文档视界 最新最全的文档下载
当前位置:文档视界 › 数值计算方法试题集及答案

数值计算方法试题集及答案

数值计算方法试题集及答案
数值计算方法试题集及答案

《数值计算方法》复习试题

一、填空题:

1、??

???

?????----=410141014A ,则A 的LU 分解为

A ???

?????????=????????????。

答案:

??

????????--??????????--=1556141501

4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得

?≈3

1

_________

)(dx x f ,用三点式求得≈')1(f 。

答案:2.367,0.25

3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2

x 的系数为 ,

拉格朗日插值多项式为 。

答案:-1,

)2)(1(21

)3)(1(2)3)(2(21)(2--------=

x x x x x x x L

4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字;

5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( );

答案

)(1)(1n n n n n x f x f x x x '---

=+

6、对1)(3

++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 );

7、计算方法主要研究( 截断 )误差和( 舍入 )误差;

8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为

( 1

2+-n a b );

9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )]

,(),([2111+++++=n n n n n n y x f y x f h

y y );

10、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 );

11、 两点式高斯型求积公式?1

0d )(x x f ≈(?++-≈1

)]

321

3()3213([21d )(f f x x f ),代数精

度为( 5 );

12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均

不为零)。

13、 为了使计算

32)1(6

)1(41310--

-+-+

=x x x y 的乘除法次数尽量地少,应将该表

达式改写为

11

,))64(3(10-=

-++=x t t t t y ,为了减少舍入误差,应将表达式

19992001-

14、 用二分法求方程01)(3

=-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间

为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。 15、 计算积分?1

5

.0d x

x ,取4位有效数字。用梯形公式计算求得的近似值为 0.4268 ,

用辛卜生公式计算求得的近似值为 0.4309 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。

16、 求解方程组??

?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为

?????-=-=+++20/3/)51()1(1)1(2)(2)1(1k k k k x x x x ,该迭

代格式的迭代矩阵的谱半径)(M ρ= 121

17、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿

插值多项式为 )1(716)(2-+=x x x x N 。

18、 求积公式

?∑=≈b

a k n

k k x f A x x f )(d )(0

的代数精度以( 高斯型 )求积公式为最高,具

有( 12+n )次代数精度。

19、 已知f (1)=1,f (3)=5,f (5)=-3,用辛普生求积公式求?5

1

d )(x

x f ≈( 12 )。

20、 设f (1)=1, f (2)=2,f (3)=0,用三点式求≈')1(f ( 2.5 )。

21、如果用二分法求方程043

=-+x x 在区间]2,1[内的根精确到三位小数,需对分( 10 )次。

22、已知?????≤≤+-+-+-≤≤=31)1()1()1(2110)(2

33x c x b x a x x x x S 是三次样条函数,则

a =( 3 ),

b =( 3 ),

c =( 1 )。

23、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则

∑==

n

k k

x l

)(( 1 ),∑==

n

k k j

k x l

x 0

)((

j

x ),当2≥n 时=

++∑=)()3(20

4

x l x x

k k n

k k ( 32

4++x x )。

24、解初值问题00(,)()y f x y y x y '=??=?的改进欧拉法?????++=+=++++)],(),([2),(]

0[111]

0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是

2 阶方法。

25、区间[]b a ,上的三次样条插值函数)(x S 在[]b a ,上具有直到_____2_____阶的连续导数。 26、改变函数f x x x ()=

+-1 (x >>1)的形式,使计算结果较精确

()x x x f ++=

11

27、若用二分法求方程()0=x f 在区间[1,2]内的根,要求精确到第3位小数,则需要对分 10

次。

28、设

()???≤≤+++≤≤=21,10,22

3

3x c bx ax x x x x S 是3次样条函数,则 a= 3 , b= -3 , c= 1 。 29、若用复化梯形公式计算

?

10

dx

e x ,要求误差不超过6

10-,利用余项公式估计,至少用 477

个求积节点。

30、写出求解方程组

??

?=+-=+2

4.016.12121x x x x 的Gauss-Seidel 迭代公式

()()

()() ,1,0,4.026.111112211=???+=-=+++k x x x x k k k k ,迭代矩阵为

????

??--64.006.10,此迭代法是否收敛 收敛 。

31、设

A =?? ?

??

5443,则=∞A 9 。

32、设矩阵

482257136A ????=??????的A LU =,则U = 4820161002U ??

????

=??

??-??

?? 。

33、若4

321()f x x x =++,则差商2481632[,,,,]f = 3 。

34、数值积分公式1

12

18019()[()()()]f x dx f f f -'≈-++?的代数精度为 2 。

35、

线性方程组121015112103x ????

????????=?????

???????的最小二乘解为

11??

?

?? 。

36、设矩阵

32120

4135A ??

??=??????分解为A LU =,则U = 321410033

21002??

????

??-???????

? 。 二、单项选择题:

1、 Jacobi 迭代法解方程组b x =A 的必要条件是( C )。 A .A 的各阶顺序主子式不为零 B . 1)(

2、设

??

????????--=700150322A ,则)(A ρ为( C ). A . 2 B . 5 C . 7 D . 3 3、三点的高斯求积公式的代数精度为( B )。

A . 2

B .5

C . 3

D . 4

4、求解线性方程组A x =b 的LU 分解法中,A 须满足的条件是( B )。 A . 对称阵 B . 正定矩阵

C . 任意阵

D . 各阶顺序主子式均不为零 5、舍入误差是( A )产生的误差。

A. 只取有限位数 B .模型准确值与用数值方法求得的准确值 C . 观察与测量 D .数学模型准确值与实际值 6、3.141580是π的有( B )位有效数字的近似值。

A . 6

B . 5

C . 4

D . 7 7、用 1+x 近似表示e x 所产生的误差是( C )误差。

A . 模型

B . 观测

C . 截断

D . 舍入

8、解线性方程组的主元素消去法中选择主元的目的是( A )。 A .控制舍入误差 B . 减小方法误差 C .防止计算时溢出 D . 简化计算

9、用1+3x

近似表示3

1x +所产生的误差是( D )误差。

A . 舍入

B . 观测

C . 模型

D . 截断 10、-324.7500是舍入得到的近似值,它有( C )位有效数字。 A . 5 B . 6 C . 7 D . 8

11、设f (-1)=1,f (0)=3,f (2)=4,则抛物插值多项式中x 2的系数为( A )。 A . –0.5 B . 0.5 C . 2 D . -2 12、三点的高斯型求积公式的代数精度为( C )。 A . 3 B . 4 C . 5 D . 2 13、( D )的3位有效数字是0.236×102。

