文档视界 最新最全的文档下载
当前位置:文档视界 › 变量间的相关关系与统计案例教案(绝对经典)

变量间的相关关系与统计案例教案(绝对经典)

变量间的相关关系与统计案例教案(绝对经典)
变量间的相关关系与统计案例教案(绝对经典)

第3节变量间的相关关系与统计案例

【最新考纲】 1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系;2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归方程系数公式不要求记忆);3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用;4.了解回归分析的基本思想、方法及其简单应用.

【高考会这样考】考查回归分析、独立性检验的基本思想和简单应用.

要点梳理

1.相关关系与回归分析

回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判断相关性的常用统计图是:散点图;统计量有相关系数与相关指数.

(1)在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.

(2)在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.

(3)如果散点图中点的分布从整体上看大致在一条直线附近,称两个变量具有线性相关关系.

2.线性回归方程

(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.

(2)回归方程:两个具有线性相关关系的变量的一组数据:(x1,y1),(x2,y2),…,(x n,y n),

其回归方程为y^=b^x+a^__,则b^=∑

n

i=1

(x i-x-)(y i-y-)

n

i=1

(x i-x-)2

n

i=1

x i y i-nx-y-

n

i=1

x2i-nx-2

,a^=y--b^x-.其中,

b^是回归方程的斜率,a^是在y轴上的截距.

回归直线一定过样本点的中心(x-,y-).

3.回归分析

(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.

(2)样本点的中心:对于一组具有线性相关关系的数据(x1,y1),(x2,y2),…,(x n,y n),其中(x-,y-)称为样本点的中心.

(3)相关系数

当r>0时,表明两个变量正相关;

当r<0时,表明两个变量负相关.

r的绝对值越接近于1,表明两个变量的线性相关性越强.

r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.

(4)相关指数:R2=1-

n

-y^2

n

i=1

(y i-y-)2

其中∑

n

i=1

(y i-y^i)2是残差平方和,其值越小,则R2越

大(接近1),模型的拟合效果越好.

4.独立性检验

(1)利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.

(2)列联表:列出的两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y2},其样本频数列联表(2×2列联表)为

则随机变量K2=n(ad-bc)

(a+b)(a+c)(b+d)(c+d)

,其中n=a+b+c+d为样本容量. [友情提示]

1.求解回归方程的关键是确定回归系数a^,b^,应充分利用回归直线过样本中心点(x-,y-).

2.根据K2的值可以判断两个分类变量有关的可信程度,若K2越大,则两分类变量有关的把握越大.

3.根据回归方程计算的y^值,仅是一个预报值,不是真实发生的值.

基础自测

1.思考辨析(在括号内打“√”或“×”)

(1)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.()

(2)通过回归直线方程y^=b^x+a^可以估计预报变量的取值和变化趋势.()

(3)因为由任何一组观测值都可以求得一个线性回归方程,所以没有必要进行相关性检验.()

(4)事件X,Y关系越密切,则由观测数据计算得到的K2的观测值越大.()

答案(1)√(2)√(3)×(4)√

2.某研究机构对高三学生的记忆力x和判断力y进行统计分析,所得数据如表:

则y对x的线性回归直线方程为()

A.y^=2.3x-0.7

B.y^=2.3x+0.7

C.y^=0.7x-2.3

D.y^=0.7x+2.3

解析易求x-=9,y-=4,样本点中心(9,4)代入验证,满足y^=0.7x-2.3.

答案 C

3.两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是()

A.模型1的相关指数R2为0.98

B.模型2的相关指数R2为0.80

C.模型3的相关指数R2为0.50

D.模型4的相关指数R2为0.25

解析在两个变量y与x的回归模型中,它们的相关指数R2越近于1,模拟效果越好,在四个选项中A的相关指数最大,所以拟合效果最好的是模型1.

答案 A

4.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论不正确的是()

A.逐年比较,2008年减少二氧化硫排放量的效果最显著

B.2007年我国治理二氧化硫排放显现成效

C.2006年以来我国二氧化硫年排放量呈减少趋势

D.2006年以来我国二氧化硫年排放量与年份正相关

解析对于A选项,由图知从2007年到2008年二氧化硫排放量下降得最多,故A正确.对于B选项,由图知,由2006年到2007年矩形高度明显下降,因此B正确.对于C选项,由图知从2006年以后除2011年稍有上升外,其余年份都是逐年下降的,所以C正确.由图知2006年以来我国二氧化硫年排放量与年份负相关,D不正确.

答案 D

5.为了判断高中三年级学生是否选修文科与性别的关系,现随机抽取50名学生,得到如下2×2列联表:

已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根据表中数据,得到K2的观测值k=50×(13×20-10×7)2

23×27×20×30≈4.844.则认为选修文科与性别有关系出错的可能性为________.

解析K2的观测值k≈4.844,这表明小概率事件发生.根据假设检验的基本原理,应该断定“是否选修文科与性别之间有关系”成立,并且这种判断出错的可能性约为5%.

答案5%

错误!题型分类深度解析

考点一相关关系的判断

【例1】(1)已知变量x和y近似满足关系式y=-0.1x+1,变量y与z正相关.下列结论中正确的是()

A.x与y正相关,x与z负相关

B.x与y正相关,x与z正相关

C.x与y负相关,x与z负相关

D.x与y负相关,x与z正相关

(2)甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表:

则哪位同学的试验结果体现A,B两变量有更强的线性相关性()

A.甲

B.乙

C.丙

D.丁

解析(1)由y=-0.1x+1,知x与y负相关,即y随x的增大而减小,又y与z正相关,所以z随y的增大而增大,减小而减小,所以z随x的增大而减小,x与z负相关. (2)在验证两个变量之间的线性相关关系时,相关系数的绝对值越接近于1,相关性越强,在四个选项中只有丁的相关系数最大;残差平方和越小,相关性越强,只有丁的残差平方和最小,综上可知丁的试验结果体现了A,B两变量有更强的线性相关性.

答案(1)C(2)D

规律方法 1.散点图中如果所有的样本点都落在某一函数的曲线附近,变量之间就有相关关系.如果所有的样本点都落在某一直线附近,变量之间就有线性相关关系.若点散布在从左下角到右上角的区域,则正相关.

2.利用相关系数判定,当|r|越趋近于1相关性越强.当残差平方和越小,相关指数R2越大,相关性越强.若r>0,则正相关;r<0时,则负相关.

3.线性回归直线方程中:b^>0时,正相关;b^<0时,负相关.

【变式练习1】(1)某公司在2018年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:

根据统计资料,则()

A.月收入的中位数是15,x与y有正线性相关关系

B.月收入的中位数是17,x与y有负线性相关关系

C.月收入的中位数是16,x与y有正线性相关关系

D.月收入的中位数是16,x与y有负线性相关关系

(2)x和y的散点图如图所示,则下列说法中所有正确命题的序号为________.

①x ,y 是负相关关系;

②在该相关关系中,若用y =c 1e c 2x 拟合时的相关指数为R 21,用y ^

=b ^

x +a ^

拟合时的相关指

数为R 22,则R 21>R 22;

③x ,y 之间不能建立线性回归方程.

解析 (1)从统计图表中看出,月收入的中位数是1

2(15+17)=16,收入增加,则支出也增加,x 与y 正线性相关.

(2)在散点图中,点散布在从左上角到右下角的区域,因此x ,y 是负相关关系,故①正确;

由散点图知用y =c 1e c 2x 拟合比用y ^

=b ^

x +a ^

拟合效果要好,则R 21>R 22,故②正确;x ,y 之

间可以建立线性回归方程,但拟合效果不好,故③错误. 答案 (1)C (2)①②

考点二 线性回归方程及应用

【例2】 某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

表中w i =x i ,w -

=18∑i =1

w i . (1)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由)?

