文档视界 最新最全的文档下载
当前位置:文档视界 › 哈工大物理实验报告——拉伸法测定杨氏模量

哈工大物理实验报告——拉伸法测定杨氏模量

哈工大物理实验报告——拉伸法测定杨氏模量
哈工大物理实验报告——拉伸法测定杨氏模量

用拉伸法测金属丝的杨氏模量

2222)()()(4)()(b u n u d u R u L u Y u b n d R L +?+++=?用拉伸法测金属丝的杨氏模量 [预习思考题] 1、使用螺旋测微器的注意事项是什么?棘轮如何使用?螺旋测微器用毕还回盒内时要作何处理? 答:使用螺旋测微器测物时,手要握螺旋测微器的绝热板部分,手上不能有汗渍;被测物接触测砧之前,应旋转棘轮,切不可拧微分套筒,否则会损伤测砧,测值也不准确。砧台夹住被测物时,听到棘轮发出“咯咯”声响,立刻停止旋转。螺旋测微器还回盒内时,要将微分筒退旋几转,使砧台间留有一定空隙,避免热胀使螺杆变形。 2、公式 Y=8FLR πd 2b △n 中哪几个量是待测量?关键是测准哪几个量?这些量都是长度量,却使用了不同的量具和方法,这是根据什么考虑的?此公式的适用条件是什么? 答:公式中有L 、R 、d 、b 、Δn 等五个待测量。测准Δn 和d 是实验成功的关键。由Y 的不确定度传播公式: 可知,Y 的不确定度是各直接测得量的不确定度的总和,因而,一般考虑各量的不确定度按等影响原则分配,即每个直接测得量的不确定度对合成不确定度的贡献大致相同;也就是说,按照不确定度的合理分配来确定每个长度量用什么测量工具。在测量中,过高地追求某一两个量的精确度,对最后合成不确定度的影响并不大,因而无意义。比如L 和R 都大于50cm ,用米尺

,分别计算出解答提示:根据:22222)()()(4)()(b u n u d u R u L u Y u b n d R L +?+++=?二和知,。由实际测量的计算可、、、、出根号中各量:n d b u n u d u R u L u b n d R L ???2测量完全能满足要求,不必考虑选用精确度更高的仪器。公式应满足的实验条件有三:① 加负荷不能超过钢丝的弹性限度;② 光杠杆偏角θ应很小,即外力F 不能过大;③ 望远镜光轴水平,反射镜与标尺垂直于光轴。 [实验后思考题] 1、根据Y 的不确定度公式,分析哪个量的测量对Y 的测量结果影响最大。 量的测量对Y的测量结果影响最大,因此测此二量尤应精细。 2、可否用作图法求钢丝的杨氏模量,如何作图? 答:本实验不用逐差法,而用作图法处理数据,也可以算出杨氏模量。由公式 Y=8FLR πd 2b △n 可得: F= πd 2b 8LR Y △n =KY △n 。式中K=πd 2b 8LR 可视为常数。以荷重F 为纵坐标,与之相应的n i 为横坐标作图。由上式可见该图为一直 线。从图上求出直线的斜率,即可计算出杨氏模量。 3、怎样提高光杠杆测量微小变化的灵敏度?这种灵敏度是否越高越好? 答:由Δn= 2R b ΔL 可知, 2R b 为光杠杆的放大倍率。适当改变R 和 b ,可以增加放大倍数,提高光杠杆的灵敏度,但这种灵敏度并非越高越好;

(完整word版)哈工大人工智能导论实验报告

人工智能导论实验报告 学院:计算机科学与技术学院 专业:计算机科学与技术 2016.12.20

目录 人工智能导论实验报告 (1) 一、简介(对该实验背景,方法以及目的的理解) (3) 1. 实验背景 (3) 2. 实验方法 (3) 3. 实验目的 (3) 二、方法(对每个问题的分析及解决问题的方法) (4) Q1: Depth First Search (4) Q2: Breadth First Search (4) Q3: Uniform Cost Search (5) Q4: A* Search (6) Q5: Corners Problem: Representation (6) Q6: Corners Problem: Heuristic (6) Q7: Eating All The Dots: Heuristic (7) Q8: Suboptimal Search (7) 三、实验结果(解决每个问题的结果) (7) Q1: Depth First Search (7) Q2: Breadth First Search (9) Q3: Uniform Cost Search (10) Q4: A* Search (12) Q5: Corners Problem: Representation (13) Q6: Corners Problem: Heuristic (14) Q7: Eating All The Dots: Heuristic (14) Q8: Suboptimal Search (15) 自动评分 (15) 四、总结及讨论(对该实验的总结以及任何该实验的启发) (15)

大学物理实验-拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量 13+39+33=85 实验目的:采用拉伸法测定杨氏模量,掌握利用光杠杆测定微小形变地方法。在数据处理中,掌握逐差法 和作图法两种数据处理的方法 实验仪器: 杨氏模量测量仪(包括光杠杆,砝码,望远镜,标尺),米尺,螺旋测微计。 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量 困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ, 其中l 是光杠杆的臂长。 由光的反射定律可以知道,镜面转过θ,反射光线 转过2θ,而且有: D b =≈θθ22t a n 故: ) 2(D b l L = ?,即是) 2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确 定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口(3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数r i ,然 后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并

太阳能电池——大学物理实验.

