫星(Satellites)

C. 类病毒(viroid)

D. 朊病毒(Prions)

E. 拟病毒(virusoid)

3. RNA病毒基因组的帽子结构与第二个核苷酸相连的化学键()

A. 5',5'-三磷酸二酯键

B. 3',3'-三磷酸二酯键

C. 5',5'-磷酸二酯键

D. 3',5'-磷酸二酯键

E. 以上都不是

4. HBV基因组是()

A. 完全双链DNA分子

B. 不完全双链DNA分子

C. 完全双链RNA分子

D. 不完全双链RNA分子

E. 单链DNA分子

5. 具mRNA模板活性的病毒基因组是() A. 正链DNA病毒

B. 负链DNA病毒

C. 负链RNA病毒

D. 逆转录科的正链RNA病毒

E. 正链RNA病毒(逆转录科的正链RNA 病毒除外)

6. 关于逆转录病毒叙述不正确的是()

A. 迄今发现的RNA肿瘤病毒均属RNA逆转录病毒

B. 嗜肝DNA病毒科属DNA逆转录病毒。

C. 逆转录病毒RNA为正链

D. 病毒颗粒均携带逆转录酶

E. 前病毒DNA可以整合到宿主细胞染色体DNA中

7. 逆转录病毒基因组的结构特点不包括()

A. 5'端帽子结构

B. 3'端poly(A)尾

C. 两端各有一个长末端重复序列(LTR)

D. 编码逆转录酶

E. 神经酰胺酶

8. 分段基因组(segmented genome)是指病毒基因组()

A. 由数条不同的核酸分子组成

B. 由数条相同的核酸分子组成

C. 由数条互补的核酸分子组成

D. 由可分成不同功能区段的一个核酸

分子组成

E. 以上都不对

9. HBV基因组序列的利用率(编码基因效

率)达()

A. 90%~100%

B. 100%~150%

C. 150%~200%

D. 200%~250%

E. 250%~300%

10. SARS-CoV的分子诊断主要是()

A. 根据基因组序列设计特异性引物作PCR

B. 根据基因组序列设计特异性引物作RT-PCR

C. 根据病毒膜蛋白作ELISA

D. 根据病毒核衣壳蛋白作ELISA

E. 根据病毒滴度

二、B型题:

A. 双链DNA

B. 单链DNA

C. 双链RNA

D. 正链RNA

E. 负链RNA

1. HBV基因组是()

2. 流感病毒基因组是()

3. 人类免疫缺陷病毒的基因组()

三、X型题:

1. 述一个病毒基因组,应涉及到()

A.核酸(DNA或RNA)的性质

B.核酸链的数量和核苷酸序列

C.链末端的结构

D.编码基因

E.调控元件

2. 病毒基因组末端重复序列结构有()

A. 粘性末端

B. 末端插入序列

C. 末端反向重复序列

D. 末端正向重复序列

E. 长末端重复序列

3. 甲型流感病毒亚型的分型依据()

A. 核衣壳蛋白(nucleocapsid protein,NP)

B. 基质蛋白(matrix protein,M)

C. 血凝素(hemagglutinin,HA)的抗原性

D. 神经酰胺酶(neuraminidase,NA)的抗原性

E. 宿主种属

4. 逆转录病毒编码的基本结构基因()

A. gag(编码核心蛋白)。

B. pol(编码逆转录酶等)

C. rex(编码rex调节蛋白)

D. tax(编码tax调节蛋白)

E. env基因(编码包膜蛋白)

5. HIV基因组编码的附加基因和调节基因()

A. vif

B. vpr

C. nef

D. tat

E. rev

6. HIV-1()

A. 引起AIDS

B. 主要攻击辅助性T淋巴细胞

C. 导致免疫系统紊乱和免疫缺陷

D. 属逆转录病毒

E. 使被感染的细胞丧失功能但不会死亡

四、名词解释:

1.重叠基因

2.分段基因组

3.抗原漂移

4.前病毒DNA

五、问答题:

1.病毒的基本结构成份主要有哪些?

2.国际病毒分类委员会(ICTV)将病毒

分成哪几类?

3.简述长病毒末端重复序列的特点和作

用。

参考答案

一、A型题:

1.C

2.D

3.A

4.B

5.E

6.D

7.E

8.A 9.C 10.B

二、B型题:

1.A

2.E

3.D

三、X型题:

1.ABCDE

2.ACDE

3.CD

4.ABE

5.ABCDE

6.ABCD

四、名词解释:

1.许多病毒基因组的一段DNA序列有两个

或两个以上的开放读码框架,可以编码

两种或两种以上的多肽链,称为重叠基

因(overlapping gene)

2.分段基因组(segmented genome)是指

病毒基因组由数条不同的核酸分子组成。

分段基因组多见于正链RNA病毒、负链

RNA病毒及双链RNA病毒。

3.当宿主细胞同时感染两种不同亚型的病

毒时,毒株之间会发生基因重配现象,

子代病毒可获得两个亲代病毒的基因片

段,导致子代病毒表面抗原发生变化,

从而逃避机体免疫系统的攻击,这种现

象又称为抗原漂移(antigen shift)。4.当逆转录病毒感染敏感细胞后,首先以

其自身的RNA为模板,在逆转录酶的催

化下合成DNA中间体,这种DNA分子称

原病毒或前病毒DNA(provirus DNA)。

五、问答题:

1.毒没有完整的细胞结构,由四种基本结

构成份组成:①由一种核酸(DNA或RNA)组成的病毒基因组。②由病毒基因组编码

的衣壳蛋白组成的衣壳。③来源于宿主

细胞质膜系统(细胞膜、内质网膜或高

尔基体膜)的包膜。④病毒颗粒中的其

它内容物,包括酶、核酸结合蛋白及金

属离子等。

2. 国际病毒分类委员会(ICTV)制定了《国际病毒分类与命名原则》。根据病毒的

基因组组成及复制方式,可将病毒分为如

下几类:

DNA病毒(DNA Viruses)

第一组:双链DNA病毒(Group I: dsDNA Viruses)

第二组:单链DNA病毒(Group II: ssDNA Viruses)

RNA病毒(RNA viruses)

第三组:双链RNA病毒(Group III: dsRNA Viruses)

第四组:正链RNA病毒(Group IV: (+)ssRNA Viruses)

第五组:负链RNA病毒(Group V: (-

)ssRNA Viruses)

DNA与RNA逆转录病毒(DNA and RNA Reverse Transcribing Viruses)

