文档视界 最新最全的文档下载
当前位置:文档视界 › (推荐)分子筛吸附原理

(推荐)分子筛吸附原理

(推荐)分子筛吸附原理
(推荐)分子筛吸附原理

分子筛吸附原理

吸附是一种把气态和液态物质(吸附质)固定在固体表面(吸附剂)上的物理现象,这种固体(吸附剂)具有大量微孔的活性表面,吸附质的分子受到吸附剂表面引力的作用,从而固定在上面。引力的大小取决于:

-吸附剂表面的构造(微孔率);

-吸附质的分压;

-温度。

吸附伴随着放热,是一种可逆的现象。类似于凝结:

-如果增加压力。吸附能力增加;

-降低温度,吸附能力增加。

因此,在吸附时,要使压力升到最高,温度降到最低。解吸时,则要使压力降到最低,温度升到最高。

带有吸附床的净化工艺

也叫空气净化的“干燥-脱除CO

2

”工艺。

为使空气获得较低的净化前温度,常用制冷机组或空气水冷塔

对其进行降温。(图中的“X10”表示预冷设备。)

净化装置位于空气压缩机、空气预冷系统之后,为了保持净化

器工作的连续性,需要使用两台吸附器。当一台工作时(即正在脱除H

2

O

与CO

2

),另一台处于再生状态。

吸附阶段

由于氧化铝吸附CO

2的效果很差,故它主要用于吸附H

2

O,而位于

其后的分子筛则处理干燥后含有 CO

2

的空气。

注:分子筛具有很强的吸水性,因此,在吸附和再生期间绝不

能让分子筛与水份接触而降低其吸附CO

2

的能力。如果有意外情况发生使

水份带入了分子筛,惟有高温特殊再生(见10 章)才能够使其恢复原有的吸附性能。

下图显示了吸附质在临近穿透的时刻(在吸附阶段结束),CO

2 O在两种吸附床层中及给定时间内的含量分布图。

与H

2

吸附器必须在吸附质的前锋抵达吸附出口之前进行再生(即在穿透之前)。

再生阶段:

再生就是利用压力和温度两方面的因素,将吸附器里的吸附质排出去。

首先,将吸附器降压至较低的压力(大气压力)。用加热的干燥气体,解吸并带走所吸附的吸附质。然后,用未加热的干燥气体,将热端面推向铝胶床层,直至其出口,这样。吸附剂又恢复到随之而来的吸附阶段时的正常温度。

过程见图示:

吸附器1

时间-降压;

-用加热的干气体吹扫吸附器;

-用未经加热的干气体吹扫吸附器;

-升压。

在有其他中间过程的大型装置中,该循环过程可能更为复杂。

下表列出了大型装置的各个阶段,并附有步进条件。

吸附器 1 FOR BOTTLE 1

各步逐可以由下面的图示说明。

例如:

-吸附器R01处于再生状态;-吸附器R02处于工作状态。

第一步

吸附器R01:处于吸附状态 吸附器R02:并联状态 阀门动作: V1,V3:打开 V2,V4:打开 步进条件:

V1,V2 ,V3,V4 开 PDSL -2:无压差报警 切换时间到

第二步

吸附器R01:切断状态 吸附器R02:吸附状态 阀门动作: V2:关闭 V4:关闭 步进条件: V2与V4关 闭反馈

第四步

吸附器R01:吹除状态 吸附器R02:吸附状态 阀门动作: V6:打开 V8:打开 步进条件: V6和V8 开

R01:降压状态 R02:吸附状态 :打开 开

-1:低压报警 -1 计时

R01:加热状态 R02:吸附状态 :关闭 TSL 报警

第六步

吸附器R01:冷却 吸附器R02:吸附 阀门动作: 无

步进条件: 冷却计时结束 无TSH 报警

报警:检查降温时间

调节

为了减少热量损耗和机械疲劳,最好使吸附器切换的循环周期尽可能长,而升压和降 压时间尽可能短,以减少再生后的等待时间。

第七步

吸附器R01:切断状态 吸附器R02:吸附状态 阀门动作: V6:关闭 V8:关闭 步进条件: V6与V8 关 报警

第八步

吸附器R01:升压状态 吸附器R02:吸附状态 阀门动作: V11:打开 步进条件: PDSL -1: 无压差 报警

注:吸附器升压、降压时间缩短的可能性,应使气流在吸附器内的穿行速度不超出允许范围,以减少机械损耗。

调节再生气的流量是为了能在要求的时间内完成吸附剂的再生。

调整安全的加热温度。

调节加热的时间,以便使吸附器出口气流温度实际超过要求的温度(峰值 t2, t3, t4, )。

调节PDSL和PSL到20kPa。

在再生期间,再生气流在吸附器进、出口处的温度分布,见于下图:

从吸附器入口曲线,可以识别出加热阶段和冷却阶段。温度曲线中的衰减部份是由于

再生吸附器上游的金属余热而形成的(管道,无旁通的加热器)。

吸附器出口的温度曲线,依次对应着各个再生步骤(在该再生过程中CO

的解吸不重

2

要,固不考虑)。

当时间达到t1时,吸附器的热端面的前锋还未抵达水份饱和的吸附区域,水的解吸是在冷状态下进行。

在时间处于t1和 t2之间时,热端面的前锋已经抵达水份饱和的吸附域,水份的解吸现在已是在热状态下进行了,并且解吸加剧。

从再生开始起,吸附器出口的气流中,水份就是饱和的。

当到达t2时,水份已被完全解吸,导入吸附器的过剩热量以“热峰”的形式呈现出来

(t2, t3, t4)。

到t3时刻,冷却开始,进入吸附器的冷端面前锋随即在出口呈现出来。出吸附器的气流温度以类似于吸附器冷却时的入口温度的规律递减。并趋近于冷却温度Tref,当其与Tref的温差达到时,再生便告完成。

虚线示意的是使用完全干燥的吸附剂时吸附器出口的温度曲线。

“典型”故障

-阀门故障(堵塞,泄漏等);

-升压和降压期间,由于压力调节开关动作失常导致循环中止;

-蒸汽加热器泄漏,导致再生气流含湿(由水份分析控制);

-加热与冷却超时(再生气量不足);

-再生温度太低(再生气量太大);

-两台吸附器的压降不等,切换行期间引起进冷箱空气冷箱的压力波动,给装置调节带来困难;