太阳能电池特性的测量 能源短缺和地球生态环境污染已经成为人类面临的最大问题,新能源利用迫在眉睫。太阳能是一种取之不尽、用之不竭的新能源。太阳电池可以将太阳能转换为电能,随着研究工作的深入与生产规模的扩大,太阳能发电的成本下降很快,而资源枯竭与环境保护导致传统电源成本上升。太阳能发电有望在不久的将来在价格上可以与传统电源竞争,太阳能应用具有光明的前景。 根据所用材料的不同,太阳能电池可分为硅太阳能电池,化合物太阳能电池,聚合物太阳能电池,有机太阳能电池等。其中硅太阳能电池是目前发展最成熟的,在应用中居主导地位。 本实验研究单晶硅,多晶硅,非晶硅3种太阳能电池的特性。 实验目的 1. 学习太阳能电池的发电的原理 2. 了解太阳电池测量原理 3. 对太阳电池特性进行测量 实验原理 太阳能电池利用半导体P-N 结受光照射时的 光伏效应发电,太阳能电池的基本结构就是一个大 面积平面P-N 结,图1为P-N 结示意图。 P 型半导体中有相当数量的空穴,几乎没有自由电子。N 型半导体中有相当数量的自由电子, 几乎没有空穴。当两种半导体结合在一起形成 P-N 结时,N 区的电子(带负电)向P 区扩散, P 区的空穴(带正电)向N 区扩散,在P-N 结附近形成空间电荷区与势垒电场。势垒电场会使载流子向扩散的反方向作漂移运动,最终扩散与漂移达到平衡,使流过P-N 结的净电流为零。在空间电荷区内,P 区的空穴被来自N 区的电子复合,N 区的电子被来自P 区的空穴复合,使该区内几乎没有能导电的载流子,又称为结区或耗尽区。 当光电池受光照射时,部分电子被激发而产生电子-空穴对,在结区激发的电子和空穴分别被势垒电场推向N 区和P 区,使N 区有过量的电子而带负电,P 区有过量的空穴而带正电,P-N 结两端形成电压,这就是光伏效应,若将P-N 结两端接入外电路,就可向负载输出电能。 在一定的光照条件下,改变太阳能电池负载电阻的大小,测量其输出电压与输出电流,得到输出伏安特性,如图2实线所示。 负载电阻为零时测得的最大电流I SC 称为短路电 流。 负载断开时测得的最大电压V OC 称为开路电压。 太阳能电池的输出功率为输出电压与输出电流的 乘积。同样的电池及光照条件,负载电阻大小不一样 时,输出的功率是不一样的。若以输出电压为横坐标, 输出功率为纵坐标,绘出的P-V 曲线如图2点划线所 示。 输出电压与输出电流的最大乘积值称为最大输出 空间电荷区 图1 半导体P-N 结示意图 I V

拉伸法测钢丝的杨氏模量(已批阅)

实验题目:用拉伸法测钢丝的杨氏模量5- 实验目的:掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方 法 实验原理:在胡克定律成立的范围内,应力F/S 和应变ΔL/L 之比满足 E=(F/S )/(ΔL/L )=FL/(S ΔL ) 其中E 为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F 、ΔL/L 、S 就可以得到物体的杨氏模量,又因为ΔL 很小,直接测量 困难,故采用光杠杆将其放大,从而得到ΔL 。 实验原理图如右图: 当θ很小时,l L /tan ?=≈θθ,其中l 是光杠杆的臂 长。 由光的反射定律可以知道,镜面转过θ,反射光线 转过2θ,而且有: 故:)2(D b l L = ?,即是)2(D bl L =? 那么Slb DLF E 2= ,最终也就可以用这个表达式来确定杨氏模量E 。 实验内容: 1. 调节仪器 (1) 调节放置光杠杆的平台F 与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。 (2) 调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3) 光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL 的关键部件。光杠杆的镜面(1)和刀口 (3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4) 镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高 度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2. 测量 (1) 砝码托的质量为m 0,记录望远镜中标尺的读数r 0作为钢丝的起始长度。 (2) 在砝码托上逐次加500g 砝码(可加到3500g ),观察每增加500g 时望远镜中标尺上的读数r i ,然 后再将砝码逐次减去,记下对应的读数r ’i ,取两组对应数据的平均值i r 。 (3) 用米尺测量金属丝的长度L 和平面镜与标尺之间的距离D ,以及光杠杆的臂长l 。 3. 数据处理 (1) 逐差法 用螺旋测微计测金属丝直径d ,上、中、下各测2次,共6次,然后取平均值。将i r 每隔四项相减,得到相当于每次加2000g 的四次测量数据,如设040r r b -=,151r r b -=,262r r b -=和373r r b -=并求出平均值和误差。 将测得的各量代入式(5)计算E ,并求出其误差(ΔE/E 和ΔE ),正确表述E 的测量结果。 (2) 作图法 把式(5)改写为 i i i MF SlE DLF r ==)/(2 (6)

