文档视界 最新最全的文档下载
当前位置:文档视界 › 高中数学向量重点知识和练习题

高中数学向量重点知识和练习题

高中数学向量重点知识和练习题
高中数学向量重点知识和练习题

向量

一、向量的运算

1.加法,减法,数乘(……)

2.数量积(点积,内积):

是一个数量(没有方向),a·b =|a|·|b|·cos〈a,b〉

向量的数量积的运算律:注意没有(!)结合律,更没有消去律

向量的数量积的性质

a·a=|a|的平方。

a⊥b〈=〉a·b=0。

|a·b|≤|a|·|b|。

向量数量积的物理意义:机械功(力和位移)

3.向量积(叉积,外积):

是一个向量,记作a×b。这里∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系(这是什么?去查一下好啦!)。特别地,若a、b 共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0;a垂直b〈=〉a×b=|a||b|。

向量的向量积运算律:

a×b=-b×a

(λa)×b=λ(a×b)=a×(λb)

a×(b+c)=a×b+a×c

向量向量积的物理意义:力矩(力和力臂),洛伦兹力(磁场强度和速度,和记忆的公式不一样……如果记的是qvB就得用左手定则!顺序错了就彻底跪了……)

二、向量的表示方法

1.基底和分解(……)

2.坐标表示

向量的数量积的坐标表示:若a=(x,y),b=(x’,y’)则a·b=x·x'+y·y'

向量的向量积的坐标表示:若a=(x,y,z),b=(x’,y’,z’)则a×b=

|i j k |

|x y z |

|x’ y’ z’|

这是一个三阶行列式,其中i=(1,0,0),j=(0,1,0),k=(0,0,1)

定比分点公式:

移轴:(按某个向量把坐标系平移,原来各点的坐标是什么?)

三、三角形中的向量(真正比较奇妙的东西)

1.若OC=bOB+aOA,则ABC三点共线等价于a+b=1。一般地,三点ABC共线,等价于

对任意的点O,存在abc使得a OA+b OB+c OC=0且a+b+c=0。

2.rami定律:三个向量和为0,则某个向量的长度与另外两个向量夹角的正弦值成正比。

3.重心坐标相关:已知△ABC内有一点O且a OA+b OB+c OC=0,则S△OBC:S△OCA:S△OAB:S△ABC=a:b:c:(a+b+c)

证明:不妨只求出S△OAB/S△OAC。

(法一)a OA+b OB+c OC=0这个式子后叉乘OA得到b(OB×OA)+c(OC×OA)=0

故而b*S△OAB=c*S△OAC(很气人的解法有没有)

(法二)延长AO交BC于D(构图,拆解向量,是最基本的做法)

则-a OA=b OB+c OC=b(OD+DB)+c(OD+DC)=(b+c)OD+b DB+c DC

但OA∥OD故b DB+c DC=0也即c/b=DB/DC=S△OAB/S△OAC

也可用定比分点公式表示OD,方法同上。

这样,一个三角形内的点O,可以通过关系a OA+b OB+c OC=0中的常数abc完全确定下来(确切说,是通过他们的比值确定下来),这种确定方法就称为点的重心坐标。

(如果点O在三角形外怎么办?我们需要定义负的面积…这幅图解释清楚了)

4.三角形巧合点的向量性质

重心G:①它的重心坐标为(1,1,1)

②设P为三角形内一点,则PA+PB+PC=3PG

③重心是到三个顶点的距离的平方和最大的点

外心O:重心坐标(sin2A,sin2B,sin2C)

考虑△OAB/△OAC=(OA*OBsi n∠AOB)/(OA*OCsin∠AOC),也就是圆心角

的正弦比。

内心I:①它的重心坐标为(sinA,sinB,sinC)

因为内心到三边距离相等,所以三个小三角形的面积比就是三边长之比,由正

弦定理就得到结论。

②OI=(a OA+b OB+c OC)/(a+b+c)

垂心H:①它的重心坐标为(tanA,tanB,tanC)(这个你自己思考一下~)

②HA·HB=HB·HC=HC·HA

移过来相减就好了。

③若O为外心,则OH=OA+OB+OC,并以此可以证明三角形的外心重心垂心

三点共线(欧拉线)。

展开OH的表达式就得到了上面的结论。至于欧拉线,用重心性质表示OG就

可以证明OH=3OG了。

四、各种练习题

(一) 几个基础题

1、设,,a b c

是平面内任意非零向量,且相互不共线,一下四命题

(1)()()0a b c c a b ?-?= (2)||||||a b a b -<- (3)()()b c a c a b ?-?

不与c 垂直

(4)若向量,a b 不共线,0a b ?≠ ,且a a c a b a b ???- ????

