文档视界 最新最全的文档下载
当前位置:文档视界 › 高效小型化开关电源设计方案

高效小型化开关电源设计方案

高效小型化开关电源设计方案
高效小型化开关电源设计方案

高效小型化开关电源设计方案

时间:2009-08-19 2668次阅读【网友评论0条我要评论】收藏

1 引言

开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源。从上世纪90年代以来开关电源相继进入各种电子、电器设备领域,计算机、程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源。随着电源技术的发展,低电压,大电流的开关电源因其技术含量高,应用广,越来越受到人们重视。在开关电源中,正激和反激式有着电路拓扑简单,输入输出电气隔离等优点,广泛应用于中小功率电源变换场合。跟反激式相比,正激式变换器变压器铜损较低,同时,正激式电路副边纹波电压电流衰减比反激式明显,因此,一般认为正激式变换器适用在低压,大电流,功率较大的场合。

2 基本技术

2.1 有源钳位技术

正激DC/DC变换器其固有缺点是功率晶体管截止期间高频变压器必须磁复位。以防变压器铁心饱和,因此必须采用专门的磁复位电路。通常采用的复位方式有三种,即传统的附加绕组法、RCD钳位法、有源钳位法。三种方法各有优缺点:磁复位绕组法正激变换器的优点是技术成熟可靠,磁化能量可无损地回馈到直流电路中去,可是附加的磁复位绕组使变压器结构复杂化,变压器漏感引起的关断电压尖峰需要RC缓冲电路来抑制,占空比D<0.5,功率开关管承受的电压应力与输入电源电压成正比。RCD钳位正激变换器的优点是磁复位电路简单,占空比D可以大于0.5,功率开关管承受电压应力较低,但大部分磁化能量消耗在钳位电阻中,因此它一般适用于变换效率不高且价廉的电源变换场合。有源钳位技术是三种技术中效率最高的技术,它的电路图如图1所示,工作原理如图2所示。在DT时段之前,开关管S1导通,激磁电流iM为负,即从Cr通过S1流向Tr,在DT阶段,开关管S的驱动脉冲ugs使其导通,同时ugs1=0,使S1 关断,在Vin 的作用下,激磁电流由负变正,原边功率通过变压器传到副边,给输出端电感L 充电;在(1-D)T时段,ugs=0,S关断,ugs1到来使 S1导通,iM通过S1的反并二极管向Cr充电,在Cr和Tr漏感构成的谐振电路的作用下,iM由正变负,变压器反向激磁。从以上分析中可以看出:有源钳位正激变换器变压器铁心工作在双向对称磁化状态,提高了铁心利用率,钳位电容的稳态电压随开关占空比而自动调节,因而占空比可大于50%;Vo一定时,主开关、辅助开关应力随Vin 的变化不大;所以,在占空比和开关应力允许的范围内,能够适应较大输入电压变化范围的情况。不足之处是增加了一个管子,使得电路变得复杂。

图1 有源钳位同步整流正激式电路图

图2 有源钳位电路工作原理图

2.2 同步整流技术

在低电压大电流功率变换器中,若采用传统的普通二极管或肖特基二极管整流由于其正向导通压降大(低压硅二极管正向压降约0.7V,肖持基二极管正向压降约 0.45V,新型低电压肖特基二极管可达0.32V),整流损耗成为变换器的主要损耗,无法满足低电压大电流开关电源高效率,小体积的需要。

MOSFET导通时的伏安特性为一线性电阻,称为通态电阻RDS,低压MOSFET新器件的通态电阻很小,如:IRL3102(20V,61A)、 IRL2203S(30V,116A)、

IRL3803S(30V,100A)通态电阻分别为0.013Ω、0.007Ω和0.006Ω,它们在通过 20A电流时,通态压降不到0.3V。另外,功率MOSFET开关时间短,输入阻抗高,这些特点使得MOSFET成为低电压大电流功率变换器首选的整流器件。功率MOSFET是一种电压型控制器件,它作为整流元件时,要求控制电压与待整流电压的相位保持同步才能完成整流功能,故称为同步整流电路。图1为典型的降压型“同步”开关变换器电路(当电路中无SR时,为“普通”的降压型开关变换器电路)。