(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;

(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题: ①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?

附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:

β^=∑n

i=1

(u i-u-)(v i-v-)

∑n i=1(u i-u-)2

,α^=v--β^u-.

解(1)由散点图可以判断,y=c+d x适宜作为年销售量y关于年宣传费x的回归方程类型.

(2)令w=x,先建立y关于w的线性回归方程,由于

d^=∑

8

i=1

(w i-w-)·(y i-y-)

8

i=1

(w i-w-)2

108.8

1.6=68,

c^=y--d^w-=563-68×6.8=100.6,

所以y关于w的线性回归方程为y^=100.6+68w,因此y关于x的回归方程为y^=100.6+68x.

(3)①由(2)知,当x=49时,年销售量y的预报值

y^=100.6+6849=576.6,

年利润z的预报值z^=576.6×0.2-49=66.32.

②根据(2)的结果知,年利润z的预报值

z^=0.2(100.6+68x)-x=-x+13.6x+20.12.

所以当x=13.6

2=6.8,即x=46.24时,z

^取得最大值.

故年宣传费为46.24千元时,年利润的预报值最大.

规律方法 1.(1)正确理解计算b^,a^的公式和准确的计算是求线性回归方程的关键. (2)回归直线方程y^=b^x+a^必过样本点中心(x-,y-).

2.(1)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.

(2)本例中y与x不具有线性相关,先作变换,转化为y与w具有线性相关,求出y关于w的线性回归方程,然后进一步求解.

【变式练习2】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

表1

为了研究计算的方便,工作人员将上表的数据进行了处理,t =x -2 012,z =y -5得到下表2:

表2

(1)求z 关于t 的线性回归方程;

(2)通过(1)中的方程,求出y 关于x 的回归方程;

(3)用所求回归方程预测到2022年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程y ^=b ^

x +a ^

,其中b ^

∑n

i =1x i y i -nx -·y

∑n

i =1

x 2i -nx

2

,a ^

=y -

-b ^x -

)

解 (1)t -

=3,z -

=2.2,∑5

i =1t i z i =45,∑5

i =1

t 2

i =55, b ^=45-5×3×2.255-5×9=1.2,

a ^

=z -

-b ^t -

=2.2-3×1.2=-1.4, 所以z ^

=1.2t -1.4.

(2)将t =x -2 012,z =y -5,代入z ^

=1.2t -1.4, 得y -5=1.2(x -2 012)-1.4,即y ^=1.2x -2 410.8. (3)因为y ^

=1.2×2 022-2 410.8=15.6,

所以预测到2022年年底,该地储蓄存款额可达15.6千亿元. 考点三 独立性检验

【例3】 海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:

(1)记A 表示事件“旧养殖法的箱产量低于50 kg”,估计A 的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较. 附:

K 2=n (ad -bc )

2

(a +b )(c +d )(a +c )(b +d )

解 (1)旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62,因此,事件A 的概率估计值为0.62. (2)根据箱产量的频率分布直方图得列联表:

K 2的观测值为k =200×(62×66-34×38)

100×100×96×104

≈15.705. 由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.

(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50 kg 到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg 到50 kg 之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高.因此,可以认为新养殖法的箱产量较

高且稳定,从而新养殖法优于旧养殖法.

规律方法 1.在2×2列联表中,如果两个变量没有关系,则应满足ad -bc ≈0.|ad -bc |越小,说明两个变量之间关系越弱;|ad -bc |越大,说明两个变量之间关系越强.

2.解决独立性检验的应用问题,一定要按照独立性检验的步骤得出结论.独立性检验的一般步骤:

(1)根据样本数据制成2×2列联表:

(2)根据公式K 2

=n (ad -bc )2(a +b )(a +c )(b +d )(c +d )

计算K 2的观测值k ;

(3)比较观测值k 与临界值的大小关系,作统计推断.

【变式练习3】某校在高一年级学生中,对自然科学类、社会科学类校本选修课程的选课意向进行调查. 现从高一年级学生中随机抽取180名学生,其中男生105名;在这180名学生中选择社会科学类的男生、女生均为45名.

(1)试问:从高一年级学生中随机抽取1人,抽到男生的概率约为多少?

(2)根据抽取的180名学生的调查结果,完成下面的2×2列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?

附:K 2

=(a +b )(c +d )(a +c )(b +d )

,其中n =a +b +c +d .

解 (1)从高一年级学生中随机抽取1人,抽到男生的概率约为105180=7

12.

(2)根据统计数据,可得2×2列联表如下:

则K 2

的观测值为k =180×(60×45-30×45)105×75×90×90

=367≈5.142 9>5.024,

所以能在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关.

课后练习

A组(时间:40分钟)

一、选择题

1.为了判定两个分类变量X和Y是否有关系,应用独立性检验法算得K2的观测值为5,又已知P(K2≥3.841)=0.05,P(K2≥6.635)=0.01,则下列说法正确的是()

A.有95%的把握认为“X和Y有关系”

B.有95%的把握认为“X和Y没有关系”

C.有99%的把握认为“X和Y有关系”

D.有99%的把握认为“X和Y没有关系”

解析依题意K2的观测值为k=5,且P(K2≥3.841)=0.05,因此有95%的把握认为“X和Y”有关系.

答案 A

2.下列说法错误的是()

A.回归直线过样本点的中心(x-,y-)

B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于1

C.对分类变量X与Y,随机变量K2的观测值k越大,则判断“X与Y有关系”的把握程度越小

D.在回归直线方程y^=0.2x+0.8中,当解释变量x每增加1个单位时,预报变量y^平均增加0.2个单位

解析根据相关定义分析知A,B,D正确,C中对分类变量X与Y的随机变量K2的观测值k来说,k越大,判断“X与Y有关系”的把握程度越大,故C错误.

答案 C

3.已知两个随机变量x,y之间的相关关系如表所示:

根据上述数据得到的回归方程为y^=b^x+a^,则大致可以判断()

A.a^>0,b^>0

B.a^>0,b^<0

C.a ^

<0,b ^

>0

D.a ^

<0,b ^

<0

解析 作出散点图,画出回归直线直观判定b ^

>0,a ^

<0. 答案 C

4.通过随机询问110名性别不同的学生是否爱好某项运动,得到如下的列联表:

由K 2

=n ((a +b )(c +d )(a +c )(b +d )算得,

K 2

的观测值为k =110×(40×30-20×20)2

60×50×60×50

≈7.8. 附表:

参照附表,得到的正确结论是( )

A .有99%以上的把握认为“爱好该项运动与性别有关”

B .有99%以上的把握认为“爱好该项运动与性别无关”

C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”

D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”

解析 根据独立性检验的定义,由K 2的观测值为k ≈7.8>6.635,可知我们在犯错误的概率不超过0.01的前提下,即有99%以上的把握认为“爱好该项运动与性别有关”. 答案 A

5.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直

线方程为y ^

=b ^

x +a ^

.已知∑10

i =1

x i =225,∑10

i =1

y i =1 600,b ^

=4.该班某学生的脚长为24,据此估计其身高为( ) A .160

B .163

C .166

D .170

解析 由已知得x -

=22.5,y -

=160,

∵回归直线方程过样本点中心(x -,y -

),且b ^

=4, ∴160=4×22.5+a ^

,解得a ^

=70.

∴回归直线方程为y ^

=4x +70,当x =24时,y ^

=166. 答案 C 二、填空题

6.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ^

=0.67x +54.9.