=,则向量a 与c 的夹角为2π

其中真命题是___(2)(4)_______。 2、设两非零向量1e 和2e 不共线,

(1)如果21e e +=,2182e e +=,()

213e e -=,求证A B D 三点共线.

(2)试确定实数k ,使21e e k +和21e k e +共线.

(1)证明 ∵21e e +=,()

e e e e e e 553382212121=+=-++=+=,

∴,共线,又有公共点B ∴A ,B ,D 三点共线.

(2)解 ∵21e e k +与21e k e +共线, ∴存在λ使

()

2

1

2

1

e

k e e e k +=+λ,

则()()211e k e k -=-λλ,由于1e 与2e 不共线, 只能有??

?=-=-0

10

k k λλ则1±=k .

(二) 向量的计算

3、已知平面上三个单位向量,,a b c ,且两两夹角为0

120。 (1)证明()a b c -⊥

(2)若||1ka b c ++>

,求k 的取值范围。

解:(1)00

()cos120cos1200a b c a c b c -?=?-?=-= ()a b c ∴-⊥

(2)2222||12221ka b c k a b c ka b ka c b c ++>?+++?+?+?>

将12

a b a c b c ?=?=?=- 代入得2

2002k k k k ->?<>或

4、已知0a b c ++=

,||1,||2,||a b c ===

,则a b a c b c ?+?+?= __-7/2____,

a b ?=

_-5/2___。

5、如图,在ABC ?中,120,2,1,BAC AB AC D ∠=?==是边BC 上一点,2,DC BD =

则AD BC =

___-8/3_________

6、若非零向量,a b

满足a b b += ,则( C )

A、2a a b >2+ B、2a a b <2+ C、2b a b >+2 D、 2b a b <+2

7、已知,a b 是平面内两互相垂直的向量,

且||||a b ==

,若一向量c 满足

()()0a c b c -?-= ,则||c

的最大值是____2____。

8、在直角坐标系xOy 中,已知点(0,1)A 和点(3,4)B -,若点C 在AOB ∠的平分线上且

||2OC = ,则=

() 。 9、在O A B ?中,OA a OB b ==

,OD 是AB 边上的高,若AD AB λ= ,则λ=( B )

A 、2()||a b a a b ?--

B 、2()||a a b a b ?--

C 、()||a b a a b ?--

D 、()||

a a

b a b ?--

10、平面内有向量)1,2(),1,5(),7,1(===OP OB OA ,点X 为直线OP 上的一个动点. (1)当XB XA ?取最小值时,求的坐标;

(2)当点X 满足(1)的条件和结论时,求AXB ∠cos 的值.

解:(1)设),(y x OX =.∵点X 在直线OP 上,∴向量OX 与OP 共线. 又 )1,2(=,∴021=?-?y x ,即 y x 2=. ∴),2(y y =.又 )7,1(,=-=,

∴ )7,21(y y --=.同样 )1,25(y y --=-=. 于是 )1)(7()25)(21(y y y y XB XA --+--=?

A

B

D

C

.

8)2(512

2057

8512422

22--=+-=+-++-=y y y y y y y

由二次函数的知识,可知当2=y 时,8)2(52--=?y XB XA 有最小值-8.此时

)2,4(=.

(2)当)2,4(=时,即2=y 时,有

.

8)1(51)3(,

234)1,1(),5,3(-=-?+?-=?==-=-=XB XA ∴

1717

42

348cos -=-=

=

∠AXB (三)向量与几何

11、如图,设平行四边形ABCD 一边AB 的四等分点中最靠近B 的一边为E ,对角线

BD 的五等分点中靠近B 的一点为F ,求证C F E ,,三点在一条直线上.

证明:设,BA a BC b ==

,则11,()45

BE a BF a b ==+ ,

11520EF b a ∴=- ,14EC b a =- ,

则由15

EF EC =

可得,,E F C 三点共线

12、如图所示,四边形ADCB 是正方形,P 是对角线DB 上的一点,PFCE 是矩形.试用向量法证明:

(1

=(2)EF PA ⊥.

证明:以点D 为坐标原点,DC 所在直线为x 轴建立如图所

示的坐标系,设正方形的边长为l .λ=,则

???

? ?????? ?????? ??0,22

,22,1,22,22),1,0(λλλλF E P A . 于是???? ??--=???? ??--

=λλλλ22,12

2,221,22.

(1)122212222

2+-=????

??-+???? ??-=λλλλ , 12221222

2

2

+-=???

? ??-+???? ??-=λλλλ,

=. (2)????

??-????? ?

?-+???? ??-????? ??

-

=?λλλλ2222112222EF PA 0022

22112222=?-=???

? ??-+-?-=λλλλ,

∴⊥.