-吸附剂破损现象,即由于受气流冲击使吸附剂颗粒破碎,形成粉尘(降压,升压速度过快)。

(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

分子筛主要是吸收什么

近年来,沸石分子筛由于具有独特的性能,已经在吸附分离、催化等领域取得了广泛的应用。那么,分子筛主要是吸收什么?为此,安徽天普克环保吸附材料有限公司为大家总结了相关信息,希望能够为大家带来帮助。 (1)脱水。利用低硅铝比的沸石分子筛(如A型,X型等)的极性亲水性,可以进行空气的干燥。(2)净化空气中的污染物。随着工业的迅速发展,H2S、SO2、NOX以及甲醛的排放量日益增多,造成的污染给人们的生活和环境带来了严重的危害。 吸附分离领域的应用:(1)混合二甲苯的分离。混合二甲苯一般用作溶剂和汽油掺合剂廉价出售,资源浪费十分严重。但混合二甲苯的四个异构体:乙苯、对二甲苯、间二甲苯和邻二甲苯都是重要的化工原料,因此有必要将其逐一分离。(2)N2/ O2的分离。在变压吸附(PSA)法中,沸石分子筛是利用N2/O2两气体在其表面平衡吸附的差异,选择性地吸附N2。(3)提高汽油辛烷值。由于异构烷烃的辛烷值大大高于正构烷烃,因此利用吸附分离法可以脱除正

构烷烃。实际应用中一般将吸附分离与C5/C6烷烃异构化相配合,将通过吸附分离出来的正构烷烃进行异构化,从而更大程度的提高汽油的辛烷值。 催化领域的应用:沸石分子筛具有复杂多变的结构和独特的孔道体系,是一种性能优良的催化剂。ZSM- 5 与Y型沸石分子筛共同作用应用于FCC 反应,以获得较高产率的汽油、丙烯和丁烯。 安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 二期工程将建成4000吨分子筛生产线。公司全面推行ISO9001质量管理体系,建有现代化的实验室和质量控制中心。现有工程技术人员20人,其中工程师8人。 产品系列化、经营多元化,这些都是企业的发展方针,而

分子筛制氧机原理

分子筛制氧机设计原理 赵鑫

1.概述 分子筛式制氧机是指以变压吸附(PSA) 技术为基础,从空气 中提取氧气的新型设备。其利用分子筛物理吸附和解吸技术 在制氧机内装填分子筛,在加压时可将空气中氮气吸附,剩 余的未被吸收的氧气被收集起来,经过净化处理后即成为高 纯度的氧气。具体工作过程为压缩空气经空气纯化干燥机净 化后,通过切换阀进入吸附塔。在吸附塔内,氮气被分子筛 吸附,氧气在吸附塔顶部被聚积后进入氧气储罐,再经除异 味、除尘过滤器和除菌过滤器过滤即获得合格的医用氧气。 2.制氧原理 2.1.吸附剂氧分子筛 分子筛是一种晶状铝硅酸盐,其原子按 一定的形状排列,基本结构单元是四个 氧阴离子围绕一个较小的硅或铝离子而 形成的四面体。钠离子或其它阳离子的 作用是补充铝氧四面体正电荷的不足。 四个氧阴离子的每一个,又都分被另一 个铝氧或硅氧四面体共用,使晶格作三 维延伸。晶格中暴露的阳离子使分子筛 具有更强的吸附能力,这些阳离子起着局部强正电荷格点的作用,对极性分子的阴端进行静电吸引,分子的偶极矩越大,被吸引和吸附得越牢。在阳离子上的局部强正电荷的影响下,分子会受到电磁感应而产生偶矩。氧和氮都具有四极矩,但氮的四极矩(0.3?)比氧(0.1?)比大得多。因此,氮原子与阳离子之间的作用力较强,而被优先吸附。当有压力时,分子筛会吸附较多的氮原子;当减压时,分子筛会将吸附的氮原子释放出来(称为解吸)。 家庭制氧用分子筛一般用13X(NaX)型和5A(CaA)型。13X的氧气吸收率为47%,5A的氧气吸收率为54%。还有更高吸收率的CaX型(71%)、LiX型(82%),但成本太高。

干燥的原理和方法

干燥 干燥是有机化学实验室中最常用到的重要操作之一,其目的在于除去化合物中存在的少量水分或其他溶剂。液体中的水分会与液体形成共沸物,在蒸馏时就有过多的“前馏分”,造成物料的严重损失;固体中的水分会造成熔点降低,而得不到正确的测定结果。试剂中的水分会严重干扰反应,如在制备格氏试剂或酰氯的反应中若不能保证反应体系的充分干燥就得不到预期产物;而反应产物如不能充分干燥,则在分析测试中就得不到正确的结果,甚至可能得出完全错误的结论。所有这些情况中都需要用到干燥。干燥的方法因被干燥物料的物理性质、化学性质及要求干燥的程度不同而不同,如果处置不当就不能得到预期 的效果。 1.液体的干燥 实验室中干燥液体有机化合物的方法可分为物理方法和化学方法两类。 (1)物理干燥法 ①分馏法:可溶于水但不形成共沸物的有机液体可用分馏法干燥,如实验4那样。 ②共沸蒸(分)馏法:许多有机液体可与水形成二元最低共沸物(见书末附录3),可用共沸蒸馏法除去其中的水分,其原理见第74~77页。当共沸物的沸点与其有机组分的沸点相差不大时,可采用分馏法除去含水的共沸物,以获得干燥的有机液体。但若液体的含水量大于共沸物中的含水量,则直接的蒸(分)馏只能得到共沸物而不能得到干燥的有机液体。在这种情况下常需加入另一种液体来改变共沸物的组成,以使水较多较快地蒸出,而被干燥液体尽可能少被蒸出。例如,工业上制备无水乙醇时,是在95%乙醇中加入适量苯作共沸蒸馏。首先蒸出的是沸点为℃的三元共沸物,含苯、水、乙醇的比例为74∶∶。在水完全蒸出后,接着蒸出的是沸点为℃的二元共沸物,其中苯与乙醇之比为∶。当苯也被蒸完后,温度上升到℃, 蒸出的是无水乙醇。 ③ 用分子筛干燥:分子筛是一类人工制作的多孔性固体,因取材及处理方法不同而有若干类别和型号,应用最广的是沸石分子筛,它是一种铝硅酸盐的结晶,由其自身的结构,形成大量与外界相通的均一的微孔。化合物的分子若小于其孔径,可进入这些孔道;若大于其孔径则只能留在外面,从而起到对不同种分子进行“筛分”的作用。选用合适型号的分子筛,直接浸入待干燥液体中密封放置一段时间后过滤,即可有选择地除去有机液体中的少量水分或其他溶剂。分子筛干燥的作用原理是物理吸附,其主要优点是选择性高,干燥效果好,可在pH 5~12的介质中使用。表3-3列出了几种最常用的分子筛供选用时参考。

13x分子筛再生

水分、乙炔和二氧化碳都是极性或不饱和分子。分子筛对它们都有很强的亲和力。当使用一段时间后,需要对其进行再生,这样能保证其性能,13x分子筛哪家好?您可以选择安徽天普克环保吸附材料有限公司,下面小编为您介绍,希望能给您带来一定程度上的帮助。 分子筛的共吸附性能使它可以在吸水的同时还可以吸附其他物质,这种亲和力的顺序是:水分>乙炔>二氧化碳。由于是共吸附,势必会使分子筛对每种组分的吸附容量减小。在出吸附剂床层的空气中很快会出现甲烷(CH4)和乙烷(C2H6),接着乙烯(C2H4)和丙烷 (C3H8)几乎与二氧化碳同时在出吸附剂层的空气中出现;以后才依次出现乙炔(C2H2)、丙烯(C3H6)、丁烷(C4H10) 和丁烯(C4H8)。