哈工大天线原理实验报告

Harbin Institute of Technology 天线原理实验报告 课程名称:天线原理 院系:电信学院 班级: 姓名: 学号: 指导教师: 实验时间: 实验成绩: 哈尔滨工业大学 一、实验目的 1.掌握喇叭天线的原理。

2.掌握天线方向图等电参数的意义。 3.掌握天线测试方法。 二、实验原理 1.天线电参数 (1).发射天线电参数: a.方向图:天线的辐射电磁场在固定距离上随空间角坐标分布的图形。 b.方向性系数:在相同辐射功率,相同距离情况下,天线在该方向上的辐射功率密度Smax与无方向性天线在该方向上的辐射功率密度S0之比值。 c.有效长度:在保持该天线最大辐射场强不变的条件下,假设天线上的电流均匀分布时的等效长度。 d.天线效率:表征天线将高频电流或导波能量转换为无线电波能量的有效程度。 e.天线增益:在相同输入功率、相同距离条件下,天线在最大辐射方向上的功率密度Smax与无方向性天线在该方向上的功率密度S0之比值。 f.输入阻抗:天线输入端呈现的阻抗值。 g.极化:天线的极化是指该天线在给定空间方向上远区无线电波的极化。 h.频带宽度:天线电参数保持在规定的技术要求范围内的工作频率范围。 (2).接收天线电参数: 除了上述参数以外,接收天线还有一些特有的电参数:等效面积和等效噪声温度。 a.等效面积:天线的极化与来波极化匹配,且负载与天线阻抗共轭匹配的最佳状态下,天线在该方向上所接收的功率与入射电波功率密度之比。 b.等效噪声温度:描述天线向接收机输送噪声功率的参数。 2.喇叭天线 由逐渐张开的波导构成,是一种应用广泛的微波天线。按口径形状可分为矩形喇叭天线与圆形喇 叭天线等。波导终端开口原则上可构成波导辐射器,由于口径尺寸小,产生的波束过宽;另外, 波导终端尺寸的突变除产生高次模外,反射较大,与波导匹配不良。为改善这种情况,可使波导 尺寸加大,以便减少反射,又可在较大口径上使波束变窄。 (1).H面扇形喇叭:若保持矩形波导窄边尺寸不变,逐渐张开宽边可得H面扇形喇叭。

哈工大2011年大学物理试题

大学物理期末考题(A) 2003年1月10日 得分__________ 班级_________姓名_________学号___________ 序号____________ 注意:(1)共三张试卷。(2)填空题★空白处写上关键式子,可参考给分。计算题要排出必要的方程,解题的关键步骤,这都是得分和扣分的依据。(3)不要将订书钉拆掉。(4)第4、5页是草稿纸。 一、选择题 1、在宽度a =0.05mm 的狭缝后置一焦距f 为0.8m 的透镜, 有一屏幕处在透镜的焦平面上,如图所示。现将某单色光垂直照射在单缝上,在屏幕上形成单缝衍射条纹,试问:若在离中央明条纹上方x =1.6cm 的P 处恰为暗条纹,则该光的波长约为 (a) 450nm (b) 500nm (c) 550nm (d) 600nm _____________ 1、在宽度a =0.05mm 的狭缝后置一焦距f 为0.8m 的透镜,有一屏幕处在透镜的焦平面上,如图所示。现将某单色光垂直照射在单缝上,在屏幕上形成单缝衍射条纹,试问:若在离中央明条纹上方x =1.6cm 的P 处恰为暗条纹,则该光的波长约为 (a) 450nm (b) 500nm (c) 550nm (d) 600nm 选_____B ______ λ θθk a f x ==sin kf ax = ?λ 2、在牛顿环实验中,观察到的牛顿环的干涉圆环形条纹第9级明条纹所占的面积与第16级明条纹所占的面积之比约为 (a) 9/16 (b) 3/4 (c) 1/1 (d) 4/3 (e) 16/9 选_____________ 2、在牛顿环实验中,观察到的牛顿环的干涉圆环形条纹第9级明条纹所占的面积与第16级明条纹所占的面积之比约为 (a) 9/16 (b) 3/4 (c) 1/1 (d) 4/3 (e) 16/9 选_____C ______ 明:2 ) 12(λ -= k R r , 暗:λRk r = , λπR S S k k =-+1 3、用频率为ν的单色光照射某金属时,逸出光电子的动能为k E ,若改用频率 2ν的单色光照射该金属时,则逸出光电子的动能为 (a )k E 2 (b) k E h -ν (c) k E h +ν (d) k E h -ν2 选_____________