13、点O 是三角形ABC 所在平面内的一点,满足?=?=?,则点O 是ABC ?的( D )

A 、三个内角的角平分线的交点

B 、三条边的垂直平分线的交点

C 、三条中线的交点

D 、三条高的交点

14、动点P 满足1[(1)(1)(12)],()3

OP OA OB OC R λλλλ=-+-++∈

,动点P 一定

会过ABC ?的 ( C )

A 、内心

B 、垂心

C 、重心

D 、外心

15、已知O 为平面上一定点,ABC ? ,动点P 满足()||||

AB AC

OP OA AB AC λ=++

([0,))λ∈+∞,则动点P 一定通过ABC ?的( B )

A 、外心

B 、内心

C 、重心

D 、垂心

16、点O 为ABC ?内一点,且满足230OA OB OC ++=

,则::BOC AOC AOB S S S ???为

( A )

A 、1:2:3

B 、1:4:9

C 、3:2:1

D 、3:1:2

(四)几道拓展题

17、点P 在△ABC 内,重心坐标(x,y,z ),过P 的直线交AB 于C1,交AC 于B1,交

BC 于A1

①若AC1=m AB ,AB1=n AC ,求证y/m+z/n=x+y+z ②若PA1=p PC1,PB1=q PC1,求证x/p+y/q+z=0

①0=x PA+y PB+z PC=x PA+y(PA+AB)+z(PA+AC)=(x+y+z)PA+y AB+z AC

也即(x+y+z)AP=y AB+z AC=y/m AC1+z/n AB1 再由PC1B1共线即证

②斜角坐标法。设B(0,0)C(1,0)A(0,1),可解得P(z/(x+y+z),x/(x+y+z)),再设出

C1(0,y1)A1(x1,0) B1(x0,y0) 则x0+y0=1

解出p=PA1/PC1=……

而q=PB1/PC1=……

代回即证之。

18、已知O为△ABC内一点,重心坐标(x,y,z)。若一过O点的直线分别交ABC

?两

,

AB AC于,P Q两点,且,

AP mAB AQ nAC

==

,求

11

m n

+

的值。

高二数学-空间向量与立体几何测试题

1 / 10 高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

高二数学向量知识点总结

高二数学向量知识点总结 导读:我根据大家的需要整理了一份关于《高二数学向量知识点总结》的内容,具体内容:数学数学是高考的三大必考主科之一,数学成绩的好坏也将直接关系到你是否能够考入理想的大学,高二数学也是整个高中数学学习承上启下的一年,所以一定要下功夫学好数学。以下是我为您整理的关于的相... 数学数学是高考的三大必考主科之一,数学成绩的好坏也将直接关系到你是否能够考入理想的大学,高二数学也是整个高中数学学习承上启下的一年,所以一定要下功夫学好数学。以下是我为您整理的关于的相关资料,供您阅读。 (一) 考点一:向量的概念、向量的基本定理 【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。 注意对向量概念的理解,向量是可以自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。 考点二:向量的运算 【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则进行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐

标表达式,会进行平面向量积的运算,能运用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。 【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。 考点三:定比分点 【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来帮助理解。 【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。由于向量应用的广泛性,经常也会与三角函数,解析几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难度略高的题目。 考点四:向量与三角函数的综合问题 【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的要求。 【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。 考点五:平面向量与函数问题的交汇 【内容解读】平面向量与函数交汇的问题,主要是向量与二次函数结合的问题为主,要注意自变量的取值范围。 【命题规律】命题多以解答题为主,属中档题。 考点六:平面向量在平面几何中的应用 【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入向量的坐

高一数学平面向量期末练习题及答案

平面向量 一、选择题:本大题共10小题,每小题5分,共50分。 1、下列向量组中能作为表示它们所在平面内所有向量的基底的是 ( ) A .)0,0(=a ρ )2,1(-=b ρ B .)2,1(-=a ρ )4,2(-=b ρ C .)5,3(=a ρ )10,6(=b ρ D .)3,2(-=a ρ )9,6(=b ρ 2、若ABCD 是正方形,E 是CD 的中点,且a AB =,b AD =,则BE = ( ) A .a b 21+ B .a b 21- C.b a 21+ D.b a 2 1- 3、若向量a r 与b r 不共线,0a b ?≠r r ,且()a a b c a a b ?=-?r r r r r r r ,则向量a r 与c r 的夹角为 ( ) A . π 2 B . π6 C . π3 D .0 4、设,是互相垂直的单位向量,向量m 3)1(-+=,m )1(-+=, ) ()(-⊥+,则实数m 为 ( ) A .-2 B .2 C.2 1 - D.不存在 5、在四边形ABCD 中,b a AB 2+=,b a BC --=4,b a CD 35--=,则四边形ABCD 的形状是 ( ) A .长方形 B .平行四边形 C.菱形 D.梯形 6、下 列 说 法 正 确 的 个 数 为 ( ) (1))()()(λλλ?=?=?; (2)||||||?=?; (3)?+?=?+)( (4))()(??=??; (5)设,,为同一平面内三个向量,且c 为非零向量, ,不共线,则)()(?-?与垂直。

