文档视界 最新最全的文档下载
当前位置:文档视界 › 稳定剂的品种

稳定剂的品种

稳定剂的品种
稳定剂的品种

稳定剂的品种

聚氯乙烯主稳定剂是指那些单独使用时就有稳定效果的化合物,而副稳定剂是那些单独用无效而与主稳定剂配合时却起增效作用的化合物。某些主稳定剂之间或某些主副稳定剂之间选择使用后会起协同作用。

(一)盐基性铅盐

盐基性铅盐是用于聚氯乙烯之最早也是最广泛的一种热稳定剂,呈碱性,故能与产生的HCL反应而起稳定作用。从毒性、抗污性和制品透明性来看,铅盐并不理想。但它的稳定效果好、价格低廉,故仍大量用于廉价的PVC挤出和压延制品中。因它有优良的电性能和低吸水性,故广泛地用作PVC的电绝缘制品、唱片和泡沫塑料的稳定剂。

1、三盐基硫酸铅(也称三碱式硫酸铅)

白色粉末,比重7.10,甜味有毒,易吸湿,无可燃性和腐蚀性。不溶于水,但能溶于热的醋酸胺,,潮湿时受光后会变色分解。折射率2.1,常用作电绝缘产品的稳定剂.

2、二盐基亚磷酸铅

这是一种细微针状结晶粉末;比重6.1,味甜有毒;200℃左右变成灰黑色,450℃左右变成黄色。本品不溶于水和有机溶剂,溶于盐酸。折射率2.25,有抗氧剂作用,是一种优良的耐气候性稳定剂。

(二)金属皂类

金属皂类也是一类广泛使用的聚氯乙烯热稳定剂。以羧酸钡、羧酸镉、羧酸锌、羧酸钙的单质或混合物使用。其稳定作用是由于它能在聚氯乙烯分子链上开始分解的地方起酯化作用。稳定作用的强弱与金属皂中的金属比、羧酸类型以及配方中是否存在诸如亚磷酸酯、环氧化油、抗氧剂等协合剂有关。其中镉皂和锌皂的稳定作用最大。

1、硬脂酸铅

这是一种细微粉末,它不溶于水,溶于热的乙醇和乙醚,在有机溶剂中加热溶解,再经冷却成为胶状物。遇强酸分解为硬脂酸和相应的铅盐,易受潮。有良好润滑性,熔点低而确保其有良好分散性。

2、2—乙基乙酸铅

它可溶于溶剂和增塑剂。通常配成57-60%的矿物油或增塑剂的溶液出售。广泛用作泡沫塑料中发泡剂偶氮二甲酰胺的活化剂。

3、水杨酸铅

这是一种白色结晶粉末,比重2.36,折射率1.76。兼有PVC热稳定剂和光稳定剂作用。

4、三盐基硬脂酸铅

这是一种白色粉末,比重2.15,280-800℃时分解,遇100℃以上高温易结块。溶于乙醚,有毒,无可燃性和腐蚀性。折射率1.60。本品润滑件较好,有良好的光稳定性,广泛用于FVC唱片配方中。

5、二盐基邻苯二甲酸铅

白色细微结晶粉末,比重4.5。不溶于普通溶剂。本品为弱酸性,其盐基部分易碳酸化。折射率1.99。当配方中含有易皂化的增塑剂时稳定作用优于三盐基硫酸铅。

6、三盐基马来酸铅(三盐基顺丁烯二酸铅)

微黄色细粉末,比重6.0,折射率2.08,有毒,无可燃性和腐蚀性,有良好的色泽稳定性,并有消灭不稳定双烯结构作用。

7、硬脂酸钡

白色细微粉末,钡含量19.5-20.6%,比重1.145%,熔点225℃以上。不溶于水,

但镕于热的乙醇。在有机溶剂中加热溶解经冷却后成胶状物。遇强酸分解为便脂酸和相应的钡盐,易受潮。是必须避免硫污时供选用的热稳定剂,也是高温下加工时采用的润滑剂。

8、丹桂酸钡

9、蓖麻酸钡

这是一种带黄白色的粉末,熔点l16—124,能使制品得到良好透明性的稳定剂。

10、硬脂酸镉

白色细微粉末,镉含量16.5—17.5%,不溶于水,溶于热的乙醇,在有机溶剂中加热溶解后经冷却成为胶状物,遇强酸分解成硬脂酸和相应的镉盐,易受潮。是要求有良好透明性之PVC的热和光稳定剂。

11、蓖麻酸镉

这是一种白色粉末,熔点96-104℃,PVC用的兼有热和光稳定剂作用

12、硬脂酸钙

白色细微粉,不溶于水,溶于热的乙醇和乙醚。遇强酸分解为硬脂酸和相应的钙盐,易受潮。是PVC用的无毒稳定剂和润滑剂。一般不单独使用,而常与锌皂、镁皂或环氧类副稳定剂配合使用。

13、蓖麻酸钙

这是一种白色粉末,熔点74-82℃,PVC用的无毒稳定剂。

14、硬脂酸锌

白色细微粉末,不溶于水,溶于热的乙醇、松节油、苯等有机溶剂。在有机溶剂中加热溶解后退冷成为胶状物。遇强酸分解为硬脂酸和相应的锌盐,易受潮。兼PVC的无毒稳定剂和润滑剂。

15、硬脂酸镁

白色粉末,比重1.07,纯品熔点为85℃工业品熔点为l08-115℃。微溶于水,溶于热的乙醇,遇强酸分解为硬脂酸和镁盐。这是一种PVC的无毒稳定剂兼润滑剂,也是酚醛和脲醛树脂的润滑剂。

(三)复合稳定剂

1.液体钡镉和液体钡镉锌复合核定剂

这类复合稳定剂主要用于软质PVC制品的加工中,基本组分包括:

(1)钡盐--可以是烷基酚钡、2—乙基己酸钡、月桂酸钡、苯甲酸和取代苯甲酸钡、新癸酸钡等。钡盐在复合物中占6-7%,即与镉盐的比例大约是2:1-32(以金属记,重量百分比,下同)。

(2)镉盐--可以是2—乙基己酸镉、月桂酸镉、油酸镉、苯基酸和取代苯甲酸镉、环烷酸镉、新癸酸镉等。镉盐在复合物中约占3-4%。

(3)锌盐——可以是2—乙基己酸锌、月桂酸锌、环烷酸锌、新癸酸锌、苯甲酸和取代苯甲酸锌等。锌盐在复合物中占0.5-1%。

(4)亚磷酸脂—-可以是亚磷酸三苯酯、亚磷酸二苯一辛酯、亚磷酸二苯一癸酯、亚磷酸三(壬基苯酯)等。亚磷酸酯在复合物中约占15-20%(重量),作螯合剂用。

(5)其它——包括少量2,6-二特丁基对甲酚、双酚A,壬基苯酚等酚类抗氧剂及紫外线吸收剂,以及液体石蜡、白油、柴油、锭子油等矿物油作溶剂,另外还需加入少量高级醇等消泡剂。

液体钡镉锌复合稳定剂由于组成不同,性质也各异。但一般是浅黄色至黄色清澈液体,常温下比重0.95-1.02,粘度小于100厘泊,凝固点在-15℃左右。液体钡镉和液体钡镉锌相似,都有优良的热、光稳定性,初期着色性小,良好的透明性和色泽稳定性。它们的稳定作用较固体的复合皂类强,故用量可减少,一般为2-3份,不会发生粉尘中毒,且在一般

增塑剂中完全溶解,有良好的分散性,析出倾向小。其中液体钡镉锌的初期着色性比液体钡镉更小些。

2.液体钡锌复合物

一般都是浅黄色至黄棕色油状液体,常温下比重1.0-1.1,耐热性良好,不受硫化物污染,与环氧增塑剂并用可提高稳定效果,它对发泡剂有活化体用。

3.液体钙锌复合物

无毒液体钙锌稳定剂的主要成分有硬脂酸钙、蓖麻油酸钙、硬脂酸锌、蓖麻油酸锌、以及环氧大豆油、紫外线吸收剂等。液休钙锌稳定剂一般都选用较易溶于有机溶剂的碳数较少的脂脂肪钙盐和锌盐。

由于组分不同,性质各异,一般是浅黄色至黄色的清澈油状液体,常温下比重为1.0-1.05。它是PVC的无毒稳定剂,主要用作食品包装薄膜、器皿和

泡沫人造革的稳定剂。

(四)有机锡稳定剂

有机锡稳定剂是各种羧酸锡和硫醇锡的衍生物,主要产品是二丁基惕和二辛基锡的有机化合物,其中二辛基锡化合物被更多的国家作为无毒稳定剂使用。有机锡主要用来稳定硬质PVC制品,特别是那些需要有优良透明性和热稳定性的产品当然也能稳定软质制品,但由于其价格较贵,所以一般不采用。

1.二月桂酸二丁基锡

这是一种淡黄色清澈液体,溶于所有工业用增塑剂和溶剂,本品有毒。它是有机锡中最老的品种,有优良的润滑性、透明性和耐候性,耐硫污但耐热性差。用作软质透明制品的主稳定剂,在硬质透明制品中用作润滑剂.