第六组:RNA逆转录病毒(Group VI: RNA Reverse Transcribing Viruses)

第七组:DNA逆转录病毒(Group

VII: DNA Reverse Transcribing Viruses)

亚病毒因子(Subviral Agents)

卫星(Satellites)

类病毒(Viroids)

朊病毒(Prions)

3. 逆转录病毒基因组RNA在逆转录后生成的双链DNA中,两端有长末端重复序列(long terminal repeat,LTR)结构。LTR在结构与功能上与上述重复序列不同。LTR中的重复序列只占一部分,另外还包括单一序列。5'端的LTR包含许多特定的基因表达调控区域,是一组真核生物增强子和启动子单位,而3'端的LTR具有转录终止的作用。另外,逆转录病毒基因组利用LTR中的重复序列形成环状结构,在整合酶作用下整合入宿主细胞基因组内。

宏基因组学的研究进展

宏基因组学的研究状况及其发展 摘要:宏基因组学是近年来发展起来的一门新兴学科,主要技术包括从环境样品中提取微生物混合基因组DNA、利用可培养的宿主菌建立宏基因组文库及筛 选目的基因。该技术可以克服传统培养技术的不足,是研究未培养微生物、寻找新功能基因和开发获得新资源的重要新途径。目前宏基因组学已广泛应用于各个领域,并在医药、农业、能源开发、环境修复、生物技术、生物防御等方面有了较深入的研究。 关键词:宏基因组学、宏基因组、基因组文库构建、文库筛选、未培养微生物、研究进展 随着微生物学的发展,微生物基因组全序列测定计划正在全球被快速地推行,但现有技术条件下,自然界存在的可培养微生物不到总数的1%,阻碍了该计划 的发展,使得绝大多数的微生物资源不能被开发和利用。21世纪初,随着测序能力的提高和基因组学的发展,科学家提出了一种研究不可培养微生物基因组的新思路——直接对含有各种不可培养的微生物的群体进行基因组序列的测定。这类研究称为Metagenomics,前缀“Meta”源于希腊语。意思是“超越”。科学家选择它来表示这种基因组研究超越了传统意义上分析单一物种的基因组学,将研究对象定为由种类众多的微生物组成的整个菌落。国内的研究者也据此将该术语翻译为“宏基因组学”。 1 宏基因组的概念 宏基因组 (也称微生物环境基因组、宏基因组学、元基因组学、生态基因组学) 是由Handelsman等1998年提出的新名词, 其定义为“the genomes of the total microbiota found in nature”,即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因, 目前主要指环境样品中的细菌 和真菌的基因组总和。而所谓宏基因组学就是一种以环境样品中的微生物群体基因组为研究对象, 以功能基因筛选和测序分析为研究手段, 以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究目的的新的微生物研究方法。一般包括从环境样品中提取基因组 DNA, 克隆DNA到合适 的载体,导入宿主菌体,筛选目的转化子等工作。宏基因组文库既包含了可培养的又包含了不能培养的微生物基因,避开了微生物分离培养的问题,极大地扩展了微生物资源的利用空间,增加了获得新的生物活性物质的机会,为新的医药产业和发现新的生物技术提供丰富的基因文库,并利于环境微生物有机群体的分布和功能的研究。 2 宏基因组学的研究过程 2.1 宏基因组文库的构建 宏基因组文库的构建沿用了分子克隆的基本原理和技术方法,并根据具体环境样品的特点和建库目的采用了一些特殊的步骤和策略。一般包括样品总DNA的 提取、与载体连接和克隆到宿主中。 2.1.1样品总DNA的提取 宏基因组文库构建的关键之一是获得高质量的目的样品的总DNA。目的样品 的采集是第一步,除了需严格遵循取样规则外,取样中应尽量避免对样品的干扰,缩短保存和运输的时间,使样品能更好地代表自然状态下的微生物原貌。 根据提取样品总DNA前是否分离细胞,提取方法可以分为原位裂解法和异位 裂解法。原位裂解法主要是通过去污剂处理(如SDS)、酶解法(如蛋白酶K)、机械

宏基因组分析和诊断技术在急危重症感染应用的专家共识

宏基因组分析和诊断技术在急危重症感染应用的专家共识 感染是急危重症患者死亡的主要原因之一。近年来,随着新发病原微生物的出现、耐药病原微生物的增多以及免疫抑制宿主的增加,感染的发病率和死亡率仍居高不下,脓毒症(严重感染)患者病死率高达50%[1-3]。最新调查研究发现,中国脓毒症相关性标化死亡率为66.7例/10万人口,全国每年共有脓毒症相关性死亡病例近103万例[3]。重症感染起病急、进展快、病原体复杂,短时间内能否明确致病病原微生物至关重要。 传统的病原微生物检测方法主要包括形态学检测、培养分离、生化检测、免疫学和核酸检测。因操作简单、快速、技术要求不高,同时具有一定的诊断敏感性和特异性,目前仍在临床上广泛使用。但传统的检测方法在敏感性、特异性、时效性、信息量等方面存在局限,而且对于未知或者罕见的病原微生物,无法快速识别。 基于宏基因组新一代测序技术(metagenomics next-generation sequencing,mNGS)不依赖于传统的微生物培养,直接对临床样本中的核酸进行高通量测序,然后与数据库进行比对分析,根据比对到的序列信息来判断样本包含的病原微生物种类,能够快速、客观地检测临床样本中的较多病原微生物(包括病毒、细菌、真菌、寄生虫),且无需特异性扩增[4-8],尤其适用于急危重症和疑难感染的诊断。 为了规范运用mNGS进行病原微生物的诊断、正确解读检测结果和指导治疗,我们组织了急危重病、感染病学和病原微生物学相关领域的专家,制定了本共识。 1 mNGS分析和诊断技术是急危重症感染快速、精准诊疗的发展方向 新一代测序技术是一个开放的分析和诊断系统,目前已经纳入的病原体有8000多种,其中包括3000余种细菌、4000余种病毒、200余种真菌和140种寄生虫,为疑难危重症及罕见病原微生物感染的诊断提供了有效的技术手段。 自2008年成功应用于临床诊断新发病原体感染以来[9-10],目前mNGS技术已经逐步用于临床疑难感染诊断,如华山医院张文宏团队[11]用mNGS协助确诊猪疱疹病毒的跨物种传播,并给予针对性治疗使患者痊愈,深圳市第三人民医院用mNGS确诊了一例罕见阿米巴脑炎[11-12]。 mNGS对脓毒症、免疫抑制宿主并发严重感染、重症肺部感染等疾病具有较高的临床应用价值,能够快速、精准地找到病原体;另外对于抗菌药物治疗方案的制定和治疗效果的评估具有一定的指导作用[9-16]。Long等[17]研究发现血培养联合mNGS诊断细菌或真菌感染,阳性率较单用血培养显著升高。以健康人群为基线,建立每种微生物在正常人群中的分布情况模型,进而计算脓毒症指数来评估检出微生物的核酸数量,Crumaz等[18]发现在脓毒症患者血液标本中病原菌的脓毒症指数绝对值、丰度显著升高,而且其变化与临床治疗效