由于分子筛吸附器的工作周期必须在出口空气中出现二氧化碳之前结束,即切换,空分装置一般配置两台纯化器,正常工作时,一台吸附,吸附时间一般为3小时左,吸附压力为0.5mp,另一台再生,压力为0.005mp,温度为150℃,两台交替运行。这表明乙炔、丙烯、丁烷和丁烯等杂质不能随空气进入空分设备冷箱内。在分 子筛吸附器的设计中,除选用性能好的吸附剂外,吸附剂的再生也不容忽视。即利用加热脱附原理,以出冷箱的污氮气作为再生载体,通过再生蒸汽加热器加热,完成再生。如果再生不完全,必定会影响下一个周期的吸附效率。若如此循环下去,最终将使吸附过程无法持续进行。为此系统配置了电加热器实施高温特殊再生,特殊再生时,

温度甚至高达300,来完成系统长周期运行或吸附剂受到意外污染吸附剂吸附能力下降,使其恢复正常吸附性能。 安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户群不仅是在国内而且遍及东南亚、欧美等地。公司热忱欢迎国内外客商与我们真诚合作。我们将以精美的产品、可靠的技术、精益求精的服务满足广大客户的要求。 分子筛广泛用于制氧、炼油、化工化肥、医药、钢铁、冶金、酒精、玻璃行业,是气体、液体纯制、分离干燥的好的产品。安徽天普克环保吸附材料有限公司始建于2001年,已有18多年历史,产品有分子筛系列3A分子筛、4A分子筛、5A分子筛、lOX分子筛、13x 分子筛、K13X中空玻璃专用分子筛、变压吸附、富氧专用分子筛、活性氧化铝、瓷球等塔填料。

第八组分子筛计算步骤

7.7.2 分子筛脱水工艺计算 (1)工艺计算的基础数据 分子筛脱水由吸附和再生两部分组成,吸附采用双塔流程,再生加热气和冷吹气采用干气,加热方式采用燃气管式加热炉加热。其主要设备由分子筛吸附器、再生气加热炉、再生气冷却器、再生气分离器。 该部分主要计算分子筛吸附器尺寸,再生气加热炉、再生气冷却器、再生气水分离器设计计算归于其它部分。 选用4A 分子筛脱水,其特性如下: 分子筛粒子类型:直径3.2 mm 球形 分子筛的有效湿容量:8 kg (水)/100 kg (分子筛) 分子筛堆积密度:700 kg/m 3 分子筛比热:0.96 kJ/(kg·℃) 瓷球比热:0.88 kJ/(kg·℃) 操作周期为8小时,再生加热时间为4.5小时,再生冷却时间为3.2小时,操作切换时间为0.3小时。加热炉进口温度为44.098 ℃,加热炉出口温度为275 ℃。 工艺计算主要的基础数据如下: 原料气压力:3.5 MPa 原料气温度:30 ℃ 床层温度:35 ℃ 天然气气体流量:10110 kg/h 饱和含水量:3.60 kg/h 天然气相对湿度:100% 天然气在3.5MPa 、30℃下的密度:27.51 kg/m 3 天然气在3.5MPa 、30℃时粘度:1.2210×10-2 cp 再生加热气进吸附器的压力:1733.72 kPa 再生加热气进吸附器的温度:260 ℃ 再生加热气出吸附器的温度:200 ℃ 再生气在1733.72 kPa 、260 ℃下的密度:6.72 kg/m 3 干气温度:44.1 ℃ 干气压力:2033.72 kPa 干气将床层冷却到:50 ℃ 干气在44.1℃、2033.72 kPa 的密度:13.77 kg/m 3 再生气在260℃、1733.72 kPa 的热焓:-3776.58 kJ/kg 再生气在115℃、1733.72 kPa 的热焓:-4167.3 kJ/kg 再生气在275℃、1733.72 kPa 的热焓:-3731.98 kJ/kg 干气在140℃、2033.72 kPa 的热焓:-4106.71 kJ/kg 干气在44.1℃、2033.72 kPa 的热焓:-4338.85 kJ/kg 干气在44.1℃、2033.72 kPa 下的低位热值:48381.32 kJ/kg (2)直径和高径比的计算 原料气在3500kPa ,25℃下含水量为194.161=G kg/h (??) 根据天然气脱水设计规范取操作周期为8=τ小时,总共脱水:

某分子筛吸附脱水工艺设计-画流程图和平面布置图

重庆科技学院 课程设计报告 院(系): 石油与天然气工程学院专业班级:油气储运工程学生姓名:美女学号: 22222222 设计地点(单位)石油与安全科技大楼K713 设计题目:某分子筛吸附脱水工艺设计 —画流程图和平面布置图 完成日期: 2014 年 6月 19 日 指导教师评语: 成绩(五级记分制): 指导教师(签字):

引言 中国天然气生产主要经历了两个阶段:第一阶段(1949-1995年)为起步阶段,天然气年产量由0.112亿立方米增至174亿立方米,年均增长仅3.8亿立方米;第二阶段(1995-2009年)为快速发展阶段,天然气年产量由174亿立方米增长到841亿立方米,期间累计增长量是1995年前的近4倍,年均增长高达47.6亿立方米。中国天然气产量开始高速增长始于2004年,之前的同比增长率大多不超过10%,而2004年之后,以年均约18%的增速增长。 权威机构分析,天然气将是未来世界一次能源中发展最快的一种。因此,提高天然气的质量是刻不容缓的事情。其中天然气脱水是提升天然气的质量一个重要环节。 天然气的脱水方法多种多样,按其原理可归纳为低温冷凝法、吸收脱水法和吸附脱水法三种。吸附法脱水由于其具有高的脱水深度、装置简单、占地面积小等优点,在天然气深度脱水、深冷液化和海上平台等方面居于不可动摇的地位。

目录 引言 ................................................................... I 摘要 (1) 1基本设计 (2) 1.1 设计原则 (2) 1.2气质工况及处理规模 (2) 2分子筛脱水工艺流程 (3) 2.1分子筛的选择 (3) 2.2流程选择 (3) 2.3再生方法选择 (5) 2.4工艺参数优选 (6) 2.5工艺流程图见附录一 (6) 2.6分子筛脱水工艺流程介绍 (6) 2.7注意事项 (7) 3平面布置图 (8) 3.1站面平面布置基本要求 (8) 3.2设备平面布置图见附录二 (8) 4总结 (10) 参考文献 (11) 附录一 (12) 附录二 (13)