现发现表中有一个数据看不清,请你推断出该数据的值为________. 解析 由x -

=30,得y -

=0.67×30+54.9=75. 设表中的“模糊数字”为a ,

则62+a +75+81+89=75×5,∴a =68. 答案 68

7.心理学家分析发现视觉和空间想象能力与性别有关,某数学兴趣小组为了验证这个结论,从所在学校中按分层抽样的方法抽取50名同学(男30,女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)

根据上述数据,推断视觉和空间想象能力与性别有关系,则这种推断犯错误的概率不超过________. 附表:

解析 由列联表计算K 2

的观测值k =50(22×12-8×8)30×20×20×30≈5.556>5.024.∴推断犯错误的概率不超过0.025. 答案 0.025

8.某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:

由表中数据得回归直线方程y^=b^x+a^中的b^=-2,预测当气温为-4 ℃时,用电量约为________度.

解析根据题意知x-=18+13+10+(-1)

4=10,y

-=

24+34+38+64

4=40.所以a

^=40-

(-2)×10=60,y^=-2x+60,所以当x=-4时,y=(-2)×(-4)+60=68,所以用电量约为68度.

答案68

三、解答题

9.某厂商为了解用户对其产品是否满意,在使用该产品的用户中随机调查了80人,结果如下表:

(1)根据上表,现用分层抽样的方法抽取对产品满意的用户5人,在这5人中任选2人,求被选中的恰好是男、女用户各1人的概率;

(2)有多大把握认为用户对该产品是否满意与用户性别有关?请说明理由.

注:K2=

(a+b)(c+d)(a+c)(b+d)

,n=a+b+c+d.

解(1)用分层抽样的方法在满意产品的用户中抽取5人,则抽取比例为5

50=1

10.

所以在满意产品的用户中应抽取女用户20×1

10=2(人),男用户30×1

10=3(人).

抽取的5人中,三名男用户记为a,b,c,两名女用户记为r,s,则从这5人中任选2人,共有10种情况:ab,ac,ar,as,bc,br,bs,cr,cs,rs.

其中恰好是男、女用户各1人的有6种情况:ar,as,br,bs,cr,cs.

故所求的概率为P =6

10=0.6.

(2)由题意,得K 2的观测值为

k =80(30×20-20×10)2

(30+20)(10+20)(30+10)(20+20) =16

3≈5.333>5.024. 又P (K 2≥5.024)=0.025.

故有97.5%的把握认为“产品用户是否满意与性别有关”.

10.某市春节期间7家超市广告费支出x i (万元)和销售额y i (万元)数据如下表:

(1)若用线性回归模型拟合y 与x 的关系,求y 与x 的线性回归方程;

(2)若用二次函数回归模型拟合y 与x 的关系,可得回归方程:y ^

=-0.17x 2+5x +20,经计算,二次函数回归模型和线性回归模型的R 2分别约为0.93和0.75,请用R 2说明选择哪个回归模型更合适,并用此模型预测A 超市广告费支出3万元时的销售额.

参考数据:x -

=8,y -

=42,∑7

i =1x i y i =2 794,∑7

i =1

x 2i =708. 参考公式:b ^

=∑n

i =1

x i y i -nx - y

∑n

i =1

x 2i -nx

2

,a ^

=y -

-b ^x -

.

解 (1) b ^

∑7

i =1x i y i -7x - y

∑7

i =1

x 2

i -7x

-2=2 794-7×8×42708-7×82=1.7. ∴a ^

=y --vx -

=42-1.7×8=28.4,

故y 关于x 的线性回归方程是y ^

=1.7x +28.4. (2)∵0.75<0.93,∴二次函数回归模型更合适. 当x =3时,y ^

=33.47.

故选择二次函数回归模型更合适,并且用此模型预测A 超市广告费支出3万元时的销售额为33.47万元.

B 组(时间:20分钟)

11.济南市地铁R 1线预计2019年年底开通运营,地铁时代的到来能否缓解济南的交通拥

堵状况呢?某社团进行社会调查,得到的数据如下表:

则下列结论正确的是( )

附:K 2

=n (ad -bc )2

(a +b )(a +c )(b +d )(c +d )

A.有95%的把握认为“对能否缓解交通拥堵的认识与性别有关” B .有95%的把握认为“对能否缓解交通拥堵的认识与性别无关” C .有99%的把握认为“对能否缓解交通拥堵的认识与性别有关” D .有99%的把握认为“对能否缓解交通拥堵的认识与性别无关” 解析 由2×2列联表,可求K 2的观测值, k =(48+30+12+20)(20×48-12×30)2(48+30)(48+12)(12+20)(30+20) ≈5.288>3.841.

由统计表P (K 2≥3.841)=0.05,∴有95%的把握认为“能否缓解交通拥堵的认识与性别有关”. 答案 A

12.在2018年3月15日那天,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:

由散点图可知,销售量y 与价格x 之间有较强的线性相关关系,其线性回归方程是y ^

=-3.2x +40,且m +n =20,则其中的n =________. 解析 x -

9+9.5+m +10.5+115=8+m

5,

y -

=11+n +8+6+55=6+n

5.

回归直线一定经过样本中心(x -

,y -

),

即6+n

5=-3.2???

?8+m 5+40,即3.2m +n =42.

又因为m +n =20,即???3.2m +n =42,

m +n =20,

解得?

??m =10,n =10,故n =10.

答案 10

13.已知某企业近3年的前7个月的月利润(单位:百万元)如下面的折线图所示:

(1)试问这3年的前7个月中哪个月的月平均利润较高? (2)通过计算判断这3年的前7个月的总利润的发展趋势;

(3)试以第3年的前4个月的数据(如下表),用线性回归的拟合模式估计第3年8月份的利润.

相关公式:b ^

=∑n

i =1

(x i -x -

)(y i -y -

)∑n i =1

(x i -x -)2=∑n

i =1

x i y i -nx - y

∑n

i =1

x 2

i -nx

-2,a ^

=y --b ^x -. 解 (1)由折线图可知5月和6月的平均利润最高.

(2)第1年前7个月的总利润为1+2+3+5+6+7+4=28(百万元), 第2年前7个月的总利润为2+5+5+4+5+5+5=31(百万元). 第3年前7个月的总利润为4+4+6+6+7+6+8=41(百万元), 所以这3年的前7个月的总利润呈上升趋势.

(3)∵x -

=2.5,y -

=5,12+22+32+42=30,1×4+2×4+3×6+4×6=54, ∴b ^

=54-4×2.5×530-4×2.52=0.8,

∴a ^

=5-2.5×0.8=3.

因此线性回归方程为y^=0.8x+3.

当x=8时,y^=0.8×8+3=9.4.

∴估计第3年8月份的利润为9.4百万元.