(A) 0.0023549×103 (B) 2354.82×10-2 (C) 235.418 (D) 235.54×10-1

14、用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=?(x),则f(x)=0的根是

( B )。

(A) y=?(x)与x 轴交点的横坐标 (B) y=x 与y=?(x)交点的横坐标 (C) y=x 与x 轴的交点的横坐标 (D) y=x 与y=?(x)的交点

15、用列主元消去法解线性方程组???

??-=+--=-+-=+-1

340921433

21321321x x x x x x x x x ,第1次消元,选择主元为

( A ) 。

(A) -4 (B) 3 (C) 4 (D)-9

16、拉格朗日插值多项式的余项是( B ),牛顿插值多项式的余项是( C ) 。

(A) f(x,x0,x1,x2,…,xn)(x -x1)(x -x2)…(x -xn -1)(x -xn),

(B)

)!1()

()()()()1(+=

-=+n f x P x f x R n n n ξ (C) f(x,x0,x1,x2,…,xn)(x -x0)(x -x1)(x -x2)…(x -xn -1)(x -xn), (D)

)

()!1()

()()()(1)1(x n f x P x f x R n n n n +++=

-=ωξ

17、等距二点求导公式f '(x1) ≈( A )。

1011

0101

0010

101)()()

D ()()()

C ()()()

B ()()()

A (x x x f x f x x x f x f x x x f x f x x x f x f +--+----

18、用牛顿切线法解方程f(x)=0,选初始值x0满足( A ),则它的解数列{xn}n=0,1,2,…

一定收敛到方程f(x)=0的根。

0)()()D (0

)()()C (0

)()()B (0

)()()A (0000<'<''>'>''x f x f x f x f x f x f x f x f

19、为求方程x3―x2―1=0在区间[1.3,1.6]内的一个根,把方程改写成下列形式,并建

立相应的迭代公式,迭代公式不收敛的是(A )。

(A)

1

1:,1

1

12-=-=+k k x x x x 迭代公式

(B)

21211:,11k

k x x x x +=+

=+迭代公式

(C)

3/12123)1(:,1k k x x x x +=+=+迭代公式 (D)

11:,12

2

1

2

3+++==-+k k k

k x x x x x x 迭代公式

20、求解初值问题??

?=='0

0y x y y x f y )(),(欧拉法的局部截断误差是();改进欧拉法的局部截断误差

是();四阶龙格-库塔法的局部截断误差是( A )

(A)O(h2) (B)O(h3) (C)O(h4) (D)O(h5)

21、解方程组b Ax =的简单迭代格式g Bx x k k +=+)

()1(收敛的充要条件是( )。

(1)1)(A ρ, (4) 1)(>B ρ

22、在牛顿-柯特斯求积公式:

?∑=-≈b

a

n

i i n i x f C a b dx x f 0

)()

()()(中,当系数)

(n i C 是负值时,公式的

稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n ,

(1)二次; (2)三次; (3)四次; (4)五次 24、若用二阶中点公式

)),(2,2(1n n n n n n y x f h

y h x hf y y ++

+=+求解初值问题1)0(,2=-='y y y ,

试问为保证该公式绝对稳定,步长h 的取值范围为( )。 (1)10≤

25

1732.≈

计算4

1)x =,下列方法中哪种最好?( )

(A)28-;

(B)24(-; (C

) ;

(D) 。 26、已知

33

0221224()()()x x S x x a x b x ?≤≤=?-+-+≤≤?是三次样条函数,则,a b 的值为( ) (A )6,6; (B)6,8; (C)8,6; (D)8,8。

(A); (B)4; (C) ;

(D ) 2。 28、形如112233()()()()

b

a

f x dx A f x A f x A f x ≈++?

的高斯(Gauss )型求积公式的代数精度为

( )

(A)9; (B)7; (C ) 5; (D) 3。 29Newton 迭代格式为( )

(A)

132k k k x x x +=

+;(B )1322k k k x x x +=+;(C) 122k k k x x x +=+;(D) 133k k k x x x +=+。 30、用二分法求方程32

4100x x +-=在区间12[,]内的实根,要求误差限为31102ε-=?,则对分

次数至少为( )

(A )10; (B)12; (C)8; (D)9。

31、经典的四阶龙格—库塔公式的局部截断误差为 ( )

(A)4

()O h ; (B)2

()O h ; (C ) 5

()O h ; (D) 3

()O h 。

32、设()i l x 是以019(,,,)k x k k == 为节点的Lagrange 插值基函数,则9

()i k kl k ==

∑( )

(A)x ; (B )k ; (C )i ; (D )1。

33、5个节点的牛顿-柯特斯求积公式,至少具有( )次代数精度 (A )5; (B)4; (C)6; (D)3。

34、已知

33

0221224()()()x x S x

x a x b x ?≤≤=?-+-+≤≤?是三次样条函数,则,a b

的值为( ) (A )6,6; (B)6,8; (C)8,6; (D)8,8。

35、已知方程3

250x x --=在2x =附近有根,下列迭代格式中在02x =不收敛的是( )

(A)1k x += (B)1k x += (C )315k k k x x x +=--;

(D)

3

1225

32k k k x x x ++=-。 (A ) 4; (B)2; (C)1; (D)3。

37、5个节点的Gauss 型求积公式的最高代数精度为( ) (A)8; (B )9; (C)10; (D)11。

三、是非题(认为正确的在后面的括弧中打√,否则打?)

