文档视界 最新最全的文档下载
当前位置:文档视界 › ARM处理器共有37个寄存器其中包括.

ARM处理器共有37个寄存器其中包括.

ARM处理器共有37个寄存器。其中包括:

**31个通用寄存器,包括程序计数器(PC)在内。这些寄存器都是32位寄存器。

**6个状态寄存器。这些寄存器都是32位寄存器。

ARM处理器共有7种不同的处理器模式,每一种模式中都有一组相应的寄存器组。在任何时刻,可见的寄存器包括15个通用寄存器(R0-R14),一个或两个状态寄存器及程序计数器(PC)。在所有的寄存器中,有些是各模式公用一个物理寄存器,有一些寄存器各模式拥有自己独立的物理寄存器。

****************************************************

通用寄存器

***************************************************8

通用寄存器分为以下三类:备份寄存器、未备份寄存器、程序计数器PC

未备份寄存器

未备份寄存器包括R0-R7。对于每一个未备份寄存器来说,所有处理器模式下都是使用同一个物理寄存器。未备份寄存器没有被系统用于特别的用途,任何可采用通用寄存器的场合都可以使用未备份寄存器。

备份寄存器

对于R8-R12备份寄存器来说,每个寄存器对应两个不同的物理寄存器。系统为将备份寄存器用于任何的特殊用途,但是当中断处理非常简单,仅仅使用R8-R14寄存器时,FIQ处理程序可以不必执行保存和恢复中断现场的指令,从而可以使中断处理非常迅速。

对于R13,R14备份寄存器来说,每个寄存器对应六个不同的物理寄存器,其中的一个是系统模式和用户模式共用的;另外的五个对应于其他的五种处理器模式。采用下面的记号来区分各个物理寄存器:

R13_

其中MODE可以是下面几种模式之一:usr,svc,abt,und,irq,fiq

程序计数器PC

可以作为一般的通用寄存器使用,但有一些指令在使用R15时有一些限制。由于ARM采用了流水线处理器机制,当正确读取了PC的值时,该值为当前指令地址值加上8个字节。也就是说,对于ARM指令集来说,PC指向当前指令的下两条指令的地址。由于ARM指令是字对齐的,PC值的第0位和第一位总为0。

需要注意的是,当使用str/stm保存R15时,保存的可能是当前指令地址值加8个字节,也可能保存的是当前指令地址值加12个字节。到底哪种方式取决于芯片的具体设计。对于用户来说,尽量避免使用STR/STM指令来保存R15的值。

当成功的向R15写入一个数值时,程序将跳转到该地址执行。由于ARM指令是字对齐的,写入R15的值应满足bits[1:0]为0b00,具体要求arm个版本有所不同:

**对于arm3以及更低的版本,写入R15的地址值bits[1:0]被忽略,即写入r15的地址值将与0xFFFF FFFC做与操作。

**对于ARM4以及更高的版本,程序必须保证写入R15的地址值bits[1:0]为0b00,否则将产生不可预知的后果。

对于Thumb指令集来说,指令是班子对齐的,处理器将忽略bit[0]。

***************************************************************

程序状态寄存器

***************************************************************

CPSR(当前程序状态寄存器)在任何处理器模式下被访问。它包含了条件标志位、中断禁止位、当前处理器模式标志以及其他的一些控制和状态位。每一种处理器

模式下都有一个专用的物理状态寄存器,称为SPSR(备份程序状态寄存器)

。当特定的异常中断发生时,这个寄存器用于存放当前程序状态寄存器的内容。在异常中断退出时,可以用SPSR来恢复CPSR。由于用户模式和系统模式不是异常

中断模式,所以他没有SPSR。当用户在用户模式或系统模式访问SPSR,将产生不可预知的后果。CPSR格式如下所示。SPSR和CPSR格式相同。

31 30 29 28 27 26 7 6 5 4 3 2 1 0

N Z C V Q DNM(RAZ) I F T M4 M3 M2 M1 M0

***条件标志位***

N——本位设置成当前指令运算结果的bit[31]的值。当两个表示的有符号整数运算时,n=1表示运算结果为负数,n=0表示结果为正书或零。

z——z=1表示运算的结果为零;z=0表示运算的结果不为零。对于CMP指令,Z=1表示进行比较的两个数大小相等。

C——下面分四种情况讨论C的设置方法:

在加法指令中(包括比较指令CMP),当结果产生了进位,则C=1,表示无符号运算发生上溢出;其他情况C=0。

在减法指令中(包括减法指令CMP),当运算中发生错位,则C=0,表示无符号运算数发生下溢出;其他情况下C=1。

对于包含移位操作的非加碱运算指令,C中包含最后一次溢出的的位的数值

对于其他非加减运算指令,C位的值通常不受影响

V——对于加减运算指令,当操作数和运算结果为二进制的补码表示的带符号数时,V=1表示符号为溢出;通常其他指令不影响V位。

***Q标识位***

在ARM V5的E系列处理器中,CPSR的bit[27]称为q标识位,主要用于指示增强的dsp指令是否发生了溢出。同样的spsr的bit[27]位也称为q标识位,用于在异常中

断发生时保存和恢复CPSR中的Q标识位。

在ARM V5以前的版本及ARM V5的非E系列的处理器中,Q标识位没有被定义。

***CPSR中的控制位***

CPSR的低八位I、F、T、M[4:0]统称为控制位。当异常中断发生时这些位发生变化。在特权级的处理器模式下,软件可以修改这些控制位。

**中断禁止位:当I=1时禁止IRQ中断,当F=1时禁止FIQ中断

**T控制位:T控制位用于控制指令执行的状态,即说明本指令是ARM指令还是Thumb指令。对于AR M V4以更高版本的T系列ARM处理器,T控制位含义如下:

T=0表示执行ARM指令

T=1表示执行Thumb指令

对于ARM V5以及更高版本的非T系列处理器,T控制位的含义如下

T=0表示执行ARM指令

T=1表示强制下一条执行的指令产生未定指令中断

***M控制位***

M控制位控制处理器模式,具体含义如下:

M[4:0] 处理器模式可访问的寄存器

ob10000 user pc,r14~r0,CPSR

0b10001 FIQ PC,R14_FIQ-R8_FIQ,R7~R0,CPSR,SPSR_FIQ

0b10010 IRQ PC,R14_IRQ-R13_IRQ,R12~R0,CPSR,SPSR_IRQ

0B10011 SUPERVISOR PC,R14_SVC-R13_SVC,R12~R0,CPSR,SPSR_SVC

0b10111 ABORT PC,R14_ABT-R13_ABT,R12~R0,CPSR,SPSR_ABT

0b11011 UNDEFINEED PC,R14_UND-R8_UND,R12~R0,CPSR,SPSR_UND

0b11111 SYSTEM PC,R14-R0,CPSR(ARM V4以及更高版本)

***CPSR中的其他位***

这些位用于将来扩展。应用软件不要操作这些位。

在ARM体系中通常有以下3种方式控制程序的执行流程:

**在正常执行过程中,每执行一条ARM指令,程序计数器(PC)的值加4个字节;每执行一条Thumb指令,程序计数器寄存器(PC)加2个字节。整个过程是按顺序执行

**跳转指令,程序可以跳转到特定的地址标号处执行,或者跳转到特定的子程序处执行。其中,B指令用于执行跳转操作;BL指令在执行跳转操作同时,保存子程

序的返回地址;BX指令在执行跳转操作同时,根据目标地址为可以将程序切换到Thumb状态;BLX指令执行3个操作,跳转到目标地址处执行,保存子程序的返回

地址,根据目标地址为可以将程序切换到Thumb状态。

**当异常中断发生时,系统执行完当前指令后,将跳转到相应的异常中断处理程序处执行。当异常中断处理程序执行完成后,程序返回到发生中断指令的下条指

令处执行。在进入异常中断处理程序时,要保存被中断程序的执行现场,从异常中断处理程序退出时,要恢复被中断程序的执行现场。

ARM中异常中断的种类

**复位(RESET)**

当处理器复位引脚有效时,系统产生复位异常中断,程序跳转到复位异常中断处理程序处执行。复位异常中断通常用在下面几种情况下:系统加电时;系统复位时;跳转到复位中断向量处执行成为软复位。