数学第一章统计案例测试1新人教A版选修1 2

高中新课标选修(1-2)统计案例测试题1 一、选择题 1.下列属于相关现象的是() A.利息与利率 B.居民收入与储蓄存款 C.电视机产量与苹果产量 D.某种商品的销售额与销售价格 答案:B 2.如果有95%的把握说事件A和B有关,那么具体算出的数据满足() A.23.841K?B.23.841K? C.26.635K?D.26.635K? 答案:A 3.如图所示,图中有5组数据,去掉组数据后(填字母代),剩下的4组数据的线性相关性最大() A.EB.CC.DD.A 答案:A 4.为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9965人,得到如下结 果(单位:人) 不患肺癌患肺癌不吸烟 7775 42 7817 吸烟 2099 49 2148 合计 9874 91

9 965 根据表中数据,你认为吸烟与患肺癌有关的把握有() A.90% B.95% C.99% D.100% 答案:C 5.调查某医院某段时间内婴儿出生的时间与性别的关系,得到下面的数据表: 晚上白天合计 男婴 24 31 55 女婴 8 26 34 合计 32 57 89 你认为婴儿的性别与出生时间有关系的把握为() A.80% B.90% C.95% D.99% 答案:B 6.已知有线性相关关系的两个变量建立的回归直线方程为yabx??,方程中的回归系数b() A.可以小于0 B.只能大于0 C.可以为0 D.只能小于0 答案:A 7.每一吨铸铁成本c y(元)与铸件废品率x%建立的回归方程568c yx??,下列说法正确的是() A.废品率每增加1%,成本每吨增加64元 B.废品率每增加1%,成本每吨增加8% C.废品率每增加1%,成本每吨增加8元 D.如果废品率增加1%,则每吨成本为56元 答案:C 8.下列说法中正确的有:①若0r?,则x增大时,y也相应增大;②若0r?,则x增

高中数学 变量间的相关关系教案 新人教版必修3

2.3 变量间的相关关系 (教师用书独具) ●三维目标 1.知识与技能 通过收集现实问题中两个有关联变量的数据,认识变量间的相关关系. 2.过程与方法 明确事物间的相互联系.认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系. 3.情感、态度与价值观 通过对事物之间相关关系的了解,让学生们认识到现实中任何事物都是相互联系的辩证法思想. ●重点难点 重点:(1)通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系; (2)利用散点图直观认识两个变量之间的线性关系. 难点:(1)变量之间相关关系的理解; (2)作散点图和理解两个变量的正相关和负相关. 从现实生活入手,抓住学生们的注意力,引导学生分析得出概念,让学生真正参与到概念的形成过程中来.通过对典型事例的分析,向学生们介绍什么是散点图,并总结出如何从散点图上判断变量之间关系的规律.通过实验让学生们感受散点图的主要形成过程,并由此引出线性相关关系强化本节重点. 通过学生讨论、交流,用TI图形计算器展示、对比自己作出的散点图,得出线性相关关系、正负相关关系的概念.教师及时将求线性方程的公式展示出来,通过例题的讲解和训练,进一步加深对散点图和回归方程的理解,突破难点.

(教师用书独具) ●教学建议 结合本节课的教学内容和学生的认知水平,充分发挥教师的主导作用,让学生真正成为教学活动的主体.通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性.本节课宜采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“散点图”为基本探究内容,以周围世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,通过例题和变式训练进一步巩固本节知识,将自己所学知识应用于对现实生活的深入探讨.让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新. ●教学流程 创设问题情境引入问题:人体内脂肪的含量与年龄之间有何关系??错误!?错误!?错误! ?通过例2及其变式训练,使学生掌握线性回归方程的求法?研究现实生活中的实际问题,应用本节知识完成例3及变式能够对总体进行估计?归纳整理,进行课堂小结,整体把握本节知识?完成当堂双基达标,巩固所掌握的知识,并进行反馈矫正 (见学生用书第41页)

数学选修23第三章统计案例教案

第三章 统计案例 §3.1 独立性检验(1) 1. 某医疗机构为了了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515个成年人,其中吸烟者220人, 不吸烟者295人.调查结果是:吸烟的220人中有37人患呼吸道疾病(简称患病),183人未患呼吸道疾病(简称未患病);不吸烟的295人中有21人患病,274人未患病. 问题:根据这些数据能否断定“患呼吸道疾病与吸烟有关”? 为了研究这个问题,(1)引导学生将上述数据用下表来表示: 一.建构数学 1.独立性检验: (1)假设0H :患病与吸烟没有关系. 若将表中“观测值”用字母表示,则得下表: 如果实际观测值与假设求得的估计值相差不大,就可以认为所给数据(观测值)不能否定假设0H .否则,应认为假设0H 不能接受,即可作出与假设0H 相反的结论. (2)卡方统计量: 为了消除样本对上式的影响,通常用卡方统计量(χ22 ()-=∑ 观测值预期值预期值 )来进行估计. 卡方χ2统计量公式: χ2() ()()()() 2 n ad bc a b c d a c b d -=++++(其中n a b c d =+++) 由此若0H 成立,即患病与吸烟没有关系,则χ2的值应该很小.把37,183,21,274a b c d ====代入计算得 χ211.8634=,统计学中有明确的结论,在0H 成立的情况下,随机事件“2 6.635χ≥” 发生的概率约为0.01,即2 ( 6.635)0.01P χ ≥≈,也就是说,在0H 成立的情况下,对统计量χ2进行多次观测, 观测值超过6.635的频率约为0.01.由此,我们有99%的把握认为0H 不成立,即有99%的把握认为“患病与吸烟有关系”. 象以上这种用2 χ统计量研究吸烟与患呼吸道疾病是否有关等问题的方法称为独立性检验.

第一章《统计案例》练习

----------专业最好文档,专业为你服务,急你所急,供你所需------------- §1.1 独立性检验 1.当χ2>2.706时,就有________的把握认为“x 与y 有关系”. 2.分类变量X 和Y .(填序号) ①ad -bc 越小,说明X 与Y 的关系越弱; ②ad -bc 越大,说明X 与Y 的关系越强; ③(ad -bc )2越大,说明X 与Y 的关系越强; ④(ad -bc )2越接近于0,说明X 与Y 的关系越强. 3.通过随机询问110 χ2=110×(40×30-20×20) 60×50×60×50 ≈7.8,得到的正确结论是________. ①在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”; ②在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”; ③有99%以上的把握认为“爱好该项运动与性别有关”; ④有99%以上的把握认为“爱好该项运动与性别无关”. 4.为了研究男子的年龄与吸烟的关系,抽查了100个男子,按年龄超过和不超过40岁,吸 则有________的把握确定吸烟量与年龄有关. 5.下列说法正确的是________.(填序号) ①对事件A 与B 的检验无关,即两个事件互不影响;

----------专业最好文档,专业为你服务,急你所急,供你所需------------- ②事件A 与B 关系越密切,χ2就越大; ③χ2的大小是判断事件A 与B 是否相关的惟一数据; ④若判定两事件A 与B 有关,则A 发生B 一定发生. 6 设H 0:主修统计专业与性别无关,则 χ2的值约为________,从而得出结论有 把握认为主修统计专业与性别有关系,这种判断出错的可能性为________. 7.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的 零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表: (1)分别估计两个分厂生产的零件的优质品率; (2)由以上统计数据填写2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.

《变量间的相关关系》教案

变量间的相关关系的教学设计 本节教学设计主要是使用TI92图形计算器,对普通高中课程标准实验教科书数学③第二章《统计》中的“两个变量的线性相关”进行有益的教与学探究。学生通过对 TI图形计算器的操作,具体形象地利用散点图等直观图形认识变量之间的相关关系,同时,经历描述两个变量的相关关系的过程。学生亲自体验了发现数学、领悟数学的全过程。与此同时,教师在落实新课程标准的相关理念上作了一些有益的探讨。 教学设计与实践: [教学目标]: 1、明确事物间的相互联系。认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系。 2、通过TI技术探究用不同的估算方法描述两个变量的线性相关关系的过程,学会用数学的有关变量来描述现实关系。 3、知道最小二乘法思想,了解其公式的推导。会用TI图形计算器来求回归方程,相关系数。 [教学用具]: 学生每人一台TI图形计算器、多媒体展示台、幻灯 [教学实践情况]: 一、问题引出:请同学们如实填写下表(在空格中打“√” ) 然后回答如下问题:①“你的数学成绩对你的物理成绩有无影响?”②“ 如果你的数学成绩好,那么你的物理成绩也不会太差,如果你的数学成绩差,那么你的物理成绩也不会太好。”对你来说,是这样吗?同意这种说法的同学请举手。 根据同学们回答的结果,让学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系。(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对。)教师总结如下:

物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。数学成绩的高低对物理成绩的高低是有一定影响的。但决非唯一因素,还有其它因素,如图所示(幻灯片给出): (影响你的物理成绩的关系图) 因此,不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。但这两个变量是有一定关系的,它们之间是一种不确定性的关系。如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义。 二、引出相关关系的概念 教师提问:“像刚才这种情况在现实生活中是否还有?” 学生甲:粮食产量与施肥用量的关系; 学生乙:人的体重与食肉数量的关系。 …… 从而得出:两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系。 三、探究线性相关关系和其他相关关系 问题:在一次对人体脂肪和年龄关系的研究中,研究人员获得了一组样本数据: 人体的脂肪百分比和年龄 年龄23 27 39 41 45 49 50 脂肪9.5 17.8 21.2 25.9 27.5 26.3 28.2

2021版高考数学一轮复习第九章统计与统计案例9.2用样本估计总体教学案苏教版

第二节用样本估计总体 [最新考纲] 1.了解分布的意义与作用,能根据频率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题. 1.常用统计图表 (1)作频率分布直方图的步骤: ①求极差(即一组数据中最大值与最小值的差). ②决定组距与组数. ③将数据分组. ④列频率分布表. ⑤画频率分布直方图. (2)频率分布直方图:反映样本频率分布的直方图(如图) 横轴表示样本数据,纵轴表示频率 组距 ,每个小矩形的面积表示样本数据落在该组内的频 率.各小矩形的面积和为1. (3)频率分布折线图和总体密度曲线 ①频率分布折线图:将频率分布直方图中各相邻的矩形的上底边的中点顺次连接起来,就得到频率分布折线图. ②总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.2.样本的数字特征 (1)众数:一组数据中出现次数最多的那个数据,叫做这组数据的众数. (2)中位数:把n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数

据的平均数)叫做这组数据的中位数. (3)平均数:把x = x 1+x 2+…+x n n 称为x 1,x 2,…,x n 这n 个数的平均数. (4)标准差与方差:设一组数据x 1,x 2,x 3,…,x n 的平均数为x ,则这组数据的标准差和方差分别是 s = 1 n [x 1-x 2 +x 2-x 2 +…+x n -x 2 ]; s 2=1 n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]. [常用结论] 1.频率分布直方图中的常见结论 (1)众数的估计值为最高矩形的中点对应的横坐标. (2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和. (3)中位数的估计值的左边和右边的小矩形的面积和是相等的. 2.平均数、方差的公式推广 (1)若数据x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,mx 3+a ,…,mx n +a 的平均数是m x +a . (2)数据x 1,x 2,…,x n 的方差为s 2 . ①数据x 1+a ,x 2+a ,…,x n +a 的方差也为s 2 ; ②数据ax 1,ax 2,…,ax n 的方差为a 2s 2 . 一、思考辨析(正确的打“√”,错误的打“×”) (1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势. ( ) (2)一组数据的方差越大,说明这组数据越集中. ( ) (3)频率分布直方图中,小矩形的面积越大,表示样本数据落在该区间的频率越高. ( ) (4) 已知样本数据x 1,x 2,…,x n 的均值x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的均值为10. ( ) [答案](1)√ (2)× (3)√ (4)× 二、教材改编 1.一个容量为32的样本,已知某组样本的频率为0.25,则该组样本的频数为( ) A .4 B .8 C .12 D .16

变量间的相关关系教学设计(广东深圳第二高级中学董正林)

课题:变量间的相关关系(第2课时) 授课教师:深圳市第二高级中学董正林 教材:数学·人教社A版·必修三·第二章第三节 一、教学内容解析 本课作为“变量间的相关关系”第2课时,主要内容是探究如何用一条直线来近似刻画两个变量之间的相关关系,并且能用所得的直线方程进行预测,在这个过程中渗透多个重要的数理统计思想——最小二乘思想、随机思想与用样本估计总体的思想. 通过第1课时的学习,学生已经能够理解相关关系这一概念,能通过绘制散点图对相关关系进行直观、定性的描述,比如根据散点图判断两个变量间是否存在相关关系,是正相关还是负相关等.本课内容是上节课内容的延续与深入,通过用一条直线来近似代表变量间的线性相关关系,从而实现对相关关系进行定量研究.显然,在整体上与样本点最接近的直线能最大程度地近似代表真实关系.为此我们需要建立一个量化标准,也就是对“从整体上看,直线最接近样本点”进行精准的数学语言刻画.这样量化标准有很多,最经典、最常采用的就是最小二乘思想. 以最小二乘法建立起线性回归方程后,我们就能对所研究的总体情况进行预测.将解释变量代入回归方程计算得到一个数值并不难,更重要地是学生需要正确理解预测值的含义,明确预测值只是实际值的一个近似,是对总体情况的一种估计. 基于上述分析,本节课的教学重点定为:理解回归直线只是对相关关系的一种近似描述,最小二乘法只是确定回归直线的一种方法,理解回归方程的含义以及背后蕴含的统计思想.教学难点则是对“从整体上看,直线与样本点最接近”进行数学刻画,并在这个过程中引出最小二乘法这一重要数学思想. 二、教学目标设置 1、知识与技能:了解线性相关关系、回归直线、回归方程等基本概念,能熟练操作图形计算器进行绘图、计算,认识最小二乘法. 2、过程与方法:在探究如何用一条直线去很好地近似变量间线性相关关系的过程中,学习如何用数学知识去定量刻画实际问题,掌握线性回归的基本方法. 3、情感、态度与价值观:通过合作探究、类比思考,理解回归方程的随机性以及用样本估计总体的思想,感受“见微知著”、“一叶知秋”的哲学原理以及认识客观事物的一种角度. 三、学生学情分析 本课纯粹知识层面的内容并不多,但涉及许多重要且新颖的数学思想方法,有些思想方法与学生已有的认知基础偏离较远,比如学生已经习惯了一个问题无论有多少种解法,答案都是唯一确定的,但本课需要学生实现由确定性思维向统计思维的转变,因此学生要真正做到建构知识体系、抓住本质问题、理解核心概念不是一件容易的事情.此外,学生对大量的样本数据、复杂的公式结构以及代数运算可能心存畏惧,这些都会影响到课堂教学.有利的地方在于学生已经学习过方差的概念,能够理解用平均数去估计总体数字特征,以此作为其思维的“最近发展区”,便于其更好地认识最小二乘思想.同时,学生对新知识的旺盛求解欲望、对问题进行积极思考的态度也是顺利完成本课的重要保证.

