文档视界 最新最全的文档下载
当前位置:文档视界 › 高中物理二轮专题复习:10 动量和原子物理(选修3-5)(新人教版)

高中物理二轮专题复习:10 动量和原子物理(选修3-5)(新人教版)

高中物理二轮专题复习:10 动量和原子物理(选修3-5)(新人教版)
高中物理二轮专题复习:10 动量和原子物理(选修3-5)(新人教版)

专题10 动量和原子物理(选修3-5)

知识梳理

一、动量、冲量、动量守恒定律 1、动量 P=mv 方向与速度方向相同 2、冲量 I= F ·t .方向与恒力方向一致 3、动量守恒定律的三种表达方式 (1)P =P ′ (2)Δp 1=-Δp 2

(3)m 1v l +m 2v 2=m 1v /

l +m 2v /

2 二、波尔理论

1、 氢原子能级与轨道半径 (1)能级公式:)6.13(1

112

eV E E n E n -== (2)半径公式:

)53.0(112

ο

A r r n r n ==

(3)跃迁定则:终初E E h -=ν 三、原子核衰变、半衰期及核能

四、光电效应及其方程 1、光电效应规律

(1)任何一种金属都有一个极限频率,入射光必须大于这个极限频率才能产生光电效应. (2)光电子的最大初动能与入射光的强度(数目)无关,只随着入射光的频率增大而增大. (3)当入射光的频率大于极限频率时,保持频率不变,则光电流的强度与入射光的强度成正

比.

(4)从光照射到产生光电流的时间不超过10—

9s ,几乎是瞬时的.

2、光电效应方程

(1)爱因斯坦光电效应方程:E k =h γ-W

(E k 是光电子的最大初动能;W 是逸出功:即从金属表面直接飞出的光电子克服正电荷引力所做的功,也称电离能 ) (2)极限频率:

专题测试

1.(5分) .已知氢原子的基态能量为E ,激发态能量21/n E E n =,其中n=2,3…。用h 表示普

朗克常量,c 表示真空中的光速。能使氢原子从第一激发态电离的光子的最大波长为 ( )

.A 143hc E -

B. 12hc E -

C.14hc E -

D. 19hc

E -

2. (5分).下列能揭示原子具有核式结构的实验是 ( ) A .光电效应实验 B .伦琴射线的发现

C .α粒子散射实验

D .氢原子光谱的发现

3.(5分) .用极微弱的可见光做双缝干涉实验,随着时间的增加,在屏上先后出现如图(a)、(b)、

(c)所示的图像,则 ( ) A.图像(a)表明光具有粒子性 B.图像(c)表明光具有波动性 C.用紫外光观察不到类似的图像 D.实验表明光是一种概率波

4.(5分).光电效应实验中,下列表述正确的是 ( ) A.光照时间越长光电流越大

B.入射光足够强就可以有光电流

C.遏止电压与入射光的频率有关

D.入射光频率大于极限频率才能产生光电子

5.(8分)(1)氢原子从能级A 跃迁到能级B 吸收频率为ν1的光子,从能级A 跃迁到能级C 释 放频率为ν2的光子,若ν2>ν1,则当它从能级B 跃迁到能级C 时,将________(填选项前的字母)

A .放出频率为ν2-ν1的光子

B .放出频率为ν2+ν1的光子

C .吸收频率为ν2-ν1的光子

D .吸收频率为ν2+ν1的光子

(2)“轨道电子俘获”是放射性同位素衰变的一种形式,它是指原子核(称为母核)俘获一个核外电子,其内部一个质子变为中子,从而变成一个新核(称为子核),并放出一个中微子

的过程.中微子的质量很小,不带电,很难被探测到,人们最早就是通过子核的反冲而间

接证明中微子的存在的.一个静止的原子核发生“轨道电子俘获”(忽略电子的初动量),衰变为子核并放出中微子.下列关于该过程的说法正确的是______(填选项前的字母) A.母核的质量数小于子核的质量数

B.母核的电荷数等于子核的电荷数

C.子核的动量大小等于中微子的动量大小

D.子核的动能大于中微子的动能

6.(8分)(1)在高速公路上发生一起交通事故,一辆质量为1 500 kg向南行驶的长途客车迎面

撞上了一辆质量为3 000 kg向北行驶的卡车,碰后两车接在一起,并向南滑行了一小段距离后停止,根据测速仪的规定,长途客车碰前以20 m/s的速率行驶,由此可判断卡车碰前的行驶速率是________.

A.小于10 m/s

B.大于10 m/s小于20 m/s

C.大于20 m/s小于30 m/s

D.大于30 m/s小于40 m/s

(2)近段时间,朝鲜的“核危机”引起了全世界的瞩目,其焦点问题就是朝鲜核电站采用的

是轻水堆还是重水堆.因为重水堆核电站在发电的同时还可以产出供研制核武器的钚239(239 94P U). 这种239 94P U可由铀239(239 92U)经过衰变而产生,则下列判断中正确的是( )

A. 239 94P U与239 92U的核内具有相同的中子数

B. 239 94P U与239 92U的核内具有相同的质子数

C. 239 92U经过2次β衰变产生239

P U

94

D. 239 92U经过1次α衰变产生239 94P U

7.(6分)(1)2010年上海世博会力主“低碳世博”,对绿色新能源的使用大大提高,其中,太

阳能的利用成为本届世博会的“当家花旦”.太阳能是由于太阳内部高温高压条件下的核聚变反应产生的,其核反应方程是________.(填选项前的字母)

