文档视界 最新最全的文档下载
当前位置:文档视界 › 变电站电压互感器失压怎么处理

变电站电压互感器失压怎么处理

变电站电压互感器失压怎么处理
变电站电压互感器失压怎么处理

变电站电压互感器失压怎么处理

这篇文字能说明一定问题

中性点不接地系统电压不平衡的几种现象分析

诸葛玉蓉

1 前言

在变电站运行值班中,对于中性点不接地系统值班员常会遇到一些电压表输出不平衡的情况。若我们对这方面认识不足,往往会因为查找时间过长而耽误送电,因电压不平衡而误认为接地情况者,找不到问题之所在,却做许多无用功;另一方面也可能因为未能及时找到接地点,而引起扩大事故。所以,就这个问题有必要进行一些分析探讨。

2 一般情况下电压不平衡的分析

2.1中性点不接地系统电压不平衡,可能是由于保险烧断而造成,即高压保险熔断,熔断相电压降低,但不为零。由于PT还会有一定的感应电压,所以其电压并不为零而其余两相为正常电压,其向量角为120。,同时由于断相造成三相电压不平衡,故开口三角形处也会产生不平衡电压,即有零序电压,例如:C相高压保险烧断,矢量合成结果见图1,零序电压大约为33V左右,故能起动接地装置,发出接地信号。

变电站低压保险熔断时,与高压保险之不同在于:一次三相电压仍平衡,故开口三角形没有电压,因而不会发出接地信号,其它现象均同高压保险熔断的情况。

2.2当线路或带电设备上某点发生金属性接地时(如A相),接地相与大地同电位,两正常相的对地电压数值上升为线电压,产生严重的中性点位移。中性点位移电压的方向与接地相电压在同一直线上,与接地相电压方向相反,大小相等,如图2。

图1 C相断相时电压向量图

图2 A相接地时电压向量图

特别值得注意的是我们所说的接地并不单指线路接地,当线路拉路检查后仍未能消除接地故障,则应怀疑到本站设备有接地,例如避雷器、电压互感器、甚至变压器接地。由于没有充分重视接地问题,未按规程执行(接地两小时仍未消除则要停下主变压器),曾使我局长塘变电站主变压器烧毁。

2.3综合以上三种情况,可归纳中性点不接地系统电压表所反映不平衡电压时的故障区别如表1。

表1 中性点不接地系统故障判别表

故障性质相别有无接

地信号

A B C

C相接地线电压线电压0 有

C相高压

保险熔断相电压相电压降低很多有

C相低压

保险熔断相电压相电压降低很多无

3 4PT电压不平衡输出分析

3.1拉堡变10kVPT由原来JDZJ型电压互感器改为:将其一、二次中性点由原直接接地改为

串联一台JDJ型电压互感器(T2)的一次绕组接地,通常我们称为4PT,正确接线如图3所示。

图3 4PT正确接线图

此种接线的目的是为了防止系统发生单相接地或其它原因使电压互感器铁芯饱合,引起谐振过电压,保险易熔断。在改为径4PT接地前4个月时间里,10kVPT共烧断三次,共9根保险;而改接后一直未烧过保险。

3.2正常情况下,电压互感器二次侧a-o,b-o,c-o分别接入相对地绝缘监视电压表,零序电压断电器接在t2互感器二次侧X′-O间。采用这种接线,正常情况下,T1互感器只反映正序电压a、b、c,(电压向量图见图4),三相电压大小相等,相位差120°,中性点电位为零,也就是Ux’=0。而A相金属性接地时,向量图如图5所示,即:Ux’=Uo=Ua,此时零序继电器YJ两端有电压,即可发出接地信号,而b相电压表反映的数值应为Vb=Ub+Ux=Uab=Ub,即等于线电压,C相电压表Vc=Uc+Ux=Uac=Uc也等于线电压。

图4 正常情况下4PT电压向量图

图5 A相接地时4PT电压向量图

4 4PT接线错误引起电压表错误反映分析

拉堡变改为径4PT接地后,其接地时所反映的则不同于上述所分析,其三相电压仍平衡,且为三相相电压。故障所表现的现象:“10kV接地”光字牌亮,不能复归,但10kV三相绝缘监视电压表平衡且均为6kV,值班员测量二次电压,PT开口三角处为51V,Ua=20V,Ub=100V,Uc=100V,与调度联系拉路检查,检查出堡65线路接地。针对这种电压表不能反映接地情况的怪现象,查找原因,发现了问题所在:造成这种表计错误反映的原因是二次接错线,如图6所示。其三相电压表分别接在互感器二次的a-x’,b-x’,c-x’上,那么正常情况下,中性点x’由于三相电压平衡而等于零,故三相电压表为相电压,向量图见图7。而当发生接地时,如A相金属性接地时,其电压反映就不正确了,那么B相电压表为b-x’的电压,因为Ux’=-Ua,即Vb’=bx’=b-x’=相电压,Vc’=cx’=c-x’=相电压,向量图如图8。故三相电压表仍平衡,且均为相电压,而此时能发出接地信号,因为接地信号继电器接在t2线圈上,取代以往接在开口三角形处,而Ux有50V左右的零序电压,线圈两端因有电压而动作,故能发出接地信号,但却不能在三相电压表中反映出来,且接地未消除前接地信号不能复归。由此可见,在改为4PT接地时,应保证接线准确无误,以免造成三相电压表误指示。

图6 4PT错误接线图

图7 不接地时4PT电压向量图

图8 A相接地时4PT电压向量图

5 电压互感器中性点击穿保险击穿后出现的不平衡电压分析

采用三相五柱电压互感器构成绝缘监视装置,如图9所示。一次系统一相接地时,接于接地相的电压互感器高压绕组被短路,对于该相的二次绕组输出电压等于零,开口三角绕组有不平衡电压输出,接地继电器XJJ励磁,绝缘监视装置发出一次系统接地信号。一般情况下,这套装置能准确的发现一次系统接地故障和判别发生故障的相别。但是这种绝缘监视装置有时也会发出错误的信号,并会造成一次系统接地假象。例如屯秋变就发生了这种现象,屯秋变报6kV母线接地,Ua=3.2kV,Ub=0,Uc=3.2kV,依次拉开各条出线开关接地未消除,

再将所有出线全部拉开,接地也消除。检查PT,发现B相高低压保险均熔断。更换好PT 保险后,A相电压为6.4kV,B相为0,C相为6.4kV,再次检查保险完好,怀疑变压器等设备接地,退出主变运行,然后用摇表测绝缘情况:变压器、PT、站变等均无问题,为什么会出现这种现象,经过对PT进行仔细检查分析,终于找到问题之所在,分析如下:

从图9可看出,PT二次接线的特点是:采用B相接地方式,而中性点是经地一个击穿保险JRD接地。从故障经过可看出:①第一次电压不平衡(Ub=0,而其余两相并不升高),既不象接地现象,也不象高压保险熔断现象,因为若高压保险熔断,B相应有一定的感应电压,只能是高、低压保险均熔断才会是这样,检查果然如此;②保险换好后,三相电压变为Ua =6.4kV,Ub=0,Uc=6.4kV,又变为典型的接地现象,然而所有出线已拉开,用摇表摇测变压器,6kV母线及PT本身均未发现有接地。之所以会出现这种现象,是因为中性点击穿保险击穿,使得二次绕组b相单相短路。由于二次回路单相短路电流小,且接地的b相与地同电位,因此,b相端电压接近于零,故b相输出为零;由于一次系统是中性点不接地系统,电压互感器一次绕组虽然中性点接地,但没有零序电流流通,因此,二次绕组的零序电流便在铁芯中激励起零序磁通,零序磁通感应一个零序电势ko,使得原来对称的三相电压a、b、c变成不对称的三相电压′a、′b、′c,即A、C相电压升为线电压,B相为零,电压向量图如图10所示。当取下JRD后,中性点接地即消除,电压恢复平衡。

图9 三相五柱电压互感器接线图

图10 中性点穿保险JRD击穿时的电压向量图

6 结论

由上述几种分析可看出,设备运行过程中,应分析各种电压不平衡情况,做到分析判断准确,处理及时,才能保证设备的安全运行。在改接线过程中,应注意接线正确,否则将会使运行人员误判断;对接地不消失的情况,运行人员应引起充分注意,否则会误认为误发信号而造成误判断而延误了故障排除。

CVT电容式电压互感器内部结构

CVT——电容型电压互感器 电磁式电压互感器其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。电容式电压互感器由串联电容器抽取电压,再经变压器变压。CVT可防止因铁芯饱和引起铁磁谐振 ------电力技术论坛======专注电力技术、扩大学习交流,结交电力好友、彼此共同进步======% f2 L/ g. g( h6 K8 Q" |6 X电磁式多用于 220kV及以下电压等级。电容式一般用于110KV以上的电力系统,330~700kV超高压较多。 * D- _0 J# B0 J" c 1、概述 电容式电压互感器(简称CVT),1970年研制出国产第一台330KVCVT,1980年和1985年研制出第一代和第二代500KVCVT,1990年和1995年研制出第三代和第四代500KVCVT,30多年来积累了丰富的科研、开发设计和生产经验,在国内开发出一代又一代的CVT新产品,带动了国产CVT的发展。CVT最主要的特点是: ZG电力自动化不仅为电力职工提供一个可以交流的网络平台而且也为电力技术的爱好者和电力大中专学生提供一个可以展现自我的一个舞台。这个平台与传统知识交流平台相比具有:获取信息速度快,信息量大,互动性强,成本低。这几个特性是传统知识交流平台所不具备的。ZG电力自动化就是要利用这种互动方式为大家铺设桥梁,使各位朋友的技术共同进步、提高!) h8 B" ^, V% }1 n0 q、——耐电强度高,绝缘裕度大,运行可靠。 ZG电力自动化不仅为电力职工提供一个可以交流的网络平台而且也为电力技术的爱好者和电力大中专学生提供一个可以展现自我的一个舞台。这个平台与传统知识交流平台相比具有:获取信息速度快,信息量大,互动性强,成本低。这几个特性是传统知识交流平台所不具备的。ZG电力自动化就是要利用这种互动方式为大家铺设桥梁,使各位朋友的技术共同进步、提高!+ _9 V5 l/ B$ g- A/ Q ——能可靠的阻尼铁磁谐振。成功采用新型组尼期,严格进行质量控制,确保出厂的每一台CVT均能在从低到高的任何电压下有效阻尼各种频率的铁磁谐振。T% X: |2 ]8 c" |4 P ——优良的顺变响应特性。当一次短路后其二次剩余电压能在20MS内降到5%以下,特别适应于快速继电保护。 ------电力技术论坛======专注电力技术、扩大学习交流,结交电力好友、彼此共同进步======; R4 e% A& U, O* m1 J0 _, A ——具有电网谐波监测的专利技术。 2、应用U l. f1 o% g: \1 e7 k2 y7 M 电容式电压感器可在高压和超高压电力系统中用于电压和功率测量、电能计量、继电保护、自动控制等方面,并可兼作耦合电容器用于电力线载波通信系统。如有需求,可提供用于谐波电压测量的内部附件及外部接线端子。 - |& k2 G0 w6 b7 ^% { (1)安装运行场所:户外或户内。 ZG电力自动化不仅为电力职工提供一个可以交流的网络平台而且也为电力技术的爱好者和电力大中专学生提供一个可以展现自我的一个舞台。这个平台与传统知识交流平台相比具有:获取信息速度快,信息量大,互动性强,成本低。这几个特性是传统知识交流平台所不具备的。ZG电力自动化就是要利用这种互动方式为大家铺设桥梁,使各位朋友的技术共同进步、提高!- }& I8 |5 s) S Z6 K! k: T (2)海拔:330kv及以下产品不超过2000m。500kv产品不超过1000m,根据订货要求,可提供直至4000m的高原型产品。 (3)环境温度:-40/+40度,-25/+45度。由用户在订货时选定(也可选择其他温