分子筛干燥

多孔材料在许多领域有着广泛的应用,如微孔分子筛作为主要的催化材料、吸附分离材料和离子交换材料,在石油加工、石油化工、精细化工以及日用化工中起着越来越重要的作用。那么,分子筛干燥原理是什么?为此,安徽天普克环保吸附材料有限公司为大家总结了相关信息,希望能够为大家带来帮助。 吸附功能:分子筛对物质的吸附来源于物理吸附(范德华力),其晶体孔穴内部有很强的极性和库仑场,对极性分子(如水)和不饱和分子表现出强烈的吸附能力。 筛分功能:分子筛的孔径分布非常均一,只有分子直径小于孔穴直径的物质才可能进入分子筛的晶穴内部。 通过吸附的优先顺序和尺寸大小来区分不同物质的分子,所以被形象的称为“分子筛”。

安徽天普克环保吸附材料有限公司是原上海摩力克分子筛有限公司直属公司,本公司成立于2004年,由于生产量扩增,本公司在安徽合肥空港寿县新桥产业园投资建设生产基地。公司目前拥有年产2000吨分子筛、1500吨活性氧化铝生产线各一条。 二期工程将建成4000吨分子筛生产线。公司全面推行ISO9001质量管理体系,建有现代化的实验室和质量控制中心。现有工程技术人员20人,其中工程师8人。 产品系列化、经营多元化,这些都是企业的发展方针,而OEM----更是公司多年的经营模式,并且得到广泛好评。我们的用户涉及石油、化工、冶金、汽车、空调、电子仪表等行业,我们的客户群不仅是在国内而且遍及东南亚、欧美等地。公司热忱欢迎国内外客商与我们真诚合作。我们将以精美的产品、可靠的技术、精益求精的服务满足广大客户的要求。 分子筛广泛用于制氧、炼油、化工化肥、医药、钢铁、冶金、酒

精、玻璃行业,是气体、液体纯制、分离干燥的好的产品。安徽天普克环保吸附材料有限公司始建于2001年,已有18多年历史,产品有分子筛系列3A分子筛、4A分子筛、5A分子筛、lOX分子筛、13x 分子筛、K13X中空玻璃专用分子筛、变压吸附、富氧专用分子筛、活性氧化铝、瓷球等塔填料。 近期开发研制的CM6-5A脱腊分子筛各项,性能指标均达到和超过规定标准,并获得河南省高新技术产品证书,由于我厂产品质量上乘,价格适中,已批量销往缅甸、日本等国,是我国型号导弹和神州系列载人飞船定点供货厂家。 安徽天普克环保吸附材料有限公司周边交通便利,环境优美,我们热忱欢迎新老客户来厂洽谈业务,我们将以优良的产品、合理的价格,为客户提供批发,零售来料交工等服务。

分子筛制氮机原理及条件

分子筛制氮机原理及条件 一、分子筛制氮机的原理 磐安恒远制氮机有限公司生产的分子筛制氮机是利用分子筛变压吸附原理(PSA)从空气中分离制取氮气。分子筛对空气中的氧和氮的分离作用主要是基于这两种气体在碳分子筛表面上的扩散速率不同。直径较小的气体分子(O2)扩散速率较快,较多的进入分子筛微孔。直径较大的气体分子(N2)扩散速率较慢,进入分子筛微孔较少,这样在气相中可以得到氮的富集成分。因此,利用分子筛对氧和氮在某一时间内吸附量的差别这一特性,由全自动控制系统按特定可编程序施以加压吸附,常压解析的循环过程,完成氮氧分离,获得所需高纯度的氮气。 二、分子筛制氮机控制的条件 1、空气压缩纯化过程 纯原料空气进入分子筛吸附塔,是非常必要的,因为颗粒及有机气体进入吸附塔会堵塞碳分子筛的微孔,并逐渐使碳分子筛的分离性能降低。纯化原料空气的方法有:1、使空压机的进气口远离有、油雾、有机气体的场所;2、通过冷干机、吸附剂净化系统等,最后经处理后的原料空气进入碳分子筛吸附塔。 2、产品氮气的浓度和产气量 分子筛制取氮气,其N2浓度和产气量可根据用户的需要进行任意调节,在产气时间及操作压力确定时,调低产气量,N2浓度将提高,反之,N2浓度则下降。用户可根据实际需要调节。

3、均压时间 分子筛制氮过程,当一个吸附塔吸附结束时,可将此吸附塔内的有压气体从上下两个方向注入另一个已再生好的吸附塔中,并使两塔气体压力相同,此一过程称为吸附塔的均压,选择适当的均压时间,即可回收能量,也可以减缓吸附塔内的分子筛受到冲击,从而达到延长碳分子筛的使用寿命。参考阀门的切换速度一般选择均压时间为1-3秒。 4、产气时间 根据分子筛对氧和氮的吸扩散速率不同,其吸附O2在短时间内就达到平衡,此时,N2的吸附量很少,较短的产气时间,可有效的提高碳分子筛的产气率,但同时也增加了阀门的动作频率,因此阀门的性能也很重要。一般选择吸附时间为30-120秒。小型高纯制氮机推荐使用短的产气时间,大型低浓度推荐使用长的产气时间。 5、操作压力 分子筛在动力学效应的同时,又具有平衡吸附效应,吸附质分压高,吸附容量也高,因此加压器吸附是有利的,但吸附压力太高,对空压机的造型要求也增高,另外常压再生与真空再生两个流程对吸附压力要求也不同,综合各项因素,建议常压再生流程的吸附压力选为5-8kg/cm2为宜;真空再生流程的吸附压力选择为3-5Kg/cm2为宜。 6、使用温度 作为吸附剂选择较低的吸附温度有利于碳分子筛性能的发挥,制氮机工艺在有条件的情况下,采取降低吸附温度是有利的。