大学物理实验-报告实验用拉伸法测杨氏模量.doc

实验21 用拉伸法测杨氏模量 林一仙 1 实验目的 1)掌握拉伸法测定金属杨氏模量的方法; 2)学习用光杠杆放大测量微小长度变化量的方法; 3)学习用作图法处理数据。 2 实验原理 相关仪器: 杨氏模量仪、光杠杆、尺读望远镜、卡尺、千分尺、砝码。 2.1杨氏模量 任何固体在外力使用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。本实验研究的是棒状物体弹性形变中的伸长形变。 设金属丝的长度为L ,截面积为S ,一端固定, 一端在延长度方向上受力为F ,并伸长△L ,如图 21-1,比值: L L ?是物体的相对伸长,叫应变。 S F 是物体单位面积上的作用力,叫应力。 根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即 L L Y S F ?= 则有 L S FL Y ?= (1) (1)式中的比例系数Y 称为杨氏弹性模量(简称杨氏模量)。 实验证明:杨氏模量Y 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于物体的材料本身的性质。它是表征固体性质的一个物理量。 根据(1)式,测出等号右边各量,杨氏模量便可求得。(1)式中的F 、S 、L 三个量都可用一般方法测得。唯有L ?是一个微小的变化量,用一般量具难以测准。本实验采用光杠杆法进行间接测量(具体方法如右图所示)。 2.2光杠杆的放大原理 如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。那么改变后的镜面和改变前的镜面必然成有一个角度差,用θ来表示这个角度差。从下图我们可以看出:

h L tg ?= θ (2) 这时望远镜中看到的刻度为1N ,而且θ201=ON N ∠,所以就有: D N N tg 0 12-= θ(3) 采用近似法原理不难得出: L h D N N N ?= -=?201(4) 这就是光杠杆的放大原理了。 将(4)式代入(1)式,并且S=πd 2 ,即可得下式: N h d F LD Y ??=π2 8 这就是本实验所依据的公式。 2.3 实验步骤 1)将待测金属丝下端砝码钩上加1.000kg 砝码使它伸直。调节仪器底部三脚螺丝,使G 平台水平。 2)将光杠杆的两前足置于平台的槽内,后足置于C 上,调整镜面与平台垂直。 3)调整标尺与望远镜支架于合适位置使标尺与望远镜以光杠杆镜面中心为对称,并使镜面与标尺距离D 约为1.5米左右。 4)用千分尺测量金属丝上、中、下直径,用卷尺量出金属丝的长度L 。 5)调整望远镜使其与光杠杆镜面在同一高度,先在望远镜外面附近找到光杠杆镜面中标尺的象(如找不到,应左右或上下移动标尺的位置或微调光杠杆镜面的垂直度)。再把望远镜移到眼睛所在处,结合调整望远镜的角度,在望远镜中便可看到光杠杆镜面中标尺的反射象(不一定很清晰)。 6)调节目镜,看清十字叉丝,调节调焦旋钮,看清标尺的反射象,而且无视差。若有视差,应继续细心调节目镜,直到无视差为止。检查视差的办法是使眼睛上下移动,看叉丝与标尺的象是否相对移动;若有相对移动,说明有视差,就应再调目镜直到叉丝与标尺象无相对运动(即无视差)为止。记下水平叉丝(或叉丝交点)所对准的标尺的初读数N 0,N 0一般应调在标尺0刻线附近,若差得很远,应上下移动标尺或检查光杠杆反射镜面是否竖直。 7)每次将1.000kg 砝码轻轻地加于砝码钩上,并分别记下读数N '1、N '2、…、N i ',共做5次。 8)每次减少1.000kg 砝码,并依次记下记读数N i ''-1,N i ''-2,…、N ''0。 9)当砝码加到最大时(如6.000kg )时,再测一次金属丝上、中、下的直径d ,并与挂1.000kg 砝码时对应的直径求平均值,作为金属丝的直径d 值。 10)用卡尺测出光杠杆后足尖与前两足尖的距离h ,用尺读望远镜的测距功能测出D (长短叉丝的刻度差乘100倍)。

拉伸法测金属丝的杨氏模量

钢丝杨氏模量的测定 创建人:系统管理员总分:100 一、实验目的 本实验采用拉伸法测量杨氏模量,要求掌握利用光杠杆测定微小形变的方法,在数据处理中,掌握逐差法和作图法两种数据处理的方法。 二、实验仪器 MYC-1型金属丝杨氏模量测定仪(一套),钢卷尺,米尺,螺旋测微计,重垂等。 三、实验原理 在胡克定律成立的范围内,应力F/S和应变ΔL/L之比满足 E=(F/S)/(ΔL/L)=FL/(SΔL) 其中E为一常量,称为杨氏模量,其大小标志了材料的刚性。 根据上式,只要测量出F、ΔL/L、S就可以得到物体的杨氏模量,又因为ΔL很小,直接测量困难,故采用光杠杆将其放大,从而得到ΔL。 实验原理图如下图: 图1.光杠杆原理图 当θ很小时,,其中l是光杠杆的臂长。 由光的反射定律可以知道,镜面转过θ,反射光线转过2θ,而且有: 故:,即是 那么,最终也就可以用这个表达式来确定杨氏模量E。 四、实验内容 1.调节仪器 (1)调节放置光杠杆的平台F与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。