2.马来酸二丁基锡

这是一种白色非晶形粉末,熔点和挥发性随聚合度而异,约在100—140℃之间。本品有毒、有催泪性。主要用于要求高软化点和高冲击强度的硬质透明制品。因无润滑作用故常与二月桂酸二丁基锡并用,用量0.5-2份。

3.双(马来酸单丁酯)二丁基锡

淡黄色透明液体,无毒(允许用量3份以下)。本品有良好的耐候性、透明性、防止着色性和热稳定性,不发生硫污,常用于PVC透明硬质制品,用量2.0-4.0份。

4.双(巯基乙酸异丁酯)二正辛基锡

这是一种淡黄色液体,不溶于水,易溶于酯、醚、醇、脂肪烃和芳烃、氯化烃类以及主要类型的增塑剂。它是硫醇锡中的主要品种,最普遍使用的无毒有机锡稳定剂之一,用于硬质透明PVC(2-3份)和软质透明PVC(1份)。其缺点是耐候性差、有臭味、会硫污、无润滑作用。此外,因含酯基,故有一定的增塑作用。

5.二月桂酸二正辛基锡

这是一种黄色液体,25℃时的比重为1.01-1.02,折射率为1.46-1.47,30℃时的粘度在60 厘泊以下。本品无毒,润滑性良好,主要用于硬质透明PVC食品包装材料,用量1.5份以下。

6.马来酸二正辛基锡’

这是一种白色粉末,熔点87-105℃,不溶于水,溶于苯,乙醇,丙酮。本品无毒,具有优异的长期耐热性,主要用作硫醇锡的副稳定剂,用量常在0.3-0.5份。

(五)副热稳定剂

l.环氧化合物

环氧大豆油、环氧亚麻子油、环氧妥尔油能、环氧硬脂酸丁酯、辛酯等环氧类化合物是聚氯乙烯常用的副热稳定剂,它们与上述主稳定剂配合使用有较高的协同作用,具有光稳定

性和无毒之优点,适用于软质,特别是要暴露于阳光下的软质FVC制品,通常不用于硬质PVC制品。

2.亚磷酸酯

亚磷酸二苯一癸酯、亚磷酸一苯二癸酯也是聚氯乙烯的副热稳定剂,特别在含钡/镉和钙/锌稳定剂体系中使用可改善制品的透明性。但会水解,因此不能在须与水接触的聚氯乙烯制品中用作副稳定剂。

3.其它有机化合物

二苯基硫脲、2—苯基吲哚、β—线基丁烯酸酯类、三羟甲基丙烷、硫代月桂酸酐、以及高沸点的多元醇如季戊四醇、山梨糖醇和甘露醇等与主热稳定剂并用也可发挥协同作用。

硫醇是环氧树脂固化剂

硫醇是环氧树脂固化剂的最要品种,主要用于胶粘剂领域。环氧树脂固化剂品种繁多,包括常温和加热固化剂2大类,能满足大部分场合使用要求。但在低温速固化领域,只有硫醇较适用,它在快速修补胶及冬季作业场合有很大优势,其他同化剂无法替代。由于硫醇同化剂的生产技术要求较高,国内尚无生产,一般为进口产品,如美国的3-800牌号应用较为普遍。为填补国内空白,广州川井电子材料有限公司采用制备多元硫醇酯并进而扩链的方法,制备出了硫醇固化剂,并在固化性能方面作了应用研究。 一、实验部分 1、主要原料 β-巯基丙酸:工业品,德国Brunobock公司;季戊四醇:工业品,瑞典柏斯托公司;甲苯和对甲苯磺酸:化学纯,广东西陇化工厂;环氧树脂828(EEW:190),工业品,shell 公司;1,8-二氮杂-双环十一烯-7(DBu):工业品,日本Appollo公司;苄基二甲胺及DMP-30:工业品,台湾长春树脂厂。 2、固化剂的合成 (1)反应原理 β-巯基丙酸与季戊四醇反应如下: 此处的关键点在于控制A(SH)4用量,尽可能的使A(SH)4分子上有1个巯基与环氧基反应;专家强调:否则容易造成凝胶使扩链反应失败。 a.在装有机械搅拌、温度计、回流冷凝管的2000mL三口烧瓶中,加入136g(1.0mol)季戊四醇,466g(4.4mol)β-巯基丙酸,300mL甲苯和1.90g对甲苯磺酸,回流反应5h自然冷却,用去离子水洗涤到中性,减压蒸馏得无色油状液体季戊四醇四巯基丙酸酯以A(SH)4表示),重427g,产率96.7%。 b.取78gA(SH)4和22g环氧树脂828置于烧瓶中,加热到100℃反应4h冷却,得黏稠状

PVC热稳定剂的种类划分及作用机理

PVC热稳定剂的种类划分及作用机理 2009/1/8/09:24 来源:太原市塑料研究所作者:白启荣 慧聪塑料网讯:1塑料热稳定剂种类划分 热稳定剂是一类能防止或减少聚合物在加工使用过程中受热而发生降解或交联,延长复合材料使用寿命的添加剂。常用的稳定剂按照主要成分分类可分为盐基类、脂肪酸皂类、有机锡化合物、复合型热稳定剂及纯有机化合物类。 1)盐基类热稳定剂:盐基类稳定剂是指结合有“盐基”的无机和有机酸铅盐,这类稳定剂具有优良的耐热性、耐候性和电绝缘性,成本低,透明性差,有一定毒性,用量一般在0.5%~5.0%。(文章来源环球聚氨酯网) 2)脂肪酸类热稳定剂:该类热稳定剂是指由脂肪酸根与金属离子组成的化合物,也称金属皂类热稳定剂,其性能与酸根及金属离子的种类有关,一般用量为0.1%~3.0%。 3)有机锡类热稳定剂:该类热稳定剂可与聚氯乙烯分子中的不稳定氯原子形成配位体,而且在配位体中有机锡的羧酸酯基与不稳定的氯原子置换。这类热稳定剂的特点是稳定性高、透明性好、耐热性优异,不足之处是价格较贵。 4)复合型热稳定剂:该类热稳定剂是以盐基类或金属皂类为基础的液体或固体复合物以及有机锡为基础的复合物,其中金属盐类有钙—镁—锌、钡—钙—锌、钡—锌和钡—镉等;常用的有机酸如有机脂肪酸、环烷酸、油酸、苯甲酸和水杨酸等。 5)有机化合物热稳定剂:该类热稳定剂除少数可单独使用的主稳定剂(主要是含氮的有机化合物)外,还包括高沸点的多元醇及亚磷酸酯,亚磷酸酯常与金属稳定剂并用,能提高复合材料的耐候性、透明性,改善制品的表面色泽。 2PVC热稳定剂的作用机理 1)吸收中和HCL,抑制其自动催化作用。这类稳定剂包括铅盐类、有机酸金属皂类、有机锡化合物、环氧化合物、酚盐及金属硫醇盐等。它们可与HCL反应,抑制PVC脱HCL的反应。 2)置换PVC分子中不稳定的烯丙基氯原子抑制脱PVC。如有机锡稳定剂与PVC 分子的不稳定氯原子发生配位结合,在配位体中,有机锡与不稳定氯原子置换。 3)与多烯结构发生加成反应,破坏大共轭体系的形成,减少着色。不饱和酸的盐或酯含有双键,与PVC分子中共轭双键发生双烯加成反应,从而破坏其共轭结构,抑制变色。