3 电路的设计

所设计的电源参数如下:输入电压为50(1±10%)V,输出电压为3.3V,电流为20A,工作频率为100kHz。

采用的主电路拓扑如图1所示。由于有源钳位采用的是FLYBACK型钳位电路,它的钳位电容电压为:

Vc=Vin

所选用的控制IC芯片为UC3844,它的最大占空比为50%,所以电容上的电压最大为Vin,电容耐压为60V以上,只要选取足够大即可保证电路能正常工作,本电路所选取的钳位电容为47μF/100V。

有源钳位管S1的驱动必须跟变压器原边的地隔离开,而且S1的驱动信号必须跟开关管S驱动信号反相,使用UCC3580可以实现两个管子的驱动,可是这个芯片并不常见,因而这里选用UC3844跟IR2110组合。UC3844出来的控制信号用来作为IR2110的低端输入,其反相信号作为IR2110的高端输入,IR2110的高端驱动通过内部自举电路来实现隔离。这样,我们就达到了驱动两个开关管的目的。

在输出整流电路中,当续流二极管(即SR的反并二极管)受正向电压导通时,应及时驱动SR导通,以减小压降和损耗。但为了避免SR与SR1同时导通,造成短路事故,必须有“死区”时间,这时仍靠二极管D导通。SR的开关瞬时要与续流二极管的通断瞬时密切配合,因此对开关速度要求很高。另外,从成本综合考虑,选用IRL3102。

变压器的设计跟一般正激式变换器变压器设计差不多,只是要考虑同步整流管的驱动。所选用的同步整流管的驱动开通电压为4V左右,电路输出电压为3.3V,输出端相当于一个降压型电路,占空比最大为0.5,所以变压器副边电压至少为6.6V。因为MOSFET的栅-源间的硅氧化层耐压有限,一旦被击穿则永久损坏,所以实际上栅-源电压最大值在20~30V之间,如电压超过20V,应该在栅极上接稳压管。

4 实验结果和波形分析

开关管S1和S的Uds波形如图3所示,RefA为S管压降波形,50V/div,RefB 为S1管压降波形,50V/div。电路此时工作在Vin= 60V左右,S1和S的开关应力大概为120V,D=0.5左右。图4为变压器输出电压,也就是同步整流管SR1

和SR的驱动信号,正的部分为SR的驱动信号,负的部分为SR1的驱动信号。实验所得波形和分析的波形基本吻合,只是在开关转换瞬间,电压有小尖峰,这是由电路的杂散参数引起的。该电路的工作效率经过测量大约在90%左右,基本达到设计的要求。

图3 开关管S和S1的uds波形

图4 同步整流管的驱动波形

5 结语

3.3V/20A的开关电源的设计表明,有源逆变加同步整流电路用在低压大电流的正激式电路设计中,不加PFC电路时,能够取得很高的效率。

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

基于PWM芯片UC3842的医疗开关电源设计方案

基于PWM芯片UC3842的医疗开关电源设计方案 基于UC3842 高性能电流模式PWM 芯片,提出一种医疗开关电源设计方案。该设计AC-DC 给医疗设备供电,采用单端反激式结构,实现90-264Vac 供电,12V 的直流输出,具有瞬态响应快、电磁兼容好、输出电压精度高等优点,能 够很好地满足医疗设备供电需求。引言医疗电源是对安规及EMI、EMC 比较 高的设备,作为绿色开关电源,将在21 世纪给人类社会带来巨大的变化。性 能优良的医疗设备系统离不开性能优良的控制模块,而控制模块的性能在很大 程度上取决于供电电源的性能,所以高质量的供电电源系统在整个医疗系统中 占有相当重要的位置。本文基于UC3842 高性能电流模式PWM 发生器控制的 开关电源适合应用于此类系统。本设计通过小型高频变压器实现输出和输入的 完全隔离,不仅提高了电源的效率,简化了外围电路,也降低了电源的成本和 体积。电源输出电压稳定,波纹小,不间断性能可靠同时又不会对其他设备产 生辐射和传导干扰。单端反激式变换电路的基本结构单端反激式变换的典型结 构如图一所示。单端是指变压器的磁心仅工作在磁滞回线的一侧;反激是指当 开关管导通时,在初级线圈中储存能量,而次级线圈不通,当开关管关闭的时候,初级线圈中的能量通过次级线圈释放给负载。这是一种成本低的调整器, 可以做到输入输出部分的完全隔离,有较好的电压调整率。 图一单端反激式变换器UC3842 芯片的性能特点UC3842 芯片是Unit rode 公司的产品,是一种高性能的单端输出式电流控制型脉宽调制器芯片,其原理框 图如图二所示。由5V 基准电压源、控制占空比调定的振荡器、电流测定比较器、PWM 锁存器、高增益E/A 误差放大器和适用于驱动功率MOSFET 的大电流推挽输出电路等组成。其主要特点是:①外接元件少,外围电路简单,价格