A .2 B. 3 C. 4 D. 5 7、在边长为1的等边三角形ABC 中,设a BC =,b CA =,c AB =,则a c c b b a ?+?+? 的值为 ( A . 23 B .2 3 - C.0 D.3 8、向量=(-1,1),且与+2方向相同,则?的范围是 ( ) A .(1,+∞) B .(-1,1) C.(-1,+∞) D.(-∞,1) 9、在△OAB 中,=(2cos α,2sin α),=(5cos β,5sin β),若?=-5, 则S △OAB = ( ) A .3 B . 23 C.35 D.2 3 5 10、若非零向量、满足||||b b a =-,则 ( ) A. |2||2|-> B. |2||2|-< C. |2||2|-> D. |2||2|-< 二、填空题:本大题共4小题,每小题5分,共20分。 11、若向量)4,3(-=a ρ,则与a ρ 平行的单位向量为________________ , 与a ρ 垂直的单位向量为______________________。 12、已知)3,2(=a ρ ,)4,3(-=b ρ,则)(b a ρρ-在)(b a ρρ+上的投影等于___________ 。 13、已知三点(1,2),(2,1),(2,2)A B C -, ,E F 为线段BC 的三等分点,则AE AF ?u u u r u u u r = _____. 14.设向量a ρ与b ρ的夹角为θ,定义a ρ与b ρ 的“向量积”: b a ?ρ是一个向量,它的模θsin ||||||??=?b a b a ρ ρρρ. 若)3,1(),1,3(=--=b a ρρ,则=?||b a ρ ρ . 三、解答题:本大题共6小题,共80分。 15.(本小题满分12分) 设向量OA =(3,1),OB =(-1,2),向量OB OC ⊥,BC ∥OA ,又OD +OA =OC , 求。

高中数学空间向量与立体几何测试题及答案

一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++ D.11111 ()2 AB CD AC ++ 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-, ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C 7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,,

的中点,则2a 等于( ) A.2BA AC · B.2AD BD · C.2FG CA · D.2EF CB · 答案:B 8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122 -,, C.51122 --,, D.51122 ,, 答案:A 9.若向量(12)λ=,,a 与(212)=-, ,b 的夹角的余弦值为8 9,则λ=( ) A.2 B.2- C.2-或 255 D.2或255 - 答案:C 10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( ) A.7412??- ???,, B.(241),, C.(2141)-,, D.(5133)-,, 答案:D 11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos 3 D.3arccos 6 答案:D 12.给出下列命题: ①已知⊥a b ,则()()a b c c b a b c ++-=···; ②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面; ③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( ) A.1 B.2 C.3 D.4 答案:C 二、填空题 13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055?? - ??? ,,

(完整word)高中数学平面向量基础练习及答案

基础练习 1、若(3,5)AB =u u u r ,(1,7)AC =u u u r , 则BC =u u u r ( ) A .(-2,-2) B .(-2,2) C .(4, 2) D .(-4,-12) 2、已知平面向量→a =(1,1),→b =(1,-1),则向量12→a -32→b = ( ) A 、(-2,-1) B 、(-2,1) C 、(-1,0) D 、(-1,2) 3、已知平面向量a r =(1,-3),b r =(4,-2),a b λ+r r 与a r 垂直,则λ是( ) A. -1 B. 1 C. -2 D. 2 4、若平面向量b r 与向量a r =(1,-2)的夹角是180°,且|b r |=,则b r =( ) A .(-1,2) B .(-3,6) C .(3,-6) D .(-3,6)或(3,-6) 5、在ABC AB BC AB ABC ?=+??则中,若,02是( ) A .锐角三角形 B . 直角三角形 C .钝角三角形 D .等腰直角三角形 6、直角坐标平面内三点()()()1,23,29,7A B C -、、,若E F 、为线段BC 的三等分点,则·=( ) (A )20 (B )21 (C )22 (D )23 7.在四边形ABCD 中,AB =a +2b ,=-4a -b ,=-5a -3b ,其中a 、b 不共线,则四 边形ABCD 为( ) A.平行四边形 B.矩形 C.梯形 D.菱形 8.已知()() 3,4,223,a b a b a b ==++=r r r r r r g 那么a r 与b r 夹角为( ) A 、60? B 、90? C 、120? D 、150? 9.已知D 、E 、F 分别是△ABC 的边BC 、CA 、AB 的中点,且BC =a r ,=b r ,=c r , 则下列各式: ①=21c r -21b r ②=a r +2 1b r ③CF =-21a r +2 1b r ④++CF =0r 其中正确的等式的个数为( ) A.1 B.2 C.3 D.4 10.已知向量a =(3,-4),b =(2,x ), c =(2,y )且a ∥b ,a ⊥c .求|b -c |的值.