PVC热稳定剂品种简介

PVC热稳定剂品种简介 聚氯乙烯主稳定剂是指那些单独使用时就有稳定效果的化合物,而副稳定剂是那些单独使用无效而与主稳定剂配合时却起增效作用的化合物。某些主稳定剂之间或某些主副稳定剂之间选择使用后会起协同作用。 一、盐基性铅盐 盐基性铅盐是用于聚氯乙烯最早也是最广泛的一种热稳定剂,呈碱性,故能与PVC受热后产生的HCl反应而起稳定作用。从毒性、抗污性和制品透明性来看,铅盐并不理想。但它的稳定效果好、价格低廉,故仍大量用于廉价的PVC挤出和压延制品中。因它有优良的电性能和低吸水性,故广泛地用作PVC的电绝缘制品、唱片和泡沫塑料的稳定剂。 1.1、三盐基硫酸铅(也称三碱式硫酸铅) 白色粉末,比重7.10,味甜,有毒;易吸湿,无可燃性和腐蚀性。不溶于水,但能溶于热的醋酸胺,潮湿时受光后会变色分解。折射率2.1,常用作电绝缘产品的稳定剂。 1.2、二盐基亚磷酸铅 这是一种细微针状结晶粉末;比重6.1,味甜有毒;200℃左右变成灰黑色,450℃左右变成黄色。本品不溶于水和有机溶剂,溶于盐酸。折射率2.25,有抗氧剂作用,是一种优良的耐气候性稳定剂。 二、金属皂类 金属皂类也是一类广泛使用的聚氯乙烯热稳定剂。以羧酸钡、羧酸镉、羧酸锌、羧酸钙的单质或混合物使用。其稳定作用是由于它能在聚氯乙烯分子链上开始分解的地方起酯化作用。稳定作用的强弱与金属皂中的金属比、羧酸类型以及配方中是否存在诸如亚磷酸酯、环氧化油、抗氧剂等协合剂有关。其中镉皂和锌皂的稳定作用最大。 2.1、硬脂酸铅 这是一种细微粉末,它不溶于水,溶于热的乙醇和乙醚。在有机溶剂中加热溶解,再经冷却成为胶状物。遇强酸分解为硬脂酸和相应的铅盐,易受潮。有良好润滑性,熔点低而确保其有良好分散性。 2.2、2—乙基乙酸铅 它可溶于溶剂和增塑剂。通常配成57-60%的矿物油或增塑剂的溶液出售。广泛用作泡沫塑料中发泡剂偶氮二甲酰胺的活化剂。 2.3、水杨酸铅 这是一种白色结晶粉末,比重2.36,折射率1.76。兼有PVC热稳定剂和光稳定剂作用。 2.4、三盐基硬脂酸铅 这是一种白色粉末,比重2.15,280-300℃时分解,遇100℃以上高温易结块。溶于乙醚,有毒,无可燃性和腐蚀性。折射率1.60。本品润滑性较好,有良好的光稳定性,广泛用于PVC唱片配方中。 2.5、二盐基邻苯二甲酸铅 白色细微结晶粉末,比重4.5。不溶于普通溶剂。本品为弱酸性,其盐基部分易碳酸化。折射率1.99。当配方中含有易皂化的增塑剂时稳定作用优于三盐基硫酸铅。 2.6、三盐基马来酸铅(三盐基顺丁烯二酸铅) 微黄色细粉末,比重6.0,折射率2.08,有毒,无可燃性和腐蚀性,有良好的色泽稳定性,并有消灭不稳定双烯结构作用。 2.7、硬脂酸钡 白色细微粉末,钡含量19.5-20.6%,比重1.145,熔点225℃以上。不溶于水,但溶于热的乙醇。在有机溶剂中加热溶解,经冷却后成胶状物。遇强酸分解为硬脂酸和相应的钡盐,易受潮。是必须避免硫污时供选用的热稳定剂,也是高温下加工时采用的润滑剂。 2.8、丹桂酸钡

环氧树脂的固化机理及其常用固化剂

3.8 环氧树脂通过逐步聚合反应的固化 环氧树脂的固化剂,大致分为两类: (1)反应型固化剂 可与EP 分子进行加成,并通过逐步聚合反应的历程使它交联成体型网状结构。 特征:一般都含有活泼氢原子,在反应过程中伴有氢原子的转移。如多元伯胺、多元羧酸、多元硫醇和多元酚等。 (2)催化型固化剂 可引发树脂中的环氧基按阳离子或阴离子聚合的历程进行固化反应。 如叔胺、咪唑、三氟化硼络合物等。 3.8.1 脂肪族多元胺 1、反应机理 2 H CH CH 2 R N O R N CH 2OH CH + OH 如被酸促进(先形成氢键)

形成三分子过渡状态(慢) X R"NH CH 2O CH R R' + _ 三分子过渡状态使环氧基开环 X R" N + _ 质子转移(快)

2、常用固化剂 乙二胺2H 2N CH 2 CH 2 N 二乙烯三胺 H 2H 2 N CH 2CH 2N CH 2CH 2N 三乙烯四胺H 2 H 2 H N CH 2CH 2N CH 2CH 2N CH 2CH 2N 四 乙 烯 五 胺 H 2 H 2 H H N CH 2CH 2N CH 2CH 2N CH 2CH 2N CH 2CH 2N 多乙烯多胺 H 2N CH 2CH 2N CH 2 n 试比较它们的活性、粘度、挥发性与固化物韧性的相对大小? 脂肪胺类固化剂的特点 (1)活性高,可室温固化。 (2)反应剧烈放热,适用期短; (3)一般需后固化。室温固化7d 左右,再经 2h/80~100℃后固化,性能更好; (4)固化物的热变形温度较低,一般为80~90 ℃; (5)固化物脆性较大; (6)挥发性和毒性较大。 课前回顾 1、海因环氧树脂的结构式与主要性能特点? 2、二氧化双环戊二烯基醚环氧树脂的特点? 3、TDE-85环氧树脂的结构式与性能特点? 4、脂肪族环氧树脂的特点及用途? 5. 有机硅环氧树脂的特点? 6、环氧树脂的固化剂可分为哪两类,分别按什么反应历程进行固化?特点是什么?两类固化剂的代表有哪些? 7、脂肪族多元胺固化剂的催化剂有哪些?活性顺序是怎样的? 8、常用的脂肪族多元胺有哪些?多乙烯多胺的结构通式?它们的活性与挥发性相对大小顺序? 9、脂肪族多元胺类环氧固化剂的主要特点有哪些? 3、 化学计量 胺的用量(phr )= 胺当量×环氧值 胺当量= 胺的相对分子量÷胺中活泼氢的个数 phr 意义:每100份树脂所需固化剂的质量份数。

环氧树脂的固化机理及其常用固化剂

环氧树脂得固化机理及其常用固化剂 反应机理 酸催化反应机理催化剂:质子给予体,促进顺序:酸〉酚>水>醇 固化剂分类 反应型固化剂 ?可与EP分子进行加成,通过逐步聚合反应交联成体型网状结构 ?一般含有活泼氢,反应中伴随氢原子转移,如多元伯胺、多元羧酸、多元硫醇与多元酚 催化型固化剂 ?环氧基按阳离子或阴离子聚合机理进行固化,如叔胺、咪唑、三氟化硼络合物 常见固化剂 ?脂肪胺固化剂 ?芳香族多元胺