1、已知观察值)210()(m i y x i i ,,,,

, =,用最小二乘法求n 次拟合多项式)(x P n 时,)(x P n 的次数n 可以任意取。 ( )

2、用1-22

x 近似表示cos x 产生舍入误差。 ( )

3、))(()

)((210120x x x x x x x x ----表示在节点x 1的二次(拉格朗日)插值基函数。 ( √ )

4、牛顿插值多项式的优点是在计算时,高一级的插值多项式可利用前一次插值的结果。

( √ )

5、矩阵A =?

????

?

?-521352113具有严格对角占优。 ( )

四、计算题:

1、用高斯-塞德尔方法解方程组 ???

??=++=++=++2252182411

24321321321x x x x x x x x x ,取T

)0,0,0()0(=x ,迭代四次(要求按五位有效数字计算)。 答案:迭代格式

???

???

???--=--=--=++++++)222(51)218(41)211(41)1(2)1(1)1(3)

(3)1(1)1(2

)

(3)(2)1(1k k k k k k k k k x x x x x x x x x

2、求A 、B 使求积公式?-+-++-≈1

1)]21

()21([)]1()1([)(f f B f f A dx x f 的代数精度尽量

高,并求其代数精度;利用此公式求

?

=2

1

1

dx

x I (保留四位小数)。

答案:2

,,1)(x x x f =是精确成立,即

???

??=+=+32212222B A B A 得98,91==B A

求积公式为

)]21

()21([98)]1()1([91)(1

1f f f f dx x f +-++-=?- 当3

)(x x f =时,公式显然精确成立;当4

)(x x f =时,左=52,右=31

。所以代

数精度为3。

69286.0140

97

]

3

21132/11[98]311311[9131111322

1

≈=

+++-++++-≈+=??--=dt t dx x x t

3、已知

分别用拉格朗日插值法和牛顿插值法求)(x f 的三次插值多项式)(3x P ,并求)2(f 的近似值(保留四位小数)。

答案:

)53)(43)(13()

5)(4)(1(6

)51)(41)(31()5)(4)(3(2

)(3------+------=x x x x x x x L

)45)(35)(15()

4)(3)(1(4

)54)(34)(14()5)(3)(1(5

------+------+x x x x x x

差商表为

)4)(3)(1(41

)3)(1()1(22)()(33---+

----+==x x x x x x x N x P

5.5)2()2(3=≈P f

4、取步长2.0=h ,用预估-校正法解常微分方程初值问题

??

?=+='1)0(32y y

x y )10(≤≤x

答案:解: ?

????+++?+=+?+=++++)]32()32[(1.0)

32(2.0)0(111)0(1n n n n n n n n n n y x y x y y y x y y

即 04.078.152.01++=+n n n y x y

5、已知

求)(x f 的二次拟合曲线)(2x p ,并求)0(f '的近似值。 答案:解:

正规方程组为 ???

?

?=+==+41

34103101510520120a a a a a

1411,103,710210===

a a a

221411103710)(x x x p ++=

x

x p 711

103)(2+=' 103

)0()0(2

='≈'p f

6、已知x sin 区间[0.4,0.8]的函数表

如用二次插值求63891.0sin 的近似值,如何选择节点才能使误差最小?并求该近似值。

答案:解: 应选三个节点,使误差

|)(|!3|)(|33

2x M x R ω≤

尽量小,即应使|)(|3x ω尽量小,最靠近插值点的三个节点满足上述要求。即取节点

}7.0,6.0,5.0{最好,实际计算结果

596274.063891.0sin ≈,

4

1055032.0)7.063891.0)(6.0963891.0)(5.063891.0(!

31

596274

.063891.0sin -?≤----≤

-

7、构造求解方程0210=-+x e x

的根的迭代格式 ,2,1,0),(1==+n x x n n ?,讨论其收敛

性,并将根求出来,4

110||-+<-n n x x 。 答案:解:令 010)1(,

02)0(,

210e )(>+=<-=-+=e f f x x f x

.

且010e )(>+='x

x f )(∞+-∞∈?,

对x ,故0)(=x f 在(0,1)内有唯一实根.将方程

0)(=x f 变形为

)e 2(101

x x -=

则当)1,0(∈x 时

)e 2(101

)(x x -=

?,

1

10

e

10e |)(|<≤-='x x ?

故迭代格式

)e 2(101

1n x n x -=

+

收敛。取5.00=x ,计算结果列表如下:

且满足 6671095000000.0||-<≤-x x .所以008525090.0*

≈x .

8﹑利用矩阵的LU 分解法解方程组 ?

??

??=++=++=++2053182521432321321321x x x x x x x x x 。

答案:解:

??

????????--??????????-==244132

11531

21LU A 令b y =L 得T )72,10,14(--=y ,y x =U 得T

)3,2,1(=x .

9﹑对方程组 ???

??=-+=--=++8

41025410151023321321321x x x x x x x x x

(1) 试建立一种收敛的Seidel 迭代公式,说明理由;

(2) 取初值T

)0,0,0()0(=x ,利用(1)中建立的迭代公式求解,要求

3)()1(10||||-∞+<-k k x x 。

解:调整方程组的位置,使系数矩阵严格对角占优

???

??=++=-+=--15

1023841025410321321321x x x x x x x x x

故对应的高斯—塞德尔迭代法收敛.迭代格式为

???

???

???+--=++-=++=++++++)1523(101)842(101)54(101)1(2)1(1)1(3)

(3)1(1)1(2

)(3)(2)1(1k k k k k k k k k x x x x x x x x x

取T )0,0,0()

0(=x

,经7步迭代可得:

T )010000.1,326950999.0,459991999.0()7(*=≈x x .