电压互感器异常状况的处理及原因分析

电压互感器异常状况的处理及原因分析 摘要:电压互感器是供电系统的重要组成部分,如果电压互感器出现异常现象,会影响电能表计量的准确性,电力企业的工作人员,要定期对电压互感器进行检查,在发现电压互感器三相指示数值出现了较大的偏差,一定要采取有效的措施 进行处理。电力企业的检修人员要重视电压互感器的维护工作,要做好试验与记 录工作,在发现电压互感器出现异常状况后,要分析故障出现的原因,然后针对 问题找到处理的措施。 关键词:电压互感器;异常;处理;原因;计量 引言 电压互感器是电能表的基本元件,如果电压互感器出现异常状况会影响电能 表计量的准确性,还会影响电费的收缴数额,可能会对电力企业造成较大的经济 损失。电压互感器的异常状况包括指示异常、接线错误等,在发现异常现象后, 一定要及时处理,还要提出解决的思路,了解故障出现的原因,要善于总结故障 处理的经验,这样可以提高故障排除的效率,还可以避免电压互感器再次出现故障。 1、电压互感器严重异常的处理方法 在电压互感器运行的过程中,就如果出现以下现象,就说明互感器出现了严 重的异常现象,所采取的唯一处理方式就是停电处理。 1.1技术人员在对电压互感器的内部进行检查的过程中,听见互感器内部出现严重的放电声音或者是其他类型的比较异常的声响。 1.2电压互感器本身出现了温度过热的现象,如果互感器没有及时地得到检修和维护就很有可能出现爆炸或者是着火的现象。这一问题如果存在,工作人员就 应该立即断电处理。 1.3电压互感器出现了向外部喷油的现象,而且二次电压值出现了严重的异常现象。如果温度逐渐升高或者是逐渐降低,没有达到一定的平衡程度,说明互感 器的内部出现了严重的问题,需要得到及时地处理。 1.4电压表的指数不明确,在不断波动。甚至是超过或者低于额定值很大部分。出现这些现象则说明电压互感器出现了严重的问题。 2、电压互感器二次电压升降异常处理方法 如果电压互感器的二次电压出现了升降异常的现象,检修人员需要首先考虑 到一次电压的影响。如果一次电压没有出现任何异常的现象,就说明电压互感器 的内部出现了严重的问题。其中电磁式电压出现变化的现象可能是由于一次或者 是二次绕组之间出现了短路的现象。电容式压变可能会在较大的冲击作用下,冲 破局部的电容,出现严重的故障问题。所以说,一旦检修和维护人员发现了电压 互感器二次电压升降异常的现象,就应该对设备的运行状况进行严密地监控,加 强对压变的检查力度。在检查和观测的过程中,要将不同时间段内部的相关指数 和参数进行记录,作为主要的依据,并且形成报告的形式,为互感器的维护工作 提供重要的数据信息。 3、电压互感器二次失压异常的处理方式 出现电压互感器二次失压异常的现象很有可能是受到二次相开关的影响,如 果小开关出现了跳闸或者是熔丝熔断的现象就会对互感器的运行工作造成危害。 在这种状况下,很有可能会出现失压闭锁或者是电压鉴定不合理的现象。为了对 这一问题进行控制和预防,相关的检查人员应该着重检测电压互感器的二次失压

电压互感器的一、二次装熔断器问题

电压互感器的一、二次侧装熔断器是怎样考虑的? 电压互感器一次侧装熔断器的作用是: (1)防止电压互感器本身或引出线故障而影响高压系统(如电压互感器所接的那个电压等级的系统)的正常工作。 (2)电压互感器二次侧装熔断器的作用是: 保护电压互感器本身。但装高压侧熔断器不能防止电压互感器二次侧过流的影响。因为熔丝截面积是根据机械强度的条件而选择的最小可能值,其额定电流比电压感器的额定电流大很多倍,二次过流时可能熔断不了。所以,为了防止电压互感器二次回路所引起的持续过电流,在电压互感器的二次侧还得装设低压熔断器。 装于室内配电装置的高压熔断器,是装有石英填料的,能截断1000兆瓦的短路功率。 (3)在110千伏及以上电压的配电装置中,电压互感器高压侧不装熔断器。这是由于高压系统灭弧问题较大,高压熔断器制造较困难,价格也昂贵,且考虑到高压配电装置相间距离大,故障机会较少,故不装设。 二次侧短路的保护由二次侧熔断器担负。二次侧出口是否装熔断器有几个特殊情况: (1)二次开口三角接线的出线端一般不装熔断器。这是唯恐接触不良发不出接地信号,因为平时开口三角端头无电压,无法监视熔断器的接触情况。但也有的供零序过电压保护用,开口三角出线端是装熔断器的。 (2)中性线上不装设熔断器。这是避免熔丝熔断或接触不良使断线闭锁失灵,或使绝缘监察电压表失去指示故障的作用。 (3)用于自动励磁调整装置的电压互感器二次侧一般不装设熔断器。这是为了防止熔断器接触不良或熔断,使自动励磁调整装置强行励磁误动作。 (4)220千伏的电压互感器二次侧现在一般都装设空气小开关而不用熔断器,以满足距离保护的需要。 二次侧熔断器选择的一般原则: (1)熔丝的熔断时间必须保证在二次回路发生短路时,小于继电保护装置的动作时间。 (2)熔断器的容量应满足以下条件:熔线额定电流应大于最大负荷电流,且取可靠系数为1.5。 (3)继电保护装置与测量仪表公用一组电压互感器时,应考虑装设在继电保护装置的熔断器与仪表回路的熔断器在动作时间和灵敏度上相配合,即仪表回路熔断器的动作时间应小于继电保护装置的动作时间,这样仪表回路短路时,不致引起继电保护装置误动作。

电磁式电压互感器试验教案

电磁式电压互感器试验教案 一、试验项目 1、一、二次绕组直流电阻试验 2、变比及绕组联接组别试验 3、一、二次绕组绝缘电阻试验 4、介损及电容量试验 5、空载及伏安特性试验 6、三倍频感应耐压试验 以上试验在一次准备工作中完成。 一般情况下,应先进行低电压试验再进行高电压试验、应在绝缘电阻测量之后再进行介损及电容量测量,这两项试验数据正常的情况下方可进行试验电压较高的空载电流测量、局部放电测试和交流耐压试验;交流耐压试验后应进行局部放电测试、还应重复进行空载电流测量或介损/电容量测量,以判断耐压试验前后试品的绝缘有无变化。推荐的试验程序如下所示: 二、仪器选择 1、3396直流电阻测试仪: 2、2300变比测试仪 3、绝缘电阻测试仪:一次绕组用2500V;二次绕组用1000V或2500V。 4、6000精密介损仪 5、2205多倍频感应耐压测试仪 6、交直流高压测量仪 应根据被试品选仪器型号、量程,所用仪器仪表精度均不低于0.5级,且状态良好并在校验有效期内。 三、危险点分析及控制 一)现场作业 在现场进行交接和预防性试验时,试品的对外引线、接地装置易触及附近的带电运行设备,加之人员嘈杂和堆放的杂物等情况,均增加了试验工作的复杂性,工作安全注意事项:1、现场工作必须执行工作票制度、工作许可制度、工作监护制度、工作间断和转移及终结 制度。 2、试验人员进入试验现场,必须按规定戴好安全帽、正确着装。 3、工作人员进入6室前应先通风15,分别检测6和空气中氧的浓度;不得在6设备防爆膜附近逗留。