?改性多元胺 ?多元硫醇 ?酸酐类固化剂 脂肪胺固化剂 脂肪胺固化特点: ?活性高,可室温固化 ?反应剧烈放热,适用期短 ?一般需后固化,室温7d再80-100℃2h ?固化物热形变温度低,一般80—90℃ ?固化物脆性大 ?挥发性及毒性大 芳香族多元胺

芳香族多胺特点: ?固化物耐热性好,耐化学性机械强度均优于脂肪族多元胺 ?活性低,大多加热固化 ?氮原子因苯环导致电子云密度降低,碱性减弱,以及苯环位阻效应 ?多为固体,熔点高,工艺性差 ?液化,低共熔点混合,多元胺与单缩水甘油醚加成 改性多元胺 a、环氧化合物加成: ?加成物分子量变大,沸点粘度增加,挥发性与毒性减弱,改善原有脆性b、迈克尔加成: ?丙烯腈与多元胺

?胺得活泼氢对α,β不饱与键能迅速加成 ?腈乙基化物降低活性,改善与EP相容性特别有效 c、曼尼斯加成: 曼尼斯反应(Mannich reaction)为多元胺与甲醛、苯酚缩合三分子缩合。 ?产物能在低温、潮湿、水下施工固化EP ?典型产品T-31:二乙烯三胺+甲醛+苯酚 ?适应土木工程用于混凝土、钢材、瓷砖等材料 ?粘结得快速修复与加固 d、硫脲—多元胺缩合: ?硫脲与脂肪族多元胺加热至100℃缩合放出氨气 ?能在极低温下(0℃以下)固化EP e、聚酰胺化:

PVC稳定剂的作用机理及用途

PVC稳定剂的作用机理及用途 热稳定剂是PVC加工不可缺少的主要助剂之一,PVC热稳定剂使用的份数不多,但其作用是巨大的。在PVC加工中使用热稳定剂可以保证PVC不容易降解,比较稳定。PVC加工中常用的热稳定剂有碱式铅盐类稳定剂、金属皂类稳定剂、有机锡稳定剂、稀土稳定剂、环氧化合物等。PVC降解机制复杂, 不同稳定剂的作用机制也不相同,所达到的稳定效果也有所区别。 1. PVC的热降解机理 PVC在100~150℃明显分解,紫外光、机械力、氧、臭氧、氯化氢以及一些活性金属盐和金属氧化物等都会大大加速PVC的分解。PVC的热氧老化较复杂,一些文献报道将PVC的热降解过程分为两步。(一)脱氯化氢:PVC聚合物分子链上脱去活泼的氯原子产生氯化氢,同时生成共轭多烯烃;(二)更长链的多烯烃和芳环的形成:随着降解的进一步进行,烯丙基上的氯原子极不稳定易脱去,生成更长链的共轭多烯烃,即所谓的“拉链式”脱氢,同时有少量的C-C键的断裂、环化,产生少量的芳香类化合物。其中分解脱氯化氢是导致PVC老化的主要原因。关于PVC的降解机理比较复杂,没有统一的定论,研究者提出的主要有[4]自由基机理、离子机理和单分子机理。 2. PVC的热稳定机理 在加工过程中,PVC的热分解对于其他的性质改变不大,主要是影响了成品的颜色,加入热稳定剂可以抑制产品的初期着色性。当脱去的HCl质量分数达到0.1%,PVC的颜色就开始改变。根据形成的共轭双键数目的不同,PVC会呈现不同种颜色(黄、橙、红、棕、黑)。如果PVC热分解过程中有氧气存在的话,则将会有胶态炭、过氧化物、羰基和酯基化合物的生成。但是在产品使用的长时间内,PVC的热降解对材料的性能影响很大,加入热稳定剂可以延迟PVC降解的时间或者降低PVC降解的程度。 在PVC加工的过程中加入热稳定剂可以抑制PVC的降解,那么热稳定剂的起到的主要作用有:通过取代不稳定的氯原子、吸收氯化氢、与不饱和部位发生加成反应等方式抑制PVC分子的降解。理想的热稳定剂应该具有多种功能:(1)置换活泼、不稳定的取代基,如连接在叔碳原子上的氯原子或烯丙基氯,生成稳定的结构;(2)吸收并中和PVC加工过程中放出的HCl,消除HCl的自动催化降解作用;(3)中和或钝化对降解起催化作用的金属离子及其它有害杂质; (4)通过多种形式的化学反应可阻断不饱和键的继续增长,抑制降解着色;(5) 最好对紫外光有防护屏蔽作用。 3. PVC稳定剂、作用机理及用途 3.1 铅盐稳定剂 铅盐稳定剂[7]可分为3类:(1)单纯的铅盐稳定剂,多半是含有PbO的盐基性盐;(2)具有润滑作用的热稳定剂,主要是脂肪酸的中性和盐基性盐;(3)复合铅盐稳定剂,以及含有铅盐和其它稳定剂与组分的协同混合物的固体和液体复合稳定剂。 铅盐稳定剂的热稳定作用较强,具有良好的介电性能,且价格低廉,与润滑剂合理配比可使PVC树脂加工温度范围变宽,加工及后加工的产品质量稳定,是目前最常用的稳定剂。铅盐稳定剂主要用在硬制品中。铅盐类稳定剂具有热稳定剂好、电性能优异,价廉等特点。但是铅盐有毒,不能用于接触食品的制品, 也不能制得透明的制品, 而且易被硫化物污染生成黑色的硫化铅。 3.2 金属皂类稳定剂 硬脂酸皂类热稳定剂一般是碱土金属(钙、镉、锌、钡等)与硬脂酸、月桂酸等皂化制取。产品种类较多,各有其特点。一般来说润滑性硬脂酸优于月桂酸,而与PVC相容性月桂酸优于硬脂酸。 金属皂由于能吸收HCl,某些品种还能通过其金属离子的催化作用以脂肪酸根取代活性部位的Cl原子,因此可以对PVC起到不同程度的热稳定作用。PVC工业中极少是有单一的金属

宝石胶固化剂介绍

改性胺 科宁环氧固化剂 品名类型色 泽 粘度 (CPS/25°C) 胺价 活 泼 氢 当 量 配合 比 PHR 凝胶 时间 (小时: 分): 特 Versamine C-30 改性脂 环胺 3 300-450 235- 295 112 59 0:38 低黏度 好,抗高 Versamine C-31 改性脂 环胺 2 50-100 290- 360 86 45 0:31 极低黏度 好,抗 高 Versamine C-43 改性脂 环胺 2 4500-6500 440- 510 61 -- 0:10:30 可在0度 固 高 Versamine 1000 改性胺 1 300-350 < 100 87 46 1:04 色浅,无 热收缩 地 Capcure 3800 非催化 硫醇 2 10000-15000 -- 270 110 0:04-0:06 需胺催化 可做促 快 Capcure 40 SecHV 预催化 硫醇 2 8000-15000 -- 224 100 0:00:40 固化速度 对玻璃和 优异的 可 固 剂 Capcure L0F 聚硫醇 2 10000-20000 -- 270 110 0:04-0:06 低气味, 快剂 Capcure WR-6 预催化 硫醇 2 10000- 350000 -- 174 79 0:04-0:07 减少吸水 黏度,低 黏 Versamine EH-50 叔胺 3 300-350 466- 510 -- 1-10 -- 浅色和超 的良好 用 化 色 Versamine A-56 改性胺9 150-450 950- 1000 34 18 0:10 低黏度、 高耐化学 热 耐 涂 Versamine A-57 改性脂 肪胺加 成物 5 150-350 719- 769 45 24 0:14 低黏度、 向低、高 性和高机 可 耐 里 Versamine A-60 改性胺≤ 5 500 626- 726 85 45 0:94 高机械强 玻璃湿