10、已知下列实验数据

试按最小二乘原理求一次多项式拟合以上数据。

解:当0

0?有一位整数. 要求近似值有5位有效数字,只须误差

4)

(11021

)(-?≤

f R n .

)(12)()(

2

3

)

(1ξf n a b f R n ''-≤,只要

4

22)

(1102112e 12e )

e (-?≤≤≤n n R x n ξ

即可,解得

???=?≥

30877.67106e

2n

所以 68=n ,因此至少需将 [0,1] 68等份。

11、用列主元素消元法求解方程组 ??????????--=????????????????

????--11124112345111321x x x 。

解: ??

?

??

?????----???→????????

????----111124111123451111212345411121r r ?????

?

??

????????-----???→??????????

???

?????-

-----???→?-5852510579515130123

4

5

57951513058525101234

5

5

2

51

321312r r r r r r ???

??

?

??

???????

?----???→?+135

1350579515130

123

4

5131

23r r

回代得 3,6,1123==-=x x x 。

12、取节点1,5.0,0210===x x x ,求函数x

x f -=e )(在区间[0,1]上的二次插值多项式

)(2x P ,并估计误差。

解:

)15.0)(05.0()

1)(0()10)(5.00()1)(5.0()(5.002----?

+----?

=--x x e x x e x P

)5.0(2)1(4)1)(5.0(2)

5.01)(01()

5.0)(0(15.01-+----=----?

+---x x e x x e x x x x e

1

|)(|max ,)(,)(]

1,0[3='''=-='''=∈--x f M e x f e x f x x x

故截断误差 |)1)(5.0(|!31

|)(||)(|22--≤

-=-x x x x P e x R x 。

13、用欧拉方法求

?-=x t t

x y 0

d e

)(2

在点0.2,5.1,0.1,5.0=x 处的近似值。 解:

?-=x t t

x y 0

d e

)(2

等价于

?????=='-0)0(e 2

y y x (0>x )

记2

e ),(x

y x f -=,取5.0=h ,0.2,5.1,0.1,5.0,043210=====x x x x x .

则由欧拉公式

??

?=+=+0),(01y y x hf y y n n n n , 3,2,1,0=n

可得 88940

.0)0.1(,

5.0)5.0(21≈==≈y y y y , 12604.1)0.2(,07334.1)5.1(43≈==≈y y y y

14、给定方程01e )1()(=--=x

x x f

1) 分析该方程存在几个根;

2) 用迭代法求出这些根,精确到5位有效数字; 3) 说明所用的迭代格式是收敛的。

解:1)将方程 01e )1(=--x

x (1)

改写为

x

x -=-e 1 (2)

作函数1)(1-=x x f ,x

x f -=e )(2的图形(略)知(2)有唯一根)2,1(*∈x 。

2) 将方程(2)改写为 x

x -+=e 1

构造迭代格式 ??

?=+=-+5.1e 101x x k x k ),2,1,0( =k

计算结果列表如下:

3) x x -+=e 1)(?,x x --='e )(?

当]2,1[∈x 时,]2,1[)]1(),2([)(?∈???x ,且

1e |)(|1<≤'-x ?

所以迭代格式 ),2,1,0()(1 ==+k x x k k ?对任意]2,1[0∈x 均收敛。 15、用牛顿(切线)法求3的近似值。取x 0=1.7, 计算三次,保留五位小数。

解:3是03)(2

=-=x x f 的正根,x x f 2)(=',牛顿迭代公式为

n n n n x x x x 232

1--

=+, 即

)

,2,1,0(2321 =+=+n x x x n n n

取x 0=1.7, 列表如下:

16、已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式)(2x L 及f (1,5)的近似值,取五位小数。 解:

)12)(12()

1)(1(4)21)(11()2)(1(3)21)(11()2)(1(2)(2-+-+?

--+-+?+------?

=x x x x x x x L

)1)(1(34

)2)(1(23)2)(1(32-+--+---=

x x x x x x

04167

.0241

)5.1()5.1(2≈=≈L f

17、n =3,用复合梯形公式求x

x

d e 10?的近似值(取四位小数),并求误差估计。

解:

7342.1]e )e e (2e [3201d e 1210

310

≈+++?-=

≈?T x x

x x x f x f e )(,e )(=''=,10≤≤x 时,e |)(|≤''x f

05.0025.0108e

312e |e |||2

3≤==?≤

-= T R x

至少有两位有效数字。

18、用Gauss-Seidel 迭代法求解线性方程组 ????? ?

?--411131103????? ??321x x x =?

???? ??--815, 取x (0)=(0,0,0)T ,列表计算三次,保留三位小数。 解:Gauss-Seidel 迭代格式为:

???

???

???-+-=----=+-=++++++)8(41)1(31)5(31)1(2)1(1)1(3)

(3)1(1)1(2

)(3)1(1k k k k k k k k x x x x x x x x

系数矩阵??????

????--411131103严格对角占优,故Gauss-Seidel 迭代收敛. 取x (0)=(0,0,0)T ,列表计算如下:

19、用预估—校正法求解??

?=+='1)0(y y x y (0≤x ≤1),h =0。2,取两位小数。 解:预估—校正公式为

???

??

????

++==++=+),(),()(21121211k y h x hf k y x hf k k k y y n n n n n n ,2,1,0=n

其中y x y x f +=),(,10=y ,h =0.2,4,3,2,1,0=n

,代入上式得:

20、(82

bx a y +=解:

},1{x span =Φ ???

???=22

2

2

38312519

11

11

T A []3.730.493.320.19=T

y

解方程组

y A AC A T T = 其中 ??????=3529603339133914A A T ??????=7.1799806.173y A T 解得:

??????=0501025.09255577.0C 所以 9255577.0=a , 0501025.0=b

21、(15分)用8=n 的复化梯形公式(或复化 Simpson 公式)计算

dx

e x ?