(2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。 (3)光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL的关键部件。光杠杆的镜面(1)和刀口(3)应平行。使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。 (4)镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈(4),使目镜内分划板刻线(叉丝)清晰,用手轮(5)调焦,使标尺像清晰。 2.测量 (1)砝码托的质量为m0,记录望远镜中标尺的读数r0作为钢丝的起始长度。 (2)在砝码托上逐次加500g砝码(可加到3500g),观察每增加500g时望远镜中标尺上的 读数ri,然后再将砝码逐次减去,记下对应的读数,取两组对应数据的平均值。 (3)用米尺测量金属丝的长度L和平面镜与标尺之间的距离D,以及光杠杆的臂长。 3.数据处理 (1)逐差法 用螺旋测微计测金属丝直径d,上、中、下各测2次,共6次,然后取平均值。将每隔四项相减,得到相当于每次加2000g的四次测量数据,如设,, 和并求出平均值和误差。 将测得的各量代入式(5)计算E,并求出其误差(ΔE/E和ΔE),正确表述E的测量结果。(2)作图法 把式(5)改写为 (6) 其中,在一定的实验条件下,M是一个常量,若以为纵坐标,Fi为横坐标作图应得一直线,其斜率为M。由图上得到M的数据后可由式(7)计算杨氏模量 (7) 4.注意事项 (1)调整好光杠杆和镜尺组之后,整个实验过程都要防止光杠杆的刀口和望远镜及竖尺的位置有任何变动,特别在加减砝码时要格外小心,轻放轻取。 (2)按先粗调后细调的原则,通过望远镜筒上的准星看反射镜,应能看到标尺,然后再细调望远镜。调目镜可以看清叉丝,调聚焦旋钮可以看清标尺。

用拉伸法测钢丝杨氏模量——实验报告

用拉伸法测钢丝杨氏模量——实验报告

金属丝杨氏模量的测定实验报告 【实验目的】 1.学会用拉伸法测量杨氏模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定度的计算方法,结果的正确表达; 【实验仪器】 YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码) 钢卷尺(0-200cm ,0.1 )、游标卡尺(0-150mm,0.02)、螺旋测微器 (0-150mm,0.01) 【实验原理】 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L,截面积为S,沿长度方向施

力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: F S E L L =? 我们把E 称为杨氏弹性模量。 如上图: ???????=?≈=?ααα2D n tg x L n D x L ??=??2 (02n n n -=?) n x d FLD L n D x d F L L S F E ??=?=?=228241ππ 真实测量时放大倍数为4倍,即E=2E 【实验内容】

<一> 仪器调整 1、杨氏弹性模量测定仪底座调节水平; 2、平面镜镜面放置与测定仪平面垂直; 3、将望远镜放置在平面镜正前方1.5-2.0m 左右位置上; 4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像; 5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝; 6、调节叉丝在标尺cm 2 以内,并使得视差不超过半格。 <二>测量 1、 记下无挂物时刻度尺的读数0 n ; 2、依次挂上100g 的砝码,8次,计下7654321,,,,,,n n n n n n n ; 3、依次取下100g 的砝码,8次,计下n 0 ‘ ,'7'65'4'3'2'1,,,,,,'n n n n n n n ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 5、用游标卡尺测量出光杠杆x 、用螺旋测微

用拉伸法测杨氏模量

用拉伸法测杨氏模量实验报告 【一】实验目的及实验仪器 实验目的1. 用金属丝的伸长测杨氏弹性模量。 2. 学习光杠杆镜尺法测量做小长度变化的原理和调节方法。 3. 学习处理数据的一种方法——逐差法。 实验仪器光杠杆,游标卡尺,螺旋测微器,卷尺,杨氏模量仪,望远镜(附标尺)。 实验原理及过程简述 实验原理 在外力作用下,固体所发生的形状变化成为形变。它可分为弹性形变和塑性

形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L,截面积为S,沿长度方向施力F后,物体的伸长,则在金属丝的弹性限度内,有:Y= 我们把Y称为杨氏弹性模量。 实验证明,杨氏弹性模量与外力F、物体的长度L和截面积S无关,它仅决定于金属丝的材料,是表征固体性质的一个物理量。根据上式,测出等号右边各量就可以计算出杨氏弹性模量,式中的F、S和L用通常的方法可以测出, L是一个很小的长度变化,很难用普通测量长度的仪器将它测准,因此,我们采用光杠杆来测量长度变化量。 实验仪器装置如图所示,一段粗细均匀的金属丝,长度为L,截面积为S,将其上端固定于架A上,下端装有一个小环,环上挂着砝码钩。C为中间有一个小孔的圆柱体,金属丝可从其中穿过。实验时应将圆柱体一端用螺旋卡头夹紧,使其能随金属丝的伸缩而移动。G是一个固定平台,中间开有一孔,圆柱体C可以在孔

中自由地上下移动。光杠杆M下面的两尖脚放在平台的沟内,主杆尖脚放在圆柱体C的上端,将水平仪放置在平台G上。调节支架底部的3个调节螺丝H可使平台成水平,望远镜R和标尺S是测伸长量用的测量装置。金属丝受力F的作用而发生形变,伸长了,光杠杆的主杆尖脚也随之下降。使主杆转过一个角度,同时平面镜的法线也转过相同角度,由光杠杆的原理可得 =/b =/D 由于很小,很小,,,所以 = Y= 式中d为金属丝的直径,b为光杠杆臂的长度,D为标尺到镜面的距离,L为金属丝的原长。测出L、D、b、d各量和一定为F作用力下的,代入上式即可间接测得金属丝的杨氏模量。 过程简述 <一> 仪器调整 1、杨氏弹性模量测定仪底座调节水平; 2、平面镜镜面放置与测定仪平面垂直; 3、将望远镜放置在平面镜正前方1.6-2.0m左右位置上; 4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像; 5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝; 6、通过调节使叉丝对齐零刻线。 <二>测量 ; 1、记下无挂物时刻度尺的读数n ; 2、依次挂上1kg的砝码,7次,计下n i 3、依次取下1kg的砝码,7次,计下n ’; i 4、用钢卷尺测量出金属丝的长度L(两卡口之间的金属丝)、镜面到尺子的距离D;