如何选择稳定剂

如何选择适合自己配方的稳定剂 PVC用的稳定剂包括热稳定剂、抗氧剂、紫外线吸收剂和螯合剂。种类有铅盐稳定剂,钡镉类稳定剂,钙锌类稳定剂,有机锡类热稳定剂,环氧类稳定剂。 哇塞,这么多种稳定剂,该怎么选择好苦恼啊。相信大家肯定都有这种问题,下面常州博洋新材料小马为大家细细讲解如何选择适合自己的稳定剂。热稳定剂的选用原则 1.硬质PVC配方中热稳定剂的选用 硬质PVC中增塑剂加入量少或不加,要求稳定剂的加入量相应增大,且稳定效果要好。 (1)不透明硬制品常选用的为三碱式硫酸铅及二碱式亚磷酸铅,两者协同加入效果好,加入比例为2:1或 1:1,总加入量为3-5份。 (2)透明硬制品不用铅盐类,常选用除Pb、Ca之外的金属皂类及有机锡、有机锑和稀土稳定剂。其中金属皂类加入量为3-4份,有机锡类为1-1.5份。 2. 软质PVC及PVC糊制品配方中热稳定剂的选用 这类配方中增塑剂含量高,加工温度低,可适当减少稳定剂的加入量。 (1)不透明软制品常选铅盐(1-2份)与金属皂类(1-2份)协同加入。(2)半透明软制品常选用几种金属皂类并用,加入量2-3份。 (3)透明软制品常用有机锡类(0.5-1份)与金属皂类(1-2份)协同加入。也可用有机锑及稀土稳定剂代替有机锡。 3. 无毒PVC配方中热稳定剂的选用 (1)不宜选用铅盐类稳定剂。 (2)除Pb、Cd皂外其它金属皂类稳定剂可选用。 (3)无毒有机锡类可选用。

(4)有机锑和稀土类可选用。 (5)辅助稳定剂中的环氧类无毒,可以选用。 4. 主稳定剂的协同作用 在一个PVC配方中,往往选用几个主稳定剂并用,因为不同主稳定剂之间有协同作用。 (1)三碱式硫酸铅与二碱式亚磷酸铅有协同作用,两者协同比例为2:1 或1:1. (2)不同金属皂之间有协同作用,金属皂类热稳定顺序如下:CdZn>Pb>Ba、Ca。一般高热稳定性金属皂与低热稳定性金属皂类之间协同作用效果好,如 Ca/Zn、Cd/Ba、Ba/Pb、Ba/Zn及Ba/Cd/Zn等复合稳定剂。 (3)金属皂类的协同使用最为常用,它们很少单独使用。 (4)金属皂类与有机锡类之间有协同作用,在透明配方中两者往往协同加入。(5)部分稀土类与有机硒类有协同作用,用稀土取代有机锡可降低成本。 5. 主、辅稳定剂的协同作用 (1)金属皂类与环氧类 (2)金属皂类与多元醇类 (3)金属皂类与β-二酮化合物 (4)部分稀土与环氧类 (5)金属皂类与亚磷酸酯类。 6.热稳定剂与其它助剂的并用 有些稳定剂本身无润滑作用,如铅盐、有机锡、有机锑及稀土类,配方中要另外加入 润滑剂。有些稳定剂本身有润滑作用,如金属皂类,配方中可不加或少加润滑剂。含硫有 机锡类和有机锑类热稳定剂不可与含Pb、Cd类稳定剂并用,两者并用会发生硫污染。 热稳定剂与其它助剂的并用 (二)抗氧剂 PVC制品在加工使用过程中,因受热、紫外线的作用发生氧化,其氧化降解 与产生游离基有关。主抗氧剂是链断裂终止剂或称游离基消除剂。其主要作用是与游离基 结合,形成稳定的化合物,使连锁反应终止,PVC用主抗氧剂一般是双酚A。还有辅助抗氧

5种辅助稳定剂说明

3 辅助稳定剂 锌皂稳定剂对PVC 的稳定性较差,属于短效热稳定剂,而且容易出现“锌烧”现象(主要原因是产生的ZnCl2为强路易斯酸,具有催化脱氯化氢的作用),但具有初期着色性优良、耐候性强等优点。钙皂类热稳定剂属于长期热稳定剂,稳定性较差,着色性强,但无毒,具有优良的润滑性。Ca/Zn 复合稳定剂就是利用二者具有的协同效应,使其成为近年来复合稳定剂中最活跃的领域。为了提高其稳定性,在复配过程中通常要添加一些辅助稳定剂,如季戊四醇等多元醇、水滑石、亚磷酸酯、β-二酮和环氧大豆油等化合物来改善Ca/Zn 复合稳定剂的性能。 3.1 亚磷酸酯 亚磷酸酯是Ca/Zn 复合稳定剂中应用最广的辅助稳定剂,在复合稳定剂中是不可缺少的成份。用做辅助稳定剂的亚磷酸酯主要有亚磷酸三苯酯、亚磷酸三癸酯、亚磷酸三壬基苯酯、亚磷酸三辛酯等。对于软质PVC,亚磷酸酯一般与β-二酮、环氧大豆油等配合使用。亚磷酸酯具有增塑作用,不适用于硬质PVC;具有抗氧化能力,可以捕捉氯化氢,加成多烯烃,能大大提高PVC 稳定体系的稳定性能。在液体稳定剂中添加量一般为10%~35%(质 量分数),主要品种有亚磷酸苯二异辛酯、亚磷酸辛酯、亚磷酸二苯癸酯、亚磷酸二癸苯酯、亚磷酸三壬酯等。目前国内多数选用水解亚磷酸苯二异辛酯,它能有效地改善PVC 制品的着色、热稳定性、透明性、防结垢和耐候性等效果。亚磷酸酯是应用最广泛的辅助稳定剂,长期以来普遍用于钙锌无毒液体复合稳定剂应用中。最有效的是亚磷酸烷基/芳基酯。如日本Adeka -Argels 公司开发的Mark-1500 对稳定剂具有优良的初期着色性能。 3.2 环氧化合物 在环氧化合物中,传统上被用作辅助稳定剂是环氧大豆油。近年来的研究表明,双酚A 二缩水甘油醚、双酚F 二缩水甘油醚、酚醛树脂的缩水甘油醚、四苯基乙烷的缩水甘油醚、脂环族环氧树脂、偏苯三酸三缩水甘油酯、对苯二甲酸二环氧丙酯等都具有较高的稳定效率。环氧化物与氯化氢反应生成氯乙醇,在钙、锌等金属皂催化作用下,取代PVC 中不稳定的氯原子而发挥稳定作用。在静态稳定试验中,环氧化合物的作用是抑制PVC 变黄。单独使用效果不佳,与亚磷酸酯并用时,其稳定效果可明显改善。环氧类辅助热稳定剂一般有环氧大豆油、环氧亚麻籽油、环氧硬脂酸丁酯、辛酯等环氧类化合物等,它们与Ca/Zn体系配合使用有较高的协同作用,具有光稳定性和无毒之优点,适用于软质,特别是要暴露于阳光下的软质PVC制品,通常不用于硬质PVC制品,其缺点是易渗出。协同作用机理[6]可认为是降解产生的HCl被环氧基团和金属皂盐吸收,HCl浓度减小,降低了PVC的脱HCl速度(HCl对PVC 降解有催化作用),从而使PVC的热稳定性得到提高。另外,在Zn盐的催化下,环氧化合物还可以有效地取代烯丙基氯原子。 3.3 多元醇 作为Ca/Zn 复合体系的辅助稳定剂的多元醇主要有季戊四醇、二季戊四醇、聚乙烯醇、四羟甲基环己醇、二三羟甲基丙烷、卡必醇,以及山梨醇、甘露糖醇、木糖醇、麦芽糖醇、异麦芽糖醇、乳糖醇和它们的脱水、半脱水产物等,这类品种与β-二酮、环氧化合物、水滑石配合用于软质PVC 中时,具有极好的协同作用。需要注意的是多元醇尽管有良好的热稳定性,但部分品种由于其自身在加工过程中的脱水着色,仍有不足之处。新品种如菊粉、三(α-羟乙基)异氰脲酸酯可以克服上述缺陷。另外,多元醇易升华,在加工过程中升华物沉积在设备上,妨碍加工。为克服这些不足,现已开发了许多用脂肪酸部分酯化的多元醇,如日本推出的Tohtlixer-101,它是一种多元醇改性物,能较好地克服了一般多元醇的缺点,同Ca/Zn 稳定体系并用,表现出良好的光稳定性、加工性和贮存稳定性。多元醇可以螯合金属离子,防止氯化物催化降解,同时在金属皂的存在下,可以置换烯丙基氯,从而使PVC 稳定。此外,多元醇较多的羟基可以与金属离子形成无色的配位体,从而缓解了硬酯酸锌