人教版高中数学向量练习题

一、选择题; 1、若a r ,b r ,c r 是空间任意三个向量, R λ∈,下列关系式中,不成立的是( ) A 、a b b a +=+r r r r B 、() a b a b λλλ+=+r r r r C 、()() a b c a b c ++=++r r r r r r D 、b a λ=r r 2、已知向量a r =(1,1,0),则与a r 共线的单位向量( ) A 、(1,1,0) B 、(0,1,0) C 、( 22,2 2,0) D 、(1,1,1) 3、若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 4、设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 5、若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为8 9 ,则λ=( ) A.2 B.2- C.2-或 2 55 D.2或255 - 6、已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,, 则D 的坐标为( ) A.7412 ?? - ??? , , B.(241),, C.(2141)-,, D.(5133)-,, 7、在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C. D. 8、正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( ) C.12 9、ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角 P AD C --为60°,则P 到AB 的距离为( ) A. C.2

空间向量与空间角练习题

课时作业(二十) [学业水平层次] 一、选择题 1.若异面直线l 1的方向向量与l 2的方向向量的夹角为150°,则l 1与l 2所成的角为( ) A .30° B .150° C .30°或150° D .以上均不对 【解析】 l 1与l 2所成的角与其方向向量的夹角相等或互补,且 异面直线所成角的围为? ????0,π2.应选A. 【答案】 A 2.已知A (0,1,1),B (2,-1,0),C (3,5,7),D (1,2,4),则直线AB 与直线CD 所成角的余弦值为( ) A.52266 B .-52266 C.52222 D .-52222 【解析】 AB →=(2,-2,-1),CD →=(-2,-3,-3), ∴cos 〈AB →,CD →〉=AB →·CD →|AB →||CD →|=53×22=52266, ∴直线AB 、CD 所成角的余弦值为52266 . 【答案】 A

3.正方形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,若PA =AB ,则平面PAB 与平面PCD 的夹角为( ) A .30° B .45° C .60° D .90° 【解析】 如图所示,建立空间直角坐标系,设PA =AB =1.则A (0,0,0),D (0,1,0),P (0,0,1).于是AD → =(0,1,0). 取PD 中点为E , 则E ? ????0,12,12, ∴AE → =? ????0,12,12, 易知AD →是平面PAB 的法向量,AE →是平面PCD 的法向量,∴ cos AD →,AE →=22 , ∴平面PAB 与平面PCD 的夹角为45°. 【答案】 B 4.(2014·师大附中高二检测)如图3-2-29,在空间直角坐标系Dxyz 中,四棱柱ABCD —A 1B 1C 1D 1为长方体,AA 1=AB =2AD ,点E 、F 分别为C 1D 1、A 1B 的中点,则二面角B 1-A 1B -E 的余弦值为( )

高一数学必修4平面向量练习题及答案(完整版)

平面向量练习题 一、选择题 1、若向量a = (1,1), b = (1,-1), c =(-1,2),则 c 等于( ) A 、21-a +23b B 、21a 23-b C 、23a 2 1-b D 、2 3-a + 21b 2、已知,A (2,3),B (-4,5),则与共线的单位向量是 ( ) A 、)10 10 ,10103(- = B 、)10 10 ,10103()1010,10103(-- =或 C 、)2,6(-= D 、)2,6()2,6(或-= 3、已知k 3),2,3(),2,1(-+-==垂直时k 值为 ( ) A 、17 B 、18 C 、19 D 、20 4、已知向量=(2,1), =(1,7), =(5,1),设X 是直线OP 上的一点(O 为坐标原点),那么XB XA ?的最小值是 ( ) A 、-16 B 、-8 C 、0 D 、4 5、若向量)1,2(),2,1(-==分别是直线ax+(b -a)y -a=0和ax+4by+b=0的方向向量,则 a, b 的值分别可以是 ( ) A 、 -1 ,2 B 、 -2 ,1 C 、 1 ,2 D 、 2,1 6、若向量a =(cos α,sin β),b =(cos α ,sin β ),则a 与b 一定满足 ( ) A 、a 与b 的夹角等于α-β B 、(a +b )⊥(a -b ) C 、a ∥b D 、a ⊥b 7、设j i ,分别是x 轴,y 轴正方向上的单位向量,j i θθsin 3cos 3+=,i -=∈),2 ,0(π θ。若用 来表示与的夹角,则 等于 ( ) A 、θ B 、 θπ +2 C 、 θπ -2 D 、θπ- 8、设πθ20<≤,已知两个向量()θθsin ,cos 1=,()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是 ( ) A 、2 B 、3 C 、23 D 、 二、填空题 9、已知点A(2,0),B(4,0),动点P 在抛物线y 2=-4x 运动,则使BP AP ?取得最小值的点P 的坐标