-1

时,试用余项估计其误

差。用8=n 的复化梯形公式(或复化 Simpson 公式)计算出该积分的近似值。

解:

001302.07681

81121)(12][022==??≤''--

=e f h a b f R T η

]

)()(2)([2)8(7

1∑=++=k k b f x f a f h

T ]36787947.0)41686207.047236655.05352614.060653066.07788008.08824969.0(21[16

1

++++++?+=

6329434.0=

22、(15分)方程013

=--x x 在5.1=x 附近有根,把方程写成三种不同的等价形式(1)3

1

+=

x x 对应迭代格式311+=+n n x x ;(2)x x 11+=对应迭代格式n n x x 111+=+;(3)13-=x x 对应

迭代格式13

1-=+n n x x 。判断迭代格式在5.10=x 的收敛性,选一种收敛格式计算5.1=x 附近的根,

精确到小数点后第三位。

解:(1)32

1(31

)(-+=')x x ?,118.05.1<=')(?,故收敛;

(2)x x x 1

121

)(2+

-

='?,117.05.1<=')(?,故收敛;

(3)23)(x x ='?,15.135.12>?=')(?,故发散。

选择(1):5.10=x ,3572.11=x ,3309.12=x ,3259.13=x ,3249.14=x ,

32476.15=x ,32472.16=x

23、(8分)已知方程组f AX =,其中

??????????--=4114334A ,??

???

?????-=243024f

(1) 列出Jacobi 迭代法和Gauss-Seidel 迭代法的分量形式。 (2) 求出Jacobi 迭代矩阵的谱半径。

解:Jacobi 迭代法:??

???????=+-=+-=-=+++ ,3,2,1,0)24(41)330(41)324(41)

(2)1(3)(3)(1)1(2)

(2)1(1k x x x x x x x k k k k k k k

Gauss-Seidel 迭代法:??

???????=+-=+-=-=+++++ ,3,2,1,0)24(41)330(41)324(41)

1(2)1(3)(3)1(1)1(2)

(2)1(1k x x x x x x x k k k k k k k ?????

?

?????

?--=+-=-0430430

430430)(1

U L D B J ,

790569

.0)4

10

(85)(==或J B ρ

24、1、(15分)取步长1.0=h ,求解初值问题?????=+-=1

)0(1y y dx

dy

用改进的欧拉法求)1.0(y 的值;用经

典的四阶龙格—库塔法求)1.0(y 的值。

解:改进的欧拉法:???

??+=++=+=+=++++095.0905.0)],(),([21.09.0),()

0(111)

0(1n n n n n n n n n n n n y y x f y x f h y y y y x hf y y

所以1)1.0(1==y y ;

经典的四阶龙格—库塔法:

??

???

??

???

?

++=++=++==++++=+),()2,2()2,2(),(]22[6

342312143211

hk y h x f k k h y h x f k k h y h x f k y x f k k k k k h y y n n n n n n n n n n 04321====k k k k ,所以1)1.0(1==y y 。

25、数值积分公式形如

?'+'++=≈1

)1()0()1()0()()(f D f C Bf Af x S dx x xf 试确定参数D C B A ,,,使公式代数精度尽

量高;(2)设]1,0[)(4

C x f ∈,推导余项公式?-=1

)

()()(x S dx x xf x R ,并估计误差。

解:将3

2,,,1)(x x x x f =分布代入公式得:

201

,301,207,203-====

D B B A

构造Hermite 插值多项式)(3x H 满足??

?='='=1,0)()()()(33i x f x H x f x H i i

i i 其中1,010==x x 则有:?=1

03)()(x S dx x xH , 22)4(3)1(!4)()()(-=-x x f x H x f ξ

dx

x x f dx x S x f x x R 21

03

)4(1

0)1(!4)(])()([)(-=-=??ξ

1440)(60!4)()1(!4)()4()4(1023)4(ηηηf f dx x x f =

?=-=?

26、用二步法

)],()1(),([111101---+-+++=n n n n n n n y x f y x f h y y y θθαα

求解常微分方程的初值问题?

?

?=='00)()

,(y x y y x f y 时,如何选择参数θαα,,10使方法阶数尽可能高,并求局

部截断误差主项,此时该方法是几阶的

解:

]

)(!3)(!2)()()(1()([)

)(!

3)(!2)()(()()(!3)(!2)()()()

4(323

2103

211,

+-'''+''-'-+'-+'''-''+'---+'''+''+'+=-=++n n n n n n n n n n n n n n n n h n x y h x y h x y h x y x y h x y h x y h x y h x y x y x y h x y h x y h x y y x y R θθαα

)

()()21661()()1221()

()11()()1(41312110h O x y h x y h x y h x y n n n n +'''--++''-+-+'+-+--=θαθαααα 所以??????

?=-+-==--012210011110θαααα ????

???===?230110θαα 主项:)(1253

n x y h ''' 该方法是二阶的。

27、(10分)已知数值积分公式为:

)]()0([)]()0([2)(''20

h f f h h f f h

dx x f h

-++≈

?

λ,试确定积分公式中的参数λ,使其代数精

确度尽量高,并指出其代数精确度的次数。 解:1)(=x f 显然精确成立; x x f =)(时,

]

11[]0[22220

-++==?

h h h

h xdx h

λ;

2)(x x f =时,12122]20[]0[2332

2302

=

?-=-++==?λλλh h h h h h h dx x h

3)(x x f =时,]30[121]0[24223403h h h h h dx x h -++==?;

4)(x x f =时,6]40[121]0[25532450

4

h h h h h h dx x h

=

-++≠=?;