开关电源变压器共模电感设计方案注意事项

开关电源变压器共模电感设计注意事项 在电源变压器的设计过程中,工程师们需要严格的计算并完成共模电感设计和数值选取,这直接关系到开关电源变压器的运行精度。在今天的文章中,我们将会就开关电源变压器的共模电感设计展开简要分析,看在电源变压器共模电感设计和计算过程中,都应该注意哪些问题。 在电源变压器的设计和制作过程中,工程师所要进行的共模电感设计,其所需要的基本参数主要有三个,分别是输入电流,阻抗及频率,磁芯选取。先来看输入电流。这一参数值直接决定了绕组所需的线径。在线径的计算和选取时,电流密度通常取值为400A/cm³, 但此取值须随电感温升的变化。通常情况下,绕组使用单根导线作业,这样可削减高频噪声及趋肤效应损失。 在计算过程中,开关电源变压器共模电感的阻抗在所给的频率条件下,一般规定为最小值。串联的线性阻抗可提供一般要求的噪声衰减。但实际上,线性阻抗问题往往是最容易被人忽视的,因此设计人员经常以50W线性阻抗稳定网络仪来测试共模电感,并渐渐成为一种标准测试共模电感性能的方法。但所得的结果与实际通常有相当大的差别。实际上,共模电感在正常时角频首先会产生每八音度增加-6dB 衰减(角频是共模电感产生-3dB)的频率此角频通常很低,以便感抗能 够提供阻抗。因此,电感可以用这一公式来表达,即:Ls=Xx/2 n f

这里还有一个问题需要工程师需要注意,那就是在进行共模电感设计时须注意磁芯材料和所需的圈数问题。首先来看磁芯型号的选取问题,此时如果有规定电感空间,我们就按此空间来选取合适的磁芯型号,如没有规定,通常磁芯型号的随意选取。 在确定了电源变压器的磁芯型号之后,接下来的工作就是计算磁芯所能绕最大圈数。通常来说,共模电感有两绕组,一般为单层,且每绕组分布在磁芯的每一边,两绕组中间须隔开一定的距离。双层及堆积绕组亦有偶尔使用,但此种作法会提高绕组的分布电容及降低电感的高频性能。由于铜线的线径已由线性电流的大小所决定,内圆周长可以由磁芯的内圆半径减去铜线半径计算得来。故最大圈数的就可以铜线加绝缘的线径及每个绕组所占据的圆周来计算。

精通开关电源设计

《精通开关电源设计》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电又如何使直流电压(电流)稳定这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A;

③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=±; 发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

最新开关电源学习笔记

开关电源学习笔记

开关电源学习笔记 阅读书记名称《集成开关电源的设计调试与维修》 开关电源术语: 效率:电源的输出功率与输入功率的百分比。其测量条件是满负载,输入交流电压标准值。 ESR:等效串联电阻。它表示电解电容呈现的电阻值的总和。一般情况下,ESR值越低的电容,性能越好 输出电压保持时间:在开关电源输出电压撤消后,依然保持其额定输出电压的时间。 启动浪涌保护:它属于保护电路。它对电源启动时产生的尖蜂电流起限制作作用。为了防止不必要的功率损耗,在设计这一电路时候,一定要保证滤波电容充满电之前,就起到限流的作用。 隔离电压:电源电路中的任何一部分与电源基板之间的最大电压。或者能够加在开关电源的输入与输出端之间的最大直流电压。 线性调整率:输出电压随负载在指定范围内的变化百分率。条件是线电压和环境温度不变。 噪音和波纹:附加在直流信号上的交流电压的高频尖锋信号的峰值。通常是mV度量。 隔离式开关电源:一般指开关电源。它从输入的交流电源直接进行整流滤波,不使用低频隔离变压器。 输出瞬态响应时间:从输出负载电路产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间。