高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题 第Ⅰ卷(选择题,共50分) 一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只 有一项是符合题目要求的) 1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( ) A .有相同起点的向量 B .等长向量 C .共面向量 D .不共面向量 3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .// B .⊥ C .也不垂直于不平行于, D .以上三种情况都可能 4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于 ( ) A. 627 B. 637 C. 647 D. 65 7 5.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( ) A.+-a b c B. -+a b c C. -++a b c D. -+-a b c 6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><,为( ) A .30° B .45° C .60° D .以上都不对 7.若a 、b 均为非零向量,则||||?=a b a b 是a 与b 共线的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( ) A .2 B .3 C .4 D .5 9.已知则35,2,23+-=-+= ( ) A .-15 B .-5 C .-3 D .-1

(完整版)高中数学平面向量测试题及答案

平面向量测试题 一、选择题: 1。已知ABCD 为矩形,E 是DC 的中点,且?→?AB =→a ,?→?AD =→b ,则?→ ?BE =( ) (A ) →b +→a 2 1 (B ) →b -→a 2 1 (C ) →a +→b 2 1 (D ) →a -→ b 2 1 2.已知B 是线段AC 的中点,则下列各式正确的是( ) (A ) ?→?AB =-?→?BC (B ) ?→?AC =?→?BC 2 1 (C ) ?→?BA =?→?BC (D ) ?→?BC =?→ ?AC 2 1 3.已知ABCDEF 是正六边形,且?→?AB =→a ,?→?AE =→b ,则?→ ?BC =( ) (A ) )(2 1→→-b a (B ) )(2 1 →→-a b (C ) →a +→b 2 1 (D ) )(2 1→ →+b a 4.设→a ,→b 为不共线向量,?→?AB =→a +2→b ,?→?BC =-4→a -→b ,?→ ?CD = -5→ a -3→ b ,则下列关系式中正确的是 ( ) (A )?→?AD =?→?BC (B )?→?AD =2?→ ?BC (C )?→?AD =-?→ ?BC (D )?→?AD =-2?→ ?BC 5.将图形F 按→ a =(h,k )(其中h>0,k>0)平移,就是将图形F ( ) (A ) 向x 轴正方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (B ) 向x 轴负方向平移h 个单位,同时向y 轴正方向平移k 个单位。 (C ) 向x 轴负方向平移h 个单位,同时向y 轴负方向平移k 个单位。 (D ) 向x 轴正方向平移h 个单位,同时向y 轴负方向平移k 个单位。 6.已知→a =()1,2 1,→ b =(), 2 22 3- ,下列各式正确的是( ) (A ) 2 2?? ? ??=??? ??→ →b a (B ) →a ·→b =1 (C ) →a =→b (D ) →a 与→b 平行 7.设→ 1e 与→ 2e 是不共线的非零向量,且k → 1e +→ 2e 与→ 1e +k → 2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,?→?AB =?→?DC ,且?→?AC ·?→ ?BD =0,则四边形ABCD 是( ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且?→ ?PN =-2?→ ?PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)

高中数学空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题 一、选择题 1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( ) A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A 2.在长方体1111ABCD A B C D -中,下列关于1AC u u u u r 的表达中错误的一个是( ) A.11111AA A B A D ++u u u r u u u u r u u u u r B.111AB DD D C ++u u u r u u u u r u u u u u r C.111AD CC D C ++u u u r u u u u r u u u u u r D.11111()2 AB CD AC ++u u u u r u u u u r u u u u r 答案:B 3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D 4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=u u u r u u u r u u u r ,则αβ-的值为( ) A.1 B.1- C. 1 2 D.2- 答案:B 5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D. 649 答案:B 6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-u u u r u u u r u u u r , ,AB AC AD ,则四点,,,A B C D ( ) A.一定共圆 B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面 答案:C

(完整版)高中数学平面向量讲义

专题六 平面向量 一. 基本知识 【1】 向量的基本概念与基本运算 (1)向量的基本概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 (2)向量的加法:设,AB a BC b u u u r u u u r r r ,则a +b r =AB BC u u u r u u u r =AC u u u r ①a a a 00;②向量加法满足交换律与结合律; AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”. (3)向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差, ③作图法:b a 可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) (4)实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ; (Ⅱ)当0 时,λa 的方向与a 的方向相同;当0 时,λ a 的方向与a 的方向相反;当0 时,0 a ,方向是任意的 (5)两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a (6)平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21, 使:2211e e a ,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 【2】平面向量的坐标表示