A. 14 7N+42He→17 8O+11H

B. 31H+21H→42He+10n

C. 235 92U+10n→136 54Xe+9038Sr+1010n

D. 238 92U→234 90Th+42He

(2)在光滑的水平面上,质量m1=2 kg的球以速度v1=5 m/s和静止的质量为m2=1 kg的球发生正碰,碰后m2的速度v2′=4 m/s,则碰后m1________.(填选项前的字母)

A.以3 m/s速度反弹

B.以3 m/s速度继续向前运动

C.以1 m/s速度继续向前运动

D.立即停下

8.(6分)(1)下列说法中正确的是________.(填选项前的字母)

A.经典物理学能解释原子的稳定性和原子光谱的不连续性

B .光电效应说明光具有粒子性

C .天然放射性元素衰变的快慢与化学、物理状态有关

D .天然放射现象的发现揭示了原子的核式结构

(2)甲、乙两车相向运动,碰撞后连成一体并沿甲车的原方向运动,由此可判断________.(填选项前的字母)

A .乙车的质量比甲车的小

B .乙车的速度比甲车的小

C .乙车的动量比甲车的小

D .乙对甲的作用力小于甲对乙的作用力 9.(13分)(1)(3分)下列说法中正确的是

( )

A .光电效应现象显示了光的粒子性,它否定了光的波动性

B .为了解释原子光谱的不连续性,普朗克提出能量量子化观点

C .某元素原子核内的质子数决定了核外电子的分布,进而决定了该元素的化学性质

D .核力是短程力,在其作用范围内,随核子间距离的变化可以表现为引力也可以表现为 斥力

(2)(10分)贫铀合金具有高密度、高强度、高韧性的特点,用它做弹芯,穿甲能力强,可以摧毁坚固的目标.贫铀弹的重要原料是铀238,具有放射性,放出的射线对人体会造成严重的伤害.若某静止的铀核(238

92U)发生α衰变生成钍核(Th),并同时放出能量为E 的γ光子,已知铀核的质量为m U ,钍核的质量为m Th ,α粒子的质量为m α. ①写出核反应方程.

②若放出的γ光子动量可忽略,求衰变生成的α粒子的速率. 10.(7分)(1)下列物理实验中,能说明粒子具有波动性的是

( )

A . 通过研究金属的遏止电压与入射光频率的关系,证明了爱因斯坦方程的正确性

B .通过测试多种物质对X 射线的散射,发现散射射线中有波长变大的成分

C .通过电子双缝实验,发现电子的干涉现象

D .利用晶体做电子束衍射实验,证实了电子的波动性

(2)氢原子的能级如图1所示.有一群处于n =4能级的氢原子,这群氢原子能发出________种谱线,发出的光子照射某金属能产生光电效应现象,则该金属的逸出功应小于________ eV.

(3)近年来,国际热核聚变实验堆计划取得了重大进展,它利用的核反

应方程是2

1H +3

1H →4

2He +1

0n.若2

1H 和3

1H 迎面碰撞,初速度大小分别为v 1、

v 2,2

1H 、3

1H 、4

2He 、1

0n 的质量分别为m 1、m 2、m 3、m 4,反应后4

2He 的速度大小为v 3,方向与2

1H 的运动方向相同,求中子1

0n 的速度(选取m 1的运动方向为正方向,不计释放的光子的动量,不考虑相对论效应).

11.(8分)(1)(2分)下列关于近代物理知识说法中正确的是 ( )

A .光电效应显示了光的粒子性

B .玻尔理论可以解释所有原子的光谱现象

图1

C .康普顿效应进一步证实了光的波动特性

D .为了解释黑体辐射规律,普朗克提出电磁辐射的能量是量子化的 (2)(2分)在天然放射现象中,释放出的三种射线a 、b 、c 在磁场中运动轨迹如图2所示,其中________是β射线,________穿透能力最强.(选填“a ”、“b ”或“c ”)

(3)(4分)利用水平放置的气垫导轨做“探究碰撞中的不变量”的实验,如图3

所示,图中A 、B 装置叫______________,其作用是__________________.若测得滑块甲的质量为0.6 kg ,滑块乙的质量为0.4 kg ,两滑块作用前甲的速度大小为0.8 m /s ,乙的速度大小为0.5 m/s ,迎面相碰后甲乙粘在一起以0.28 m/s 的速度沿甲原来的方向前进.则两滑块相互作用过程中不变的量是__________,大小为________.

图3

12.(8分)(1)下列说法中正确的是

( )

A .氢原子在辐射出一个光子后,其核外电子的动能增大 B. 239

92U 经过两次β衰变产生239

94Pu C .α射线的电离本领比β射线的大

D .放射性元素239

92U 的半衰期随温度的升高而变短 (2)已知氢原子基态电子轨道半径为r 0=0.528×10-10

m ,量子数为n 的激发态的能量E n =

-13.6

n

eV.求:

①电子在基态轨道上运动的动能;

②有一群氢原子处于量子数n =3的激发态,画一个能级图,在图上用箭头标明这些氢原子所能发出光的光谱线有哪几条?

③计算这几条光谱线中波长最短的一条光谱线的波长.( k =9.0×109

N ·m 2

/C 2

,e =1.60× 10

-19

C ,h =6.63×10

-34

J)

13.(8分)用速度为v 0、质量为m 1的4

2He 核轰击质量为m 2的静止的14

7N 核,发生核反应,最 终产生两种新粒子A 和B .其中A 为17

8O 核,质量为m 3,速度为v 3,B 的质量为m 4 (1)写出核反应方程式; (2)计算粒子B 的速度v B .