环氧树脂的固化机理及其常用固化剂

环氧树脂的固化机理及其常用固化剂 反应机理 酸催化反应机理催化剂:质子给予体,促进顺序:酸>酚>水>醇 固化剂分类 1反应型固化剂 ?可与EP分子进行加成,通过逐步聚合反应交联成体型网状结构 ?一般含有活泼氢,反应中伴随氢原子转移,如多元伯胺、多元羧酸、多元硫醇和多元酚 2催化型固化剂 ?环氧基按阳离子或阴离子聚合机理进行固化,如叔胺、咪唑、三氟化硼络合物

常见固化剂 ?脂肪胺固化剂 ?芳香族多元胺 ?改性多元胺 ?多元硫醇 ?酸酐类固化剂 1脂肪胺固化剂 脂肪胺固化特点: ?活性高,可室温固化 ?反应剧烈放热,适用期短 ?一般需后固化,室温7d再80-100℃2h ?固化物热形变温度低,一般80-90℃

?固化物脆性大 ?挥发性及毒性大 2芳香族多元胺 芳香族多胺特点: ?固化物耐热性好,耐化学性机械强度均优于脂肪族多元胺 ?活性低,大多加热固化 ?氮原子因苯环导致电子云密度降低,碱性减弱,以及苯环位阻效应?多为固体,熔点高,工艺性差 ?液化,低共熔点混合,多元胺与单缩水甘油醚加成 3改性多元胺 a、环氧化合物加成:

?加成物分子量变大,沸点粘度增加,挥发性与毒性减弱,改善原有脆性 b、迈克尔加成: ?丙烯腈与多元胺 ?胺的活泼氢对α,β不饱和键能迅速加成 ?腈乙基化物降低活性,改善与EP相容性特别有效 c、曼尼斯加成: 曼尼斯反应(Mannich reaction)为多元胺和甲醛、苯酚缩合三分子缩合。 ?产物能在低温、潮湿、水下施工固化EP ?典型产品T-31:二乙烯三胺+甲醛+苯酚 ?适应土木工程用于混凝土、钢材、瓷砖等材料 ?粘结的快速修复和加固 d、硫脲-多元胺缩合:

聚氯乙烯热稳定剂的几个理论问题

聚氯乙烯热稳定剂的几个理论问题 李杰刘芳夏菲 摘要本文试图从原子结构理论说明,硫醇有机锡比羧酸有机锡有更优异的热稳定性;金属皂初期着色性差异及有机锡长期热稳定性;纯稀土热稳定剂性能的理论分析,并归纳了影响PVC 透明性的因素。 1、概述 热稳定剂是PVC树脂能变成有实用价值的塑料不可缺少的助剂,几十年来,对PVC热分解机理及热稳定剂化作用的研究,均有很大的发展,但热稳定剂的一些理论问题,如常用的金属皂类热稳定剂,为何锌、镉、铝类的皂在PVC里初期着色性很小,而钡、钙、锶初期着色性就较大?同为Sn、Sb热稳定剂为何有机羧酸盐热稳定剂初期着色性就大?而其相应硫醇盐类的初期着色性就小?等等问题却很少见报道,作者试着用原子结构理论对一些问题进行理论分析,对从事生产和应用热稳定剂的同仁或有所补益。 2、有机锡比羧酸有机锡有更优良热稳定性 同样的烷基,硫醇锡比羧酸锡初期热稳定性更优异。其原因是由于与锡相联的硫和氧的原子结构不同所造成的。氧和硫元素在元素周期中同为第六族元素,它们区别在于其电子结构不同。 表1 氧和硫原子的电子结构及原子特性[1] Tab1:Electric structure and atomic character of oxygen and sulfur 由表1可以看出:硫原子比氧原子多一层电子,因而电子的屏蔽作用较大,使硫原子核原子共价半径较大,电离势及电负性比氧小。电负性它表示元素吸引电子(不是获得电子)倾向性的大小。总之原子结构决定了硫原子对外层电子吸引力较氧小。在外因作用下(如热、光及极性分子的诱导效应等)硫醇中的硫原子(SΘ)较羧基中与锡相联的氧原子(OΘ)更容易与PVC中不稳定氯原子相对应的碳原子(C?)形成配位键,最终取代PVC中不稳定氯原子。从根本上防止PVC脱HCL的降解反应发生。 在这里笔者要强调的是:热稳定剂起稳定化反应的几种类型中,只有消除聚氯乙烯中不稳定氯原子的反应以及抗氧化反应是从根本的上预防聚氯乙烯的降解、交联,其它的如吸收氯化氢、破坏正碳离子以及双键加成反应均是在聚氯乙烯已经分解较严重以后(已经脱HCL,形成了一些双键以后)的补救方法,因而能消除不稳定氯原子的热稳定剂都有良好的初期色相(没有或较少地形成双键)。

环氧树脂固化剂

环氧树脂固化剂 环氧树脂本身为热塑性的线型结构,受热后固态树脂可以软化、熔融,变成粘稠态或液态;液态树脂受热黏度降低。只有加入固化剂后,环氧树脂才能得到实用。如下图所示,一个完整概念的环氧树脂组成物应该由四个方面的成分组成。但在实际应用时,不一定四个方面 的成分都要具备,但树脂成分中的固化剂必不可少,可见固化剂的重要。 环氧树脂所以能取得广泛应用,就是因为这些成分多变配合的结果。尤其是固化剂,一旦环氧树脂确定之后,固化剂对环氧树脂组成物的工艺性和固化产物(产品)的最终性能起决定性作用。 固化剂定义及分类 1、定义 环氧树脂本身是热塑性的线型结构,不能直接拿来就应用,必须在向树脂中加入第二组分,在一定温度(或湿度)等条件下,与环氧树脂的环氧基进行加成聚合反应,或催化聚合反应,生成三维网络结构(体型网状结构)的固化物后才能使用。这个充当第二组分的化合物称作固化剂,分为加成型固化剂和触媒型固化剂。 2、固化剂的分类 固化剂按反应性和化学结构分类如下图所示 固化剂化学 1、伯胺与环氧基的反应 当用伯胺固化环氧树脂时,在第一阶段伯胺和环氧基反应生成仲胺;在第二阶段,生成的仲胺和环氧基反应生成叔胺,并且生成的羟基亦能和环氧基反应、具有加速反应进行的倾向。 胺的化学结构不同,它们与环氧基的反应速度也不相同,在初期反应速度比较快,环氧基消耗的比较我,到达一定的时间后,环氧基的消耗不像开始那么多。环氧基的反应程度在3周的期间内非常低,聚酰胺只有40%,二亚乙基三胺也只不过65%,要进一步提高环氧基的反应程度,有必要在高温下进行固化反应。