4、工作前必须进行“班前会”,工作负责人应对全体试验人员详细说明工作任务、工作范围、安全措施及注意事项,防止作业人员不清楚停电范围,走错带电间隔。 5、高压试验工作不得少于两人,试验负责人应由有经验的人员担任。开始试验前,负责人应对全体试验人员详细布置试验中的安全事项。 6、在试验现场应装设遮栏或围栏,悬挂“止步,高压危险!”标示牌,并派专人看守。试品两端不在同一地点时,另一端还应派人看守。 7、合理、整齐地布置试验场地,试验器具应靠近试品,所有带电部分应互相隔开,面向试验人员并处于视线之内。试验人员的活动范围及与带电部分的最小允许距离应按表1规定。 表3-1 操作人员活动范围及与带电设备的最小距离: 9、试验器具的金属外壳应可靠接地,高压引线应尽量缩短,必要时用绝缘物支持牢固。为了在试验时确保高压回路的任何部分不对接地体放电,高压回路与接地体(如墙壁等)的距离必须留有足够的裕度。 10、使用和搬运工器具与带电设备安全距离不够时,可能造成人员高压触电,所以人员使用和搬运工器具进入工作现场必须有专人监护,注意与带电设备保持足够的安全距离。11、登高工作时,必须正确使用安全带,按规定使用梯子,防止人员高空摔跌;严禁将物件上下抛掷。 12、在可能产生感应电的设备上装设接地线,试验设备应牢靠接地,防止感应电伤人、损坏仪器。 13、低压电触电,试验电源应装设合格的漏电保护装置。 14、试验装置的电源开关应使用具有明显断开点的双极刀闸,并装有合格的漏电保护装置。 15、工作前应对试验设备、仪器、仪表进行检查,禁止使用不合格或有缺陷的试验设备。 16、加压前必须认真检查接线、表计量程,确认调压器在零位及仪表的开始状态均正确无误,并通知所有人员离开被试设备,在征得试验负责人许可后,方可加压,加压过程中应有人监护。 17、加压过程中,操作人员应站在绝缘垫上。 18、试验人员在加压过程中,应精力集中,不得与他人闲谈,随时警惕异常现象发生。操作顺序应有条不紊,在操作中除有特殊要求,均不得突然加压或失压。当发生异常现象时,应立即降压、断电、放电、接地,而后再检查分析。 19、变更接线或试验结束时。应首先降下电压,断开电源、对被试品放电,并将升压装置的高压部分短路接地。 20、未装接地线的大电容试品,应先放电再进行试验。进行高压直流试验时,每告一段落或试验结束后,应将试品对地放电数次并短路接地后方可接触,防止剩余电荷电击伤人。 试验现场有特殊情况时,应特殊对待,并应针对现场实际情况制定符合现场要求的安全措施。 二)试验室内作业 1、试验人员进入试验现场,必须按规定戴好安全帽、正确着装。 2、高压试验工作不得少于两人,试验负责人应由有经验的人员担任。开始试验前,负责人应对全体试验人员详细布置试验中的安全事项。 3、在试验现场应装设遮栏或围栏,字面向外悬挂“止步,高压危险!”标示牌,并派专人

35kV变电站消弧线圈常见故障及处理

35kV变电站消弧线圈常见故障及处理 发表时间:2019-01-14T11:03:42.360Z 来源:《防护工程》2018年第30期作者:李玉哲 [导读] 本文结合笔者多年的实践工作经验,就35kV变电系统常见的真空断路器故障、线路电缆故障 李玉哲 国网山东省电力公司菏泽市定陶区供电公司山东菏泽 271400 摘要:本文结合笔者多年的实践工作经验,就35kV变电系统常见的真空断路器故障、线路电缆故障、电压互感器故障以及消弧线圈等故障原因进行分析,对变电站日常检修维护过程中消弧线圈出现自身故障的技术处理措施进行了详细分析研究,提出了相应的解决办法,具有一定的参考价值。 关键词:35kV变电站;消弧线圈;故障及处理 引言:我国3kV、6kV、10kV、以及35kV等中低压配电网系统中,绝大多数是按小电流接地系统进行设计,即系统中性点是不接地系统。在进行35kV变电站系统设计时,通常按照中性点不接地系统进行,这种变电站运行方式,其在系统发生单相接地故障时,其电流值将大于系统允许安全运行值(对于3kV~10kV系统而言,其单相接地电流值应不大于30A),此时故障电流产生的电弧将不能自行熄灭。为了降低电弧电流以满足系统安全运行需求,在工程中通常采用在中性点和大地间接入相应容量的消弧线圈,利用消弧线圈的补偿电流对系统进行动态补偿,这样就可以帮助系统熄灭故障接地点处故障电流产生的电弧,保证系统运行可靠性。 一、35kV变电站的常见故障 1.线路电缆故障分析 1.1接地点电阻值过高。通常情况下,为了避免感应过电压过高,交联电缆一般设有两个接地点,这样使得接地的电阻值小于规定的值,以起到保护电缆的作用。但是如果因为电缆的接头的金属屏蔽效果不好,导致接地的电阻值过高,超过标准值很多时候就会很容易产生更高的过电压,当电缆绝缘胶老化的时候,就很容易被烧穿。 1.2电缆长期负重导致出现故障。一般用在25℃的特定温度下的载流量来确认电缆是否负重运行,电缆在长期负重运行的情况下很容易出现故障,特别是在夏天由于本身的环境气温就高,长时间高温下负重运行导致电缆的绝缘层老化,增加了故障的几率。 1.3安装电缆不达标导致故障。在电缆的铺设和安装中,一般是通过往电缆沟里铺垫软土或者填水泥来保护电缆,但是如果没有忽略了这些措施,或者做的不到位的话就很容易导致电缆机械性的损伤,而这些损伤也常常是导致故障的隐患。 1.4厂家的质量问题。一些厂家制造的电缆间的连接接头不注意质量问题,导致连接头和终端头出现种种故障,还有劣质的电缆中会掺杂一些气体、液体和杂质等,这样就很容易导致杂质在高强度的电场下发生电离,使得电缆的绝缘层在老化的过程中提前被击穿而引发电缆故障。 2真空断路器故障分析 2.1真空泡的真空度降低。在35kV变电站的长期运行中,真空泡的真空度下降也是导致故障的常见原因,因为真空泡的真空度降低会使其使用寿命大大缩短,甚至严重到导致真空断路器的损坏和爆炸。 2.2真空断路器分闸失灵。真空断路器的分闸失灵会导致事故越级,事故范围波及广,常见的真空断路器失灵情况有遥控分闸不能自动断开分断路器、继电器保护动作失灵和人工分闸不能使用。 3电压互感器故障分析 在35kV电力系统中存在着很多储能元件,比如线性电容和非线性的铁心线圈。如果铁心的饱和引起电感量发生变化,那么当线路对地容抗XC与铁心感抗XL十分接近或者相等时,就会引发并联铁磁谐振,而电路中的非线性电感元件是产生铁磁共振的必要条件,所以在发生铁磁谐振的时候,电压互感器承受了更多的过电压,铁心的磁通就会成倍的增加,铁心迅速达到了饱和状态,频率的降低将导致绕组过热而烧毁甚至爆炸。 4消弧线圈故障分析 35kV变电站通常具有一种自动保护的功能叫做消弧线圈,而这种保护功能在消弧线圈发生故障时会自动启动。如果消弧线圈自身的中性点位移电压值和补偿电流偏大的时候就会产生警报,如果不能及时发现排除警报就很容易导致故障。 二、消弧线圈自身故障处理 1铁心故障处理 消弧线圈是一个具有铁心的电感线圈,其自身电感电流与系统故障电容电流间进行补偿,从而降低变电站系统发生单相接地故障电流值。虽然消弧线圈自身电阻很小,但其电抗值却相当大。消耗线圈的铁心与线圈等均浸在变压器油中。从外观看,消弧线圈的外部结构与单相变压器极为相似,但消弧线圈内部结构却不是简单的单相变压器。在设计制造过程中,为了避免消弧线圈内部铁心快速饱和,通常在消弧线圈内部铁心柱上留很多间歇,并在间隙中用绝缘纸板进行完善填充,这样可以让消耗线圈拥有一个较为稳定的电抗值,使消弧线圈所产生的补偿电流能够与系统电压间存在稳定的比例特性,进而使消弧线圈能够根据变电站故障实际情况需求,合理选择调解线圈以期获得一个较为理想的感性电流值,从而与变电站系统故障时的电容电流值进行抵消,达到明显的消弧作用。但是在日常运行过程中,也会发现有消弧线圈烧损事故发生,大多数是由产品制造、运输不当、以及调试合理等引起。因此,为了提高35kV变电站运行可靠性,对消弧线圈的运行维护和预防性试验工作就显得十分重要。结合大量文献资料和实际工作经验,对提高消弧线圈运行可靠性常见检修维护措施归纳总结如下建议。 1.1严格检测电缆。要通过使用专业的检测仪器对电缆和接头的定期检测及时分析出接地电阻的变化规律。然后根据变化的趋势判断如果接地的电阻值高于设计的标准值,那么一方面可能是电缆和地面连接不稳定,另一方面则有可能是因为接头处被氧化了。 1.2确保安装电缆全过程的质量。对于电缆的质量监控就要从工厂、材料、工人施工等多方面进行把关,要严格要求技术工人的技术素质,技术要精细以保证电缆的制作质量。采用达到IEC标准的新型硅橡胶预置式接头以克服热缩电缆头的缺点。