图2

14.(8分)在真空中,原来静止的原子核b

a X 在进行α衰变时,放出α粒子(4

2He)的动能为E 0. 假设衰变后产生的新核用Y 表示,衰变时产生的能量全部以动能形式释放出来,真空中的光速为c ,原子核的质量之比等于质量数之比,原子核的重力不计. (1)写出衰变的核反应方程; (2)求衰变过程中总的质量亏损.

答案

1.C

2.C

3.ABD

4.CD

5.(1)B (2)C

6.(1)A (2)C

7.(1)B (2)B

8.(1)B (2)C

9.(1)CD(全选对得3分,选对但不全得1分,有选错得0分) (2)(10分)①238 92U →234 90Th +4

2He (2分) ②由动量守恒定律得m αv α-m Th v Th =0 (2分) 由质能方程得ΔE =(m U -m α-m Th )c

2

(2分)

由能量的转化和守恒得ΔE =12m αv α2+1

2m Th v Th 2+E (2分)

解得v α=

2m Th [(m U -m α-m Th )c 2

-E ]

m α(m α+m Th )

(2分)

10.(1)CD(2分,漏选得1分,错选不得分) (2)6(1分) 12.75(1分)

(3)设中子的速度为v ,由动量守恒定律有

m 1v 1-m 2v 2=m 3v 3+m 4v (2分)

解得v =

m 1v 1-m 2v 2-m 3v 3

m 4

(1分)

11.(1)AD (2)c ,b

(3)光电计时器(或“光电门”) 测量两滑块碰撞前后的速度 甲乙碰撞前或后的总动量 0.28 kg ·m/s

12.(1)ABC (2)①13.6 eV ②能级图如图所示,可得三条光谱线

③1.03×10-7

m 13.(1)4

2He +14

7N →17

8O +1

1H (2)

m 1v 0-m 3v 3

m 4

14.(1)b

a X →

b -4

a -2Y +4

2He (2)bE 0

(b -4)c

2

高三物理二轮复习专题一

专题定位 本专题解决的是受力分析和共点力平衡问题.高考对本专题内容的考查主要有:①对各种性质力特点的理解;②共点力作用下平衡条件的应用.考查的主要物理思想和方法有:①整体法和隔离法;②假设法;③合成法;④正交分解法;⑤矢量三角形法;⑥相似三角形法;⑦等效思想;⑧分解思想. 应考策略 深刻理解各种性质力的特点.熟练掌握分析共点力平衡问题的各种方法. 1. 弹力 (1)大小:弹簧在弹性限度内,弹力的大小可由胡克定律F =kx 计算;一般情况下物体间相互作用的弹力可由平衡条件或牛顿运动定律来求解. (2)方向:一般垂直于接触面(或切面)指向形变恢复的方向;绳的拉力沿绳指向绳收缩的方向. 2. 摩擦力 (1)大小:滑动摩擦力F f =μF N ,与接触面的面积无关;静摩擦力0

(1)大小:F洛=q v B,此式只适用于B⊥v的情况.当B∥v时F洛=0. (2)方向:用左手定则判断,洛伦兹力垂直于B、v决定的平面,洛伦兹力总不做功.6.共点力的平衡 (1)平衡状态:静止或匀速直线运动. (2)平衡条件:F合=0或F x=0,F y=0. (3)常用推论:①若物体受n个作用力而处于平衡状态,则其中任意一个力与其余(n-1) 个力的合力大小相等、方向相反.②若三个共点力的合力为零,则表示这三个力的有向线段首尾相接组成一个封闭三角形. 1.处理平衡问题的基本思路:确定平衡状态(加速度为零)→巧选研究对象(整体法或隔离法)→受力分析→建立平衡方程→求解或作讨论. 2.常用的方法 (1)在判断弹力或摩擦力是否存在以及确定方向时常用假设法. (2)求解平衡问题时常用二力平衡法、矢量三角形法、正交分解法、相似三角形法、图解 法等. 3.带电体的平衡问题仍然满足平衡条件,只是要注意准确分析场力——电场力、安培力或洛伦兹力. 4.如果带电粒子在重力场、电场和磁场三者组成的复合场中做直线运动,则一定是匀速直线运动,因为F洛⊥v. 题型1整体法和隔离法在受力分析中的应用 例1如图1所示,固定在水平地面上的物体P,左侧是光滑圆弧面,一根轻绳跨过物体P 顶点上的小滑轮,一端系有质量为m=4 kg的小球,小球与圆心连线跟水平方向的夹角θ=60°,绳的另一端水平连接物块3,三个物块重均为50 N,作用在物块2的水平力F=20 N,整个系统平衡,g=10 m/s2,则以下正确的是() 图1 A.1和2之间的摩擦力是20 N B.2和3之间的摩擦力是20 N

高中物理动量定理解题技巧讲解及练习题(含答案)及解析

高中物理动量定理解题技巧讲解及练习题(含答案)及解析 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求: (i )C 与A 碰撞前的速度大小 (ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是 32 mv 0. 【解析】 【分析】 【详解】 试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3? 0m m v mv -+= 解得:10 v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得: 012 3(3)mv mv m m v =+- 在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032 CA I mv =- 即A 、C 碰过程中C 对A 的冲量大小为032 mv . 方向为负. 考点:动量守恒定律 【名师点睛】 本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择. 3.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小