过载过流保护:防止因负载过重,是电流超过原设计的额定值而造成电源的损坏的电。远程检测:电压检测的一种方法。为了补偿电源输出的电压降,直接从负载上检测输出电压的方法。 软启动:在系统启动时,一种延长开关波形的工作周期的方法。工作周期是从零到它的正常工作点所用的时间。 快速短路保护电路:一种用于电源输出端的保护电路。当出现过压现象时,保护电路启动,将电源输出端电压快速短路。 占空比:开关电源中,开关元件导通的时间和变换工作周期之比。 元件选择和电路设计: 一:输入整流器的一些参数 最大正向整流电流:这个参数主要根据开关电源输出功率决定,所选择的整流二极管的稳态电流容量至少应是计算值的2倍。 峰值反向截止电压(PIV):由于整流器工作在高压的环境,所以它们必须有较高的PIV值。一般600V以上。 要有能承受高的浪涌电流的能力:浪涌电源是用开关管导通时的峰值电流产生。 二:输入滤波电容 输入滤波电容对开关电源的影响 电源输出端的低频交流纹波电压 输出电压的保持时间 滤波电容的计算公式: C=(I*t)/ΔV

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

开关电源变压器参数设计步骤详解

开关电源高频变压器设计步骤 步骤1确定开关电源的基本参数 1交流输入电压最小值u min 2交流输入电压最大值u max 3电网频率F l开关频率f 4输出电压V O(V):已知 5输出功率P O(W):已知 6电源效率η:一般取80% 7损耗分配系数Z:Z表示次级损耗与总损耗的比值,Z=0表示全部损耗发生在初级,Z=1表示发生在次级。一般取Z=0.5 步骤2根据输出要求,选择反馈电路的类型以及反馈电压V FB 步骤3根据u,P O值确定输入滤波电容C IN、直流输入电压最小值V Imin 1令整流桥的响应时间tc=3ms 2根据u,查处C IN值 3得到V imin 确定C IN,V Imin值 u(V)P O(W)比例系数(μF/W)C IN(μF)V Imin(V) 固定输 已知2~3(2~3)×P O≥90 入:100/115 步骤4根据u,确通用输入:85~265已知2~3(2~3)×P O≥90 定V OR、V B 固定输入:230±35已知1P O≥240 1根据u由表查出V OR、V B值

2 由V B 值来选择TVS 步骤5根据Vimin 和V OR 来确定最大占空比 Dmax V OR Dmax= ×100% V OR +V Imin -V DS(ON) 1设定MOSFET 的导通电压V DS(ON) 2 应在u=umin 时确定Dmax 值,Dmax 随u 升高而减小 步骤6确定初级纹波电流I R 与初级峰值电流I P 的比值K RP ,K RP =I R /I P u(V) K RP 最小值(连续模式)最大值(不连续模式) 固定输入:100/1150.41通用输入:85~2650.441固定输入:230±35 0.6 1 步骤7确定初级波形的参数 ①输入电流的平均值I AVG P O I A VG= ηV Imin ②初级峰值电流I P I A VG I P = (1-0.5K RP )×Dmax ③初级脉动电流I R u(V) 初级感应电压V OR (V)钳位二极管反向击穿电压V B (V) 固定输入:100/115 6090通用输入:85~265135200固定输入:230±35 135 200

开关电源学习笔记(含推导公式)