分子筛

分子筛 一、分子筛的品种型号 分子筛(又称合成沸石)是一种硅铝酸盐多微孔晶体,它是由SiO和AIO四面体组成和框架结构。在分子筛晶格中存在金属阳离子(如Na,K,Ca等),以平衡四面体中多余的负电荷。分子筛的类型按其晶体结构主要分为:A型,X型,Y型等. A型 主要成分是硅铝酸盐,孔径为4A(1A=10 -10 米),称为4A(又称纳A型)分子筛;用Ca2+交换4A分子筛中的Na+,形成5A的孔径,即为5A(又称钙A型)分子筛;用K+交换4A分子筛的Na+,形成3A的孔径,即为3A(又称钾A型)分子筛。 X型 硅铝酸盐的晶体结构不同(硅铝比大小不一样),形成孔径为9—10A的分子筛晶体,称为13X(又称钠X型)分子筛;用Ca2+交换13X分子筛中的Na+,形成孔径为9A的分子筛晶体,称为10X(又称钙X型)分子筛 Y型 Y型分子筛具有X型分子筛烃似的晶体结构,但化学组成不同(硅铝比较大)通常用于催化领域。 分子筛是一种硅铝酸盐,主要由硅铝通过氧桥连接组成空旷的骨架结构,在结构中有很多孔径均匀的孔道和排列整齐、内表面积很大的空穴。此外还含有电价较低而离子半径较大的金属离子和化合态的水。由于水分子在加热后连续地失去,但晶体骨架结构不变,形成了许多大小相同的空腔,空腔又有许多直径相同的微孔相连,比孔道直径小的物质分子吸附在空腔内部,而把比孔道大得分子排斥在外,从而使不同大小形状的分子分开,直到筛分分子的作用,因而称作分子筛。它主要用于各种气体、液体的深度干燥,气体、液体的分离和提纯,催化剂载体等,因此广泛应用于炼油、石油化工、化学工业、冶金、电子、国防工业等,同时在医药、轻工、农业、环保等诸多方面,也日益广泛地得到应用。 3A型分子筛,主要用于石油裂解气、烯烃、炼气厂、油田气的干燥,是化工、医药、中空玻璃等工业用干燥剂。 化学式:2/3K2O·1/3Na22O·AI2O3·2SiO2·.9/2H2O 主要用途:1、液体(如乙醇)的干燥 2、中空玻璃中的空气干燥 3、氮氢混合气体的干燥 4、制冷剂的干燥 4A型分子筛主要用于天然气以及各种化工气体和液体、冷冻剂、药品、电子材料以及易变物质的干燥、氩气纯化、甲烷、乙烷丙烷的分离。 化学式:Na2O·Al2O3·2SiO2·9/2H2O 主要用途:1、空气、天然气、烃完烷、制冷剂等气体和液体的深度干燥; 2、氩气的制取和净化; 3、电子元件和易受潮变质物质的静态干燥; 4、油漆、聚脂类、染料、涂料中做脱水剂。 5A型分子筛 化学式:3/4CaO·1/4Na2O·Al2O3·2SiO2·9/2H2O 主要用途:1、天然气干燥、脱硫、脱二氧化碳; 2、氮氧分离、氮氢分离,制取氧、氮和氢; 3、石油脱腊、从支烃、环烃中分离正构烃。(可再生) 13XAPG 分子筛 主要用于大中型空分装置原料气的净化。 中空玻璃专用分子筛系列,可以同时吸附中空玻璃中的水分和残留有机物,使中空玻璃即使

分子筛

分子筛 33130215 高红雪 分子筛是指具有均匀的微孔,其孔径与一般分子大小相当的一类物质。分子筛的应用非常广泛,可以作高效干燥剂、选择性吸附剂、催化剂、离子交换剂等,但是使用化学原料合成分子筛的成本很高。常用分子筛为结晶态的硅酸盐或硅铝酸盐,是由硅氧四面体或铝氧四面体通过氧桥键相连而形成分子尺寸大小(通常为0.3~2 nm)的孔道和空腔体系,因吸附分子大小和形状不同而具有筛分大小不同的流体分子的能力。 分子筛是一种具有立方晶格的硅铝酸盐化合物。分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和不饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用。 美国科学家发现,通过调整温度,能够精确地控制一种钛硅酸盐材料中的孔洞大小,制造出精密的新型分子筛。一些晶体材料内部有着大量均匀的微孔,尺寸比孔洞小的分子能够穿过,而大分子不能穿过,因此可以起到分离不同分子的作用,这类材料被称为分子筛。分子筛可以通过诸多方法合成:水热合成法、水热转换法、离子交换法等方法。 分子筛为粉末状晶体,有金属光泽,硬度为3~5,相对密度为2~2.8,天然沸石有颜色,合成沸石为白色,不溶于水,热稳定性和耐酸性随着SiO2/Al2O3组成比的增加而提高。分子筛有很大的比表面积,达300~1000m2/g,内晶表面高度极化,为一类高效吸附剂,也是一类固体酸,表面有很高的酸浓度与酸强度,能引起正碳离子型的催化反应。当组成中的金属离子与溶液中其他离子进行交换时,可调整孔径,改变其吸附性质与催化性质,从而制得不同性能的分子筛催化剂。

天然气分子筛脱水装置工艺设计说明书

天然气分子筛脱水装置工艺 设计说明书 1 概述 1.1 设计要求 原料气压力为4.5MPa,温度30℃,工艺流程要求脱水后含水量在1ppm以下(质),采用球形4A分子筛吸附脱水,已知4A分子筛的颗粒直径为 3.2mm,堆密度为660kg/m3,吸附周期采用8小时。 其具体内容如下: 1.绘制天然气脱水工艺流程图; 2.确定工艺流程的主要工艺参数; 3.对脱水系统中主要设备进行工艺计算,并确定主要设备的结构尺寸和型号。 4.确定流程中主要管线的规格(材质、壁厚、直径)。 5.编写工程设计书。 1.2 设计范围 分子筛吸附塔装置 导热油换热单元 过滤器 再生气分离器 连接管道 排污放空系统 安全阀,调压阀 1.3 设计原则 1)贯彻国家建设基本方针政策,遵循国家和行业的各项技术标准、规范。 2)贯彻“安全、可靠”的指导思想,紧密结合上、下游工程,以保证中央处理厂

安全、稳定地运行。 3)根据高效节能、安全生产的原则,采用先进实用的技术和自控手段,实行现代 化的管理模式,实现工艺、技术成熟可靠、节省投资、方便生产。 4)充分考虑环境保护,节约能源。 1.4 气质工况及处理规模 气体处理规模:100×104 m3/d 原料气压力:4.5 MPa 原料气温度:30 ℃ 脱水后含水量:≤1 ppm 天然气气质组成见表1-1。 表1-1 天然气组成表(干基) 组分H2 He N2 CO2 C1 C2 mol% 0.097 0.052 0.55 0.026 94.595 3.305 组分C3 iC4 nC4 iC5 nC5 C6+ mol% 0.73 0.121 0.156 0.056 0.052 0.262 1.5 分子筛脱水工艺流程 1.5.1 流程选择 本装置所处理的湿净化气流量为100×104m3/d(20℃、101.325kPa标准状态下)。对于这样规模较大的分子筛脱水装置,可以采用2个吸附塔或3个吸附塔两种方案(分别简称两塔方案、三塔方案)。而相同工艺不同方案的操作情况与投资数据却完全不同,现将两塔方案、三塔方案的操作情况与投资情况进行比较,从而选择出最佳方案。 在两塔流程中,一塔进行脱水操作,另一塔进行吸附剂的再生和冷却,然后切换操作。在三塔或多塔流程中,切换的程序有所不同,通常三塔流程采用一塔吸附、一塔再生、一塔冷吹同时进行。 表1-2 三塔方案(常规)时间分配表 吸附器0~8h 8~16h 16~24h 分子筛脱水塔A 吸附加热冷却