高中物理《机械波》知识梳理

《机械波》知识梳理 【波动形成和传播】 机械波:机械振动在介质中的传播过程叫机械波,机械波产生的条件有两个:一是要有做机械振动的物体作为波源,二是要有能够传播机械振动的介质。 横波和纵波: 质点的振动方向与波的传播方向垂直的叫横波。质点的振动方向与波的传播方向在同一直线上的叫纵波。气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波。 【波的图像】 横波的图象 用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质点偏离平衡位置的位移。 简谐波的图象是正弦曲线,也叫正弦波 简谐波的波形曲线与质点的振动图象都是正弦曲线,但他们的意义是不同的。波形曲线表示介质中的“各个质点”在“某一时刻”的位移,振动图象则表示介质中“某个质点”在“各个时刻”的位移。 【波长频率与波速】 波长:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长。振动在一个周期内在介质中传播的距离等于波长。 频率f:波的频率由波源决定,在任何介质中频率保持不变。 波速v:单位时间内振动向外传播的距离。波速的大小由介质决定。 【波的反射和折射】 惠更斯原理:介质中任一波面上的各点,都可以看作发射子波的波源,而后任意时刻,这些子波在波前进方向的包络面便是新的波面。 波的反射:波遇到障碍物会返回来继续传播 反射规律:入射线、法线、反射线在同一平面内,入射线与反射线分居法线两侧,反射角等于入射角。 波的折射:波从一种介质进入另一种介质时,波的传播方向发生了改变的现象叫做波的折射. 折射规律:折射定律:入射线、法线、折射线在同一平面内,入射线与折射线分居法线两侧.入射角的正弦跟折射角的正弦之比等于波在第一种介质中的速度跟波在第二种介质中的速度之比: 【波的衍射】 波绕过障碍物或小孔继续传播的现象。产生显著衍射的条件是障碍物或孔的尺寸比波长小或与波长相差不多。 【波的干涉】 干涉:频率相同的两列波叠加,使某些区域的振动加强,使某些区域振动减弱,并且振动加强和振动减弱区域相互间隔的现象。产生稳定干涉现象的条件是:两列波的频率相同,相差恒定。 【多普勒效应】 多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。他是奥地利物理学家多普勒在1842年发现的。 多普勒效应的应用: ①现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。 ②根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。 1

高中物理二轮复习

专题二 一、选择题(1~6题只有一项符合题目要求,7~9题有多项符合题目要求) 1.物体a和b在同一条直线上向右运动,物体a在前且一直做匀速运动,物体b在后先做匀减速再做反方向匀加速运动,行驶中物体a和b相遇两次,用v-t图象表示两物体的速度随时间变化的关系,用x-t图象表示两物体的位移随时间变化的关系,则能正确反映物体a和物体b运动关系的图(取向右为正方向)是() 解析:图A中物体b的速度没有反向,A错;图B中,两物体不可能相遇,B错;图C中物体b不是先做匀减速运动再做匀加速运动,C错;图D满足题中所述运动,D对.答案: D 2.以24 m/s的速度行驶的汽车,紧急刹车后做匀减速直线运动,其加速度大小为6 m/s2,则刹车后() A.汽车在第1 s内的平均速度为24 m/s B.汽车在第1 s内的平均速度为12 m/s C.汽车在前2 s内的位移为36 m D.汽车在前5 s内的位移为45 m 解析:汽车刹车时间为t0=4 s,刹车位移为x0=242 2×6 m=48 m,到第4 s末汽车已停 止,汽车在5 s内位移为48 m,D错误,根据位移x=v0t-1 2at 2可知第1 s内的位移x1=21 m,平均速度v=21 m/s,A、B均错误;汽车在前2 s内位移为36 m,C正确.答案: C 3.(2014·西安市质检二)如图所示,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小,几乎观察不到,这就是大家熟悉的惯性演示实验.若砝码和纸板的质量分别为2m和m,各接触面间的动摩擦因数均为μ.重力加速度为g.要使纸板相对砝码运动,所需拉力的大小至少应大于()

高中物理机械振动和机械波知识点.doc

高中物理机械振动和机械波知识点 "机械振动和机械波是高中物理教学中的难点,有哪些知识点需要学生学习呢?下面我给大家带来高中物理课本中机械振动和机械波知识点,希望对你有帮助。 1.简谐运动 (1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动. (2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置. 简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大. (3)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅. ②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱. ③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即 T=1/f. (4)简谐运动的图像 ①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.

②特点:简谐运动的图像是正弦(或余弦)曲线. ③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T. 3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型. (1)单摆的振动可看作简谐运动的条件是:最大摆角<5. (2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力. (3)作简谐运动的单摆的周期公式为: ①在振幅很小的条件下,单摆的振动周期跟振幅无关. ②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关. ③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g等于摆球静止在平衡位置时摆线的张力与摆球质量的比值). 4.受迫振动 (1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.