病毒DNA提取

小鼠血浆中HSV-1 DNA的提取 [目的] 掌握血浆中病毒DNA 提取的原理,熟悉其提取方法。 [原理] E.Z.N.A.?Viral DNA Kit 该试剂盒提供了从小于250ul血浆、血清、无细胞培养液等样品中快速简单地提取病毒DNA的方法,液体样品经Buffer BL和蛋白酶(OB)消化后,经乙醇调节结合条件,过柱吸附DNA,再经过两步快速洗涤后,最后用Elution Buffer (10mM Tris,pH8.5)溶解基因组DNA。纯化的DNA可直接用于PCR,Southern杂交,酶切等实验。 [试剂及仪器]旋涡混合振荡仪;微量DNA定量仪;台式离心机;65℃水浴锅。 1.5ml无菌EP管(2个/人);EP抗凝管(含100ul抗凝剂)(K);1000ul枪及枪头;。Hibind DNA 结合柱(1个/人);2ml收集管(3个/人);OB蛋白酶(OB);Buffer B L(含线性丙烯酰胺)(BL);乙醇(乙);Buffer HB(HB);DNA Wash Buffer(W);Elution Buffer(EB)。 [实验步骤] 一、血浆样品的制备: 1.用微量加样器取100ul抗凝剂加入1.5mlEP管中。 2.右手抓起小鼠尾巴,用左手固定动物,压迫眼球,尽量使眼球突出,右手用镊子迅速摘除 眼球,将流出的血液滴入含有抗凝剂的1.5ml EP管中,迅速混匀后,10000rpm,离心3min。 上层黄色透明的即为血浆。 二、DNA的提取 1.取血浆250ul(如不足250ul,用Elution Buffer补足250ul)于1.5ml无菌EP管中。 2.加入10ul OB蛋白酶和250ul BL Buffer(含4ul线性丙烯酰胺用于填补病毒DNA在吸附 柱上的本底吸附),于旋涡混合振荡仪上最大速度振荡15sec。 3.65℃孵育10min。孵育过程中,用旋涡混合振荡仪混匀一次。 4.加入260ul乙醇,旋涡混合振荡仪最大速度振荡20sec。12000×g离心10sec,使盖子上的 液体沉于管中。 5.将Hibind DNA结合柱装在2ml收集管中,将第4步离心的上清中所有液体(约760ul) 加入Hibind DNA结合柱装上,8000×g离心1min。卸下收集管,将收集管及其中的液体弃去。 6.将Hibind DNA结合柱装在另一个新的收集管中,向柱中加入500ul HB Buffer,8000×g 离心1min,卸下收集管,倒掉其中的液体后,将收集管重新装在柱子上。、 7.向柱中加入700ul DNA Wash Buffer,8000×g离心1min,卸下收集管,将收集管及其中 的液体弃去。 8.将Hibind DNA结合柱装在另一个新的收集管中,向柱中加入700ul DNA Wash Buffer, 8000×g离心1min,卸下收集管,倒掉其中的液体后,将收集管重新装在柱子上。 9.将空的Hibind DNA结合柱15000×g离心2min,以去掉其中残余的液体。卸下收集管, 将收集管及其中的液体弃去。----这一步非常重要 10.将Hibind DNA结合柱装在另一个新的无菌1.5ml EP管上(事先做好标记),加入50-100ul 65℃预热的Elution Buffer,室温静置5min后,8000×g离心1min,洗脱液中即含有病毒DNA。 三、DNA定量: 微量DNA定量仪。取1.5ul用于DNA定量。

宏基因组学概述

宏基因组学概述

————————————————————————————————作者: ————————————————————————————————日期: ?

宏基因组学概述 王莹,马伊鸣 (北京交通大学土木建筑工程学院环境1402班) 摘要:随着分子生物学技术的快速发展及其在微生物生态学和环境微生物学研究中的广泛应用,促进了以环境中未培养微生物为研究对象的新兴学科——微生物环境基因组学(又叫宏基因组学、元基因组学,英文名Metagenomics)的产生和快速发展。宏基因组学通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能.在短短几年内,宏基因组学研究已渗透到各个领域,包括海洋、土壤、热液口、热泉、人体口腔及胃肠道等,并在医药、替代能源、环境修复、生物技术,农业、生物防御及伦理学等各方面显示了重要的价值。本文对宏基因组学的主要研究方法、热点内容及发展趋势进行了综述 关键词:宏基因组宏基因组学环境基因组学基因文库的构建 Macro summary of Metagenomics WangYing,Ma Yi-Ming (BeijingJiaotongUniversity, Institute of civil engineering,)Key words:Metagenome; Metagenomics;The environmental genomics 宏基因组学(Metagenomics)又叫微生物环境基因组学、元基因组学。它通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能。它是在微生物基因组学的基础上发展起来的一种研究微生物多样性、开发新的生理活性物质(或获得新基因)的新理念和新方法。其主要含义是:对特定环境中全部微生物的总DNA(也称宏基因组,metagenomic)进行克隆,并通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息。 1.起源 宏基因组学这一概念最早是在1998年由威斯康辛大学植物病理学部门的Jo Handelsman等提出的,是源于将来自环境中基因集可以在某种程度上当成一个单个基因组研究分析的想法,而宏的英文是"meta-",具有更高层组织结构和动态变化的含义。后来伯克利分校的研究人员Kevin Chen和LiorPachter将宏基因组定义为"应用现代基因组学的技术直接研究自然状态下的微生物的有机群落,而不需要在实验室中分离单一的菌株"的科学。 2 研究对象 宏基因组学(Metagenomics)是将环境中全部微生物的遗传信息看作一个整体自上而下地研究微生物与自然环境或生物体之间的关系。宏基因组学不仅克服了微生物难以培养的困难, 而且还可以结合生物信息学的方法, 揭示微生物之间、微生物与环境之间相互作用的规律, 大大拓展了微生物学的研究思路与方法, 为从群落结构水平上全面认识微生物的生态特征和功能开辟了新的途径。目前, 微生物宏基因组学已经成为微生物研究的热点和前沿, 广泛应用于气候变化、水处理工程系统、极端环境、人体肠道、石油污染、生物冶金等领域, 取得了一系列引人瞩目的重要成果。 3 研究方法