**未定义的指令**

当ARM处理器或者是系统中的协处理器认为当前指令未定义时,产生未定义的指令异常中断,可以通过改异常中断机制仿真浮点向量运算。

**软件中断**

这是一个由用户定义的中断指令。可用于用户模式下的程序调用特权操作指令。在实时操作系统中可以通过该机制西线系统功能调用。

**指令与取终止(PrefechAbort)**

如果处理器预取的指令的地址不存在,或者该地址不允许当前指令访问,当被预取的指令执行时,处理器产生指令预取终止异常中断。

**数据访问终止(DATAABORT)

如果数据访问指令的目标地址不存在,,或者该地址不允许当前指令访问,处理器产生数据访问终止异常中断

**外部中断请求(IRQ)**

当处理器的外部中断请求引脚有效,而且CPSR的寄存器的I控制位被清除时,处理器产生外部中断请求异常中断。系统中个外设通过该异常中断请求处理服务。

**快速中断请求(FIQ)**

当处理器的外部快速中断请求引脚有效,而且CPSR的F控制位被清除时,处理器产生外部中断请求异常中断

异常中断向量表及异常中断优先级

中断向量表指定了个异常中断及其处理程序的对应关系。他通常存放在存储地址的低端。在ARM体系中,异常中断向量表的大小为32字节,其中每个异常中断占据4个字节大小,保留了4个字节空间。

每个异常中断对应的中断向量表中的4个字节的空间中存放了一个跳转指令或者一个向PC寄存器中赋值的数据访问指令。通过这两种指令,程序将跳转到相应的异常中断处理程序处执行。当几个异常中断同时发生时,就必须按照一定的次序来处理这些异常中断。

各个异常中断的中断向量地址以及中断的处理优先级

中断向量地址异常中断类型异常中断模式优先级(6最低)

0x00 复位特权模式 1

0x04 未定义的指令未定义指令终止模式 6

0x08 软件中断特权模式 6

0x0C 指令预取终止终止模式 5

0x10 数据访问终止终止模式 2

0x14 保留未使用未使用

0x18 外部中断请求IRQ模式 4

0x1C 快速中断请求FIQ模式 3

STM32库函数操作和寄存器操作

STM32库函数操作和寄存器操作 首先,两个都是C语言。从51过渡过来的话,就先说寄存器操作。每个MCU都有自己的寄存器,51是功能比较简单的一种,相应的寄存器也比较少,我们常用的就那么几个,像P0 P1 SMOD TMOD之类的,这些存在于标准头文件reg.h里面,因为少,所以大家就直接这么去操作了,每一位对应的意义随便翻一下手册就看得到,甚至做几个小项目就记的很清楚了。所以做51开发的时候大多数都是直接操作寄存器。 到了STM32,原理一样,也是有自己的寄存器,但是作为一款ARM 内核的芯片,功能多了非常多,寄存器自然也就多了很多,STM32的手册有一千多页,这时候想去像51那样记住每个寄存器已经不现实了,所以ST的工程师就给大家提供了库函数这么一个东西。这是个神器。库函数里面把STM32的所有寄存器用结构体一一对应并且封装起来,而且提供了基本的配置函数。我们要去操作配置某个外设的时候不需要再去翻眼花缭乱的数据手册,直接找到库函数描述拿来就可以用,这样就能把精力放在逻辑代码的开发上,而不是去费力的研究一个芯片的外设要怎么配置寄存器才能驱动起来。简单讲就是这些了,库函数是为了让开发者从大量繁琐的寄存器操作中脱离出来的一个文件包,在使用一个外设的时候让开发者直接去调用相应的驱动函数而不是自己去翻手册一个一个配置寄存器。有人说用库函数掌握不到芯片的精髓,见仁见智了。熟悉一款芯片是在不断的开发使用中逐渐了解并掌握的,调试的过程中会遇到很多问题,会要求我们去跟踪相关寄存器的状态,在整个框架都已经建立起来的基础上再去对照手册做具体到寄存器每一位的分析,代码对照现象,很快就能积累起来经验,祝成功。

嵌入式-ARM寄存器基本概念.