高中物理专题汇编动量定理(一)

高中物理专题汇编动量定理(一) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.如图所示,用0.5kg 的铁睡把钉子钉进木头里去,打击时铁锤的速度v =4.0m/s ,如果打击后铁锤的速度变为0,打击的作用时间是0.01s (取g =10m/s 2),那么:

最新高中物理动量定理专题训练答案

最新高中物理动量定理专题训练答案 一、高考物理精讲专题动量定理 1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211 222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上. 2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停

高中物理知识点总结:机械波.doc

高中物理知识点总结:机械波 知识网络: 内容详解: 一、波的形成和传播: ●机械波:机械振动在介质中的传播过程叫机械波。 ●机械波产生的条件有两个: ①要有做机械振动的物体作为波源。 ②是要有能够传播机械振动的介质。 ●横波和纵波: ①质点的振动方向与波的传播方向垂直的叫横波。 ②质点的振动方向与波的传播方向在同一直线上的叫纵波。 气体、液体、固体都能传播纵波,但气体和液体不能传播横波,声波在空气中是纵波,声波的频率从20到2万赫兹。 ●机械波的特点: ①每一质点都以它的平衡位置为中心做简振振动,后一质点的振动总是落后于带动它的前一质点的振动。 ②波只是传播运动形式和振动能量,介质并不随波迁移。 振动和波动的比较: 两者的联系:

振动和波动都是物体的周期性运动,在运动过程中使物体回到原来平衡位置的力,一 般来说都是弹性力,就整个物体来看,所呈现的现象是波动。而对构成物体的单个质点来 看,所呈现的现象是振动,因此可以说振动是波动的起因,波动是振动在时空上的延伸, 没有振动一定没有波动,有振动也不一定有波动,但有波动一定有振动。 二者的区别: 从运动现象来看:振动是一个质点或一个物体通过某一中心,平衡位置的往复运动, 而波动是由振动引起的,是介质中大量质点依次发生振动而形成的集体运动。 从运动原因来看:振动是由于质点离开平衡位置后受到回复力的作用,而波动是由于 弹性介质中某一部分受到扰动后发生形变,产生了弹力而带动与它相邻部分质点也随同它 做同样的运动,这样由近及远地向外传开,在波动中各介质质点也受到回复力的作用。 从能量变化来看:振动系统的动能与势能相互转换,对于简谐运动,动能最大时势能 为零,势能最大时动能为零,总的机械能守恒,波在传播过程中,由振源带动它相邻的质 点运动,即振源将机械能传递给相邻的质点,这个质点再将能量传递给下一个质点,因此 说波的传播过程是一个传播能量的过程,每个质点都不停地吸收能量,同时向外传递能 量,当波源停止振动,不再向外传递能量时,各个质点的振动也会相继停下来。 二、波的图像: ●用横坐标x表示在波的传播方向上各质点的平衡位置,纵坐标y表示某一时刻各质 点偏离平衡位置的位移。 简谐波的图像是正弦曲线,也叫正弦波。 ●简谐波的波形曲线与质点的振动图像都是正弦曲线,但他们的意义是不同的。波形 曲线表示介质中的“各个质点”在“某一时刻”的位移,振动图像则表示介质中“某个质 点”在“各个时刻”的位移。 由某时刻的波形图画出另一时刻的波形图: 平移法:先算出经时间Δt波传播的距离Δx=vΔt,再把波形沿波的传播方向平移Δx 即可。因为波动图像的重复性,若已知波长,则波形平移,则波形平移,时波形不变。当 Δx=nλ+x时,可采取去整nλ留零x的方法,只需平移x即可。 特殊点法:在波形上找两个特殊点,如过平衡位置的点和与相邻的波峰、波谷点,先 确定这两点的振动方向,再看Δt=nT+t由于经nT波形不变,所以也采取去整nT留零t的方法,分别做出两个特殊点经t后的位置,然后按正弦规律画出新波形。 三、波长、波速和频率(周期)的关系: ●描述机械波的物理量 ①波长:两个相邻的、在振动过程中对平衡位置的位移总是相等的质点间的距离叫波 长。振动在一个周期内在介质中传播的距离等于波长。 ②频率f:波的频率由波源决定,在任何介质中频率保持不变。

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

高中物理知识点机械波详解和练习

机械波 一、知识网络 二、画龙点睛 概念 1、机械波 (1)机械波:机械振动在介质中的传播,形成机械波。 (2) 机械波的产生条件: ①波源:引起介质振动的质点或物体 ②介质:传播机械振动的物质

(3)机械波形成的原因:是介质内部各质点间存在着相互作用的弹力,各质点依次被带动。 (4)机械波的特点和实质 ①机械波的传播特点 a.前面的质点领先,后面的质点紧跟; b.介质中各质点只在各自平衡位置附近做机械振动,并不沿波的方向发生迁移; c.波中各质点振动的频率都相同; d.振动是波动的形成原因,波动是振动的传播; e.在均匀介质中波是匀速传播的。 ②机械波的实质 a.传播振动的一种形式; b.传递能量的一种方式。 (5)机械波的基本类型:横波和纵波 ①横波:质点的振动方向跟波的传播方向垂直的波,叫做横波。 表现形式:其中凸起部分的最高点叫波峰,凹下部分的最低 点叫波谷。横波表现为凹凸相间的波形。 实例:沿绳传播的波、迎风飘扬的红旗等为横波。 ②纵波:质点的振动方向跟波的传播方向在同一直线上的波,叫做纵波。 表现形式其中质点分布较稀的部分叫疏部,质点分布较密的 部分叫密部。纵波表现为疏密相间的波形。