(推荐)分子筛吸附原理

分子筛吸附原理 吸附是一种把气态和液态物质(吸附质)固定在固体表面(吸附剂)上的物理现象,这种固体(吸附剂)具有大量微孔的活性表面,吸附质的分子受到吸附剂表面引力的作用,从而固定在上面。引力的大小取决于: -吸附剂表面的构造(微孔率); -吸附质的分压; -温度。 吸附伴随着放热,是一种可逆的现象。类似于凝结: -如果增加压力。吸附能力增加; -降低温度,吸附能力增加。 因此,在吸附时,要使压力升到最高,温度降到最低。解吸时,则要使压力降到最低,温度升到最高。

带有吸附床的净化工艺 也叫空气净化的“干燥-脱除CO 2 ”工艺。 为使空气获得较低的净化前温度,常用制冷机组或空气水冷塔 对其进行降温。(图中的“X10”表示预冷设备。) 净化装置位于空气压缩机、空气预冷系统之后,为了保持净化 器工作的连续性,需要使用两台吸附器。当一台工作时(即正在脱除H 2 O 与CO 2 ),另一台处于再生状态。 吸附阶段 由于氧化铝吸附CO 2的效果很差,故它主要用于吸附H 2 O,而位于 其后的分子筛则处理干燥后含有 CO 2 的空气。 注:分子筛具有很强的吸水性,因此,在吸附和再生期间绝不 能让分子筛与水份接触而降低其吸附CO 2 的能力。如果有意外情况发生使

水份带入了分子筛,惟有高温特殊再生(见10 章)才能够使其恢复原有的吸附性能。

下图显示了吸附质在临近穿透的时刻(在吸附阶段结束),CO 2 O在两种吸附床层中及给定时间内的含量分布图。 与H 2 吸附器必须在吸附质的前锋抵达吸附出口之前进行再生(即在穿透之前)。 再生阶段: 再生就是利用压力和温度两方面的因素,将吸附器里的吸附质排出去。 首先,将吸附器降压至较低的压力(大气压力)。用加热的干燥气体,解吸并带走所吸附的吸附质。然后,用未加热的干燥气体,将热端面推向铝胶床层,直至其出口,这样。吸附剂又恢复到随之而来的吸附阶段时的正常温度。 过程见图示:

《油气集输工程》某分子筛吸附脱水工艺设计——吸附工艺计算及吸附塔设计解析

重庆科技学院 《油气集输工程》 课程设计报告 学院:_石油与天然气工程学院专业班级:油气储运08 学生姓名:学号: 设计地点(单位)__ E406、E404____________ 设计题目:__ 某分子筛吸附脱水工艺设计_ ——吸附工艺计算及吸附塔设计__ 完成日期: 2011 年 6 月16日 指导教师评语: ______________________ _________________ _______________________________________________________________________________ _______________________________________________________________________________ _________________________________ __________ _ 成绩(五级记分制):______ __________ 指导教师(签字):________ ________

摘要 吸附脱水就是利用某些多孔性固体吸附天然气中的水蒸气。气体或液体与多孔的固体颗粒表面相接触,气体或液体与固体表面分子间相互作用而停留在固体表面上,使气体或液体分子在固体表面上浓度增大的现象。常用的固体吸附剂有活性铝土、活性氧化铝、硅胶和分子筛。 分子筛吸附脱水目前国外引进的,国内自行设计的都是固定床式,为保证连续工作,至少需要两塔,经常采用的是两塔或三塔。在两塔流程中,一塔进行吸附,另一踏再生和冷却。在三塔流程中,一塔吸附,一塔再生加热,一塔冷却。在工艺相同的情况下,考虑到经济性,分子筛吸附脱水工艺设计中常用的是两塔脱水工艺。 关键字:吸附工艺分子筛吸附器结构 1.分子筛是一种人工合成的无机吸附剂,是一种高效、高选择性的固体吸附剂。分子筛是人工晶体型硅铝酸盐,依据其晶体内部孔穴的大小而吸附或排斥不同物质的分子,因而被形象地称为“分子筛”。分子直径小于分子筛晶体孔穴直径的物质可以进入分子筛晶体,因而可以被吸附,否则被排斥。分子筛又根据不同物质的极性或可极化性而优先吸附的次序。一般极性强的分子容易被吸附。分子筛的热稳定性好,能经受住600摄氏度-700摄氏度的短暂高温,分子筛不熔于水,但溶解于强酸和强碱,故可在PH5-11的介质中使用,在盐溶液中能交换其他阳离子它具有均一的孔径和极高的比表面积、热稳定性好、吸附性能强、内表面积大、强度高等特点,广泛应用于天然气脱水工业。 本次脱水工艺,分子筛选取4A,球型,堆密度为660kg/m3,分子筛直径3.2mm,湿容量:22% 分子筛的优点 在脱水过程中,分子筛作为吸附剂的有显著的优点: ①具有很好的选择吸附性。 1分子筛 ②具有高效吸附容量。 ③分子筛使用寿命长。分子筛不易被液态水破坏

分子筛的设计吸附原理与应用

2016级环境工程硕士课程论文 论文题目:分子筛吸附剂的设计、吸附原理和应用课程:吸附科学原理和应用 专业:环境工程 学号:104754160909 姓名:徐俊

分子筛吸附剂的设计、吸附原理和应用 徐俊 (河南大学化学化工学院, 河南开封475004) 摘要:近年来,随着人们对分子筛吸附剂吸附原理和设计的进一步的研究,分子筛吸附剂越来越受到人们的重视。分子筛吸附剂因其独特的晶体结构、高的表面积、吸附性和催化性等优异性能,被广泛应用于石油化工、环境保护、新材料、生物医药等诸多领域,也因此分子筛吸附剂的应用有着巨大的经济效益和重要的应用价值。 关键字:分子筛吸附剂;吸附;应用 Molecular sieve adsorbent design, adsorption principle and application XU Jun (College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004) Abstract: In recent years, with the further research of molecular sieve adsorbent's adsorption principle and design, molecular sieve adsorbent has attracted more and more attention. Molecular sieves are widely used in the region of etrochemical industry, environmental protection, new materials and biomedicine due to their unique crystal structure, high surface area, adsorption, catalytic and other excellent performances. The use of adsorption separation has enormous economic and great value. Keywords: zeolite adsorbent; adsorption; application 引言 分子筛是一类具有特殊结构的多孔介质,由系列不同规则的孔道或笼构成,是硅铝酸盐的晶体[1]。常见的不同型号分子筛有:A型、X型等[2,3]。经高温活化沸石失结晶水后,晶体内形成许多孔穴,其孔径大小与气体分子直径相近,且非常均匀,依据晶体内部孔穴大小吸附或排斥不同的物质分子,同时根据不同物质分子极性或可极化度而决定吸附的次序,达到分离的效果[4]。分子筛的孔径分布是非常均一的,结构和组成变化明显,具有良好的热稳定性、水热稳定性、较好的化学稳定性等性能[5]。沸石分子筛较大的表面积、孔体积以及较强的静电场决定了它对吸附质尤其是对极性分子,在低分压或低浓度及较高温度的吸附情况下