(新)高中数学复习课(一)统计案例教学案新人教A版选修1-2

复习课(一) 统计案例 回归分析 (1)变量间的相关关系是高考解答题命题的一个,主要考查变量间相关关系的判断,求解回归方程并进行预报估计,题型多为解答题,有时也有小题出现. (2)掌握回归分析的步骤的是解答此类问题的关键,另外要掌握将两种非线性回归模型转化为线性回归分析求解问题. [考点精要] 1.一个重要方程 对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其线性回归直线方程为y ^=b ^x +a ^. 其中b ^= ∑i =1 n x i -x y i -y ∑i =1 n x i -x 2 ,a ^=y -b ^ x . 2.重要参数 相关指数R 2 是用来刻画回归模型的回归效果的,其值越大,残差平方和越小,模型的拟合效果越好. 3.两种重要图形 (1)散点图: 散点图是进行线性回归分析的主要手段,其作用如下: 一是判断两个变量是否具有线性相关关系,如果样本点呈条状分布,则可以断定两个变量有较好的线性相关关系; 二是判断样本中是否存在异常. (2)残差图: 残差图可以用来判断模型的拟合效果,其作用如下: 一是判断模型的精度,残差点所分布的带状区域越窄,说明模型的拟合精度越高,回归方程的预报精度越高. 二是确认样本点在采集中是否有人为的错误. [典例] (全国卷Ⅲ)如图是我国2008年到2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量. 附注: 参考数据:∑i =1 7 y i =9.32,∑i =1 7 t i y i =40.17, ∑i =1 7 y i -y 2 =0.55,7≈2.646. 参考公式:相关系数r = ∑i =1 n t i -t y i -y ∑i =1 n t i -t 2 ∑i =1 n y i -y 2 , 回归方程y ^=a ^+b ^t 中斜率和截距的最小二乘估计公式分别为:b ^ = ∑i =1 n t i -t y i -y ∑i =1 n t i -t 2 ,a ^=y -b ^ t . [解] (1)由折线图中数据和附注中参考数据得 t =4,∑i =1 7 (t i -t )2 =28, ∑i =1 7 y i -y 2 =0.55, ∑i =1 7 (t i -t )(y i -y )=∑i =1 7 t i y i -t ∑i =1 7 y i =40.17-4×9.32=2.89, r ≈ 2.89 2×2.646×0.55 ≈0.99. 因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系. (2)由y =9.32 7 ≈1.331及(1)得

第一章 统计案例 复习题

第一章 统计案例 复习题 一、选择题 1.下列属于相关现象的是( ) A.利息与利率 B.居民收入与储蓄存款 C.电视机产量与苹果产量 D.某种商品的销售额与销售价格 2.如果有95%的把握说事件A 和B 有关,那么具体算出的数据满足( ) A.2 3.841K > B.2 3.841K < C.2 6.635K > D.2 6.635K < 3.下列变量之间:①人的身高与年龄、产品的成本与生产数量;②商品的销售额与广告费; ③家庭的支出与收入.其中不是函数关系的有( ) A.0个 B.1个 C.2个 D.3个 4.当2 3.841K >时,认为事件A 与事件B ( ) A.有95%的把握有关 B.有99%的把握有关 C.没有理由说它们有关 D.不确定 5.已知回归直线方程 y bx a =+,其中3a =且样本点中心为(1 2),,则回归直线方程为( ) A.3y x =+ B.23y x =-+ C.3y x =-+ D.3y x =- 6.为了考察中学生的性别与是否喜欢数学课程之间的关系,在某校中学生中随机抽取了300名学生,得到如下列联表: 你认为性别与是否喜欢数学课程之间有关系的把握有( ) A.0 B.95% C.99% D.100% 7.在回归直线方程 y a bx =+中,回归系数b 表示( ) A.当0x =时,y 的平均值 B.x 变动一个单位时,y 的实际变动量 C.y 变动一个单位时,x 的平均变动量 D.x 变动一个单位时,y 的平均变动量 8.对于回归分析,下列说法错误的是( ) A.在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定 B.线性相关系数可以是正的,也可以是负的 C.回归分析中,如果21r =,说明x 与y 之间完全相关 D.样本相关系数(11) r ∈-, 9. 在画两个变量的散点图时,下面哪个叙述是正确的( ) (A)预报变量在x 轴上,解释变量在y 轴上 (B)解释变量在x 轴上,预报变量在y 轴上 (C)可以选择两个变量中任意一个变量在x 轴上(D)选择两个变量中任意一个变量在y 轴上 10、一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93用这个模型预测这个孩子10岁时的身高,则正确的叙述是( ) A.身高一定是145.83cm; B.身高在145.83cm 以上; C.身高在145.83cm 以下; D.身高在145.83cm 左右. 11、两个变量y 与x 的回归模型中,分别选择了4个不同模型,它们的相关指数2R 如下 ,其中拟合效果最好的模型是( ) A.模型1的相关指数2R 为0.98 B.模型2的相关指数2R 为0.80 C.模型3的相关指数2R 为0.50 D.模型4的相关指数2R 为0.25 12、在回归分析中,代表了数据点和它在回归直线上相应位置的差异的是( ) A.总偏差平方和 B.残差平方和 C.回归平方和 D.相关指数R 2 13、工人月工资y (元)依劳动生产率x (千元)变化的回归直线方程为?6090y x =+,下列判断正确的是( ) A.劳动生产率为1000元时,工资为50元 B.劳动生产率提高1000元时,工资提高150元 C.劳动生产率提高1000元时,工资提高90元 D.劳动生产率为1000元时,工资d 的90元 14、对分类变量X 与Y 的随机变量2K 的观测值K ,说法正确的是( ) A . k 越大," X 与Y 有关系”可信程度越小; B . k 越小," X 与Y 有关系”可信程度 越小; C . k 越接近于0," X 与Y 无关”程度越小 D . k 越大," X 与Y 无关”程度越大 15、在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )

变量间的相关关系优秀教案

变量间的相关关系 一、教材分析 学生情况分析:学生已经具备了对样本数据进行初步分析的能力,且掌握了一定的计算基础。 教材地位和作用:变量间的相关关系是高中新教材人教A版必修3第二章2.3节的内容, 本节课主要探讨如何利用线性回归思想对实际问题进行分析与预测。为以后更好地研究选修2-3第三章 3.2节回归分析思想的应用奠定基础。 二、教学目标 1、知识与技能:利用散点图判断线性相关关系,了解最小二乘法的思想及线性回归方程系数公式的推导过程,求出回归直线的方程并对实际问题进行分析和预测,通过实例加强对回归直线方程含义的理解。 2 、过程与方法: ①通过自主探究体会数形结合、类比、及最小二乘法的数学思想方法。②通过动手操作培养学生观察、分析、比较和归纳能力。 3、情感、态度与价值观:类比函数的表示方法,使学生理解变量间的相关关系,增强应用回归直线方程对实际问题进行分析和预测的意识。 三、教学重点、难点 重点:利用散点图直观认识两个变量之间的线性相关关系,了解最小二乘法的思想并利用此思想求出回归方程。 难点:对最小二乘法的数学思想和回归方程的理解,教学实施过程中的难点是根据给出的线性回归方程的系数公式建立线性回归方程。 四、教学设计) (一)、创设情境导入新课 1、相关关系的理解 我们曾经研究过两个变量之间的函数关系:一个自变量对应着唯一的一个函数值,这两者之间是一种确定关系。生活中的任何两个变量之间是不是只有确定关系呢?如:学生成绩与教师水平之间存在着某种联系,但又不是必然联系,对于学生成绩与教师水平之间的这种不确定关系,我们称之为相关关系。这就是我们这节课要共同探讨的内容————变量间的相关关系。生活中还有很多描述相关关系的成语,如:“虎父无犬子”,“瑞雪兆丰年”。通过学生熟悉的函数关系,引导学生关注生活中两个变量之间还存在的相关关系。让学生体会研究变量之间相关关系的重要性。感受数学来源于生活。 (二)、初步探索,直观感知 1、根据样本数据作出散点图,直观感知变量之间的相关关系。在研究相关关系前,先回忆一下函数的表示方法有哪些——列表,画图象,求解析式。下面我们就用这些方法来研究相关关系。看这样一组数据:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,根据样本数据,人体的脂肪含量与年龄之间有怎样的关系? 一个点。