宏基因组测序在感染性疾病病原学诊断中的应用

宏基因组测序在感染性疾病病原学诊断中的应用 感染性疾病一直是世界范围内疾病主要致死原因之一。WHO监测统计数据显示,在2016年全球约5690万例死亡患者中,有3项感染性疾病(下呼吸道感染、腹泻病、结核病)位列前10大死因,共造成的死亡数约占总死亡数的10%,其中下呼吸道感染造成约300万例患者死亡,腹泻病造成约140万例患者死亡,结核病造成约130万例患者死亡。感染性疾病的病原体十分复杂,包括细菌、病毒、真菌及寄生虫等,而在目前的临床微生物检测工作中,微生物实验室对病原体的诊断主要还是依赖自19世纪即开展的培养、染色镜检等传统检测方法,以及后续发展的核酸扩增检测(例如PCR)、分子免疫学检查(例如ELISA)等检测手段,这使得临床医生对感染性疾病的病原学诊断、病情评估及治疗方案制定等存在许多困难。目前仍有约60%的感染性疾病病例的病原体是诊断不明的。由于宏基因组测序(mNGS)对病原学诊断具有无偏移、全覆盖、高效率等优势,越来越多的学者尝试将其应用于临床病原学诊断之中。在此,我们回顾了近些年宏基因组测序在病原学诊断中的临床应用进展情况。 1.临床宏基因组学 宏基因组的概念最早在1998年被学者提出,指在一份独立的土壤标本中,所有微生物的基因组信息的总和,包括那些无法培养的生物体的基因组信息。后来,宏基因组的概念不仅仅局限于描述环境来源的标本,还被逐渐沿用于描述临床来源标本中的生物遗传信息特征。临床宏基因组学指为获取临床相关的微生物信息而对临床来源的标本中所有的核酸序列进行测序分析的一门学科间。宏基因组测序主要是通过以新一代测序为代表的高通量测序技术,对临床来源的标本进行宏基因组学分析,以获取病原体的物种分类、血清型、耐药性、毒力等一系列生物信息。由于宏基因组测序不依赖病原体培养结果且可以不对可疑病原体的标志核酸序列进行靶向扩增,这使得检测结果更具客观性和全面性,且更迅捷,这是对传统实验室检测手段的有效补充。《中国成人医院获得性肺炎与呼吸机相关性肺炎诊断和治疗指南(2018年版)》也指出临床宏基因组学能明显提高病原体诊断的敏感性,部分病原体检测花费的时间更短,尤其对罕见病原体的诊断具有优势,可审慎地应用于临床实践之中。正是得益于测序技术的不断进步与发展,

杆状病毒表达系统简介

体外基因表达系统包括原核细胞系统和真核细胞系统。原核细胞系统主要是大肠杆菌细胞,它操作简便、周期短收益大及表达产物稳定,但是表达基因的相对分子质量有限,不宜过大,且不能对表达产物进行一些翻译后加工、修饰。真核细胞系统包括 CHO等哺乳动物细胞、酵母细胞和昆虫细胞等。昆虫细胞表达系统(即杆状病毒表达系统)具有独特的生物学特性,日益受到人们的重视。 1、杆状病毒的生物学特性 杆状病毒只来源于无脊椎动物,虽然已发现600多种杆状病毒,但进行分子生物学研究的不到20种。杆状病毒的基因组为单一闭合环状双链DNA分子,大小为80~160 kb,其基因组可在昆虫细胞核复制和转录。DNA复制后组装在杆状病毒的核衣内,后者具有较大的柔韧性,可容纳较大片段的外源DNA插入,因此是表达大片段DNA的理想载体。其中,用作外源基因表达载体的杆状病毒,目前仅限于核型多角体病毒(nuclear polyhedrosis virus,NPV)。该病毒颗粒在细胞内可由多角体蛋白包裹形成长度约1~5 m的包含体病毒,呈多角体形状。核型多角体病毒有两种形式:一种为包含体病毒(occluded virus,OV),另一种则为细胞外芽生病毒(budded virus,BV)。它们在病毒感染中扮演的角色不同,包含体病毒是昆虫间水平感染的病毒形式,昆虫往往是食入污染OV的食物后引起感染。包含体病毒外层裹了一层蛋白晶体,即为29 000的多角体蛋白,它对病毒的水平感染起以下作用: ①保护病毒颗粒在外界传播过程中免遭环境因素的破坏而失活。 ②保证病毒颗粒在适当的位置释放,引起感染。 昆虫中肠上皮局部的强碱性环境(pH=10.5),可使病毒颗粒释放蛋白酶溶解多角体。BV病毒是个体内细胞间的感染形式,由细胞芽生出BV,进入血淋巴系统中感染其它部位的细胞或直接在临近细胞内感染。 近几十年,有关杆状病毒基因结构、功能和表达调节的研究进展迅速,其中研究最深入的是苜蓿银蚊夜蛾(autogra—phacalifornica)多核型多角体病毒(multiple nuclear polyhedro-sis virus,MNPV),简称AcMNPV或AcNPV。该病毒是杆状病毒科 Baculoviridae 的原型,是一种大的、带外壳的双链DNA病毒,能感染30多种鳞翅目昆虫,被广泛用作基因表达系统载体。其它作为表达载体的杆状病毒,主要是来自家蚕的NP~(bombyx moil,BmNP~)。由于家蚕幼虫体内系统适合大规模地制备生产外源蛋白,且成本低,显示出良好的应用前景。本文主要介绍 AcNPV病毒,BmNPV在许多方面与其具有共同的特征。 AcNPV的基因表达分为4个阶段:立即早期基因表达、早期基因表达、晚期基因表达和极晚期基因表达。前两个阶段的基因表达早于DNA复制,而后两个阶段的基因表达则伴随着一系列的病毒DNA合成。其中在极晚期基因表达过程中,有两种高效表达的蛋白,它们是多角体蛋白和P10蛋白:多角体蛋白是形成包含体的主要成分,感染后期在细胞中的积累可高达30%~50%,是病毒复制非必需成分,但对病毒粒子却有保护作用,可使之保持稳定和感染能力另一类高效表达的极晚期蛋白为P10蛋白,也是一类病毒复制非必需成分,可在细胞中形成纤维状物质,可能与细胞溶解有关。多角体基因和P10基因现在都已被定位和克隆这两个基因的启动子具有较强的启动能力,因此这两个基因位点成为杆状病毒表达载体系统理想的外源基因插入位点。 杆状病毒基因组的结构和功能研究 杆状病毒基因组为双链环状 DNA分子。DNA以超螺旋方式被压缩包装在杆状核衣壳(rod.shaped nueleocapsid)内,核衣壳包被脂质蛋白囊膜(envelope)后形成病毒粒子。核衣壳包括衣壳(capsid)蛋白和髓核(COle)。其中衣壳蛋白是杆状病毒粒子的主要结构蛋白;髓核由病毒DNA分子和与其密切相关的碱性蛋白构成。碱性蛋白同DNA紧密结合以维持其复杂有序的超螺旋结构。 目前已知基因组全序列的杆状病毒有苜蓿丫纹夜蛾核型多角体病毒(AcMNPV)b]、家蚕核多角