当多胺固化环氧树脂时,醇或酚的存在会促进反应加快,但不能改变最后的反应程度。醇、酚的羟基和环氧基的氧原子形成氢键而促进开环,醇羟基容易开成这种键,因此显示更大的从促进作用。除了酚、醇之外,有机酸、硫酰胺等对反应也有促进作用。但邻苯二甲酸、顺丁烯二酸没有促进作用,这是由于它们和胺反应和成了酰亚胺之故。有些基团具有抑制作用。如:-O R、-C O O R、-S O3R、- C O N2R、-S O2N R2、-C N、-N O2等。 2、叔胺与环氧基的反应 叔胺是强碱性化合物。叔胺固化环氧树脂按阴离子聚合反应进行。阴离子聚合固化剂首先作用环氧基,使其开环,生成氧阴离子,氧阴离子攻击环氧基,开环加成,这种开环加成连锁反应进行下去固化环氧树脂。 3、咪唑化合物与环氧基反应 咪唑化合物为五元杂环化合物。结构式中含有两个氮原子,一个氮原子处于仲胺,另一个氮原子为叔胺。首先仲胺基的活泼氢和环氧基反应生成加成物,该加成物再和别的环氧基反应生成在分子内兼具⊕和☉离子的离子络合物,生成的离子络合物的☉和环氧基反应,以连锁反应的方式开环聚合固化环氧树脂。咪唑的阴离子聚合受加成物生成的制约,因此聚合速度比叔胺慢。 4、三氟化硼-胺络合物与环氧基的反应 B F3是环氧树脂的阳离子型催化剂,由于反应剧烈,无法应用,以与路易斯碱(胺类、醚类等)形成络合物的形式使用。B F3胺络合物是应用最早的潜伏型固化剂之一。它的阳离子聚合反应历程引发环氧基开环聚合,在和环氧基反应时,环氧基拉引B F3胺络合物的氢原子生成氧翁阳离子;这种阳离子作为引发剂,以阳离子反应历程链锁式的进行开环均聚,固化环氧树脂。 5、巯基(-S H)与环氧基的反应 聚硫醇化合物末端为硫醇基(-S H),单独使用时活性很差,在室温上反应极其缓慢,几乎不能进行,可是在适当的促进剂存在下可以形成硫醇离子。固化反应以数倍多元胺的速度进行,这个特点在低温固化时更能显示出来。当有叔胺存在时,硫醇基首先和叔胺反应生成硫醇离子,该离子和环氧基反应。 另外,叔胺和环氧基反应生成环氧阴离子,该阴离子和巯基进行亲核反应。 6、酚羟基和环氧基的反应

PVC热稳定剂常用测试方法解析

PVC热稳定剂常用测试方法解析 PVC最终制品用于不同的行业。性能不同,PVC热稳定剂的评价和测试就需要不同的方法。总的来说,有静态和动态两大种方法,其中静态的有刚果红试纸法、老化烘箱试验和电势法,动态的有转矩流变仪实验和动态双辊实验。 1、刚果红试纸法 根据国标GB2917.1–2002,刚果红实验法作为测试PVC热稳定剂的一种主要测试方法,其实验装置如图1所示。 使用油浴锅,内置甘油,将要测试的PVC同热稳定剂混合均匀后的物料装入小试管之中,轻微震荡使物料变的结实,然后放入油浴锅之中,油浴锅中甘油提前设定温度约170℃,使小试管内PVC物料的上表面与甘油的上表面相平,小试管上方,塞入一个带有细玻璃管的塞子,玻璃管上下通透,在玻璃管的下方将刚果红试纸打卷插入,使刚果红试纸的下边缘与PVC物料的上边缘相距约2 cm。实验开始后,记录下从放入试管至试管内刚果红试纸开始变为蓝色的时间,即为热稳定时间。这个实验的基本理论是当PVC在约170℃下的温度时,会急剧分解,但由于添加了热稳定剂,抑制了其分解,随着时间的延长,热稳定剂发生消耗,当消耗完成时,PVC会急剧分解释放出HCl气体,此时,试管内的刚果红试剂由于极易与HCl 发生反应而变色,会立刻显现出来,记录下此时的时间,通过时间的长短来判断热稳定剂效果的优劣。 2、静态烘箱试验 制备除热稳定剂之外PVC粉与其它加工助剂(如润滑剂、抗冲改性剂、填充剂等)的高速混合试样。取一定上述试样,按一定比例添加不同的热稳定剂,混合均匀后,加至双棍混

炼机上进行试片制备,一般在不添加增塑剂的情况下,双辊温度设定在160~180℃,在添加增塑剂时,辊温一般在140℃左右。利用双棍反复压片得到均匀的片后下片,然后剪片,得到一定尺寸的含不同热稳定剂的PVC样片。将不同PVC试片放置于一个固定装置上,然后放置到恒温(一般为180℃)的烘箱内,每隔一段时间(如10 min或15 min),来记录试片的颜色变化,直到变黑为止。 通过烘箱老化试验,可以判断热稳定剂对于PVC热稳定效果的优劣,尤其是对颜色变化的抑制能力,一般认为,PVC受热时,颜色会发生白–黄–褐–棕–黑一系列由浅至深的变化,通过一定的时间下PVC的颜色即可判断降解情况。 3、电势法(电导法) 电势法测定PVC热稳定效果的实验装置如图2所示: 实验装置主要有四部分组成,最右侧为惰性气体装置,一般使用氮气,但有时也使用空气,区别在于当使用氮气保护时,可以避免空气中的氧气氧化PVC母链而产生的降解。实验加热装置一般为180℃左右的油浴锅,油浴锅内部放入带有PVC和热稳定剂的混合料,当有HCl气体产生后,就会随着惰性气体一起进入左侧的NaOH溶液中,NaOH迅速吸收HCl,导致溶液的pH值发生变化,通过记录pH计随时间的变化,可以判断不同的热稳定剂的效果。实验结果中,处理得到的pH–t曲线分为诱导期和增长期,诱导期的长短随着热稳定剂效果的优劣而不同。 4、转矩流变仪

硫醇固化剂合成和应用

硫醇固化剂合成和应用 硫醇是环氧树脂固化剂的最要品种,主要用于胶粘剂领域环氧树脂固化剂品种繁多,包括常温和加热固化剂2大类,能满足大部分场合使用要求。但在低温速固化领域,只有硫醇较适用,它在快速修补胶及冬季作业场合有很大优势,其他同化剂无法替代。由于硫醇同化剂的生产技术要求较高,国内尚无生产,一般为进口产品,如美国的3-800牌号应用较为普遍。为填补国内空白,广州川井电子材料有限公司采用制备多元硫醇酯并进而扩链的方法,制备出了硫醇固化剂,并在固化性能方面作了应用研究。 一、实验部分 1、主要原料 β-巯基丙酸:工业品,德国Brunobock公司季戊四醇:工业品,瑞典柏斯托公司甲苯和对甲苯磺酸:化学纯,广东西陇化工厂;环氧树脂828(EEW:190),工业品,shell公司;1,8-二氮杂-双环十一烯-7(DBu):工业品,日本Appollo公司;苄基二甲胺及DMP-30:工业品,台湾长春树脂厂。 2、固化剂的合成 (1)反应原理 此处的关键点在于控制A(SH)4用量,尽可能的使A(SH)4分子上有1个巯基与环氧基反应;专家强调:否则容易造成凝胶使扩链反应失败。

a.在装有机械搅拌、温度计、回流冷凝管的2000mL三口烧瓶中,加入136g(1.0mol)季戊四醇,466g(4.4mol)β-巯基丙酸,300mL甲苯和1.90g对甲苯磺酸,回流反应5h自然冷却,用去离子水洗涤到中性,减压蒸馏得无色油状液体季戊四醇四巯基丙酸酯以A(SH)4表示),重427g,产率96.7%. b.取78gA(SH)4和22g环氧树脂828置于烧瓶中,加热到100℃反应4h冷却,得黏稠状无色透明液体六巯基环氧接枝化合物(以B表示)。产率约100%. c.分3次取B,每次5g,分别与0.25g的苄基二甲胺,DMP-30,DBU混配,并冷却到相应的温度;取等量的828树脂也冷却到同样的温度,二者快速混合测定凝胶时间。 (2)硫醇基检测 采用丙烯腈-亚硫酸钠-HCl测试硫醇基团的含量。 (3)凝胶时间测试 采用GB/T12007.7-1989的方法测试凝胶时间。 从β-巯基丙酸和季戊四醇出发,经酯化和环氧扩链反应制备了硫醇固化剂,总产率可达95%以上。该硫醇固化剂的性能完全可以代替进口产品,某些性能如固化速度、黏度、树脂相容性还超过进口产品,有望在胶粘剂领域获得广泛应用。 三、结果与讨论 1、酯化反应