高二数学《统计案例》教案

选修1-2第一章、统计案例 1、1回归分析的基本思想及其初步应用。(第1课时) 教学目标:通过典型案例,掌握回归分析的基本步骤。 教学重点:熟练掌握回归分析的步骤。 教学难点:求回归系数 a , b 教学方法:讲练。 教学过程: 一、复习引入:回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。 二、新课: 1、回归分析的基本步骤:(1) 画出两个变量的散点图。(2) 求回归直线方程。 (3) 用回归直线方程进行预报。 2、举例:例1、题(略) 用小黑板给出。 解:(1) 作散点图,由于问题是根据身高预报体重,因此要求身高与体重的回归直线方程,取身高为自变量x 。体重为因变量 y ,作散点图(如图) (2)列表求 ,?0.849?85.712x y b a ≈≈- 回归直线方程 y=0.849x-85.712 对于身高172cm 女大学生,由回归方程可以预报体重为y=0.849*172-85.712=60.316(kg) 预测身高为172cm 的女大学生的体重为约60。316kg 问题:身高为172cm 的女大学生的体重一定是60。316kg 吗?(留下一节课学习) 例2:(提示后做练习、作业) 研究某灌溉渠道水的流速y 与水深x 之间的关系,测得一组数据如下: 水深xm 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 流速ym/s 1.70 1.79 1.88 1.95 2.03 2.10 2.16 2.21 (1)求y 对x 的回归直线方程; (2)预测水深为1。95m 时水的流速是多少? 解:(略) 三、小结 四、作业: 例2、 预习。

变量间的相关关系同步练习题

变量间的相关关系同步练习题 1. 下列两个变量具有相关关系的是( ) A. 正方体的体积与边长 B. 人的身高与体重 C. 匀速行驶车辆的行驶距离与时间 D. 球的半径与体积 2. 两个变量成负相关关系时,散点图的特征是( ) A. 点散布在从左下角到右上角的区域内 B. 点散布在某带形区域内 C. 点散布在某圆形区域内 D. 点散布在从左上角到右下角的区域内 3. 由一组样本数据(1x ,1y ),(2x ,2y ),…,(n x ,n y ),得到回归方程a bx y +=∧ ,那么下面说法不正确的是( ) A. 直线a bx y +=∧ 必经过点(x ,y ) B. 直线a bx y +=∧至少经过点(1x ,1y ),(2x ,2y ),…,(n x ,n y )中的一个点 C. 直线a bx y +=∧的斜率为 ∑∑==--n 1 i 2 2i n 1 i i i x n x y x n y x D. 直线a bx y +=∧ 和各点(1x ,1y ),(2x ,2y ),…,(n x ,n y )的偏差 ()[]∑=+-n 1 i 2 i i a bx y 是该坐标平面上所有直线与这些点的偏差中最小的直线 4. 若施化肥量x (单位:kg )与水稻产量y (单位:kg )的回归方程为250x 5y +=∧ ,则当施化肥量为80kg 时,预计水稻产量为___________。 5. 相关关系与函数关系的区别是___________。 (1)作出这些数据的散点图; (2)通过观察这两个变量的散点图,你能得出什么结论? 7. 某化工厂为预测某产品的回收率y ,需要研究回收率y 和原料有效成分含量x 之间的相关关系,现取了8对观察值,计算得: ∑==8 1 i i 52x , ∑==8 1 i i 228y , ∑=8 1 i 2 i x 478=, ∑==8 1 i i i 1849y x ,则y 与x 的回归方程是( ) A. x 62.247.11y +=∧ B. x 62.247.11y +-=∧ C. x 47.2262.2y +=∧ D. x 62.247.11y -=∧

第一章统计案例单元检测题及答案

第一章统计案例 命题人:卧龙寺中学鲁向阳审题人:唐军宁 第I卷 说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分,时间90分钟 一、选择题:(每小题5分,共计60分) 1.下列结论正确的是() ①函数关系是一种确定性关系;②相关关系是一种非确定性关系; ③回归分析是对具有函数关系的两个变量进行统计分析的一种方法; ④回归分析是对具有相关关系两个变量进行统计分析的一种常用方法.A.①②B.①②③C.①②④D.①②③④ 2.年劳动生产率x(千元)和工人工资y(元)之间回归方程为y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均() A.增加70元B.减少70元C.增加80元D.减少80元 3.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则 回归直线方程为() A.y=1.23x+4 B.y=1.23x+5 C.y=1.23x+0.08 D.y=0.08x+1.23 4.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到班级与成绩列联表如下: 则随机变量2K的观测值约为() A.0.60 B.0.828 C.2.712 D.6.004 5.下列属于相关现象的是() A.利息与利率C.电视机产量与苹果产量 B.居民收入与储蓄存款D.某种商品的销售额与销售价格 6.下列关系中是函数关系的是() A.等边三角形的边长和周长关系C.电脑的销售额和利润的关系B.玉米的产量和施肥量的关系 D.日光灯的产量和单位生产成本关系7. 一位母亲记录了儿子3~9岁的身高,由此建立的身高与年龄的回归模型为y=7.19x+73.93。用这个模型预测这个孩子10岁时的身高,则正确的叙述是() A.身高一定是145.83cm C.身高在145.83cm以下 B.身高在145.83cm以上D.身高在145.83cm左右 8. 变量y与x之间的回归方程表示() A. y与x之间的函数关系 B. y与x之间的不确定性关系 C. y与x之间的真实关系 D. y与x之间的真实关系达到最大限度的吻合

统计案例教案

1.1回归分析的基本思想及其初步应用(一) 教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用. 教学重点:了解线性回归模型与函数模型的差异,了解判断刻画模型拟合效果的方法-相关指数和残差分析. 教学难点:解释残差变量的含义,了解偏差平方和分解的思想. 教学过程: 一、复习准备: 1. 提问:“名师出高徒”这句彦语的意思是什么?有名气的老师就一定能教出厉害的学生吗?这两者之间是否有关? 2. 复习:函数关系是一种确定性关系,而相关关系是一种非确定性关系. 回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,其步骤:收集数据→作散点图→求回归直线方程→利用方程进行预报. 二、讲授新课: 1. 教学例题: ① 例1 从某大学中随机选取8名女大学生,其身高和体重数据如下表所示: 编 号 1 2 3 4 5 6 7 8 身高/cm 165 165 157 170 175 165 155 170 体重/kg 48 57 50 54 64 61 43 59 求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm 的女大学生的体重. (分析思路→教师演示→学生整理) 第一步:作散点图 第二步:求回归方程 第三步:代值计算 ② 提问:身高为172cm 的女大学生的体重一定是60.316kg 吗? 不一定,但一般可以认为她的体重在60.316kg 左右. ③ 解释线性回归模型与一次函数的不同 事实上,观察上述散点图,我们可以发现女大学生的体重y 和身高x 之间的关系并不能用一次函数y bx a =+来严格刻画(因为所有的样本点不共线,所以线性模型只能近似地刻画身高和体重的关系). 在数据表中身高为165cm 的3名女大学生的体重分别为48kg 、57kg 和61kg ,如果能用一次函数来描述体重与身高的关系,那么身高为165cm 的3名女在学生的体重应相同. 这就说明体重不仅受身高的影响还受其他因素的影响,把这种影响的结果e (即残差变量或随机变量)引入到线性函数模型中,得到线性回归模型y bx a e =++,其中残差变量e 中包含体重不能由身高的线性函数解释的所有部分. 当残差变量恒等于0时,线性回归模型就 10203040506070150 155 160 165170 175 180 身高/cm 体重/k g

高中数学选修1-2第一章统计案例测试题带详细解答

选修1-2第一章、统计案例测试 一、选择题 1.已知x与y之间的一组数据: x0123 y1357 则y与x的线性回归方程为必过点( ) A.(2,2) B. (1.5 ,4) C.(1.5 ,0) D.(1,2) 【答案】B 【解析】 试题分析:由数据可知,,∴线性回归方程为必过点(1.5,4) 考点:本题考查了线性回归直线方程的性质 点评:解决此类问题常常用到线性回归直线方程恒过定点这一结论,属基础题 2.年劳动生产率(千元)和工人工资(元)之间回归方程为,这意味着年劳动生产率每提高1千元时,工人工资平均 A.增加70元B.减少70元C.增加80元D.减少80元 【答案】A 【解析】 试题分析:由题意,年劳动生产率(千元)和工人工资(元)之间回归方程为, 故当增加1时,要增加70元, ∴劳动生产率每提高1千元时,工资平均提高70元, 故A正确. 考点:线性回归方程. 点评: 本题考查线性回归方程的运用,正确理解线性回归方程是关键.3.已知某回归方程为:,则当解释变量增加1个单位时,预报变量平均:()