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

北师大网络教育 数值分析 期末试卷含答案

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考北师大网络教育——数值分析——期末考试卷与答案 一.填空题(本大题共4小题,每小题4分,共16分) 1.设有节点012,,x x x ,其对应的函数()y f x =的值分别为012,,y y y ,则二次拉格朗日插值基函数0()l x 为 。 2.设()2f x x =,则()f x 关于节点0120,1,3x x x ===的二阶向前差分为 。 3.设110111011A -????=--????-??,233x ?? ??=?? ???? ,则1A = ,1x = 。 4. 1n +个节点的高斯求积公式的代数精确度为 。 二.简答题(本大题共3小题,每小题8分,共24分) 1. 哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 2. 什么是不动点迭代法?()x ?满足什么条件才能保证不动点存在和不动点迭代序列收敛于()x ?的不动点? 3. 设n 阶矩阵A 具有n 个特征值且满足123n λλλλ>≥≥≥ ,请简单说明求解矩阵A 的主特征值和特征向量的算法及流程。 三.求一个次数不高于3的多项式()3P x ,满足下列插值条件: i x 1 2 3 i y 2 4 12 i y ' 3 并估计误差。(10分) 四.试用1,2,4n =的牛顿-科特斯求积公式计算定积分1 01 1I dx x =+? 。(10分) 五.用Newton 法求()cos 0f x x x =-=的近似解。(10分) 六.试用Doolittle 分解法求解方程组:

注:1、教师命题时题目之间不留空白; 2、考生不得在试题纸上答题,教师只批阅答题册正面部分,若考 12325610413191963630 x x x -?????? ??????-=?????? ??????----?????? (10分) 七.请写出雅可比迭代法求解线性方程组1231231 23202324 812231530 x x x x x x x x x ++=?? ++=??-+=? 的迭代格式,并 判断其是否收敛?(10分) 八.就初值问题0(0)y y y y λ'=??=?考察欧拉显式格式的收敛性。(10分)

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数值分析期末考试复习题及其答案.doc

数值分析期末考试复习题及其答案 1. 已知325413.0,325413* 2* 1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知,n=6 5.01021 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620* 21021,6,0,10325413.0-?=-=-=?=ε绝对误差限n k k X 2分 2. 已知?????=001A 220 - ???? ?440求21,,A A A ∞ (6分) 解: {},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=001A A T 420 ?? ?? ? -420?????001 220 - ?????440=?????001 080 ???? ?3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A 3. 设3 2 )()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (k=0,1……)产生的序列{}k x 收敛于2 解: ①Newton 迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3分

②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-=a a x a x ?? 3分 4. 给定线性方程组Ax=b ,其中:? ??=1 3A ??? 22,??????-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收 敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --? ??--=-=ααααα21231A I B 2分 其特征方程为 0) 21(2)31(=----= -αλα ααλλB I 2分 即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(

数值分析习题与答案

第一章绪论 习题一 1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1. 2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1) (2)

解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用:式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因

,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限 ,故 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少? 解:用误差估计式(5.8), 令 因 得 3. 若,求和.

解:由均差与导数关系 于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 5. 求证. 解:解:只要按差分定义直接展开得 6. 已知的函数表

数值计算方法试题

数值计算方法试题 重庆邮电大学数理学院 一、填空题(每空2分,共20分) 1、用列主元消去法解线性方程组 1、解非线性方程f(x)=0的牛顿迭代法具有 ,,,,,,,收 敛 2、迭代过程(k=1,2,…)收敛的充要条件是 2、已知y=f(x)的数据如下 ,,, x 0 2 3 3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有 f(x) 1 3 2 效数字是,,, 4、高斯--塞尔德迭代法解线性方程组求二次插值多项式及f(2.5) 3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过 。 4、欧拉预报--校正公式求解初值问题的迭代格式中求 ,,,,,,,,,,,,, ,

5、通过四个互异节点的插值多项式p(x),只要满足,,,,,,取步长k=0.1,计算 y(0.1),y(0.2)的近似值,小数点后保留5位. ,,则p(x)是不超过二次的多项式 三、证明题 (20分每题 10分 ) 6、对于n+1个节点的插值求积公式 1、明定 积分近似计算的抛物线公式 具有三次代数精度至少具有,,,次代 数精度. 7、插值型求积公式的求积 2、若,证明用梯形公式计算积分所 系数之和,,, 得结果比准确值大,并说明这个结论的几何意义。 参考答案: T8、 ,为使A可分解为A=LL, 其中L一、填空题 1、局部平方收敛 2、< 1 3、 4 为对角线元素为正的下三角形,a的取值范围, 4、

5、三阶均差为0 6、n 7、b-a 9、若则矩阵A的谱半径(A)= ,,, 8、 9、 1 10、二阶方法 10、解常微分方程初值问题的梯形二、计算题 格式 1、是,,,阶方法 二、计算题(每小题15分,共60分) 修德博学求实创新 李华荣 1 重庆邮电大学数理学院 2、 右边: 3、 ?1.25992 (精确到 ,即保留小数点后5位) 故具有三次代数精度 4、y(0.2)?0.01903 A卷三、证明题

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

数值计算方法试题一

数值计算方法试题一

数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043 =-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1 -+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(2 110)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( ),b =( ),c =( )。 4、)(,),(),(1 x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当 2 ≥n 时 = ++∑=)()3(20 4 x l x x k k n k k ( )。 5、设1326)(2 4 7 +++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[1 n x x x f 和=?0 7 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0 )(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0 =x ?,则 ?= 1 4 )(dx x x ? 。 8、给定方程组?? ?=+-=-2 21121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ?? ? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。 10、设?? ?? ? ?????=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。 二、 选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+) () 1(收敛的充要条件是( )。 (1)1)(A ρ, (4) 1)(>B ρ 2、在牛顿-柯特斯求积公式: ?∑=-≈b a n i i n i x f C a b dx x f 0 )() ()()(中,当系数) (n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n , x 0 0.5 1 1.5 2 2.5