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

高中数学向量总结归纳

平面向量的数量积及平面向量的应用 1.定义及运算律. 两个向量的内积(即数量积),其结果是一个实数,而不是向量.其定义源于物理学中“力所做的功”. 设a 及b 是具有共同始点的两个非零向量,其夹角θ满足:0°≤θ≤180°,我们把|a |·|b |·cos θ叫做a 与b 的数量积,记作a ·b 若a =(x 1,y 1),b =(x 2,y 2),则a ·b =2121y y x x +. 其运算满足“交换律”“结合律”以及“分配律”,即:a ·b =b ·a ,(λ·a )·b =λ(a ·b ),(a ±b )·c =a ·c ±b ·c . 2.平面向量数量积的重要性质. ①|a |=a a ?=2||cos ||||a a a =θ?;cos θ=| |||) (b a b a ??;|a ·b |≤|a |·|b |,当且仅当a ,b 共线时取等号. ②设a =(x 1,y 1),b =(x 2,y 2),则:|a |= 21 21y x +;cos θ= 22 22 21 21 2121) (y x y x y y x x + ? + +;|x 1x 2+y 1y 2|≤ 2 2 222121y x y x +?+ 3.两向量垂直的充要条件 若a ,b 均为非零向量,则:a ⊥b ?a ·b =0. 若a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ?x 1x 2+y 1y 2=0. 4.向量的模及三角不等式 |a |2=a ·a 或|a |=a a ?;|a ·b |≤|a |·|b |;|a |2-|b |2=(a +b )·(a -b );|a ±b |=θ??±+cos ||||222b a b a (θ为a ,b 夹角);||a |-|b ||≤|a ±b |≤|a |+|b |. 5.三角不等式的推广形式 |a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |.

高一数学平面向量练习题

高一平面向量测试题 一、选择题: 1.下列向量组中能作为表示它们所在平面内所有向量的基底的是 ( ) A .)0,0(=a ρ )2,1(-=b ρ B .)2,1(-=a ρ )4,2(-=b ρ C .)5,3(=a ρ )10,6(=b ρ D .)3,2(-=a ρ )9,6(=b ρ 2.已知向量)3,2(=→a ,)2,1(-=→b ,若→→+b n a m 与 →→-b a 2共线,则 n m 等于( ) A .21-; B .21; C .2-; D .2; 3.已知两个非零向量22),2,3(),6,3(,--=--=+则与=( ) A .-3 B .-24 C .21 D .12。 4. 在四边形ABCD 中,2+=,--=4,35--=,则四边形ABCD 的形状是( )A .长方形 B .平行四边形 C.菱形 D.梯形 5.已知向量a =(x ,y), b =( -1,2 ),且a +b =(1,3),则a 等于( ) A . 2 B . 3 C. 5 D. 10 6.已知向量a = (-3 ,2 ) , b =(x, -4) , 若a//b ,则x=( ) A 4 B 5 C 6 D 7 7.下列式子中(其中的a 、b 、c 为平面向量),正确的是 ( )A.=- B.a (b ·c )= (a ·b )c C.()()(,)a a λμλμλμ=∈R D .00=? 8. 已知向量b a b a b a b a 与则满足,37|2|,3||,2||,= +==的夹角为( ) A .30° B .45° C .60° D .90° 9.已知向量等于则垂直与若a b a n b n a ρρρρ,),,1(),,1(-==( ) A .1 B .2 C .2 D .4 10.(2,1),(3,4)a b →→==,则向量a b →→在向量方向上的投影为 ( ) A . B . 2 C . D .10 11.,,3AB a AC b BD DC ===u u u r r u u u r r u u u r u u u r ,用,a b r r 表示AD u u u r ,则AD =u u u r A B C D