电压互感器的结构及功能

电压互感器和变压器很相像,都是用来变换线路上的电压。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。 线路上为什么需要变换电压呢?这是因为根据发电、输电和用电的不同情况,线路上的电压大小不一,而且相差悬殊,有的是低压220V和380V,有的是高压几万伏甚至几十万伏。要直接测量这些低压和高压电压,就需要根据线路电压的大小,制作相应的低压和高压的电压表和其他仪表和继电器。这样不仅会给仪表制作带来很大困难,而且更主要的是,要直接制作高压仪表,直接在高压线路上测量电压,那是不可能的,而且也是绝对不允许的。 电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电的隔离。电压互感器在运行时,一次绕组N1并联接在线路上,二次绕组N2并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。 电压互感器实际上是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关互感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.docsj.com/doc/3c17137216.html,。

电压互感器常见故障及处理

电压互感器常见故障及处理: (1)电压三相指示不平衡:可能是保险损坏。 (2)中性点不接地:三相不平衡,可能是谐振,或受消弧线圈影响。 (3)高压保险多次熔断:内部绝缘损坏,层间和匝间故障。 (4)中性点接地,电压波动:若操作是串联谐振,没有操作是内绝缘损坏。 (5)电压指示不稳:接地不良,及时检查处理。 (6)电压互感器回路断线:退出保护,检查保险并更换,检查回路。 (7)电容式电压互感器的二次电压波动:可能是二次阻尼配合不当。二次电压低,可能接线断或分压器损坏。二次电压高,可能是分压器损坏。 (8)声音异常:电磁单元电抗器或中间变压器损坏。 电压互感器的作用 电压互感器是一种电压变换装置,有电压变换和隔离两重作用,它将高压回路或低压回路的高电压转变为低电压(一般为100V),供给仪表和继电保护装置实现测量、计量、保护等作用。 另外,某些电压互感器(或者其某一二次绕组)也用于从一次线路取点,用于给二次回路供电,这种互感器或绕组的特点是二次额定电压一般为220V,且二次负荷较大。 电压互感器的原理 电压互感器是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式 电压互感器的分类 (1)按安装地点可分为户内式和户外式。35kV及以下多制成户内式;35kV以上则制成户外式。 (2)按相数可分为单相和三相式,35kV及以上不能制成三相式。 (3)按绕组数目可分为双绕组和三绕组电压互感器,三绕组电压互感器除一次侧和基本二次侧外,还有一组辅助二次侧,供接地保护用。 (4)按绝缘方式可分为干式、浇注式、油浸式和充气式,干式浸绝缘胶电压互感器结构简单、无着火和爆炸危险,但绝缘强度较低,只适用于6kV以下的户内式装置;浇注式电压互感器结构紧凑、维护方便,适用于3kV~35kV户内式配电装置;油浸式电压互感器绝缘性能较好,可用于10kV以上的户外式配电装置;充气式电压互感器用于SF6全封闭电器中。 (5)此外,还有电容式电压互感器,电容式电压互感器实际上是一个单相电容分压管,由若干个相同的电容器串联组成,接在高压相线与地面之间,它广泛用于110kV~330kV的中性点直接接地的电网中。 电压互感器工作原理

电磁式电压互感器的结构特点

电磁式电压互感器的结构特点 电磁式电压互感器按其结构形式大致可分为普通式和串击式,其结构特点如下: (1) 3~35kV电磁式电压互感器是普通式结构,它与普通小型变压器相似。 (2) 110kV及以上电磁式电压互感器普遍制成串级式结构,它的一次绕组分成匝数相等的两个部分,分别套在铁芯的上、下柱上,按磁通相加方向顺序连接,接在相线与地之间。绕组中点与铁芯相连接。当二次绕组开路时,绕组电位可均匀分布。由于110kV电压比较低,只有一个铁芯,没有连耦绕组。此结构的主要特点是:绕组和铁芯采用分级绝缘,简化绝缘结构;绕组和铁芯装在瓷箱中,瓷箱兼作高压出线套管和油箱。因此,瓷箱串级式电压互感器可节约大量的绝缘材料,减轻重量,降低造价。 (3) 220kV及以上串级式结构的电磁式电压互感器,有两个铁芯(单元)组成,一次绕组分成匝数相等的四个部分,分别套在两个铁芯的