化学镀中稳定剂及加速剂的作用机理

化学镀中稳定剂及加速剂的作用机理 1、化学镀的稳定简介 化学镀中最主要的一个系列是有自催化能力的还原型化学镀液。当反应速度较快时,镀层质量变差,会出现粗糙镀层甚至粉末状镀层;同时,由于自催化一旦促发即会持续下去,甚至会因剧烈的还原反应而失去控制,导致镀液迅速失去作用。因此,需要要加入稳定剂以控制其反应速度。 稳定剂的作用是控制反应速度和抑制镀液的自发分解,从而使化学镀能有序地进行。不同的化学镀液会用到不同的稳定剂,有时还需要用到几种稳定剂以进到联合控制的作用。常用的稳定剂有以下几类。 ①元素周期表中第VI主族元素的化合物:一些硫的无机物或有机物,如硫代硫酸盐、硫氰酸盐、硫脲及其衍生物、疏基苯并噻唑、黄原酸酯等。 ②重金属离子:如铅、锡、锑、镉、锌、铋、钛等金属二价、三价离子。 ③水溶性有机物:有些含有双极性的有机阴离子,至少含有6个或8个碳原子并能在某一定位置吸附形成亲水膜功能团的有机物,如不饱和脂肪马来酸、苯亚甲基丁二酸、3-S-异硫脲鎓盐的丙烷酸盐、邻苯二甲酸酐的衍生物等。 ④某些含氧化合物:如AsO2-、IO3-、BrO3-、NO2-、MoO42-等,双氧水也属于这一类。 2、化学镀稳定剂的作用机理 化学镀稳定剂的作用机理没有统一的模式,而是因稳定剂的类别不同而有所不同,但也有着一些共同点,这就是稳定剂都是通过在表面吸附而影响金属离子的还原过程的。也就是稳定剂的添加量一般都很少的原因,因为它们只是通过电极的双电层起作用的,过多的量反而会破坏化学镀的平衡。 有机类稳定剂的作用可以认为这类稳定剂具有的表面吸附作用和影响电子交换的作用,通过吸附而改变金属离子的还原过程。因此,在一定添加量范围内,有机稳定剂有时还会有促进金属离子沉积的作用。而含氧化合物则是通过改变双电层结构而增加作为阴离子的稳定剂在表面的吸附,从而影响金属离子还原的过程。重金属离子也是通过在具催化活性表面的吸附来影响还原过程。 总之,化学镀稳定剂是通过在反应表面吸附而阻滞金属离子的还原过程来起到稳定镀液的作用。 化学镀加速剂是指在可控制的条件下提高镀速的添加剂。因此加速剂也叫做促进剂。以次亚磷酸盐为还原剂的化学镀,就常用到加速剂。化学镀镍中的许多络合剂也兼有加速剂的作用。常用的加速剂有以下几种。 (1).未被取代的短链和脂肪族二羧酸根阴离子。属于这一类的有丙二酸、丁二酸、戊二酸和已二酸等。常用的是丁二酸。 (2).短链饱和氨基酸。这是较为优良的加速剂,最典型的是氨基乙酸,它兼有缓冲剂、络合剂和加速剂三种作用。 (3).短链饱和脂肪酸。从醋酸到戊酸都属于这一类,其中以丙酸最为常用,但效果没有丁二酸和氨基乙酸好,优点是成本最低。 (4).无机离子加速剂。目前在化学镀镍中只有氟离子具有加速作用,但用量也要严格控制,用量大时不仅减少镀速,对镀液稳定性也会有影响。

聚硫醇3380S化学品安全技术说明书 (MSDS)

聚硫醇3380S化学品安全技术说明书 (MSDS) 第一部分:化学品名称 1.1 化学品中文名称:JH-3380S 1.2 化学品英文名称: 1.3 中文名称2: 1.4 分子式: 1.5 分子量: 第二部分:成分/组成信息 2.1 主要成分:硫醇和胺的混合物 2.2 含量:聚硫醇 2,4,6-三(二甲氨基甲基)苯酚 ≥80% ≤10% 2.3 CAS No. 无 90-72-2 第三部分:危险性概述 3.1 危险性类别:做常规工业或商业用途时危害低,吸入可刺激呼吸道 3.2 侵入途径:吸入;皮肤接触;眼睛接触;食入 3.3 健康危害:吸入:轻微有毒,引起呼吸道刺激;皮肤接触:引起皮肤刺激,可能引起过敏性皮肤反应;眼睛接触:相似物质并不并认为是眼睛刺激物;食入:吞咽可能有害 第四部分:急救措施 4.1 皮肤接触:立即用肥皂和清水清洗,如果刺激加重,请立即就医。 4.2 眼睛接触:立即用清水冲洗15分钟以上,时而翻转眼睑;不要擦揉眼睛,机械的动作可能导致眼睑受伤。.立刻就医。 4.3 吸入:立即移至新鲜空气处。如出现对健康不利的影响请立即就医。 4.4 食入:彻底清洗口腔;如发生自然呕吐,请移至通风较好的地方;立刻就医。 第五部分:消防措施 5.1 危险特性: 5.2 有害燃烧产物:一氧化碳、二氧化碳、硫氧化物、氮氧化合物 5.3 灭火方法:一旦着火,用喷水保持容器冷却 第六部分:泄漏应急处理 6.1 应急处理:个人预防措施:使用适当的个人预防设备 环境污染预防:添加干性材料来吸收溢出物(如果大量溢出,挖沟容纳) 清理或收集方法:将泄漏的材料收集在合适的容器中处理。用水冲洗地面消除残留物 第七部分:操作处置与储存 7.1 操作注意事项:无 7.2 储存注意事项: 不能靠近环氧树脂储存 第八部分:接触控制/个体防护 8.1 职业接触限值:

常用复合稳定剂

复合稳定剂 纯的PVC树脂对热极为敏感,当加热温度达到90℃以上时,就会发生轻微的热分解反应,当温度升到120℃后分解反应加剧,在150℃,10分钟,PVC 树脂就由原来的白色逐步变为黄色—红色—棕色—黑色。PVC树脂分解过程是由于脱HCL反应引起的一系列连锁反应,最后导致大分子链断裂。防止PVC热分解的热稳定机理是通过如下几方面来实现的。 通过捕捉PVC热分解产生的HCl,防止HCl的催化降解作用。 铅盐类主要按此机理作用,此外还有金属皂类、有机锡类、亚磷酸脂类及环氧类等。 ·置换活泼的烯丙基氯原子。金属皂类、亚磷酸脂类和有机锡类可按此机理作用。 ·与自由基反应,终止自由基的反应。有机锡类和亚磷酸脂按此机理作用。 ·与共轭双键加成作用,抑制共轭链的增长。 有机锡类与环氧类按此机理作用。 ·分解过氧化物,减少自由基的数目。有机锡和亚磷酸脂按此机理作用。 ·钝化有催化脱HCl作用的金属离子。 同一种稳定剂可按几种不同的机理实现热稳定目的。 铅盐类 铅盐类是PVC最常用的热稳定剂,也是十分有效的热稳定剂,其用量可占PVC热稳定剂的70%以上。 铅盐类稳定剂的优点:热稳定性优良,具有长期热稳定性,电气绝缘性能优良,耐候性好,价格低。 铅盐类稳定剂的缺点:分散性差、毒性大、有初期着色性,难以得到透明制品,也难以得到鲜明色彩的制品,缺乏润滑性,易产生硫污染。 常用的铅盐类稳定剂有: (1)三盐基硫酸铅 分子式为3PbO.PbSO.H20,代号为TLS,简称三盐,白色粉末,密度6.4g/cm’。三盐基硫酸铅是最常用的稳定剂品种,一般与二盐亚磷酸铅一起并用,因无润滑性而需配人润滑剂。主要用于PVC硬质不透明制品中,用量一般2~7份。 (2)二盐基亚磷酸铅

相关文档