实例:沿弹簧传播的波、声波等为纵波。 2、波的图象 (1)波的图象的建立 ①横坐标轴和纵坐标轴的含意义 横坐标x表示在波的传播方向上各个质点的平衡位置;纵坐标y 表示某一时刻各个质点偏离平衡位置的位移。 从形式上区分振动图象和波动图象,就看横坐标。 ②图象的建立:在xOy坐标平面上,画出各个质点的平衡位置x 与各个质点偏离平衡位置的位移y的各个点(x,y),并把这些点连成曲线,就得到某一时刻的波的图象。 (2)波的图象的特点 ①横波的图象特点 横波的图象的形状和波在传播过程中介质中各质点某时刻的分布形状相似。波形中的波峰也就是图象中的位移正向最大值,波谷即为图象中位移负向最大值。波形中通过平衡位置的质点在图象中也恰处于平衡位置。 在横波的情况下,振动质点在某一时刻所在的位置连成的一条曲线,就是波的图象,能直观地表示出波形。波的图象有时也称波形图或波形曲线。 ②纵波的图象特点 在纵波中,如果规定位移的方向与波的传播方向一致时取正值,位移的方向与波的传播方向相反时取负值,同样可以作出纵波的图

高中物理动量定理试题经典及解析(1)

高中物理动量定理试题经典及解析(1) 一、高考物理精讲专题动量定理 1.北京将在2022年举办冬季奥运会,滑雪运动将速度与技巧完美地结合在一起,一直深受广大观众的欢迎。一质量为60kg 的运动员在高度为80h m =,倾角为30θ=?的斜坡顶端,从静止开始沿直线滑到斜面底端。下滑过程运动员可以看作质点,收起滑雪杖,忽略摩擦阻力和空气阻力,g 取210/m s ,问: (1)运动员到达斜坡底端时的速率v ; (2)运动员刚到斜面底端时,重力的瞬时功率; (3)从坡顶滑到坡底的过程中,运动员受到的重力的沖量。 【答案】(1)40/m s (2)41.210W ?(3)34.810N s ?? 方向为竖直向下 【解析】 【分析】 (1)根据牛顿第二定律或机械能守恒定律都可以求出到达底端的速度的大小; (2)根据功率公式进行求解即可; (3)根据速度与时间关系求出时间,然后根据冲量公式进行求解即可; 【详解】 (1)滑雪者由斜面顶端滑到底端过程中,系统机械能守恒:212 mgh mv = 到达底端时的速率为:40/v m s =; (2)滑雪者由滑到斜面底端时重力的瞬时功率为:4 sin 30 1.210G P mg v W =???=?; (3)滑雪者由斜面顶端滑到底端过程中,做匀加速直线运动 根据牛顿第二定律0sin 30mg ma =,可以得到:2 sin 305/a g m s =?= 根据速度与时间关系可以得到:0 8v t s a -= = 则重力的冲量为:3 4.810G I mgt N s ==??,方向为竖直向下。 【点睛】 本题关键根据牛顿第二定律求解加速度,然后根据运动学公式求解末速度,注意瞬时功率的求法。 2.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5 m 的位置B 处是一面墙,如图所示.物块以v 0=8m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以5m/s 的速度反向运动直至静止.g 取10 m/s 2.

高中物理动量定理解题技巧讲解及练习题(含答案)

高中物理动量定理解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量定理 1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122E m v m v = + 其中 121 4m m = 12m m m =+ 联立解得 1120m/s v =

230m/s v = 之后两物块做平抛运动,则 竖直方向有 212 h gt = 水平方向有 12s v t v t =+ 由以上各式联立解得 s=900m 2.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。求 (1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。 【答案】(1)20N ?s ,方向竖直向下(2 )m/s ?, 与水平方向的夹角为45° 【解析】 【详解】 (1)物体做平抛运动,则有: 212 h gt = 解得: t =2s 则物体从抛出到落到地面过程重力的冲量 I=mgt =1×10×2=20N?s 方向竖直向下。 (2)在竖直方向,根据动量定理得 I=p y -0。 可得,物体落地时竖直方向的分动量 p y =20kg?m/s 物体落地时水平方向的分动量 p x =mv 0=1×20=20kg?m/s 故落地时物体的动量 m/s p = =? 设落地时动量与水平方向的夹角为θ,则 1y x p tan p θ= = θ=45°

高中物理机械运动机械波部分知识点及习题修订版

高中物理机械运动机械波部分知识点及习题修 订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

机械运动与机械波 Ⅰ.基础巩固 一、机械振动 1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动. 振动的特点:①存在某一中心位置;②往复运动,这是判断物体运动是否是机械振动的条件. 产生振动的条件:①振动物体受到回复力作用;②阻尼足够小; 2、回复力:振动物体所受到的总是指向平衡位置的合外力. ①回复力时刻指向平衡位置;②回复力是按效果命名的, 可由任意性质的力提供.可以是 几个力的合力也可以是一个力的分力; ③合外力:指振动方向上的合外力,而不一定是 物体受到的合外力.④在平衡位置处:回复力为零,而物体所受合外力不一定为零.如 单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零. 3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位 置;平衡位置通常在振动轨迹的中点。“平衡位置”不等于“平衡状态”。平衡位置是 指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点 时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平 衡状态) 二、简谐振动及其描述物理量 1、振动描述的物理量

(1)位移:由平衡位置指向振动质点所在位置的有向线段. ①是矢量,其最大值等于振幅; ②始点是平衡位置,所以跟回复力方向永远相反; ③位移随时间的变化图线就是振动图象. (2)振幅:离开平衡位置的最大距离. ①是标量;②表示振动的强弱; (3)周期和频率:完成一次全变化所用的时间为周期T,每秒钟完成全变化的次数为频率f. ①二者都表示振动的快慢; ②二者互为倒数;T=1/f; ③当T和f由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关. 2、简谐振动:物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动. ①受力特征:回复力F=—KX。 ②运动特征:加速度a=一kx/m,方向与位移方向相反,总指向平衡位置。简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