上、下柱上,按磁通相加方向顺序连接,接在相线与地之间。每一元件上的绕组中点与铁芯相连接。二次绕组绕在末级铁芯的下柱上。当二次绕组开路时,绕组电位可均匀分布。绕组边缘线匝对铁芯的电位差为Uph/4,因此,绕组边缘线匝对铁芯的绝缘只需按Uph/4设计,而普通结构的电压互感器则需按Uph来绝缘。至于铁芯与铁芯、铁芯与地之间有电位差,仍然需要绝缘,但比较容易解决,故串级式电压互感器可节约大量的绝缘材料,减轻重量,降低造价。 当二次绕组接通负荷后,由于负荷电流的去磁作用,使末级铁芯内的磁通小于其他铁芯内的磁通,从而使各元件感抗不等,电压分布不均,准确度降低。为避免这一现象,在两铁芯相邻的磁柱上绕有匝数相等的连耦绕组(绕向相同,反向对接),这样,当某一元件的磁通有变化时,连耦绕组内出现电流,该电流使磁通较大的铁芯去磁,使磁通较小的铁芯增磁,达到各级铁芯内磁通大致相等,使各元件绕组电压均匀分布的目的。在同一铁芯的上、下柱上,还设有平衡绕组(绕向相同,反向对接),其作用与连耦绕组相同,借助平衡绕组内的电流作用,使两柱上的安匝分别平衡。

变电站电流互感器与电压互感器介绍

https://www.docsj.com/doc/3c17137216.html, 变电站电流互感器与电压互感器介绍电流互感器与电压互感器 结构原理:一次绕组串联在主电路中或 直接利用一次母线;二次绕组所接仪表、继电器均串联。 I2N=5A或1A (一)电流互感器(CT) 可选用标准电流互感器校准测定 准确度级:测量用有0.1、0.2、0.5、1、3、5等级, 保护用有5P和10P两级。

https://www.docsj.com/doc/3c17137216.html, 高压电流互感器一般制成两个铁心和两个二次绕组,其中准确度级高的二次绕组接测量仪表,其铁心易饱和;准确度级低的二次绕组接继电器,其铁心不应饱和。 一相式接线反应一次电路对应相的电流。通常用在负载平衡的三相电路中测量电流,或在继电保护中作为过负荷保护接线。 两相V形接线广泛用于中性点不接地的三相三线制电路中,供用于三相电流、电能的测量及过电流继电保护。 三相星形接线反应各相电流,因此广泛用于中性点直接接地的三相三线制特别是三相四线制电路中,用于测量或过电流继电保护等。 (二)电压互感器 (PT) 可选用标准电压互感器校准测定 结构原理:一次绕组并联在主电路中,二次绕组中仪表,继电器均并联连接。 有的电压互感器具有3个绕组(有2个二次绕组),其图形符号为 准确度级:有0.2、0.5、1、3等级。 1) 一个单相电压互感器的接线 2) 两个单相电压互感器接成V/V形 常用接线方案有以下几种: 可测量一个线电压 可测量三相三线制电路的各个线电压,它广泛地应用于用户10kV高压配电装置中。

https://www.docsj.com/doc/3c17137216.html, 3)三个单相三绕组电压互感器或一个三相五心柱三绕组电压互感器接成Y0/Y0/L 形接成Y0的二次绕组可测量各个线电压及相对地电压,而接成开口三角形的辅助二次绕组可测量零序电压,可接用于绝缘监察的电压继电器或微机小电流接地选线装置。

电压互感器地原理及结构

电压互感器 一 电磁式电压互感器的原理及结构 1电压互感器的工作原理与技术特性 电压互感器的构造、原理和接线都与电力变压器相同,差别在于电压互感器的容量小,通常只有几十或几百VA ,二次负荷为仪表和继电器的电压线圈,基本上是恒定高阻抗。其工作状态接近电力变压器的空载运行。 电压互感器的高压绕组,并联在系统一次电路中,二次电压U 2与一次电压成比例,反映了一次电压的数值。一次额定电压U IN ,多与电网的额定电压相同,二次额定电压U2N ,一般为100V 、100/3V 、100/3V 。 电压互感器的一、二次绕组额定电压之比,称为电压互感器的额定变比K N ,则 K N = N N U U 21≈21U U ≈2 1 N N (2-1-1) 式中 N 1、N 2——电压互感器原、副绕组的匝数。 由式(2-1-1)知,若已知二次电压U 2的数值,便能计算出一次电压U 1的近似值,为 U 1=k N U 2 由于电压互感器的原绕组是并联在一次电路中,与电力变压器一样,二次侧不能短路,否则会产生很大的短路电流,烧毁电压互感器。同样,为了防止高、低压绕组绝缘击穿时,高电压窜入二次回路造成危害,必须将电压互感器的二次绕组、铁心及外壳接地。 2电压互感器的误差及准确度等级 与电流互感器类似,电压互感器的误差也分为电压误差和角误差。 (一) 电压误差△U 是二次电压的测量值U 2乘以额定变比K N (即一次电压的测量值)与一次电压的实际值U 1之差,并以一次电压实际值的百分数表示,即 △U= 1 1 2U U U k N ×100% (2-1) (二) 角误差δ 折算到一次侧的二次电压U ′2,逆时针方向转1800与一次电压U 1之间的夹δ,并规定 当-U ′2超前U 1时,δ角为正值,反之,δ角为负值。 (三) 影响误差的因素 电压互感器的误差与其工作情况的关系,可由电压互感器根据T 形等值电路所作的向量图加以说明,如图2-1所示,其中二次侧各量均折算到一次侧,二次部分

电压互感器常见故障及处理方法

1.电压互感器的常见故障及分析 (1)铁芯片间绝缘损坏。故障现象:运行中温度升高。产生故障的可能原因:铁芯片间绝缘不良、使用环境条件恶劣或长期在高温下运行,促使铁芯片间绝缘老化。 (2)接地片与铁芯接触不良。故障现象:运行中铁芯与油箱之间有放电声。产生故障的原因:接地片没插紧,安装螺丝没拧紧。 (3)铁芯松动。故障现象:运行时有不正常的振动或噪声。产生故障的原因:铁芯夹件未夹紧,铁芯片问松动。 (4)绕组匝间短路。故障现象:运行时,温度升高,有放电声,高压熔断器熔断,二次侧电压表指示不稳定,忽高忽低。产生故障的原因:系统过电压,长期过载运行,绝缘老化,制造工艺不良。 (5)绕组断线。故障现象:运行时,断线处可能产生电弧,有放电响声,断线相的电压表指示降低或为零。产生故障的原因:焊接工艺不良,机械强度不够或引出线不合格,而造成绕组引线断线。 (6)绕组对地绝缘击穿。故障现象:高压侧熔断器连续熔断,可能有放电响声。产生故障的原因:绕组绝缘老化或绕组内有导电杂物,绝缘油受潮,过电压击穿,严重缺油等。 (7)绕组相间短路。故障现象:高压侧熔断器熔断,油温剧增,甚至有喷油冒烟现象。产生故障原因:绕组绝缘老化,绝缘油受潮,严重缺油。 (8)套管间放电闪络。故障现象:高压侧熔断器熔断,套管闪络放电。产生故障原因:套管受外力作用发生机械损伤,套管间有异物或小动物进入,套管严重污染,绝缘不良。 2.电压互感器回路断线及处理 当运行中的电压互感器回路断线时,有如下现象显示:“电压回路断线”光字牌亮、警铃响;电压表指示为零或三相电压不一致,有功功率表指示失常,电能表停转;低电压继电器动作,同期鉴定继电器可能有响声;可能有接地信号发出(高压熔断器熔断时);绝缘监视电压表较正常值偏低,正常相电压表指示正常。 电压回路断线的可能原因是:高、低压熔断器熔断或接触不良;电压互感器二次回路切换开关及重动继电器辅助触点接触不良。因电压互感器高压侧隔离开关的辅助开关触点串接在二次侧,与隔离开关辅助触点联动的重动继电器触点也串接在二次侧,由于这些触点接触不良,而使二次回路断开;二次侧快速自动空气开关脱扣跳闸或因二次侧短路自动跳闸;二次回路接线头松动或断线。 电压互感器回路断线的处理方法如下: (1)停用所带的继电保护与自动装置,以防止误动。