高中数学向量基础知识

高中数学的平面向量知识向量的概念表c,.......(物理学中叫做矢量),向量可以用a,b,既有方向又有大小的量叫做向量(物示,也可以用表示向量的有向线段的起点和终点字母表示。只有大小没有方向的量叫做数量)。在自然界中,有许多量既有大小又有方向,如力、速度等。我们为了研究理学中叫做标量这些量的这个共性,在它们的基础上提取出了向量这个概念。这样,研究清楚了向量的性质,当然用它来研究其它量,就会方便许多。向量的几何表示是印刷体,AB。(AB有向线段,以A为起点,B为终点的有向线段记作具有方向的线段叫做也就是粗体字母,书写体是上面加个→) AB|。AB的长度叫做向量的模,记作| 有向线段个因素:起点、方向、长度。有向线段包含3 相等向量、平行向量、共线向量、零向量、单位向量: 相等向量。长度相等且方向相同的向量叫做共线向量,两个方向相同或相反的非零向量叫做平行向量或 ,,零向量与任意向量平行,即0//a、向量ab平行,记作a//b 在向量中共线向量就是平行向量,(这和直线不同,直线共线就是同一条直线了,而向量 共线就是指两条是平行向量)”是有区别。(注意粗体格式,实数“0”和向量“0零向量,记作 0长度等于0的向量叫做的)的方向是任意的;且零向量与任何向量都平行,垂直。零向量。1个单位长度的向量叫做单位向量模 等于 平面向量的坐标表示作为基底。任作ji、x 在直角坐标系内,我们分别取与轴、 y轴方向相同的两个单位向量 ,使得、y,由平面向量基本定理知,有且只有一对实数x一个向量a +yj a=xi 的(直角)坐标,记作)叫做向量,ya 我们把(x ),,y( a=x 向量的坐标表示。在y轴上的坐标,上式叫做叫做在其中 x叫做ax轴上的坐标,ya 在平面直角坐标系内,每一个平面向量都可以用一对实数唯一表示。注意:平面向量的坐标与点的坐标不一样,平面向量的坐标是相对的。而点的坐标是绝对 ),)那么该向量上的所有点都可以用(,的。若一向量的起点在原点,例如该向量为(12a2a1 / 5 表示。即,若一向量的起点在原点,那么该向量上的任意一点的横纵坐标比例关系与向量坐标。关系是的比例的一样

空间向量及立体几何练习试题和答案解析

. 1.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD, 点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4. 的中点;PB(1)求证:M为 的大小;A2)求二面角B﹣PD﹣( 所成角的正弦值.BDP(3)求直线MC与平面 【分析】(1)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点; (2)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小; (3)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP所成角的正弦值. 【解答】(1)证明:如图,设AC∩BD=O,

∵ABCD为正方形,∴O为BD的中点,连接OM, ∵PD∥平面MAC,PD?平面PBD,平面PBD∩平面AMC=OM, ∴PD∥OM,则,即M为PB的中点; (2)解:取AD中点G, . . ∵PA=PD,∴PG⊥AD, ∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD, ∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG, 由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD. 以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系, 由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C (2,4,0),B(﹣2,4,0),M(﹣1,2,), ,.

高中数学平面向量公式

1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。 2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。 3、|a?b|≠|a|?|b| 4、由|a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ①当且仅当a、b反向时,左边取等号; ②当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ①当且仅当a、b同向时,左边取等号; ②当且仅当a、b反向时,右边取等号。 4、定比分点

高中数学必修平面向量测试试卷典型例题含详细答案

高中数学必修平面向量测试试卷典型例题含详 细答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

高中数学平面向量组卷一.选择题(共18小题) 1.已知向量与的夹角为θ,定义×为与的“向量积”,且×是一个向量,它的长度 |×|=||||sinθ,若 =(2,0),﹣=(1,﹣),则|×(+)|=() A.4B.C.6D.2 2.已知,为单位向量,其夹角为60°,则(2﹣) =() A.﹣1 B.0C.1D.2 3.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=() A.2B.C.0D.﹣ 4.向量,,且∥,则=()A.B.C.D. 5.如图,在△ABC中,BD=2DC.若,,则=() A.B.C.D. 6.若向量=(2cosα,﹣1),=(,tanα),且∥,则sinα=() A.B.C.D. 7.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若 ,则的夹角为() A.B.C.D. 8.设向量=,=不共线,且|+|=1,|﹣|=3,则△OAB的形状是() A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形9.已知点G是△ABC的重心,若A=,=3,则||的最小值为() A.B.C.D.2 10.如图,各棱长都为2的四面体ABCD中,=,=2,则向量=() A.﹣B.C.﹣D.

11.已知函数f(x)=sin(2πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的 直线与该图象交于D,E两点,则() 的值为() A.B.C.1D.2 12.已知P为三角形ABC内部任一点(不包括边界),且满足(﹣)(+﹣2)=0,则 △ABC的形状一定为() A.等边三角形B.直角三角形C.钝三角形D.等腰三角形13.如图所示,设P为△ABC所在平面内的一点,并且=+,则△ABP与△ABC的面积之比 等于() A.B.C.D. 14.在△ABC中,|AB|=3,|AC|=2,=,则直线AD通过△ABC的() A.垂心B.外心C.重心D.内心15.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,则=()A.B.C.D. 16.已知空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,则△OAB的面积为() A.B.C.D. 17.已知点P为△ABC内一点,且++3=,则△APB,△APC,△BPC的面积之比等于 () A.9:4:1 B.1:4:9 C.3:2:1 D.1:2:3 18.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则= () A.2B.4C.5D.10 二.解答题(共6小题) 19.如图示,在△ABC中,若A,B两点坐标分别为(2,0),(﹣3,4)点C在AB上,且OC平分∠BOA. (1)求∠AOB的余弦值; (2)求点C的坐标.

相关文档
相关文档 最新文档