利用病毒宏基因组学寻找在瓜德罗普不同蚊种中稳定独特的核心真核病毒

利用病毒宏基因组学寻找在瓜德罗普不同蚊种中稳定独特的核心真核病毒 Stable distinct core eukaryotic viromes in different mosquito species from Guadeloupe, using single mosquito viral metagenomics 利用病毒宏基因组学寻找在瓜德罗普不同蚊种中稳定独特的核心真核病毒 作者:Chenyan Shi 等 期刊:Microbiome 时间:2019.8 影响因子: 10.465 DOI:10.1186/s40168-019-0734-2 一、研究背景 对人类来说,蚊子这种无脊椎动物是一种非常重要的病毒载体,近年来的研究证明其身上携带着大量未被研究的病毒。以往的研究通常对大量的蚊子进行宏基因组测序,而不评估单个蚊子的病毒多样性。为了解决这个问题,作者使用优化的病毒宏基因组学实验操作流程(NetoVIR)来比较2016年和2017年从瓜德罗普岛不同地点收集的埃及伊蚊和埃及库蚊的病毒量。(注:瓜德罗普是法国的海外省,位于加勒比海小安的列斯群岛中部。属热带雨林气候,平均气温26℃。) 二、实验结果 1.利用单只蚊子进行病毒宏基因组的可行性 作者将单只蚊子和混合蚊(5只蚊子)分别测序组装成contigs,然后比对注释分类为真核生物,细菌,古生菌,真核病毒,噬菌体,待确认噬菌体(噬菌体TBC),未归类病毒和暗物质(未被比对软件识别的contigs)共8个分类。通过比较单只蚊子与混合蚊在每个分类下reads数量占比、映射到nr contigs 数目、病毒读数比例(真核病毒、噬菌体和未分配病毒),发现单只蚊子样本的总读数和病毒读数比例与混合蚊样本相比无显著差异,证明了单只蚊子进行病毒宏基因组学研究的可行性。

病毒基因组DNA提取试剂盒使用说明书

病毒基因组DNA 提取试剂盒 Virus Genomic DNA Kit (目录号:HS0307) 产品包装 自备试剂 无水乙醇 储存条件 蛋白酶K 于-20℃,其他组分室温(15 ~ 25℃) 产品简介 本试剂盒适用于从新鲜或冷冻的血浆、血清和无细胞体液中提取高质量的病毒DNA 。无需使用苯酚、氯仿等有机溶剂抽提,独特的缓冲液/蛋白酶K 体系能迅速裂解病毒,使病毒蛋白与DNA 分离,在蛋白酶K 的作用下降解病毒蛋白,在高盐状态下将病毒DNA 选择性吸附于硅基质膜上,再通过快速的漂洗、离心步骤,去除蛋白等杂质,最后低盐的洗脱缓冲液将高纯度的病毒DNA 从吸附柱膜上洗脱下来。 本试剂盒操作简单、快速,所得病毒DNA 不含蛋白、核酸酶和其他杂质,可直接用于PCR 、RT-PCR 、Real-Time PCR 、印迹等分子生物学实验。 产品特点 1.简便快速,1小时内可获得高纯度的病毒基因组DNA 。 2.无需有机溶剂抽提,使用安全。 3.重复性好,产量高。 北京厚生博泰科技有限公司 Beijing Hooseen Biotech Co., Ltd.

4.所得病毒DNA纯度高,无污染物和抑制剂,方便下游应用。 注意事项 1.血清或血浆避免反复冻融,否则会使蛋白变性或产生沉淀,导致提取的DNA片段小,提取量下降。 2.如缓冲液Buffer GB、Buffer GD结晶或产生沉淀,可在56℃水浴溶解。 3.所有离心步骤均为室温下操作。 操作步骤 1. 取1.5 ml离心管(自备),加入20 ul的Proteinase K溶液。 2. 向离心管中加入200 ul血清或血浆,然后再加入200 ul Buffer GB,涡旋震荡15 sec。(注意:1、样本体积不足200 ul可以加入0.9% NaCl(自备)补足。2、为确保样本有效裂解,加入Buffer GB后,需将样本与Buffer GB充分混匀。) 3.56℃孵育15 min,短暂离心,将管壁上的溶液收集到管底。 4. 加入250 ul无水乙醇,涡旋震荡15 sec,室温放置5 min,短暂离心,将管壁上的溶液收集到管底。 (注意:如果环境温度超过25℃,无水乙醇应在冰上预冷后使用。) 5.将一个Spin Columns CG*放入Collection Tubes(2 ml)中,将上一步所得溶液转移到离心吸附柱中,10 000 rpm离心30 sec,弃收集管中的废液。 6. 向吸附柱内加入500 ul的Buffer GD,室温10 000 rpm离心30 sec,弃收集管中废液。(注意:Buffer GD中含有乙醇,用后及时盖紧,以防乙醇挥发) 7. 向吸附柱内加入500 ul的Buffer PW,室温10 000 rpm离心30 sec,弃收集管中废液。(注意:如需进一步提高DNA纯度,可重复步骤7一次。Buffer PW中含有乙醇,用后及时盖紧,以防乙醇挥发) 8.向吸附柱中加入500 ul无水乙醇,10 000 rpm离心30 sec,倒掉收集管中的废液,将吸附柱重新放回收集管中。 9.室温12 000 rpm离心3 min,甩干残留液体。 (注意:此步不能省略,否则残留乙醇会影响质粒的后续使用) 10. 将离心吸附柱置于一个新的1.5 ml塑料离心管(自备)中,小心打开吸附柱的盖子,室温放置3 min,使吸附膜完全变干。加入30 ~ 100 ul的洗脱液,室温放置2 ~ 5 min。12 000 rpm