嵌入式-ARM寄存器基本概念 嵌入式-ARM寄存器基本概念 类别:嵌入式系统 无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄 存器以及工作模式。ARM有37个寄存器,其中31个通用寄存器,6个状 态寄存器。这里尤其要注意区别的是ARM自身寄存器和它的一些外设的寄存器的区别。ARM自身是统一架构的,也就意味着37个寄存器无论在哪 个公司的芯片里面都会出现。但是各家公司会对ARM进行外设的扩展,所以就 出现了好多外设寄存器,一定要与这37个寄存器区别开来!!!1、备份寄存器(R8-R14)对于R8-R12来说,除在快速中断模式下,每个模式对 应相同物理寄存器,所以在FIQ模式下可不必保护和恢复中断现场。对于R13-R14来说,每个寄存器对应6个不同的物理寄存器,其中一个是用户模式 和系统模式共用的。寄存器R13常用做栈指针SP,除用户和系统模式 外,其他模式在使用时的名字构成为R13_。寄存器R14又被称 2、不分组寄存器(R0-R7)不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理 器模式使用一个名字相同的物理寄存器,就是使用的同一个寄存器,这样可能 造成寄存器中数据被破坏,所以在进行模式切换时必须加以保护。为连接寄存器(LR),除用户和系统模式外,其他模式在使用时的名字构成为 R14_。有下面两种特殊用途:A、每个处理器模式自己的物理R14中存放在当前子程序的返回地址。当通过BL或BLX指令调用子程序时, R14被设置成该子程序的返回地址。B、当异常中断发生时,该异常模式 下的R14被设置成保存该模式基于PC的返回地址,对于有些异常模式,R14的值有可能与将返回的地址有个常数的偏移量,不同模式偏移量还有所不同(在ARM 的异常处理里有详细介绍)。3、程序计数器R15 对于用户来说,尽量避免使用STR/STM指令来保存R15的值。当成功向R15写入一个地址 数值时,程序将跳转到该地址执行。在ARM状态下指令总是字对齐的,所以PC的PC[1:0]位恒为零,在想PC写入地址时一定要注意将PC[1:0]设为零。ARM采用的是3级流水线结构,所以PC指向的是当前执行指令的下 两条指令,PC-8为当前指令地址。4、程序状态寄存器CPSR(当前程序状态寄存器)可以在任何处理器模式下被访问。同时除了用户和系统模式以外,每中处理器模式下都有一个专用的物理状态寄存器,称为 SPSR(备份程序状态寄存器)。当特定的异常中断发生时,这个寄存器用于存放当前程序状态 寄存器的内容。当在用户模式和系统模式中访问SPSR,将会产生不可预知的结果。CPSR和SPSR的格式相同,如下:0:M0 1:M1 2:M2 3:M3 4:M4 5:T(=1 Thumb执行) 6:F(=1是禁止) 7: I(=1是禁止) 注意:M0~M4并不是所有的组合都定义了有效的处理模式,如 果错误设置,将会引起无法预料的错误。27:Q 在ARM V5的E系列处理器中,CPSR的bit[27]称为q标识位,主要用于指示增强的dsp指令是否发生了

STM32单片机GPIO寄存器的功能解析

STM32单片机GPIO寄存器的功能解析 1、GPIO的寄存器按照功能可以分为以下几类: A、配置寄存器 B、数据寄存器 C、位寄存器 D、锁定寄存器 2、对于GPIO端口,每个端口有16个引脚,每个引脚的模式由寄存器的四个位控制,每四位又分为两位控制引脚配置(CNFy[1:0]),两位控制引脚的模式及最高速度(MODEy [1:0]),其中y表示第y个引脚。配置GPIO引脚模式的一共有两个寄存器,CRH是高寄存器,用来配置高8位引脚,还有CRL配置低八位引脚。 3、端口位设置\清除寄存器(GPIOx_BSRR) 一个引脚y的输出数据由GPIOx_BSRR寄存器位的2个位来控制分别为BRy (Bit Reset y)和BSy (Bit Set y),BRy位用于写1清零,使引脚输出低电平,BSy位用来写1置1,使引脚输出高电平。而对这两个位进行写零都是无效的。 4、Cortex-M3有32根地址线,所以它的 寻址空间大小为2 bit=4GB。ARM公司设计时,预先把这4GB的寻址空间大致地分配好了。它把地址从0x4000 0000至0x5FFF FFFF(512MB )的地址分配给片上外设。 5、stm32f10x.h这个文件中重要的内容就是把STM32的所有寄存器进行地址映射。如同51单片机的头文件一样,stm32f10x.h像一个大表格,我们在使用的时候就是通过宏定义进行类似查表的操作。 6、STM32总线有AHB总线、APB2总线、APB1总线 7、时钟系统。 A、从时钟频率来说分为告诉时钟和低速时钟,高速时钟是提供给芯片主体时钟,而低速时钟只是提供给芯片中的RTC及独立看门狗使用。 B、从芯片角度来说,时钟源分为内部时钟与外部时钟源,内部时钟是在芯片内部RC振