《开关电源》笔记 三种基础拓扑(buck boostbuck-boost )的电路基础: 1,电感的电压公式V L dI =L I ,推出 I =V × T/L dt T 2,sw 闭合时,电感通电电压 VON ,闭合时间tONsw 关断时,电感电压 VOFF ,关断时间 tOFF 3,功率变换器稳定工作的条件: ION = I OFF 即,电感在导通和关断时, 其电流变化相等。 那么由 1,2的公式可知,V ON =L × ION/ tON ,VOFF =L ×ΔIOFF/ tOFF ,则稳定 条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4,周期T ,频率f ,T =1/f ,占空比D =tON/T =tON/(tON +tOFF )→tON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P5152 r =I/IL =2IAC/IDC 对应最大负载电流值和最恶劣输入电压 值 I =Et/L μH Et =V × T (时间为微秒)为伏微秒数, L μH 为微亨电感,单位便于计算 r =Et/(IL ×L μH )→IL ×L μH =Et/r →L μH =Et/(r*IL )都是由电感的电压公式推导出来 r 选值一般 0.4比较合适,具体 见 P53 电流纹波率r = I/IL = 2IAC/IDC 在临界导通模式下,IAC =IDC ,此时r =2 见P51 r =I/IL =VON ×D/LfI L =V O FF×(1-D )/LfI L →L =V ON ×D/rfI L 电感量公式:L =V O FF×(1-D )/rfI L =V ON ×D/rfI L 设置r 应注意几个方 面: A,I PK =(1+r/2)×IL ≤开关管的最小电流,此时 r 的值小于0.4 ,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方 式 P24-26, 最大负载电流 时 r ’= I/ILMAX,当r =2时进入临界导通模式,此时 r = I/Ix =2→ 负载电流I x =(r ’/2)I LMAX 时,进入临界导通模式 ,例如:最大负载电流 3A ,r ’=0.4,则负 载电流为(0.4/2)×3=0.6A 时,进入临界导通模 式 避免进入临界导通模式的方法有 1,减小负载电流 2,减小电感(会减小 I ,则减小r )3, 增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算 1/2×L ×I 2 PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的 r 值负载电流ILIPK 输入电压范围VIN 输 出电压VO 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于 EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m Wb/m 2 B 场:磁通密度或磁感应。单位是特斯拉 ( T )或韦伯每平方米 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为 dB =k ×I ×dl ×aR/R 2 dB 为磁通密度,dl 为电流方向的导线线元,aR 为由dl 指向点p 的单位矢量,距离矢量

单一电压输出ACDC开关电源设计方案

中文摘要 开关电源广泛应用,其效率可达80%以上,具有稳压范围宽、频率高、体积小等特点。特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源的发展与应用在节约能源及环保方面有重要意义。本论文主要介绍RCC型开关电源及其设计应用,RCC电路与其他<如半桥逆变)开关电源电路相比的优越性。它的体积小、不需专用PWM控制芯片、电路简单等优点使其应用更加广泛,特别是在各种新兴电子设备的电源、充电器方面的应用尤为突出,因此在各种开关电源中占有重要地位。RCC电路包括输入整流滤波,吸收电路,开关管保护电路,RC反馈振荡,输出整流滤波,输出过压、过流保护电路,另外最主要的是高频变压器部分。最后通过仿真、调试达到100—240V市电交流输入、5V电压0.5A电流输出的要求,并且纹波较小效率较高。 关键词:开关电源 RCC 自激反激变换器

外文摘要 Title Design of single output AC/DC Switching Power Supply Abstract SwitchingPower Supply is widely uesd,and its efficiency ismore than 80%.Meantime a wide range , high frequency and miniaturization is presented .It is particularly applied in the field of high and new technology and then brings miniaturization and convenice.The development and use of Switching Power Supply are of importance in the energy saving and environmental protection.This paper mainly introduce RCC cicuit and its specific designment。RCC cicuit ,who is small shape,simple structure and not using particular chips,has many more advantages than other circuits as same with it,such as half-bridge ciucuit.Therefore,RCC circuit is much more widely used,especially in the source and charger of all kinds of new electronical devices.So it is such a significance for Switching Power Supply.In the RCCcircuit,the circuit for rectification and filtering,absorption,protection,RCC fee- dback,output overvoltage and overcurrent are included.In addition,the transformer is the most importantcomponent.Finaly,this design get though tests with 100-240V AC input ,5V voltage and 1A current.Moerover,ripple wave is quite small. Key words:Switching power supply Flyback converter Self-excitatiion RCC