病毒宏基因组学方法优缺点及意义

病毒宏基因组学方法优缺点及意义 病毒宏基因组学方法优缺点及意义 随着时代的发展和生物科学技术的进步,新兴的病毒宏基因组学为解决这些问题提供了契机,以下是一篇关于病毒宏基因组学探究的论文范文,供大家阅读参考。 病毒个体微小,多数病毒直径在100nm(20~200nm),较大的病毒直径300~450nm,较小仅为18~22nm,结构简单,不能独立复制需要依赖于宿主细胞复制繁殖,被许多生物学家认为是处于生命和非生命交叉区域的存在物。据估计目前对病毒的发掘还不到1%[1],对病毒的研究具有广阔的前景和现实意义。病毒独特的结构和特性给病毒的研究和鉴别带来许多困难,主要体现在两个方面:第一,病毒没有专门的宿主细胞系,60%以上的病毒无法成功的进行离体培养[2]或在培养中不能表达致病性;第二,病毒基因本身变异率高,通过与宿主间的相互作用进化,增加核酸多样性,产生新病毒,导致宿主范围扩大、跨物种传播[3].对细菌的研究可以通过保守的16sRNA的分析来定位分类信息、进化关系和种群多样性等。对于真菌有18sRNA及ITS序列。然而病毒不像细菌真菌,没有固定保守的进化标记基因。 所以一些传统研究方法的应用受到限制,不能完全满足病毒研究的需要。如电镜观察病毒的灵敏性不高,细胞培养病毒可能观察不到细胞病变,血清学反应中不但难以获得高价抗体而且容易出现交叉反应导致错误结果,传统PCR方法对未知序列及高变异的病毒研究难以发挥作用。加之近年来病毒流行病的频繁发生及其可怕的传染性,对人类及动植物的健康产生严重威胁,如HIV病毒、SARS病毒、禽流感病毒和在西非等地肆虐的埃博拉病毒[4]等,给人们造成了巨大的恐慌和经济损失。因此,对病毒基因组的研究、致病源的探索、病毒在生物体和环境中如何存在及传播、病毒病防治的研究已迫在眉睫。 随着时代的发展和生物科学技术的进步,新兴的病毒宏基因组学为解决这些问题提供了契机,宏基因组学(Metagenomics)的概念是1998年由Handelsman[5]首次提出,对特定环境中基因组的总和进行研究,包括培养的和未培养的.微生物。病毒宏基因组学(Viral metagenomics)就是宏基因组学在病毒领域的应用,即从环境或生物组织中浓缩病毒粒子的遗传物质进行生物学信息分析的技术。它的应用需要一些交叉学科的创新技术的支持,随机

HIV病毒基因组

编码基因 病毒基因组是两条相同的正链RNA,每条RNA长约9.2-9.8kb。两端是长末端重复序列(long terminal repeats, LTR),含顺式调控序列,控制前病毒的表达。已证明在LTR 有启动子和增强子并含负调控区。LTR之间的序列编码了至少9个蛋白,可分为三类:结构蛋白、调控蛋白、辅助蛋白。 1.gag基因能编码约500个氨基酸组成的聚合前体蛋白,经蛋白酶水解形成P17, P24核蛋白,使RNA不受外界核酸酶破坏。 2.Pol基因编码聚合酶前体蛋白,经切割形成蛋白酶、整合酶、逆转录酶、核糖核酸酶H,均为病毒增殖所必需。 3.env基因编码约863个氨基酸的前体蛋白并糖基化成gp160,gp120和gp41。gp120含有中和抗原决定簇,已证明HIV中和抗原表位,在gp120 V3环上,V3环区是囊膜蛋白的重要功能区,在病毒与细胞融合中起重要作用。gp120与跨膜蛋白gp41以非共价键相连。gp41与靶细胞融合,促使病毒进入细胞内。实验表明gp41亦有较强抗原性,能诱导产生抗体反应。 4.TaT 基因编码蛋白可与LTR结合,以增加病毒所有基因转录率,也能在转录后促进病毒mRNA的翻译。 5.Rev基因产物是一种顺式激活因子,能对env和gag中顺式作用抑制序列 (Cis-Acting repression sequance,Crs)去抑制作用,增强gag和env基因的表达,以合成相应的病毒结构蛋白。 6.Nef基因编码蛋白P27对HIV基因的表达有负调控作用,以推迟病毒复制。该蛋白作用于HIv cDNA的LTR,抑制整合的病毒转录。可能是HIV在体内维持持续感集体所必需。 7.Vif基因对HIV并非必不可少,但可能影响游离HIV感染性、病毒体的产生和体内传播。 8.VPU基因为HIV-1所特有,对HIV的有效复制及病毒体的装配与成熟不可少。 9.Vpr基因编码蛋白是一种弱的转录激活物,在体内繁殖周期中起一定作用。 HIV-2基因结构与HIV-1有差别:它不含VPU基因,但有一功能不明VPX基因。核酸杂交法检查HIV-1与HIV-2的核苷酸序列,仅40%相同。env基因表达产物激发机体产生的抗体无交叉反应。