高中物理二轮复习 专项训练 物理动量定理

高中物理二轮复习 专项训练 物理动量定理 一、高考物理精讲专题动量定理 1.一质量为0.5kg 的小物块放在水平地面上的A 点,距离A 点5m 的位置B 处是一面墙,如图所示,物块以v 0=9m/s 的初速度从A 点沿AB 方向运动,在与墙壁碰撞前瞬间的速度为7m/s ,碰后以6m/s 的速度反向运动直至静止.g 取10m/s 2. (1)求物块与地面间的动摩擦因数μ; (2)若碰撞时间为0.05s ,求碰撞过程中墙面对物块平均作用力的大小F . 【答案】(1)0.32μ= (2)F =130N 【解析】 试题分析:(1)对A 到墙壁过程,运用动能定理得: , 代入数据解得:μ=0.32. (2)规定向左为正方向,对碰墙的过程运用动量定理得:F △t=mv′﹣mv , 代入数据解得:F=130N . 2.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。 (1)请根据上述情境,利用牛顿第二定律推导动量定理,并写出动量定理表达式中等号两边物理量的物理意义。 (2)快递公司用密封性好、充满气体的塑料袋包裹易碎品,如图所示。请运用所学物理知识分析说明这样做的道理。 【答案】详情见解析 【解析】 【详解】 (1)根据牛顿第二定律F ma =,加速度定义0i v v a t -=解得 0=-i Ft mv mv 即动量定理, Ft 表示物体所受合力的冲量,mv t -mv 0表示物体动量的变化 (2)快递物品在运送途中难免出现磕碰现象,根据动量定理 0=-i Ft mv mv 在动量变化相等的情况下,作用时间越长,作用力越小。充满气体的塑料袋富有弹性,在

高中物理动量定理专题(问题详解)-word

动量和动量定理的应用 知识点一——冲量(I) 要点诠释: 1.定义:力F和作用时间的乘积,叫做力的冲量。 2.公式: 3.单位: 4.方向:冲量是矢量,方向是由力F的方向决定。 5.注意: ①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。 ②用公式求冲量,该力只能是恒力,无论是力的方向还是大小发生变化时,都不能用直接求出 1.推导: 设一个质量为的物体,初速度为,在合力F的作用下,经过一段时间,速度变为 则物体的加速度 由牛顿第二定律 可得, 即 (为末动量,P为初动量) 2.动量定理:物体所受合外力的冲量等于物体的动量变化。 3.公式: 或 4.注意事项: ①动量定理的表达式是矢量式,在应用时要注意规定正方向; ②式中F是指包含重力在内的合外力,可以是恒力也可以是变力。当合外力是变力时,F应该是合外力在这段时间内的平均值; ③研究对象是单个物体或者系统; ④不仅适用于宏观物体的低速运动,也适用与微观物体的高速运动。 5.应用: 在动量变化一定的条件下,力的作用时间越短,得到的作用力就越大,因此在需要增 大作用力时,可尽量缩短作用时间,如打击、碰撞等由于作用时间短,作用力都较大,如冲压工件; 在动量变化一定的条件下,力的作用时间越长,得到的作用力就越小,因此在需要减 小作用力时,可尽量延长作用时间,如利用海绵或弹簧的缓冲作用来延长作用时间,从而减小作用力,再如安全气囊等。 规律方法指导 1.动量定理和牛顿第二定律的比较 (1)动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律 (2)由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式, 即:物体所受的合外力等于物体动量的变化率。 (3)在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。 4.应用动量定理解题的步骤 ①选取研究对象; ②确定所研究的物理过程及其始末状态; ③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式; ⑤解方程,统一单位,求得结果。 经典例题透析 类型一——对基本概念的理解 1.关于冲量,下列说法中正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体合力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,A对;只要有力作用在物体上,

高中物理选修3-4机械振动机械波光学知识点汇总

高中物理选修3-4机械振动机械波光学知识 点汇总 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

机械振动 一、基本概念 1.机械振动:物体(或物体一部分)在某一中心位置附近所做的往复运动 2.回复力F :使物体返回平衡位置的力,回复力是根据效果(产生振动加速度,改变速度的大小,使物体回到平衡位置)命名的,回复力总指向平衡位置,回复力是某几个力沿振动方向的合力或是某一个力沿振动方向的分力。(如①水平弹簧振子的回复力即为弹簧的弹力;②竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;③单摆的回复力是摆球所受重力在圆周切线方向的分力,不能说成是重力和拉力的合力) 3.平衡位置:回复力为零的位置(物体原来静止的位置)。物体振动经过平衡位置时不一定处于平衡状态即合外力不一定为零(例如单摆中平衡位置需要向心力)。 4.位移x :相对平衡位置的位移。它总是以平衡位置为始点,方向由平衡位置指向物体所在的位置,物体经平衡位置时位移方向改变。 5.简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。 (1)动力学表达式为:F = -kx F=-kx 是判断一个振动是不是简谐运动的充分必要条件。凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。 (2)运动学表达式:x =A sin(ωt +φ) (3)简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向。 (4)简谐运动的加速度:根据牛顿第二定律,做简谐运动的物体指向平衡位置 的(或沿振动方向的)加速度m kx a -=.由此可知,加速度的大小跟位移大小成正 比,其方向与位移方向总是相反。故平衡位置F 、x 、a 均为零,最大位移处F 、x 、a 均为最大。 (5)简谐运动的振动物体经过同一位置时,其位移大小、方向是一定的,而速度方向却有指向或背离平衡位置两种可能。 (6)简谐运动的对称性 ①瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系.速度的大小、动能也具有对称性,速度的方向可能相同或相反。 ②过程量的对称性:振动质点来回通过相同的两点间的时间相等,如t BC =t CB ;质点经过关于平衡位置对称的等长的两线段的时间也相等。 6.振幅A :振动物体离开平衡位置的最大距离,是标量,表示振动的强弱和能量的物理量,无正负之分。 7.周期T 和频率f :表示振动快慢的物理量。完成一次全振动所用的时间叫周期,单位时间内完成全振动次数叫频率,大小由系统本身的性质决定(与振幅无关),所以叫固有周期和频率。任何简谐运动都有共同的周期公式: k m T π 2=(其中m 是振动物体的质量,k 是回复力系数,即简谐运动的判定式