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

数值计算方法期末考试题

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ,则=( ) A . B . C . D . 3. 通过点 的拉格朗日插值基函数满足( ) A . =0, B . =0, C .=1, D . =1, 4. 设求方程 的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 作第一次消元后得到的第3个方程( ). A . B . C . D . π()()2 1 121 1()(2)636f x dx f Af f ≈ ++? A 1613122 3()()0011,,,x y x y ()()01,l x l x ()00l x ()110l x =() 00l x ()111 l x =() 00l x ()111 l x =() 00l x ()111 l x =()0 f x =12312312 20 223332 x x x x x x x x ++=?? ++=??--=?232 x x -+=232 1.5 3.5 x x -+=2323 x x -+=

单项选择题答案 1.A 2.D 3.D 4.C 5.B 二、填空题(每小题3分,共15分) 1. 设, 则 , . 2. 一阶均差 3. 已知时,科茨系数 ,那么 4. 因为方程 在区间 上满 足 ,所以 在区间内有根。 5. 取步长,用欧拉法解初值问题 的计算公 式 . 填空题答案 230.5 1.5 x x -=-T X )4,3,2(-==1||||X 2||||X =()01,f x x = 3n =()()() 33301213,88C C C === () 3 3C =()420 x f x x =-+=[]1,2()0 f x =0.1h =()211y y y x y ?'=+?? ?=?

吉林大学 研究生 数值计算方法期末考试 样卷

1.已知 ln(2.0)=0.6931;ln(2.2)=0.7885,ln(2.3)=0 .8329,试用线性插值和抛物插值计算.ln2.1的值并估计误差 2.已知x=0,2,3,5对应的函数值分别为y=1,3,2,5.试求三次多项式的插值 3. 分别求满足习题1和习题2 中插值条件的Newton插值 (1) (2)

3()1(2)(2)(3) 310 N x x x x x x x =+--+--4. 给出函数f(x)的数表如下,求四次Newton 插值多项式,并由此计算f(0.596)的值 解:

5.已知函数y=sinx的数表如下,分别用前插和后插公式计算sin0.57891的值

6.求最小二乘拟合一次、二次和三次多项式,拟合如下数据并画出数据点以及拟合函数的图形。 (a) (b)

7.试分别确定用复化梯形、辛浦生和中矩形 求积公式计算积分2 14dx x +?所需的步长h ,使得精度达到5 10 -。 8.求A 、B 使求积公式 ?-+-++-≈1 1)] 21()21([)]1()1([)(f f B f f A dx x f 的 代数精度尽量高,并求其代数精度;利用 此公式求? =2 1 1dx x I (保留四位小数)。 9.已知 分别用拉格朗日插值法和牛顿插值法求

) (x f 的三次插值多项式)(3 x P ,并求)2(f 的近 似值(保留四位小数)。 10.已知 求)(x f 的二次拟合曲线)(2 x p ,并求)0(f 的近似值。 11.已知x sin 区间[0.4,0.8]的函数表

《数值计算方法》试题及答案

数值计算方法考试试题 一、选择题(每小题4分,共20分) 1. 误差根据来源可以分为四类,分别是( A ) A. 模型误差、观测误差、方法误差、舍入误差; B. 模型误差、测量误差、方法误差、截断误差; C. 模型误差、实验误差、方法误差、截断误差; D. 模型误差、建模误差、截断误差、舍入误差。 2. 若132)(3 56++-=x x x x f ,则其六阶差商 =]3,,3,3,3[6210 f ( C ) A. 0; B. 1; C. 2; D. 3 。 3. 数值求积公式中的Simpson 公式的代数精度为 ( D ) A. 0; B. 1; C. 2; D. 3 。 4. 若线性方程组Ax = b 的系数矩阵A 为严格对角占优矩阵,则解方程组的Jacobi 迭代法和Gauss-Seidel 迭代法 ( B ) A. 都发散; B. 都收敛 C. Jacobi 迭代法收敛,Gauss-Seidel 迭代法发散; D. Jacobi 迭代法发散,Gauss-Seidel 迭代法收敛。 5. 对于试验方程y y λ=',Euler 方法的绝对稳定区间为( C ) A. 02≤≤-h ; B. 0785.2≤≤-h ; C. 02≤≤-h λ; D. 0785.2≤≤-h λ ; 二、填空题(每空3分,共18分) 1. 已知 ? ??? ??--='-=4321,)2,1(A x ,则 =2 x 5,= 1Ax 16 ,=2A 22115+ 2. 已知 3)9(,2)4(==f f ,则 f (x )的线性插值多项式为)6(2.0)(1+=x x L ,且用线性插值可得f (7)= 2.6 。 3. 要使 20的近似值的相对误差界小于0.1%,应至少取 4 位有效数字。 三、利用下面数据表, 1. 用复化梯形公式计算积分 dx x f I )(6 .28 .1? =的近似值; 解:1.用复化梯形公式计算 取 2.048 .16.2,4=-= =h n 1分 分 分分7058337 .55))6.2()2.08.1(2)8.1((22.04)) ()(2)((231 1 1 4=+++=++=∑∑=-=f k f f b f x f a f h T k n k k 10.46675 8.03014 6.04241 4.42569 3.12014 f (x ) 2.6 2.4 2.2 2.0 1.8 x

数值计算方法期末复习答案终结版

一、 名词解释 1.误差:设*x 为准确值x 的一个近似值,称**()e x x x =-为近似值*x 的绝对误差, 简称误差。 2.有效数字:有效数字是近似值的一种表示方法,它既能表示近似值的大小,又能 表示其精确程度。如果近似值*x 的误差限是1 102 n -?,则称*x 准确到 小数点后n 位,并从第一个不是零的数字到这一位的所有数字均称为有效数字。 3. 算法:是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。计算一个数学问题,需要预先设计好由已知数据计算问题结果的运算顺序,这就是算法。 4. 向量范数:设对任意向量n x R ∈,按一定的规则有一实数与之对应,记为||||x ,若||||x 满足 (1)||||0x ≥,且||||0x =当且仅当0x =; (2)对任意实数α,都有||||||x αα=||||x ; (3)对任意,n x y R ∈,都有||||||||||||x y x y +≤+ 则称||||x 为向量x 的范数。 5. 插值法:给出函数()f x 的一些样点值,选定一个便于计算的函数形式,如多项式、 分段线性函数及三角多项式等,要求它通过已知样点,由此确定函数 ()x ?作为()f x 的近似的方法。 6相对误差:设*x 为准确值x 的一个近似值,称绝对误差与准确值之比为近似值* x 的 相对误差,记为* ()r e x ,即** () ()r e x e x x = 7. 矩阵范数:对任意n 阶方阵A ,按一定的规则有一实数与之对应,记为||||A 。若||||A 满足 (1)||||0A ≥,且||||0A =当且仅当0A =; (2)对任意实数α,都有||||||A αα=||||A ; (3)对任意两个n 阶方阵A,B,都有||||||||||||A B A B +≤+; (4)||||||||AB A =||||B