宏基因组学的一般研究策略

宏基因组学的一般研究策略 摘要: 宏基因组学是目前微生物基因工程的一个重要方向与热点。它把微生物的总群体特性与基因组学实验手段结合了起来,包括从环境样品中提取总DNA、再用可培养的宿主微生物建立文库及筛选目的克隆和基因。该法是研究不可培养微生物、寻找新的基因和开发新活性产物的重要新途径。它避开了微生物分离、纯化和培养的步骤,大大扩展了微生物资源的利用范围。本文旨在介绍宏基因组学的一般研究方法并结合我们的实验情况,对这一崭新领域中的最新研究策略进行了简要综述。 关键词: 宏基因组学, 不可培养微生物, 文库构建, 文库筛选,研究策略 Strategies for accessing metagenomics for desired applications Abstract: Metagenomics is a new field of microbial genetic engineering. It has the characteristics of microbial ecology and the methodology of genomics. Metagenomics includes genomic DNA isolation, library construction and screening strategies, and can be used in the discovery of new gene and biocatalysts and in the study of uncultured microorganism. Metagenomics can overcome the advantages of isolation and cultivation procedures in traditional microbial method, and thus greatly broaden the space of microbial resource utilization. In this paper, we mainly reviewed the metagenomic methodology, together with the latest advances and novel strategy in this research field. Keywords:Metagenomics; Uncultured microorganism;Library construction;Library screening Research strategies 大自然中蕴藏着无数具有重要价值的微生物及其活性产物,也是新基因及生物学资源的重要源泉,对其进行研究成为微生物学和分子生物学研究的一个重要方向。然而人们现在能够培养与利用的不到环境中总微生物的1%[1]。宏基因组学(metagenomics)是直接从环境样品中提取全部微生物的总DNA, 避开了分离、纯化和培养微生物的过程来构建宏基因组文库,用基因组学的研究策略来研究环境样品中的总微生物的组成及其在群落中的功能等。现在,宏基因组学技术方法已在微生物多样性,微生物细胞间的相互作用,新基因和新型生物催化剂的开发,新的抗生素的开发及环境生态等方面得到了广泛应用[2]。本文旨在介绍宏基因组学的一般实验方法并结合我们的研究情况,对这一崭新领域中的最新研究策略进行了简要综述。深化了我们对这一学科的认识,促进了该学科的进步。 1 宏基因组学研究策略 1.1宏基因组学概要 宏基因组学是Handelsman等于1998年提出的[3], 可见是一门很新的学科,其随着基因组实验手段,生物信息学和测序技术等的日新月异也迅猛发展了起来,这个新学科是以环境样品的总微生物基因组为实验对象,通过测序分析、文库评价、产活性物质及其基因的克隆的获取和基因功能的鉴别,对微生物种群组成与生物量、生态学关系、生物化学关系与环境关系以及功能活性进行研究[4]。其主要过程包括样品和基因的富集和提取; 宏基因组文库的构建; 目的基因的筛选; 目的基因活性产物的表达(图1)。 1.2 微生物及其基因的富集 在文库筛选过程中由于目的基因比例较小, 对环境中微生物的富集不但可提高基因总量,有利于基因的提取,还可增加目的基因的比例,如Kouker 等用橄榄油富集产脂肪酶的微生物收到了很好的效果[5 ],橄榄油不仅可作为底物,还可诱导脂肪酶的合成。目前富集技术主要分为细胞水平和基因水平。其中细胞水平主要是用选择培养基来富集某些微生物, 常

2021年杆状病毒介绍

杆状病毒 欧阳光明(2021.03.07) 关键词:昆虫病毒,杆状病毒,核型多角体病毒,颗粒体病毒,质型多角体病毒 杆状病毒是一类在自然界中专一性感染节肢动物的DNA病毒,病毒粒子呈杆状,基因组为双链环状DNA分子,DNA以超螺旋形式压缩包装在杆状衣壳内,大小在90~180 Kb之间。目前杆状病毒作为高效、安全的无公害生物虫剂广泛应用于害虫防治。杆状病毒只来源于无脊椎动物,虽然已发现600多种杆状病毒,但进行分子生物学研究的不到20种。杆状病毒的基因组为单一闭合环状双链DNA 分子,大小为80~160 kb,其基因组可在昆虫细胞核复制和转录。DNA复制后组装在杆状病毒的核衣内,后者具有较大的柔韧性,可容纳较大片段的外源DNA插入,因此是表达大片段DNA的理想载体。其中,用作外源基因表达载体的杆状病毒,目前仅限于核型多角体病毒(nuclear polyhedrosis virus,NPV)。该病毒颗粒在细胞内可由多角体蛋白包裹形成长度约1~5 m的包含体病毒,呈多角体形状。核型多角体病毒有两种形式: 一种为包含体病毒(occluded virus,OV), 另一种则为细胞外芽生病毒(budded virus,BV)。 它们在病毒感染中扮演的角色不同,包含体病毒是昆虫间水平感染的病毒形式,昆虫往往是食入污染OV的食物后引起感染。包含体病毒外层裹了一层蛋白晶体,即为29 000的多角体蛋白,它对病毒

的水平感染起以下作用:①保护病毒颗粒在外界传播过程中免遭环境因素的破坏而失活。②保证病毒颗粒在适当的位置释放,引起感染。昆虫中肠上皮局部的强碱性环境(pH=10.5),可使病毒颗粒释放蛋白酶溶解多角体。BV病毒是个体内细胞间的感染形式,由细胞芽生出BV,进入血淋巴系统中感染其它部位的细胞或直接在临近细胞内感染。近几十年,有关杆状病毒基因结构、功能和表达调节的研究进展迅速,其中研究最深入的是mùxu苜蓿银蚊夜蛾(autogra—phacalifornica)多核型多角体病毒(multiple nuclear polyhedro-sis virus,MNPV),简称AcMNPV或AcNPV。该病毒是杆状病毒科Baculoviridae的原型,是一种大的、带外壳的双链DNA 病毒,能感染30多种鳞翅目昆虫,被广泛用作基因表达系统载体。其它作为表达载体的杆状病毒,主要是来自家蚕的NP~(bombyx moil,BmNP~)。由于家蚕幼虫体内系统适合大规模地制备生产外源蛋白,且成本低,显示出良好的应用前景。本文主要介绍AcNPV病毒,BmNPV在许多方面与其具有共同的特征。 AcNPV的基因表达分为4个阶段:立即早期基因表达、早期基因表达、晚期基因表达和极晚期基因表达。前两个阶段的基因表达早于DNA复制,而后两个阶段的基因表达则伴随着一系列的病毒DNA 合成。其中在极晚期基因表达过程中,有两种高效表达的蛋白,它们是多角体蛋白和P10蛋白:多角体蛋白是形成包含体的主要成分,感染后期在细胞中的积累可高达30%~50%,是病毒复制非必需成分,但对病毒粒子却有保护作用,可使之保持稳定和感染能力另一类高效表达的极晚期蛋白为P10蛋白,也是一类病毒复制非必需成