A、增加3个单位 B、增加个单位 C、减少3个单位 D、减少个单位 【答案】C 【解析】 解释变量即回归方程里的自变量,由回归方程知预报变量减少3个单位4.变量与相对应的一组数据为(10, 1), (11.3, 2), (11.8, 3), (12.5, 4), (13, 5);变量与相对应的一组数据为(10,5), (11.3, 4), (11.8, 3), (12.5, 2), (13, 1),表示变量与之间的线性相关系数,表示变量与之间的线性相关系数,则 A. B. C. D. 【答案】C 【解析】解:∵变量X与Y相对应的一组数据为(10,1),(11.3,2), (11.8,3),(12.5,4),(13,5), . X =(10+11.3+11.8+12.5+13) 5 =11.72 . Y =(1+2+3+4+5) 5 =3 ∴这组数据的相关系数是r=7.2 19.172 =0.3755, 变量U与V相对应的一组数据为(10,5),(11.3,4), (11.8,3),(12.5,2),(13,1) . U =(5+4+3+2+1) 5 =3, ∴这组数据的相关系数是-0.3755, ∴第一组数据的相关系数大于零,第二组数据的相关系数小于零, 故选C. 5.统计中有一个非常有用的统计量 ,用它的大小可以确定在多大程度上可以认为“两个分类变量有关系”,下表是反映甲、乙两个平行班(甲班A老师教, 乙班B老师教)进行某次数学考试,按学生考试及格与不及格统计成绩后的2×2列联表.

变量之间的相关关系

课题:§2.3.1变量之间的相关关系 一.教学任务分析: (1)通过具体示例引导学生考察变量之间的关系,在讨论的过程中认识现实世界中存在着不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性. (2) 通过收集现实问题中两个有关联变量的数据作出散点图,并利用散点图直观认识变量间的相关关系.会作散点图,并对变量间的正相关或负相关关系作出直观判断. (3) 在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解统计的作用. 二.教学重点与难点: 教学重点:利用散点图直观认识变量间的相关关系. 教学难点:理解变量间的相关关系. ↓ ↓ ↓ 1.创设情景,揭示课题 客观事物是相互联系的,过去研究的大多数是因果关系,但实际上更多存在的是一种非因果关系.比如说:某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说,事实上数学和物理成绩都是“果”,而真正的“因”是学生的理科学习能力和努力程度,所以说,函数关系存在着一种确定性关系,但还存在着另一种非确定性关系——相关关系. 生活中存在着许多相关关系的问题: 问题1:商品销售收入与广告支出之间的关系. 问题2:粮食产量和施肥量之间的关系. 问题3:人体内的脂肪含量与年龄之间的关系. 由上述问题我们知道,两个变量之间的关系,可能是确定关系或非确定关系.当自变量取

值一定时,因变量的取值带有一定的随机性时,两个变量之间的关系称为相关关系.相关关系是一种非确定性关系,函数关系是一种确定性的关系. 2.两个变量的线性相关 问题4: 在一次对人体的脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据: 问题5:某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表: 根据上述数据,气温与热茶销售量之间的有怎样的关系? 学生活动:为了了解热茶销量与气温的大致关系,我们以横坐标x表示气温,纵坐标y表示热茶销量,建立直角坐标系,将表中数据构成的6个数对所表示的点在坐标系内标出,得到下

统计案例分析

统计案例分析 毛石小学:彭向慈 1、学生在一年级上学期已初步学习统计的方法,会认识象形统计图和统计表,并善于提出不同的数学问题。但是,因而要在学习中,进一步引导学生深层次地分析问题,促进学生比较合理地解决问题。 2.学生已有生活经验和学习该内容的经验 学生绝大多数来源于城市,学生思维活跃,表达能力较强,善于动手操作,有初步的合作交流能力,能够积极探究新知识。 3.学生学习该内容可能的困难 学生在统计的过程中,还存在收集数据不仔细、数据不准确的情况,同时对统计中的数学问题的分析还比较肤浅。 4.学生学习的兴趣、学习方式和学法分析 一年级的学生年龄小,好奇心强,喜欢动手操作、直观感悟强, 5.我的思考: 通过对教材和学生的分析,我清醒地认识到,对一个一年级的学生来说,如何让学生经历“简单的条形统计”的整个过程,创设什么样的问题情境,运用什么样的教学方法,是我这节课应该关注的焦点。为此,在教学设计中要突出以下两个方面: ①预设矛盾,感受统计的必要——“生活中需要统计”。 设计一个有价值的矛盾生成点,往往会对一节课取到事半功倍的效果。统计教学对于小学生来说比较枯燥,尤其是低年级的学生,注意力容易转移,激发他们的学习兴趣显得更为重要。本课教学中,我注重在每一环节中设计有价值的问题情境,以激活学生的思维。上课伊始,我可以采取谈话法与学生交流:你们喜欢看动画片吗?焦老师也给大家带来了几部动画片,想看吗?用学生喜闻乐见的动画片调动学生的积极性。然后趁热打铁地提出问题:我们时间有限,只能放一部动画片,你最希望放哪一部?大家的意见不统一,老师应该听谁的呢?矛盾产生后,学生积极主动地探索解决的办法。这样借助学生现实生活中的喜欢看的动画片进行教学,根据学生实际喜欢的项目提出问题,让他们觉得确实需要统计。 ②开放活动的探索空间,让学生亲历统计过程——“培养统计意识”。

高中数学选修1-2第一章统计案例测试题带详细解答

选修1-2第一章、统计案例测试 一、选择题 1.已知x 与y 之间的一组数据: 则y 与x 的线性回归方程为∧ ∧ ∧ +=a x b y 必过点( ) A.(2,2) B. (1.5 ,4) C.(1.5 ,0) D.(1,2) 【答案】B 【解析】 为∧ ∧ ∧ +=a x b y 必过点(1.5,4) 考点:本题考查了线性回归直线方程的性质 2.年劳动生产率x (千元)和工人工资y (元)之间回归方程为1070y x =+,这意味着年劳动生产率每提高1千元时,工人工资平均 A.增加70元 B.减少70元 C.增加80元 D.减少80元 【答案】A 【解析】 试题分析:由题意,年劳动生产率x (千元)和工人工资y (元)之间回归方程为 1070y x =+, 故当x 增加1时,y 要增加70元, ∴劳动生产率每提高1千元时,工资平均提高70元, 故A正确. 考点:线性回归方程. 点评: 本题考查线性回归方程的运用,正确理解线性回归方程是关键. 3.已知某回归方程为:??23y x =-,则当解释变量增加1个单位时,预报变量平均:( ) A 、增加3个单位 B C 、减少3个单位 D 、 【答案】C 【解析】 解释变量即回归方程里的自变量x ?,由回归方程知预报变量y ?减少3个单位 4.变量X 与Y 相对应的一组数据为(10, 1), (11.3, 2), (11.8, 3), (12.5, 4), (13, 5);变量U 与 V 相对应的一组数据为(10,5), (11.3, 4), (11.8, 3), (12.5, 2), (13, 1),1r 表示变量Y 与X 之 间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 A .012<

相关文档
相关文档 最新文档