电压互感器高压熔断器频繁熔断原因分析

电压互感器高压熔断器频繁熔断原因分析 作者简介:李贞(1984-),黑龙江密山人,西安供电局,配电运行;吕信岳(1984-),浙江温州人,西安供电局,配电运行。 电压互感器(PT)作为变电站中保护和计量的主要设备,在运行中起着至关重要的作用。其熔断器的频繁熔断不仅造成了经济损失,而且也影响正常的保护和计量工作,成为电网安全运行的隐患。先介绍电压互感器的作用、概述电压互感器熔断器熔断的常见原因,然后结合变电站现场发生的PT熔断器熔断现象,通过理论分析,对变电站PT熔断器熔断现象的根本原因做出解释,为今后可能出现的类似问题提供参考和借鉴。 标签:电压互感器; 铁磁谐振; 高压熔断器熔断; 解决措施 1 电压互感器的作用 (1)把一次回路的高电压按比例关系变换成100V或更低等级的标准二次电压,监视母线电压及电力设备运行状况,并提供测量仪表、继电保护及自动装置所需电压量,保证系统正常运行。 (2)可以将一次侧的高电压与二次侧工作的电气工作人员隔离,且二次侧可设接地点,确保二次设备和人身安全。 (3)使二次回路可采用低电压控制电缆,且使屏内布线简单,安装、调试、维护方便,可实现远方控制和测量。 2 电压互感器损坏及高压熔断器熔断的危害 (1)对变电设备的危害:一般情况下,系统中最常发生的异常运行现象是谐振过电压。虽然谐振过电压幅值不高,但可长期存在。尤其是低频谐波对电压互感器线圈设备影响的同时可能会危及变电其它设备的绝缘,严重的可使母线上的其它薄弱环节的绝缘击穿,造成严重的短路事故甚至大面积停电事故。 (2)对运行方式的危害:出现电压互感器烧坏及高压熔断器熔断现象后,如不能马上修复,将导致母线不能分段运行。 (3)对人员的危害:一旦发生电压互感器损坏或高压熔断器熔断现象,将会给运行人员巡视设备时造成人身伤害。 (4)降低供电可靠性和少计电量:若电压互感器损坏或高压熔断器熔断,则无法准确计量,直接造成电量损失或计量不准确。同时保护电压的消失将严重危及供电设备的安全运行。

新型电磁式电压互感器

新型电磁式电压互感器 1引言 当高压电站选择设备时,会出现选择哪种形式的电压互感器的问题。因为,电压互感器可以分成电磁式和电容式两种形式。这两种形式各有优缺点。因此,要根据技术性、经济性以及对每种方案的经验性进行评估后选择。据了解在伊 朗的供电系统中,只使用电容式电压互感器;在德国、匈亚利、奥地利以及其 他国家专门使用电磁式电压互感器。关于电磁式和电容式电压互感器的技术性 能对比.,笔者将在本文内做详细论述。 2电磁式电压互感器 到目前为止,电磁式电压互感器有三种形式:(1)具有闭合铁心的电磁式电压互感器;(2)串级式电压互感器;(3)具有开放铁心的电磁式电压互感器。2.1.具有闭合铁心的电磁式电压豆感甜在这种电压互感器中,一次绕组和二次绕组 通常放在一个心柱上,铁心接地。器身放在接地的箱体内。绕组的层数通常很多,层间绝缘是油浸纸,放在一次绕组层间的绝缘没有油隙。这种结构的优点 是对冲击和高频过电压具有很好的承受能力,缺点是绕组散热困难。如果在一 次绕组层间的绝缘中加入电屏和油隙,这种结构提高了绕组的散热性能,但是,在设计和施工时,必须考虑绕组端部电场结构的问题。2.2串级式电压互感器 将几个互感器串联连接,电磁式电压互感器的绝缘和散热的问题得到缓解。两 台互感器串联连接的原理图如图1所示。由图1可以看出,一次绕组串联连接,每个绕组的中心连接到铁心。这样,靠着铁心的一次绕组上的电压为施加电压 的四分之一。这种连接导致两个铁心上的电位不同,两个铁心要各自独立并绝缘。用一个补偿绕组(矗。^2)把上下两台连接在一起。没有这个补偿绕组,只 有当二次侧没有接负荷时,分配在一次绕组上的电压是均匀的。如果二次侧接 负荷,这时下面绕组上的电压将降低,上面绕组上的电压将升高。如果这样, 二次侧只能接小负荷。加上补偿绕组以后,在每一级上的电压分布将得到改善。这种原理的互感器的最大缺点是随着电压等级的提高,体积变得太大,因而不 科学。需要特别指出是,具有闭合铁心的电磁式电压互感器在高压网中,很容 易遭受铁磁谐振。铁磁谐振现象主要发生在由电磁式电压互感器中的非线性电

电压互感器的结构及作用

电压互感器的基本结构和变压器很相似,它也有两个绕组,一个叫一次绕组,一个叫二次绕组。两个绕组都装在或绕在铁心上。两个绕组之间以及绕组与铁心之间都有绝缘,使两个绕组之间以及绕组与铁心之间都有电气隔离。电压互感器在运行时,一次绕组N1并联接在线路上,二次绕组N2并联接仪表或继电器。因此在测量高压线路上的电压时,尽管一次电压很高,但二次却是低压的,可以确保操作人员和仪表的安全。 电压互感器和变压器很相像,都是用来变换线路上的电压。但是变压器变换电压的目的是为了输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位;而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。 电压互感器是一个带铁心的变压器。它主要由一、二次线圈、铁心和绝缘组成。当在一次绕组上施加一个电压U1时,在铁心中就产生一个磁通φ,根据电磁感应定律,则在二次绕组中就产生一个二次电压U2。改变一次或二次绕组的匝数,可以产生不同的一次电压与二次电压比,这就可组成不同比的电压互感器。电压互感器将高电压按比例转换成低电压,即100V,电压互感器一次侧接在一次系统,二次侧接测量仪表、继电保护等;主要是电磁式的(电容式电压互感器应用广泛),另有非电磁式的,如电子式、光电式。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.docsj.com/doc/3c17137216.html,。