病毒宏基因组学方法优缺点及意义【可编辑版】

病毒宏基因组学方法优缺点及意义【可编辑版】病毒宏基因组学方法优缺点及意义病毒宏基因组学方法优缺点及意义 病毒个体微小,多数病毒直径在100nm,较大的病毒直径300~450nm,较小仅为18~22nm,结构简单,不能独立复制需要依赖于宿主细胞复制繁殖,被许多生物学家认为是处于生命和非生命交叉区域的存在物。据估计目前对病毒的发掘还不到1%,对病毒的研究具有广阔的前景和现实意义。病毒独特的结构和特性给病毒的研究和鉴别带来许多困难,主要体现在两个方面: 第一,病毒没有专门的宿主细胞系,60%以上的病毒无法成功的进行离体培养或在培养中不能表达致病性;第 二,病毒基因本身变异率高,通过与宿主间的相互作用进化,增加核酸多样性,产生新病毒,导致宿主范围扩大、跨物种传播.对细菌的研究可以通过保守的16sRNA的分析来定位分类信息、进化关系和种群多样性等。对于真菌有18sRNA及ITS序列。然而病毒不像细菌真菌,没有固定保守的进化标记基因。 所以一些传统研究方法的应用受到限制,不能完全满足病毒研究的需要。如电镜观察病毒的灵敏性不高,细胞培养病毒可能观察不到细胞病变,血清学反应中不但难以获得高价抗体而且容易出现交叉反应 导致错误结果,传统PCR方法对未知序列及高变异的病毒研究难以发挥作用。加之近年来病毒流行病的频繁发生及其可怕的传染性,对人类及动植物的健康产生严重威胁,如HIV病毒、SARS病毒、禽流感病毒和在西非等地肆虐的埃博拉病毒等,给人们造成了巨大的恐慌和经济损失。因此,对病毒基因组的研究、致病源的探索、病毒在生物体和环境中如何存在及传播、病毒病防治的研究已迫在眉睫。 随着时代的发展和生物科学技术的进步,新兴的病毒宏基因组学为解决这些问题提供了契机,宏基因组学的概念是1998年由Handelsman首次提出,对特定环境

宏基因组学研究方法及应用概述

宏基因组学研究方法及应用概述彭昌文 (山东省济宁学院生物学系 273155) 颜 梅 (山东省曲阜师范大学生命科学学院 273165) 摘 要 本文简要介绍了宏基因组的概念,概述了其原理及应用。 关键词 宏基因组 宏基因组学 环境基因组学 基因文库的构建 迄今,人们对微生物世界的认识基本都来源于对占细菌总种数不到1%的微生物的单个种群的孤立研究结果。然而微生物是通过其群落而非单一种群来执行在自然界物质与能量循环中的作用的,对微生物群落作为整体的功能认识远远落后于对其个体的认识。这种状况不利于全面认识微生物在自然界所扮演的重要角色。为了获得完整的环境微生物基因表达产物,早在1978年许多学者就提出了直接从环境中提取微生物DNA的思路,1998年,AR I A D phar maceutical公司的科学家Handels man等首次提出宏基因组的概念[1]。宏基因组(the genomes of the total m icrobi ota found in nature)是指生境中全部微生物基因的总和[2]。它包含了可培养的和未培养的微生物的基因总和,微生物主要包括环境样品中的细菌和真菌。而宏基因组学就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系等为研究目的的新的微生物研究方法,也称为微生物环境基因组学、元基因组学或生态基因组学。它主要研究从环境样品获得的基因组中所包含的微生物的遗传组成及其群落功能,为充分认识和开发利用非培养微生物,并从完整的群落水平上认识微生物的活动、最大限度地挖掘微生物资源,提供了可能,已成为国际生命科学技术研究的热点和前沿。 1 宏基因组学的研究方法 宏基因组学的研究过程一般包括从环境样品中提取基因组DNA,克隆DNA到合适的载体,导入宿主菌体,筛选目的转化子等工作,可分为三个步骤。 1.1 宏基因组的提取 在宏基因组筛选过程中,目的基因是整个核苷酸链中的一部分,因此样品前期的富集能够提高筛选命中率。DNA的提取是宏基因文库构建的关键步骤。提取步骤通常需要满足两个条件:既要尽可能提取样品所有微生物的基因,又要保持片段的完整和纯度。目前所开发的DNA提取方法有两种:细胞提取法和直接裂解法。直接裂解法包括物理法(冻融法、超声法、玻璃球珠击打法、液氮碾磨法)、化学法(常用化学试剂有表面活性剂、盐类、有机溶剂等)及酶裂解法。另外,依据提取样品总DNA前是否分离细胞,可以分为原位裂解法和异位裂解法。原位裂解法可以直接破碎样品中的微生物细胞而使DNA 得以释放,由于无需对样品微生物进行复苏,且黏附颗粒上的微生物细胞亦能被裂解,所得DNA能更好地代表样品微生物的多样性。此法操作容易、成本低,DNA 提取率高,但由于机械剪切作用较强,所提取的DNA 片段小(1~50kb),通常适用于构建小片段插入文库(以质粒和λ噬菌体为载体)的DNA提取。异位裂解法则先采用物理方法将微生物从样品中分离出来,然后采用较温和的方法抽提DNA。此法条件温和,可获得大片段DNA(20~500kb),纯度高,但操作繁琐、成本高、得率低,通常适用于构建大片段插入文库(以柯斯质粒或者细菌人工染色体为载体)的DNA提取。1.2 宏基因组文库的构建 宏基因组文库的构建需适宜的克隆载体。通常用于DNA克隆的载体主要包括质粒、黏粒和细菌人工染色体等。质粒一般用于克隆小于10kb的DNA片段,适用于单基因的克隆与表达。黏粒的插入片段可达40kb左右,细菌人工染色体插入片段可达350kb,可用来制备由多基因簇调控的微生物活性物质的完整代谢途径的相关片段文库。1.3 目的基因的筛选 目的基因的筛选方法包括序列分析和功能分析两种。序列分析适用于小片段DNA文库的基因筛选;而功能分析通常适用于大片段DNA文库的筛选。序列分析筛选不依赖于重组基因在外源宿主中的表达,因为所使用的寡聚核苷酸引物是直接通过DNA序列中的保守区域设计的,反映了氨基酸序列的保守性,可获得未知序列的目的基因。该方法对DNA量的要求不高,筛选到新活性物质的可能性较大。序列分析的另一个手段是对宏基因组克隆测序,无论是全部或随机测序都是发现新基因的有效手段。 对于功能分析而言,首先需获得目的克隆,然后通过序列和生化分析对其进行表征。此法能快速鉴定出全新且有开发价值的活性物质,可用于医药、工农业等行业。由于此法检出率较低,工作量较大,且受检测手段的限制,所以常要借助于高通量筛选。 2 宏基因组学的应用 2.1 在生态学方面的应用 当今微生物生态学研究的主要目的之一是将微生物与其所在环境中的代谢过程相联系。应用16s r DNA作为系统发育锚去鉴定属于某种微生物的克隆,然后对基因进行测序,从而获得

相关文档