(新)高中物理二轮复习功能关系专题

一、动能定理 动能定理的推导 物体只在一个恒力作用下,做直线运动 w =FS =m a ×a V V 22 122- 即 21222121mv mv w -= 推广: 物体在多个力的作用下、物体在做曲线运动、物体在变力的作用下 结论: 合力所做的功等于动能的增量 ,合力做正功动能增加,合力做负功动能减小 合力做功的求法: 1、受力分析求合力,合力乘以在合力方向的位移(合力是恒力,位移相对地的位移) 2、合力做的功等于各力做功的代数和 二.应用动能定理解题的步骤 (1)确定研究对象和研究过程。 (2)对研究对象受力分析,判断各力做功情况。 (3)写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负) (4)写出物体的初、末动能。按照动能定理列式求解。 【例】如图所示,质量为m 的钢珠从高出地面h 处由静止自由下落,落到地面进入沙坑h/10停止,则 (1)钢珠在沙坑中受到的平均阻力是重力的多少倍? (2)若让钢珠进入沙坑h/8,则钢珠在h 处的动能应为多少?设钢珠在沙坑中所受平均阻 力大小不随深度改变。 三、高中物理接触到的几种常用的功能关系 1、 重力做功等于重力势能的减小量 2、 弹力做功等于弹性势能的减小量 3、 电场力做功等于电势能的减小量 4、 合外力做功等于动能的变化量(动能定理) 5、 除重力以外其它力做功等于机械能的变化量 6、 摩擦力乘以相对位移代表有多少机械能转化为内能用于发热 7、 电磁感应中克服安培力做功量度多少其他形式能转化为电能用于发热 8、能量守恒思路

1.(2013·长春模拟)19世纪初,科学家在研究功能关系的过程中,具备了能量转化和守恒的思想,对生活中有关机械能转化的问题有了清晰的认识,下列有关机械能的说法正确的是( ) A .仅有重力对物体做功,物体的机械能一定守恒 B .仅有弹力对物体做功,物体的机械能一定守恒 C .摩擦力对物体做的功一定等于物体机械能的变化量 D .合外力对物体做的功一定等于物体机械能的变化量 2.(2013·东北四市联考)在高度为h 、倾角为30°的粗糙固定的斜面上,有一质量为m 、与一轻弹簧拴接的物块恰好静止于斜面底端。物块与斜面的动摩擦因数为33,且最大静摩擦力等于滑动摩擦力。现用一平行于斜面的力F 拉动弹簧的A 点,使m 缓慢上行到斜面顶端。此过程中( ) A .F 对该系统做功为2mgh B .F 对该系统做功大于2mgh C .F 对该系统做的功等于物块克服重力做功与克服摩擦力做功之和 D .F 对该系统做的功等于物块的重力势能与弹簧的弹性势能增加量之和 3.(2013·山东泰安一模)如图所示,在竖直平面内有一个半径为R ,粗细不计的圆管轨道。半径OA 水平、OB 竖直,一个质量为m 的小球自A 正上方P 点由静止开始自由下落,小球恰能沿管道到达最高点B ,已知AP =2R ,重力加速度为g ,则小球从P 到B 的运动过程中( ) A .重力做功2mgR B .机械能减少mgR C .合外力做功mgR D .克服摩擦力做功12 mgR 4.(2013吉林摸底)如图所示,足够长的传送带以恒定速率顺时针运行。将一个物体轻轻 放在传送带底端,第一阶段物体被加速到与传送带具有相同的速度,第二阶段与传送 带相对静止,匀速运动到达传送带顶端。下列说法中正确的是( ) A .第一阶段摩擦力对物体做正功,第二阶段摩擦力对物体不做功 B .第一阶段摩擦力对物体做的功等于第一阶段物体动能的增加 C .第一阶段物体和传送带间的摩擦生热等于第一阶段物体机械能的增加 D .物体从底端到顶端全过程机械能的增加等于全过程物体与传送带间的摩擦生热 5.如图所示长木板A 放在光滑的水平地面上,物体B 以水平速度冲上A 后,由于摩擦力作用,最后停止在木板A 上,则从B 冲到木板A 上到相对板A 静止的过程中,下述说法中正确是( ) A .物体 B 动能的减少量等于系统损失的机械能 B .物体B 克服摩擦力做的功等于系统内能的增加量 C .物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和 D .摩擦力对物体B 做的功和对木板A 做的功的总和等于系统内能的增加量

高中物理动量定理专题训练答案(1)

高中物理动量定理专题训练答案(1) 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰 撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上.

相关文档
相关文档 最新文档