哈工大数字信号处理实验报告

实验一: 用FFT 作谱分析 实验目的: (1) 进一步加深DFT 算法原理和基本性质的理解(因为FFT 只是DFT 的一种快速算法, 所以FFT 的运算结果必然满足DFT 的基本性质)。 (2) 熟悉FFT 算法原理和FFT 子程序的应用。 (3) 学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT 。 实验原理: DFT 的运算量: 一次完整的DFT 运算总共需要2N 次复数乘法和(1)N N -复数加法运算,因而 直接计算DFT 时,乘法次数和加法次数都和2N 成正比,当N 很大时,运算量很客观的。例如,当N=8时,DFT 运算需64位复数乘法,当N=1024时,DFT 运算需1048576次复数乘法。而N 的取值可能会很大,因而寻找运算量的途径是很必要的。 FFT 算法原理: 大多数减少离散傅里叶变换运算次数的方法都是基于nk N W 的对称性和周期 性。 (1)对称性 ()*()k N n kn kn N N N W W W --==

(2)周期性 ()(mod`)()()kn N kn n N k n k N N N N N W W W W ++=== 由此可得 ()()/2 (/2)1 n N k N n k nk N N N N N k N k N N W W W W W W ---+?==?=-??=-? 这样: 1.利用第三个方程的这些特性,DFT 运算中有些项可以合并; 2.利用nk N W 的对称性和周期性,可以将长序列的DFT 分解为短序列的DFT 。 前面已经说过,DFT 的运算量是与2N 成正比的,所以N 越小对计算越有利, 因而小点数序列的DFT 比大点数序列的DFT 运算量要小。 快速傅里叶变换算法正是基于这样的基本思路而发展起来的,她的算法基本 上可分成两大类,即按时间抽取法和按频率抽取法。 我们最常用的是2M N =的情况,该情况下的变换成为基2快速傅里叶变换。 完成一次完整的FFT 计算总共需要 2log 2 N N 次复数乘法运算和2log N N 次复数加法运算。很明显,N 越大,FFT 的优点就越突出。 实验步骤 (1) 复习DFT 的定义、 性质和用DFT 作谱分析的有关内容。 (2) 复习FFT 算法原理与编程思想, 并对照DIT-FFT 运算流图和程序框图, 读懂本实验提供的FFT 子程序。 (3) 编制信号产生子程序, 产生以下典型信号供谱分析用:

拉伸法测弹性模量实验报告

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 5 实验台号 实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节 实验名称 拉伸法测弹性模量 教师评语 实验目的与要求: 1. 用拉伸法测定金属丝的弹性模量。 2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。 3. 学会处理实验数据的最小二乘法。 主要仪器设备: 弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器 实验原理和内容: 1. 弹性模量 一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。 单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。 有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即 l l ?=E S F 其中的比例系数 l l S F E //?= 称为该材料的弹性模量。 性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。

实验中测定E , 只需测得F 、S 、l 和l ?即可, 前三者可以用常用方法测得, 而l ?的数量级很小, 故使用光杠杆镜尺法来进行较精确的测量。 2. 光杠杆原理 光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。 当金属丝被拉长l ?以后, 带动平面镜旋转一角度α, 到图中所示M ’位置; 此时读得标尺读数为n 1, 得到刻度变化为01n n n -=?。 Δn 与l ?呈正比关系, 且根据小量忽略及图中的相似几何关系, 可以得到 n B b l ??= ?2 (b 称为光杠杆常数) 将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到 n b D FlB E ?= 2 8π (式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。) 根据上式转换, 当金属丝受力F i 时, 对应标尺读数为n i , 则有 28n F bE D lB n i i +?= π 可见F 和n 成线性关系, 测量多组数据后, 线性回归得到其斜率, 即可计算出弹性模量E 。 . 用望远镜和标尺测量间距B : 已知量: 分划板视距丝间距p , 望远镜焦距f 、转轴常数δ 用望远镜的一对视距丝读出标尺上的两个读数N1、N2, 读数差为ΔN 。 在几何关系上忽略数量级差别大的量后, 可以得到 N p f x ?= , 又在仪器关系上, 有x=2B , 则N p f B ??=21 , (100=p f )。 由上可以得到平面镜到标尺的距离B 。

哈工大(威海)信号系统实验报告完整版

《信号与系统》实验报告 姓名: 学号: 同组人:无 指导教师: 成绩:

实验一典型连续时间信号描述及运算 实验报告要求: (1)仿照单边指数信号的示例程序,按要求完成三种典型连续信号,即:正弦信号、衰减正弦信号、钟型信号的波形绘制。(要求:要附上程序代码,以下均如此,不再说明)(2)根据《信号与系统》教材第一章的习题1.1(1,3,5,8)函数形式绘制波形。(3)完成三种奇异信号,即:符号函数、阶跃信号、单位冲激信号的波形绘制。 (4)完成实验一中信号的运算:三、6 实验内容中的(1)(2)(3)(4)。 (5)求解信号的直流/交流分量,按第四部分的要求完成。 正文: (1) <1>正弦信号: 代码:>> t=-250:1:250; >> f1=150*sin(2*pi*t/100); >> f2=150*sin(2*pi*t/200); >> f3=150*sin(2*pi*t/200+pi/5); >> plot(t,f1,'-',t,f2,'--',t,f3,'-.') <2>衰减正弦信号 <3> 代码:

>> t=-250:1:250; >> f1=400*exp(-1.*t.*t./10000); >> f1=400*exp(-1.*t.*t./22500); >> f1=400*exp(-1.*t.*t./62500); >> plot(t,f1,'-',t,f2,'--',t,f3,'-.') (2)习题1,3,5,8 <1> 代码:t=0:1:10; f=t; plot(t,f) <3> 代码:t=1:1:10; f=t; plot(t,f) <5> 代码:t=0:1:10; f=2-exp(-1.*t.); plot(t,f) <8> 代码:t=1:0.1:2; f=exp(-1.*t.)*cos(10*pi*t); plot(t,f)

哈工大(威海)大物实验标准

物理实验报告评分方法参考 《基础物理实验报告撰写规范及评分标准》实验报告是学生科研素质培养的重要手段,也是整个实验的完成情况、学生实验技能和数据处理能力的集中表现,是评定实验课成绩的最主要依据。 一、撰写规范 1.撰写实验报告必须采用专用的我校实验报告纸,单面书写。 2. 为了实验报告的长期保存,报告的所有内容,包括图、表、文字等都必须用墨水笔手写,不得使用铅笔。 3.实验报告必须包括以下几个部分,以使他人在不参阅其他资料的情况下能够看懂报告中的所有内容。 (1)实验编号及题目。 (2)写实验报告日期,实验者专业、学号、姓名,合作者(一人一组不需填写)姓名等信息,不得缺漏。 (3)实验目的。 (4)内容,即物理原理、采用的仪器设备的工作原理,原理图示、理论公式,实验方法,相关理论等。 (5)仪器用具。注明所有实验仪器的名称,型号,测量范围及精度。 (6)实验原理。包括实验中采用的仪器设备的工作原理,实验方法,相关理论等。 不能照抄教材的内容,而必须在理解的基础上用精炼的语言对教材的内容加以总结和概括,有必要时可以补充一些教材上没有的内容。 (7)实验内容及步骤。包括安全注意事项。对于课本上已有详细说明的,可以简略写; 要求自己设计或安排实验步骤时,应写得尽可能详细。 (8)实验结果及数据处理。包括详细的数据处理过程及所有的实验测量结果,实验数据要写在表格里。计算实验结果及不确定度,用坐标纸作图,探讨经验公式等。处理时应详细写

出计算步骤,计算不确定度,并注意有效数字的正确修约。如教材中没有明确指出不确定度计算的具体要求,在计算时应注明不确定度的种类。 (9)讨论及结论。对实验结果进行分析讨论,讨论影响实验不确定度的因素及改进方法,并完成教材中的思考题等。 (10)物理量与单位采用国际单位制,单位、化学元素用正体表示。 .作图必须用墨水笔在坐标纸上手工绘制,不得采用没有格子的白纸。或用Origin、MathLab、MathCAD、Mathmatica等专业数据处理软件处理后用计算机绘制,绘制时须标出横纵坐标轴的分格,体现出数据在图中对应的点;不要采用Microsoft Excel软件作图。(该软件主要用 于日常信息或一般商业信息处理。而Origin主要用于科研领域处理实验数据,作图更符合科研领域出版物的要求。) 4.若无教师签名盖章的原始数据,该实验报告无效。多人合作完成的实验,实验数据要多测一些,数据可以部分相同但不能全部相同。 5. 实验报告都必须独立完成,不得抄袭。若发现实验报告雷同,则雷同的实验报告以作废记,并且不得重做该实验,在下一年重修并在重修后再补考。 二、评分标准 1、报告分为 2、 3、 4、5分四个等级评定。 2、实验报告5分优秀成绩的要求 ⑴、内容完整,卷面整洁,字迹工整,格式符合规范,理论思想条理清楚,图表符合规范。 ⑵、数据处理思路清晰,有公式、有向公式内带数的过程。不确定度分析(或误差分析)过程正确,讨论分析合理。最后数据用不确定度表示、物理量单位表示正确。 ⑶、思考题解答正确,报告通篇没有错误。 ⑷、课堂回答问题正确,在4分的基础之上,可评为5分。 ⑸、预习报告不合格或没写预习报告的成绩不能为5分。 3、对4分良好成绩的要求 在5分条款中,若出现少量不严重的错误,则评为4分。