开关电源专业用语

开关电源术语 这些定义应被认为是有关于开关电源的 ,并不一定等同的适用于其它技术领域. 考虑到在其它出版物(标准,词典,制造商数据手册 ,技术笔记,手册)已经同时给出了定义,下列的术语仅代表作者本人的观点,并可能与使用本文档的特定用户有轻微的差别. 绝对额定最大值,元件: 如果超过将导致永久性的器件损坏的规定值. 这不是连续额定值,并不表示适当的操作. Ae, 有效区域: 对于给定几何尺寸的磁芯,是指具有同样磁性的同种原料的圆柱形磁芯的横截面积. 周围温度Ambient Temperature (1): 目标温度和SMPS周围静止空气的温度,在距离电源最小为4" (100mm)处测得. 周围温度Ambient Temperature (2): 根据MIL-STD-810E: 除了必要的支撑点,测试单元应完全出于空气的包围中.周围空气的温度梯度应为测量温度的2℃之内且不超过1℃每米. 安培匝数Ampere Turns (NI): 流过线圈的电流与线圈匝数的乘积. ATP: 验收测试步骤(Acceptance Test Procedure). BABT: 英国无线电通讯认证部(The British Approvals Board for Telecommunications).对英国市场上的无线电通讯设备进行认证的肚里组织.BABT对测试实验室进行认证和授权. 行为模型(Behavioral Model): 用数学关系表达的电路模块的模型.是最高的仿真层次. BJT: 双极结晶体管(Bipolar Junction Transistor.). BOM: 物料清单(Bill of Material). 升压式(Boost): 一种基本的开关电源结构,在开关导通时能量存储到电感中,在开关断开时能量

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

开关电源设计教学内容

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电?又如何使直流电压(电流)稳定?这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 1.1基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A; ③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=2.5±0.2A; 1.2发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

开关电源学习笔记

开关电源学习笔记 阅读书记名称《集成开关电源的设计调试与维修》 开关电源术语: 效率:电源的输出功率与输入功率的百分比。其测量条件是满负载,输入交流电压标准值。 ESR:等效串联电阻。它表示电解电容呈现的电阻值的总和。一般情况下,ESR值越低的电容,性能越好 输出电压保持时间:在开关电源输出电压撤消后,依然保持其额定输出电压的时间。 启动浪涌保护:它属于保护电路。它对电源启动时产生的尖蜂电流起限制作作用。为了防止不必要的功率损耗,在设计这一电路时候,一定要保证滤波电容充满电之前,就起到限流的作用。 隔离电压:电源电路中的任何一部分与电源基板之间的最大电压。或者能够加在开关电源的输入与输出端之间的最大直流电压。 线性调整率:输出电压随负载在指定范围内的变化百分率。条件是线电压和环境温度不变。 噪音和波纹:附加在直流信号上的交流电压的高频尖锋信号的峰值。通常是mV度量。 隔离式开关电源:一般指开关电源。它从输入的交流电源直接进行整流滤波,不使用低频隔离变压器。 输出瞬态响应时间:从输出负载电路产生变化开始,经过整个电路的调节作用,到输出电压恢复额定值所需要的时间。 过载过流保护:防止因负载过重,是电流超过原设计的额定值而造成电源的损坏的电。 远程检测:电压检测的一种方法。为了补偿电源输出的电压降,直接从负载上检测输出电压的方法。 软启动:在系统启动时,一种延长开关波形的工作周期的方法。工作周期是从零到它的正常工作点所用的时间。 快速短路保护电路:一种用于电源输出端的保护电路。当出现过压现象时,保护电路启动,将电源输出端电压快速短路。 占空比:开关电源中,开关元件导通的时间和变换工作周期之比。 元件选择和电路设计: 一:输入整流器的一些参数 最大正向整流电流:这个参数主要根据开关电源输出功率决定,所选择的整流二极管的稳态电流容量至少应是计算值的2倍。 峰值反向截止电压(PIV):由于整流器工作在高压的环境,所以它们必须有较高的PIV值。一般600V以上。 要有能承受高的浪涌电流的能力:浪涌电源是用开关管导通时的峰值电流产生。 二:输入滤波电容 输入滤波电容对开关电源的影响 电源输出端的低频交流纹波电压 输出电压的保持时间 滤波电容的计算公式: C=(I*t)/ΔV C:电容量,F I:负载电流,A t:电容提供电流的时间,S ΔV:所允许的峰-峰值纹波电压,V