沸石分子筛原理

沸石分子筛原理 什么是沸石分子筛 沸石分子筛具有晶体的结构和特征,表面为固体骨架,内部的孔穴可起到吸附分子的作用。孔穴之间有孔道相互连接,分子由孔道经过。由于孔穴的结晶性质,分子筛的孔径分布非常均一。分子筛依据其晶体内部孔穴的大小对分子进行选择性吸附,也就是吸附一定大小的分子而排斥较大物质的分子,因而被形象地称为"分子筛"。 分子筛吸附或排斥的功能受分子的电性影响。合成沸石具有根据分子的大小和极性而进行选择性吸附的特殊功能,因而可以对气体或液体进行干燥或纯化,这也是分子筛可以进行分离的基础。合成沸石可以满足工业界对吸附和选择特性产品的广泛需求,在工业分离中也大量应用到合成沸石分子筛。UOP分子筛的优越性 自从四十年代末UCC的科学家们发明了第一代合成分子筛以来,UOP的分子筛技术日新月异。今天,UO P的分子筛以高效、低耗和可靠著称于世。 借助UOP分子筛的高吸附容量,用户可能降低分子筛的装填量,延长吸附周期,更重要的是,借助此优越性,用户可以显著降低其投资和操作费用,降低能耗。这在能源日趋紧张的今天格外引人注目。 高度的可靠性使用户不再为意外停车而困扰,这是UOP分子筛带给他们的信心。 传统的分子筛可用做干燥剂、吸附剂以及离子交换剂,UOP还为非传统应用领域提供高硅沸石系列分子筛, 包括去除影响食物及饮料的口味或造成异味的有机体的分子筛。UOP分子筛的种类上海环球分子筛有限公司拥有: 最先进的分子筛合成装备 最全面的分子筛制造手段三条成型的生产线: AF球型分子筛生产线 NF球型分子筛生产线 条型分子筛生产线上海环球分子筛有限公司能够生产: 最完全的分子筛种类 -- 3A 4A 5A 13X 最齐全的分子筛形状 -- 球型: AF 球型 NF 球型 最广泛的分子筛尺寸 -- 3x5目 4x8目 6x8目 8x12目 10x20目 20x32目1/4英寸 1/8英寸 1/16英寸

c天然气分子筛脱水装置工艺设计

c天然气分子筛脱水装 置工艺设计 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

1概述 设计要求 原料气压力为,温度30℃,工艺流程要求脱水后含水量在1ppm以下(质),采用球形4A分子筛吸附脱水,已知4A分子筛的颗粒直径为3.2mm,堆密度为 660kg/m3,吸附周期采用8小时。 其具体内容如下: 1.绘制天然气脱水工艺流程图; 2.确定工艺流程的主要工艺参数; 3.对脱水系统中主要设备进行工艺计算,并确定主要设备的结构尺寸和型号。 4.确定流程中主要管线的规格(材质、壁厚、直径)。 5.编写工程设计书。 设计范围 分子筛吸附塔装置 导热油换热单元 过滤器 再生气分离器 连接管道 排污放空系统 安全阀,调压阀 设计原则 1)贯彻国家建设基本方针政策,遵循国家和行业的各项技术标准、规范。 2)贯彻“安全、可靠”的指导思想,紧密结合上、下游工程,以保证中央处理厂安 全、稳定地运行。 3)根据高效节能、安全生产的原则,采用先进实用的技术和自控手段,实行现代化 的管理模式,实现工艺、技术成熟可靠、节省投资、方便生产。 4)充分考虑环境保护,节约能源。 气质工况及处理规模 气体处理规模:100×104 m3/d 原料气压力: MPa 原料气温度:30 ℃ 脱水后含水量:≤1 ppm 天然气气质组成见表1-1。 表1-1 天然气组成表(干基)

分子筛脱水工艺流程 1.5.1 流程选择 本装置所处理的湿净化气流量为100×104m3/d(20℃、标准状态下)。对于这样规模较大的分子筛脱水装置,可以采用2个吸附塔或3个吸附塔两种方案(分别简称两塔方案、三塔方案)。而相同工艺不同方案的操作情况与投资数据却完全不同,现将两塔方案、三塔方案的操作情况与投资情况进行比较,从而选择出最佳方案。 在两塔流程中,一塔进行脱水操作,另一塔进行吸附剂的再生和冷却,然后切换操作。在三塔或多塔流程中,切换的程序有所不同,通常三塔流程采用一塔吸附、一塔再生、一塔冷吹同时进行。 表1-2 三塔方案(常规)时间分配表 由表1-1可以看出,在三塔方案中,加热炉连续工作,并且冷吹再生时间长,期间的加热、冷却功率相对较小,三塔流程灵活性较高。 表1-3 两塔方案(常规)时间分配表 另一塔处于再生状态。因此,加热炉操作不连续,点火、停炉频繁,不利于装置的长周期正常、平稳运行,且会造成一定的热损失。但两塔流程简单,其吸附时间增长,能耗大大降低。两塔流程较三塔流程减少1座吸附塔,大大节约了设备采购费用。由于设备数量的减少,操作维护费用也将大大降低。同时,由于减少了设备、工艺管线的数量,实际上也相应削减了管线、设备穿孔泄露的风险,提高了安全可靠性。且吸附、再生、冷却过程为密闭过程,对环境污染少。 两塔流程由装填有分子筛的两个塔组成,假设塔2在进行干燥,塔1在进行再生。在再生期间,所有被吸附的物质通过加热而被脱吸,为该塔的下一个吸附周期作准备。湿原

分子筛的三种活化方式

分子筛的活化 在了解分子筛的活化方式之前我简单的将分子筛是什么,查找了一些相关资料进行一定了解,但相关资料比较庞杂,以下这种说法我看来还是比较准确“分子筛是结晶态的硅酸盐或硅铝酸盐,由硅氧四面体或铝氧四面体通过氧桥键相连而形成。结构中有规整而均匀的孔道,孔径为分子大小的数量级,它只允许直径比孔径小的分子进入,因此能将混合物中的分子按大小加以筛分。”当然由于分子筛的种类比较繁多而用途也各异,而分子筛的吸附原理也并非只是简单的物理吸附这么简单,有些分子筛同时也具有化学吸附的作用,物理吸附的吸附力为分子间作用力,而化学吸附是由化学键的作用力产生得。而13X分子筛,13X型分子筛的孔径为10A,吸附小于10A 任何分子。 而分子筛的作用主要是将压缩空气中的水分和乙炔、二氧化碳、烃类化合物、及氮氧化物吸附,以符合工艺生产的要求。二氧化碳(CO2)和一氧化二氮(N2O)会冻结在换热器和冷凝器的管道中从而堵塞通道。如果碳氢化合物含量过高如烃类,特别是乙炔,如果累积在主冷凝蒸发器中有可能形成爆炸性混合物。但是即使用分子筛也未必能将所用的碳氢化合物都除去,特别是丙烷和甲烷,很容易通过分子筛而进入主冷在主冷积聚,这样就只能不断的更新主冷中的液氧将这些碳氢化合物带走,使其维持在一个安全的范围内。除了丙烷和甲烷外还有一些氮氧化合物也会沉积在换热器和主冷中对设备造成损害,而我们厂也针对氮氧化合物添加了相应的吸附剂CAX,以保证工艺的正常运