电压互感器的异常和事故处理

电压互感器的异常和事故处理. 一、220kV电压互感器二次小开关跳开或二次熔断器熔断的处理 1、异常现象 (1)母线电压表,有功表无功表降为零。 (2)220kV出线或主变“交流电压消失”信号出现,距离保护装置故障,220kV母差“低电压”掉牌等。 (3)故障录波器可能动作。 2、异常处理 (1)汇报调度。 (2)停用该母线上线路距离保护(相间及接地)、高频闭锁保护。 (3)停用故障录波器。 (4)试送次级开关,若不成功,应汇报工段(区)处理。(5)不准以220kV母线电压互感器二次并列开关将正、副母压变二次回路并列,防止引起事故扩大。 220kV I、Ⅱ母PT的二次并列开关,正常运行应断开,如在双母线接线时,仅当220kV热倒母线,即把母联开关合上并改为非自动后,为防止电压切换中间继电器承受过大的不平衡负荷,把PT二次并列开关投人,待倒母线结束,将母联开关改为自动之前,先分开该并列开关。

220kV, 110KV母线PT切换装置直流熔断器熔断时,有关线路综合重合闸的交流电压消失、振荡闭锁动作或距离保护装置故障、交流电压消失光字牌告警,此时距离及零序保护被闭锁,应立即向调度汇报,将距离保护停用后,更换直流熔断器。 220kV电压互感器有两只快速空气开关,如果其中一只空气开关出现断相或跳开,反映在电压表有明显变化,应立即检查处理。 二、500kV电压互感器的二次小开关跳开或熔断器熔断 1、异常现象 (1)电压互感器对应的电压回路断线,有关保护发失压信号。 (2)电压互感器对应的电压表指示偏低或无指示,有、无功表计指示降低或为零。 2、异常处理 (1)汇报所属调度,申请停用有关保护。 (2)更换熔断器或合上二次小开关。 (3)若二次小开关仍跳开说明二次回路有短路,应通知有关部门处理。 三、本体出现故障的处理

电压互感器装熔断器问题

电压互感器装熔断器问题 一次侧装熔断器 作用: 1.防止电压互感器本身或引出线故障而波及高压系统。 2.保护高压系统非正常电压损坏电压互感器。 注意:高压侧熔断器不能防止二次侧过流的影响。因为熔丝是根据机械强度的条件而选择的最小可能值,其额定电流比电压互感器的额定电流大很多倍,二次过流时可能熔断不了。所以,为了防止电压互感器二次回路所引起的持续过电流,在电压互感器的二次侧还得装设低压熔断器。 110kV及以上电压的配电装置中,电压互感器高压侧不装熔断器。 因为 1.高压系统灭弧困难,成本高。 2.装置相间距离大,故障机会较少。 3.电容套管绝缘裕度大,被击穿的概率很小。 4.110kV及以上系统中性点直接接地,对地短路会引起继保动作。 装于室内配电装置的高压熔断器,一般为石英填料熔断器,能截断1000兆瓦的短路功率。 二次侧熔断器 作用: 实现二次侧短路保护和过负荷保护。 二次侧出口是否装熔断器有几个特殊情况: 1.开口三角接线的出线端一般不装熔断器。 因为 平时开口三角端无电压,无法监视熔断器的状况。 担心接触不良发不出接地信号。在大电流接地系统中会使零序方向元件拒动,在小电流接地系统中会影响绝缘监察继电器正确运行。但也有供零序过电压保护用,开口三角出线端是装熔断器的。 2.中性线上不装设熔断器。 避免熔丝熔断或接触不良使断线闭锁失灵,或使绝缘监察电压表失去指示故障的作用。 3.励磁电压互感器一般不装设熔断器。 防止熔断器接触不良或熔断,使励磁装置强行励磁误动作。 4.220千伏的电压互感器二次侧现在一般都装设空气小开关而不用熔断器,以满足距离保护的需要。 二次侧熔断器选择的一般原则: 1.熔丝的熔断时间小于继电保护装置的动作时间。 2.熔断器的容量:额定电流应大于最大负荷电流,且取可靠系数1.5。 3.继电保护装置与测量仪表公用一组电压互感器时,应考虑装设在继电保护装置的熔断器与仪表回路的熔断器在动作时间和灵敏度上相配合,即仪表回路熔断器的动作时间应小于继电保护装置的动作时间,这样仪表回路短路时,不致引起继电保护装置误动作。

电磁式电压互感器

电磁式电压互感器(VT)和电容式电压互感器(CVT)的定义及区别 电磁式电压互感器其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电容式电压互感器由串联电容器抽取电压,再经变压器变压。CVT可防止因铁芯饱和引起铁磁谐振 电磁式多用于220kV及以下电压等级。电容式一般用于110KV以上的电力系统,330~700kV超高压较多。 电容式电压互感器是由串联电容器抽取电压,再经变压器变压作为表计、继电保护等的电压源的电压互感器电感式是线圈式的和变压器一样 电容式电压互感器时电容分压后通过电磁式电压互感器二次分压将二次额定电压规范到100V,57.7V,作用和电磁式电压互感器一样,但前者具有康铁磁谐振功能,且呈容性可提高系统功率因数,也可用于载波通讯。电容式电压抽取装置就是电容分压器,其输出容量很小只能接输入阻抗大的测量设备,输出电压一般很小,负载能力很差。 电压互感器的工作原理 在测量交变电流的大电压时,为能够安全测量在火线和地线之间并联一个变压器(接在变压器的输入端),这个变压器的输出端接入电压表,由于输入线圈的匝数大于输出线圈的匝数,因此输出电压小于输入电压,电压互感器就是降压变压器. 电流互感器的工作原理 在测量交变电流的大电流时,为能够安全测量在火线(或地线)上串联一个变压器(接在变压器的输入端),这个变压器的输出端接入电流表,由于输入线圈的匝数小于输出线圈的匝数,因此输出电流小于输入电流(这时的输出电压大于输入电压,

但是由于变压器是串联在电路中所以输入电压很小,输出电压也不大),电流互感器就是升压(降流)变压器. 110KV系统是中心点接地系统,它的电压互感器是接的相电压,接变比,数出来的就是相电压,但6~35KV系统是中心点不接地系统,电压互感器一测接的是线电压,二次侧有一个开口三角形的输出,如果按变比得到的是原边线电压的三倍,所以要再除以3才是接变

相关文档
相关文档 最新文档