哈工大物理实验报告总结

哈工大物理实验报告总结 这是一篇由网络搜集整理的关于哈工大物理实验报告总结的文档,希望对你能有帮助。 1.了解数码照相的基本原理、基本结构及一些重要概念; 2.学习数码相机的基本操作; 3.学习数码相机在科学技术照相中常用的一些高级功能。 二、实验原理 数码相机的原理结构:主要是利用CCD/CMOS传感器的感光功能,将来自被拍摄物体的光线通过 光学镜头成像于光电转换器CCD(或CMOS)的感光面上。经由CCD直接输出的是模拟信号,由A/D转换 器转换成数字信号,经数字信号处理器DSP的处理,将图像保存到存储器中。 原理光路(在图上标出:光阑直径、进光面积、成象面积各量) 光圈(光圈指数):光圈是限制光束通过的结构。光圈能改变能光口径,控制通光量。光圈指数是衡 量光圈大小的参数,数值越小表示光圈的孔径越大,所对应成像面的亮度就越大;反之,数值越大,表 示光圈的.孔径越小,所对应成像面的亮度就越小。 H=Et 快门速度(时间):决定曝光时间,速度越快则曝光时间越短。

景深:拍摄有前后纵深的景物时,远景不同的景物在CCD上能够清晰成像的范围。 3.成像曝光量H与光圈指数F及快门开启时间t间的关系:光圈指数越大,快门开启时间越久,则 2曝光量越大;反之,光圈指数越小,快门开启时间越短,则曝光量越小。即H∝(1/F)t 三、照片及分析评价 项目一 拍照模式:自动ISO:500(自动产生)快门:1/30(自动)光圈:4.5(自动)白平衡:Auto,0 曝光补偿:±0.0 评议:画面较暗,曝光量不足、颜色偏黄,白平衡调节不当、画面不够清晰,聚焦不准,可能是操作不当。在此场景下全自动拍摄结果不尽人意。 项目二 拍照模式:P ISO:HI-1 快门:1/125(自动)光圈:5.6白平衡:Auto,0 曝光补偿:±0.0 拍照模式:P ISO:HI-1 快门:1/125(自动)光圈:5.6白平衡:白炽灯曝光补偿:±0.0 评议:白平衡为白炽灯时效果更自然,白平衡自动时背景失真。 项目三 拍照模式:A ISO:200 快门:1/3(自动)光圈:9 白平衡:阳光曝光补偿:±0.0 拍照模式:A ISO:200 快门:1/3(自动)光圈:9 白平衡:阳光曝

(完整版)用拉伸法测金属丝的杨氏模量参考报告

用拉伸法测金属丝的杨氏模量参考报告 一、实验目的 1.学会用拉伸法测量杨氏模量; 2.掌握光杠杆法测量微小伸长量的原理; 3.学会用逐差法处理实验数据; 4.学会不确定度的计算方法,结果的正确表达; 5.学会实验报告的正确书写。 二、实验仪器 YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码)、 钢卷尺(0-200cm ,0.1cm ) 、游标卡尺(0-150mm,0.02mm)、螺旋测微器(0-25mm,0.01mm) 三、验原理 在外力作用下,固体所发生的形状变化称为形变。它可分为弹性形变和塑性形变两种。本实验中,只研究金属丝弹性形变,为此,应当控制外力的大小,以保证外力去掉后,物体能恢复原状。 最简单的形变是金属丝受到外力后的伸长和缩短。金属丝长L ,截面积为S ,沿长度方向施力F 后,物体的伸长L ?,则在金属丝的弹性限度内,有: L L S F Y ?= 我们把Y 称为杨氏弹性模量。 如上图: ??? ?? ?? =-≈=?ααα201D A A tg x L )(201A A D x L -?= ??

) (8) (241012 012 A A x d FLD L A A D x d F L L S F Y -=-=?=ππ 四、实验内容 <一> 仪器调整 1、杨氏弹性模量测定仪底座调节水平; 2、平面镜镜面放置与测定仪平面垂直; 3、将望远镜放置在平面镜正前方1.500-2.000m 左右位置上; 4、粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像; 5、调节物镜焦距能看到尺子清晰的像,调节目镜焦距能清晰的看到叉丝; 6、调节叉丝在标尺0刻度cm 2±以内,并使得视差不超过半格。 <二>测量 1、 下无挂物时标尺的读数0A ; 2、依次挂上kg 1的砝码,七次,计下7654321,,,,,,A A A A A A A ; 3、依次取下kg 1的砝码,七次,计下' 7'65' 4' 3' 2' 1,,,,,,' A A A A A A A ; 4、用米尺测量出金属丝的长度L (两卡口之间的金属丝)、镜面到尺子的距离D ; 5、用游标卡尺测量出光杠杆x 、用螺旋测微器测量出金属丝直径d 。 <三>数据处理方法——逐差法 1. 实验测量时,多次测量的算术平均值最接近于真值。但是简单的求一下平均还 是不能达到最好的效果,我们多采用逐差法来处理这些数据。 2. 逐差法采用隔项逐差: 4 ) ()()()(37261504A A A A A A A A A -+-+-+-= 3. 注:上式中的A 为增重kg 4的金属丝的伸长量。 五、实验数据记录处理

相关文档
相关文档 最新文档