行。相应的为了增加13X分子筛的吸附效率,还专门用了活性氧化铝来吸收空气中的水分,由于颗粒较13X分子筛坚硬也优先吸附水分被安放在床层的最低端来吸收水分和抵御气流的冲击。各杂质在分子筛中的吸附量如图所示 分子筛层上应含有CaX吸收残余的氮氧化合物。 有时在启停车过程中由于气流过大也会发生冲床的事故,还由于吸附是发生在高压低温利于吸附,低压高温利于解析所以,因此在启停车过程中压力短暂的降低会影响但吸附剂的吸附容量所以吸附流量不得高于正常工作流量的70%。 还有改变出口温度也会对床层的吸附量产生很的大影响如

天然气脱水原理及工艺流程

天然气脱水原理及工艺流程 一、天然气水合物 1、H2O存在的危害 (1)减少商品天然气管道的输送能力; (2)当气体中含有酸性气体时,液态水与酸性气体形成酸性水溶液腐蚀管道和设备; (3)液态水与天然气中的某些低分子量的烃类或非烃类气体分子结合形成天然气水合物,从而减小管路的流通断面积、增加管路压降,严重时将造成水合物堵塞管道,生产被迫中断; (4)作为燃料使用,降低天然气的热值。 2、什么是天然气水合物 天然气水合物是在一定温度和压力条件下,天然气中的甲烷、乙烷等烃类物质和硫化氢、二氧化碳等酸性组分与液态水形成的类似冰的、非化学计量的笼型晶体化合物。最大的危害是堵塞管道。 (1)物理性质 ①白色固体结晶,外观类似压实的冰雪; ②轻于水、重于液烃,相对密度为0.960.98; ③半稳定性,在大气环境下很快分解。 (2)结构 采用X射线衍射法对水合物进行结构测定发现,气体水合物是由多个填充气体分子的笼状晶格构成的晶体,晶体结构有三种类型:

I、II、H型。 3、天然气水合物生成条件 具有能形成水合物的气体分子:如小分子烃类物质和H2S、CO2等酸性组分 天然气中水的存在:液态水是生成水化物的必要条件。天然气中液态水的来源有油气层内的地层水(底水、边水)和地层条件下的汽态水。这些汽态的水蒸汽随天然气产出时温度的下降而凝析成液态水。一般而言,在井下高压高温状态下,天然气呈水水蒸气饱状态,当气体运移到井口时,特别是经过井口节流装置时,由于压力和温度的降低,使会凝析出部分的液态水,因此,在井口节流装置或处理站节流降温处往往容易形成水化物。 3、天然气水合物生成条件 足够低的温度:低温是形成水化物的重要条件。气流从井底流到井口、处理厂并经过角式节流阀、孔板等装置节流后,会因压力降低而引起温度下降。温度降低不仅使汽态水凝析(温度低于天然气露点时),也为生成水化物创造了条件。

分子筛活化方案

分子筛吸附剂活化方案 一、目的 由于分子筛吸附剂为新充装,为使分子筛吸附剂具备最佳的吸附能力,所以对分子筛进行高温再生,即活化 二、活化前的准备工作 1、空气压缩系统具备运行条件 2、箱外管已吹扫完毕,并检验合格。FCV101(空气进冷箱切断阀)关闭(在FCV101 孔板处加装盲板)。 3、电加热器的调功器调试完毕,电加热器已按要求安装完毕,经电控人员检查验收合 格,具备运行条件。 4、微机上控制电加热器的启动,停止按钮及温度控制与就地显示相符。若有问题应配 合,仪控人员及时解决,保证其正常运行。 5、分子筛程序控制器已按规定进行(即切换系统空载运行48小时,并检查阀门切换 时动作是否准确,灵活可靠,并就地检查各切换阀的开关是否与主控室微机上显示 信号相符。若有问题应配合仪控人员及时解决,保证程序的正常运行。 6、分子筛纯化系统试压完毕检验合格(即阀门无泄漏,焊缝无泄漏,阀兰无泄漏,人 孔无泄漏)。 7、吸附剂按照《KDONAr-12000/8000/420型空气分离设备使用说明书》的要求装填 (选择晴天)。装好一只再装另一只,装好后应迅速密封,避免与大气长时间接触。 装填顺序为,吸附器下部是活性氧化铝共10000KG,装足数量后铺上丝网,用压板 压牢,再装分子筛16000KG,装足数量后扒平,上紧装填孔,使吸附剂密封在吸附 器中。(活化初期应对装填孔进行试漏) 8、空冷塔、水冷塔的填料已装填完毕,上紧装填孔。 9、再次检查分子筛纯化系统以及空气压缩系统,空气冷却系统的所有管路是否畅通, 有问题应及时解决,保证所有管路的畅通。 10、气源稳定,压力>0.45MPa。 11、电控系统具备稳定供电,且已正常供电。 12、仪表控制系统经预调试检测后,已具备正常运行条件。 13、空气预冷系统具备正常运行条件。 三、分子筛活化步骤 1、分子筛程序控制器设置为第一步即MS1201吸附,MS1202再生并打暂停,各阀位置 如下:V1201、V1207阀开,V1202、V1208、V1205、V1206、V1209、V1210、HV1203、HV1204、HV1211、HV1212、FCV1201A、FCV1201B待阀处于关闭状态,FCV1201C 处于打开状态。 2、手动开V1214、V1217、V1215、V1218阀,准备投用1#、2#电加热器。 3、接通知后,按照空压机起动规程起动空压机,待运转稳定后,缓慢开送气阀HV1001, 向空冷塔及分子筛吸附器送气。 4、在空冷塔、分子筛吸附器压力上升过程中,应对空气预冷系统、分子筛吸附器等装 填孔进行检漏,以及对分子筛试压时,所遗留的问题进行统一检查,并记录下来, 以备后查。(SV1101、SV1201处也应检漏) 具体步骤: 1)当空冷塔及吸附器的压力达0.2MPa时通知空压机保压,参加检漏人员应按事先分配好的工作段位置及时认真的检查,有问题应及时汇报上级,请安装公司 及时处理。若需要停机处理的应做好详细记录,待停机后处理待查。

相关文档