高效率开关电源设计实例

高效率开关电源设计实例 1 0 W同步整流Buck变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路 的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PW履计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压 Buck变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步 控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围:DC+10- +14V 输出电压:DC+5.0V

额定输出电流:2.0A 过电流限制:3.0A 输出纹波电压:+30mV (峰峰值) 输出调整:土1% 最大工作温度:+40 C “黑箱”预估值 输出功率:+5.0V *2A=10.0W最大) 输入功率:Pout/估计效率=10.0W^0.90=11.1W 功率开关损耗(11.1W-10W) * 0 . 5=0.5W 续流二极管损耗:(1I.IW-10W) *0.5=0.5W 输入平均电流 低输入电压时11.1W / 10V=1.1IA 高输入电压时:11.1W/ 14V=0. 8A 估计峰值电流:1 . 4lout(rated)=1 . 4X 2. 0A=2. 8A 设计工作频率为300kHz。

开关电源学习笔记(含推导公式)

《开关电源》笔记 三种基础拓扑(buck boost buck-boost )的电路基础: 1, 电感的电压公式dt dI L V ==T I L ??,推出ΔI =V ×ΔT/L 2, sw 闭合时,电感通电电压V ON ,闭合时间t ON sw 关断时,电感电压V OFF ,关断时间 t OFF 3, 功率变换器稳定工作的条件:ΔI ON =ΔI OFF 即,电感在导通和关断时,其电流变化相等。 那么由1,2的公式可知,V ON =L ×ΔI ON /Δt ON ,V OFF =L ×ΔI OFF /Δt OFF ,则稳定条件为伏秒定律:V ON ×t ON =V OFF ×t OFF 4, 周期T ,频率f ,T =1/f ,占空比D =t ON /T =t ON /(t ON +t OFF )→t ON =D/f =TD →t OFF =(1-D )/f 电流纹波率r P51 52 r =ΔI/ I L =2I AC /I DC 对应最大负载电流值和最恶劣输入电压值 ΔI =E t /L μH E t =V ×ΔT (时间为微秒)为伏微秒数,L μH 为微亨电感,单位便于计算 r =E t /( I L ×L μH )→I L ×L μH =E t /r →L μH =E t /(r* I L )都是由电感的电压公式推导出来 r 选值一般0.4比较合适,具体见 P53 电流纹波率r =ΔI/ I L =2I AC /I DC 在临界导通模式下,I AC =I DC ,此时r =2 见P51 r =ΔI/ I L =V ON ×D/Lf I L =V O FF×(1-D )/Lf I L →L =V ON ×D/rf I L 电感量公式:L =V O FF×(1-D )/rf I L =V ON ×D/rf I L 设置r 应注意几个方面: A,I PK =(1+r/2)×I L ≤开关管的最小电流,此时r 的值小于0.4,造成电感体积很大。 B,保证负载电流下降时,工作在连续导通方式P24-26, 最大负载电流时r ’=ΔI/ I LMAX ,当r =2时进入临界导通模式,此时r =ΔI/ I x =2→ 负载电流I x =(r ’ /2)I LMAX 时,进入临界导通模式,例如:最大负载电流3A ,r ’=0.4,则负载电流为(0.4/2)×3=0.6A 时,进入临界导通模式 避免进入临界导通模式的方法有1,减小负载电流2,减小电感(会减小ΔI ,则减小r )3,增加输入电压 P63 电感的能量处理能力1/2×L ×I 2 电感的能量处理能力用峰值电流计算1/2×L ×I 2PK ,避免磁饱和。 确定几个值:r 要考虑最小负载时的r 值 负载电流I L I PK 输入电压范围V IN 输出电压V O 最终确认L 的值 基本磁学原理:P71――以后花时间慢慢看《电磁场与电磁波》用于EMC 和变压器 H 场:也称磁场强度,场强,磁化力,叠加场等。单位A/m B 场:磁通密度或磁感应。单位是特斯拉(T )或韦伯每平方米Wb/m 2 恒定电流I 的导线,每一线元dl 在点p 所产生的磁通密度为dB =k ×I ×dl ×a R /R 2 dB 为磁通密度,dl 为电流方向的导线线元,a R 为由dl 指向点p 的单位矢量,距离矢量为R ,R 为从电流元dl 到点p 的距离,k 为比例常数。 在SI 单位制中k =μ0/4π,μ0=4π×10-7 H/m 为真空的磁导率。