数值分析试题及答案

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差 商公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以 当系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…) 收敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。

数值计算方法期末考试题

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . () 00l x =0, ()111 l x = C .() 00l x =1,()111 l x = D . () 00l x =1, ()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组12312312 20223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方 程( ). A . 232 x x -+= B . 232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=-

单项选择题答案 1.A 2.D 3.D 4.C 5.B 二、填空题(每小题3分,共15分) 1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数 ()()() 33301213,88C C C ===,那么() 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区 间有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 0,1,2

数值计算方法试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知/⑵=12 /⑶= 1.3 ,则用辛普生(辛卜生)公式计算求得 J 1 /(x )d“ ,用三点式求得广⑴? ___________ 。 答案:2.367, 0.25 2、/(1) = -1, /⑵=2, /(3) = 1,则过这三点的二次插值多项式中F 的系数为 ___________ ,拉格 朗日插值多项式为 ________________________ L 、(x) — — (x — 2)(x — 3) — 2(x — l)(x — 3) — — (x — l)(x — 2) 3、近似值疋=0.231关于真值% = 0.229有(2 )位有效数字; 4、设/(J 可微,求方程Y = /U )的牛顿迭代格式是( 答案畑 1 一厂 (x“) 5、 对/V ) = P + x + l 差商/'[0,1,2,3]=( 1 ),/[0丄2,3,4] =( 0 ); 6、 计算方法主要研究(裁断)误差和(舍入)误差; 7、 用二分法求非线性方程f (x )=0在区间@力)内的根时,二分〃次后的误差限为 b-a (耐 ); 8、已知人1)=2,人2)=3,人4)=5.9,则二次Newton 插值多项式中x 2系数为(0.15 ); 11、 两点式高斯型求积公式匸心皿利"曲4[磴#)+磴为]),代数精度为 (5); … 3 4 6 y = 10 ---------- 1 -------- ------------ T 12、 为了使计算 兀一 1匕一1广 仗一1)的乘除法次数尽量地少,应将该表达 式改写为〉'=1°+(3+(4-6/””,『=口,为了减少舍入谋差,应将表达式^/555^-^/i^ 答案:-1, );

数值计算方法期末考精彩试题

1. 已知函数 21 1y x = +的一组数据: 求分段 线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 [] 0,1x ∈, ()1010.510.50110x x L x x --= ?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--% 所以分段线性插值函数为 ()[][]10.50,10.80.31,2x x L x x x ?-∈?=? -∈??% ()1.50.80.3 1.50.35 L =-?=% 4. 写出梯形公式和辛卜生公式,并用来分别计算积分1 01 1dx x +?. 计算题4.答案 4 解 梯形公式 ()()()2b a b a f x dx f a f b -≈ ?+???? 应用梯形公式得 1 01111 []0.75121011dx x ≈+=+++? 辛卜生公式为

确定下列求积公式中的待定系数,并证明确定后的求积公式具有3次代数精确度 ()()()() 1010h h f x dx A f h A f A f h --=-++? 证明题答案

故 ( )()()()40333h h h h f x dx f h f f h -= -++? 具有三次代数精确度。 1.设 3 2 01219 (), , 1, 44f x x x x x ==== (1)试求()f x 在 19,44???? ??上的三次Hermite 插值多项式()x H 使满足''11()(), 0,1,2,... ()()j j H x f x j H x f x === () x H 以升幂形式给出。 (2)写出余项()()()R x f x H x =-的表达式 计算题1.答案 1、(1) ()32142632331 22545045025x x x x H =- ++- (2) ()522191919()(1)(),()(,) 4!164444R x x x x x ξξξ-=---=∈ 3.试确定常数A ,B ,C 和 a ,使得数值积分公式 有尽可能高的代数精度。试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的? 计算题3.答案

数值计算方法复习题1

习题一 1.下列各数都是经过四舍五入得到的近似数,试指出它们有几位有 效数字以及它们的绝对误差限、相对误差限。(1);(2) ;(3);(4);(5); (6);(7); (1)5,,;(2)2,,;(3)4, ,;(4)5,,;(5)1,,; (6)2,,(7)6,, ,问各近似 2. 为使下列各数的近似值的相对误差限不超过 值分别应取几位有效数字? ;; 3. 设均为第1题所给数据,估计下列各近似数的误差限。 (1);(2);(3) (1);(2);(3) 4. 计算,取,利用下列等价表达式计算,(3)的结果最好.(1); (2); (3)(4) 5. 序列满足递推关系式若 时误差有多大?这个计算过 (三位有效数字),计算 计算到时,误差约为 程稳定吗?不稳定。从

6. 求方程 的两个根,使其至少具有四位有效数字(要 求利用。, 7. 利用等式变换使下列表达式的计算结果比较精确。 1); 2) 3); 4); 8. 设,求证:1)2)利用(1)中的公式正向递推计算时误差增大;反向递推时误差函数减小。 9.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。 解:求lnx的误差极限就是求f(x)=lnx的误差限,有 已知x*的相对误差满足,而 , 故即 10.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 11.下列公式如何才比较准确? (1)(2) 解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。

相关文档
相关文档 最新文档