开关电源系统设计方案毕业论文

开关电源系统设计方案毕业论文 目录 摘要.......................................... 错误!未定义书签。Abstract.......................................... 错误!未定义书签。 1 绪言 1.1课题背景 (2) 1.2选题的国外研究现状及水平、研究目标及意义 (2) 1.3 本课题主要的研究容 (3) 2 系统设计方案与论证 2.1课题研究的基本要求 (4) 2.2方案论证 (4) 2.2.1 DC/DC电路模块方案 (4) 2.2.2 MOSEFT驱动电路方案 (7) 2.2.3 单片机选择方案 (7) 2.2.4检测采样方案 (8) 2.2.5系统框图 (8) 3 硬件电路设计 3.1变压整流滤波电路 (9) 3.2辅助电源的设计 (11) 3.3 Buck电路参数选择原理和计算 (12) 3.3.1参数选择原理 (12) 3.3.2 电感值的计算 (15) 3.3.3 滤波电容的计算 (15) 3.3.4开关管的选择和开关管保护电路设计 (16) 3.4驱动电路的设计 (18)

3.5采样电路设计 (19) 3.6保护电路的设计 (20) 4 软件部分设计 4.1 AVR128简介 (21) 4.2 PWM波的产生 (22) 4.3 AD采样 (26) 5系统调试及结果分析 6 总结与展望 6.1 总结 (30) 6.2 展望 (30) 致谢 (31) 参考文献 (32) 附录 (34)

1 绪言 开关电源具有效率高、体积小、重量轻等特点,应用越来越广泛,从70年代开始,并用轻量高频变压器替代笨重的工频变压器。高效的开关电源飞速发展,逐步替代传统的的线性电源,开关电源不需要较大的散热器,开关电源自20世纪90年代问世以来,便显示出强大的生命力,并以其优良特性倍受人们的青睐。近年来,开关电源在通信、工业自动化、航空、仪表仪器等领域的应用越来越广泛。随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、模块化的方向发展,高效率的开关电源已经得到越来越广泛的应用。随着高频开关电源技术和应用电子技术的高速发展,直流高频开关电源依靠它的高精度、低纹波及高效率等优越性能,正在逐步取代传统的线性电源。同时,高频开关电源系统的高速响应性能、输出短路电流限制及稳压和稳流等优点也使其负载的使用寿命大大增加。评价开关电源的质量指标应该是以安全性、可靠性为第一原则。在电气技术指标满足正常使用要求的条件下,为使电源在恶劣环境及突发故障情况下安全可靠地工作,必须设计多种保护电路,比如防浪涌的软启动,防过压、欠压、过流、短路等保护电路。同时,在同一开关电源电路中,设计多种保护电路的相互关联和应注意的问题也要引起足够的重视[15]。 许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合出许多毛刺尖峰,甚至出现畸变。大量的谐波分量倒流入电网,造成对电网的谐波“污染”,一方面电流流过线路阻抗造成谐波电压降,反过来使电网电压也发生畸变;另一方面,会造成电路故障,使用设备损坏。因为它没有采用有源功率因数校正,功率因数较低,只达到 0.9,如果采用有效的功率因数校正,功率因数可以达到0.99以上。开关电源输入端产生功率因数下降问题,利用有源功率因数校正电路,成本只增加5%,成功解决了这个问题。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种校正功率因数的方法[1]。 目前市场上出售的开关电源中采用双极性晶体管制成的100kHz、用MOSFET 管制成的500kHz 电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。对1MHz以上的高频,要采用谐振电路,这样既可减少开关损耗,同时也可控制浪涌的发生。现代电力电子技术是开关电源技术发展的基础。随着新型电力电子器件和适于更高开关频率的电路拓扑的不断出现,现代电源技术将在实际需要的推动下快速发展。在传统的应用技术下,由于功率器件性能的限制而使开关电源的性能受到影响。为了极大发挥各种功率器件的特性,使器件性能对开关电源性

相关文档
相关文档 最新文档