ARM体系的7种工作模式

ARM体系的7种工作模式 一、ARM体系的CPU有以下7种工作模式: 1、用户模式(usr):正常的程序执行状态 2、快速中断模式(fiq): 3、中断模式(irq): 4、管理模式(svc):操作系统使用的保护模式 5、系统模式(sys):运行具有特权的操作系统任务 6、数据访问终止模式(abt):数据或指令预取终止时进入该模式 7、未定义指令终止模式(und):未定义的指令执行时进入该模式 注解: 可以通过软件来进行模式切换,或者发生各类中断、异常时CPU自动进入相应的模式;除用户模式外,其余6种工作模式都属于特权模式; 特权模式中除了系统模式以外的其余5种模式称为异常模式; 大多数程序运行于用户模式; 进入特权模式是为了处理中断、异常、或者访问被保护的系统资源; 二、ARM体系的CPU有两种工作状态 1、ARM 2、THumb CPU上电处于ARM状态 三、寄存器 ARM有31个通用的32位寄存器,6个程序状态寄存器,共分为7组,有些寄存器是所有工作模式共用的,还有一些寄存器专属于每一种工作模式; R13——栈指针寄存器,用于保存堆栈指针; R14——程序连接寄存器,当执行BL子程序调用指令时,R14中得到R15的备份,而当发生中断或异常时,R14保存R15的返回值;

R15——程序计数器; 快速中断模式有7个备份寄存器R8—R14,这使得进入快速中断模式执行很大部分程序时,甚至不需要保存任何寄存器; 其它特权模式都含有两个独立的寄存器副本R13、R14,这样可以令每个模式都拥有自己的堆栈指针和连接寄存器; 四、当前程序状态寄存器(CPSR) CPSR中各位意义如下: T位:1——CPU处于Thumb状态,0——CPU处于ARM状态; I、F(中断禁止位):1——禁止中断,0——中断使能; 工作模式位:可以改变这些位,进行模式切换; 五、程序状态保存寄存器(SPSR) 当切换进入某一个特权模式时,SPSR保存前一个工作模式的CPSR值,这样,当返回前一个工作模式时,可以将SPSR的值恢复到CPSR中; 六、模式切换

汇编寄存器功能详解

数据寄存器(AX、BX、CX、DX) 1.寄存器AX通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。累加器可用于乘、 除、输入/输出等操作,它们的使用频率很高; 2.寄存器BX称为基地址寄存器(Base Register)。它可作为存储器指针来使用; 3.寄存器CX称为计数寄存器(Count Register)。在循环和字符串操作时,要用它来控制循环次数;在位 操作中,当移多位时,要用CL来指明移位的位数; 4.寄存器DX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算, 也可用于存放I/O的端口地址; 变址寄存器(SI、DI) 寄存器SI和DI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便 指针寄存器(BP、SP) 寄存器BP和SP称为指针寄存器(Pointer Register),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。指针寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。 它们主要用于访问堆栈内的存储单元,并且规定: BP为基指针(Base Pointer)寄存器,用它可直接存取堆栈中的数据; SP为堆栈指针(Stack Pointer)寄存器,用它只可访问栈顶 段寄存器(CS、DS、ES、SS、FS、GS) 段寄存器是根据内存分段的管理模式而设置的。内存单元的物理地址由段寄存器的值和一个偏移量组合而成的,这样可用两个较少位数的值组合成一个可访问较大物理空间的内存地址 CS 代码段寄存器(Code Segment Register),其值为代码段的段值 DS 数据段寄存器(Data Segment Register),其值为数据段的段值; ES 附加段寄存器(Extra Segment Register),其值为附加数据段的段值 SS 堆栈段寄存器(Stack Segment Register),其值为堆栈段的段值; FS 附加段寄存器(Extra Segment Register),其值为附加数据段的段值 GS 附加段寄存器(Extra Segment Register),其值为附加数据段的段值 在16位CPU系统中,它只有4个段寄存器,所以,在此环境下开发的程序最多可同时访问4个段; 在32位CPU系统中,它共有6个段寄存器,所以,在此环境下开发的程序最多可同时访问6个段. 指令指针寄存器 指令指针EIP、IP(Instruction Pointer)是存放下次将要执行的指令在代码段的偏移量。在具有预取指令功能的系统中,下次要执行的指令通常已被预取到指令队列中,除非发生转移情况。所以,在理解它们的功能时,不考虑存在指令队列的情况。 16位标志寄存器 9个标志位,它们主要用来反映CPU的状态和运算结果的特征。 1.进位标志CF(Carry Flag) 进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的 最高位产生了一个进位或借位,那么,其值为1,否则其值为0。 2.奇偶标志PF(Parity Flag)奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为 偶数,则PF的值为1,否则其值为0 3.辅助进位标志AF(Auxiliary Carry Flag) 在发生下列情况时,辅助进位标志AF的值被置为1,否 则其值为0:

《ARM嵌入式系统结构与编程》习题答案

1章绪论 1.国内嵌入式系统行业对“嵌入式系统”的定义是什么?如何理解?答:见教材1.1节。 2.嵌入式系统是从何时产生的,简述其发展历程。答:见教材1.1节。 3.当前最常见的源码开放的嵌入式操作系统有哪些,请举出两例,并分析其特点。 答:见教材1.2.1节的嵌入式Linux和嵌入式实时操作内核UC /OS-I 。 4.举例说明嵌入式设备在工控设备中的应用。答:见教材1.3节的“工业控制领域”。 5.未来嵌入式技术的发展趋势有哪些?答:见教材1.4节的嵌入式技术的发展趋势。 2章ARM技术与ARM体系结构 1.简述ARM处理器内核调试结构原理。答:对教材1.2节的图2-1进行描述。 2.分析ARM7TDMI-S各字母所代表的含义。答:参考教材 2.1.2 ARM核版本命名规则说明。3.ARM处理器的工作模式有哪几种,其中哪些为特权模式,哪些为异常模式,并指出处理器在什么情况下进入相应的模式。 ARM处理器共有7种工作模式: 用户模式:非特权模式,也就是正常程序执行的模式,大部分任务在这种模式下执行。在用户模式下,如果没异常发生,不允许应用程序自行改变处理器的工作模式,如果有异常发生,处理器会自动切换工作模式FIQ模式:也称为快速中断模式,支持高速数据传输和通道处理,当一个高优(fast)中断产生时将会进入这种模式。 IRQ模式:也称为普通中断模式,:当一个低优先级中断产生时将会进入这种模式。在这模式下按中断的处理器方式又分为向量中断和非向量中断两种。通常的中断处理都在IRQ 模式下进行。 SVC模式:称之为管理模式,它是一种操作系统保护模式。当复位或软中断指令执行时处理器将进入这种模式。 中止模式:当存取异常时将会进入这种模式,用来处理存储器故障、实现虚拟存储或存储保护。 未定义指令异常模式:当执行未定义指令时会进入这种模式,主要是用来处理未定义的指令陷阱,支持硬件协处理器的软件仿真,因为未定义指令多发生在对协处理器的操作上。 系统模式:使用和User模式相同寄存器组的特权模式,用来运行特权级的操作系统任务。 在这7种工作模式中,除了用户模式以外,其他6种处理器模式可以称为特权模式,在这些模式下,程序可以访问所有的系统资源,也可以任意地进行处理器模式的切换。在这6种特权模式中,除了系统模式外的其他5种特权模式又称为异常模式 4.分析程序状态寄存器(PSR)各位的功能描述,并说明C、Z、N、V在什么情况下进行置位和清零。PSR的具体格式为 V—溢出标志位 对于加/减法运算指令,当操作数和运算结果为二进制补码表示的带符号数时,V=1表示符号位溢出,其他的指令通常不影响V位。 例如:两个正数(最高位为0)相加,运算结果为一个负数(最高位为1),则符号位溢出,相应V=1。

关于ARM中的名词常用解释

关于ARM中的名词常用解释 1.ARM中一些常见英文缩写解释 MSB:最高有效位; LSB:最低有效位; AHB:先进的高性能总线; VPB:连接片内外设功能的VLSI外设总线; EMC:外部存储器控制器; MAM:存储器加速模块; VIC:向量中断控制器; SPI:全双工串行接口; CAN:控制器局域网,一种串行通讯协议; PWM:脉宽调制器; ETM:嵌入式跟踪宏; CPSR:当前程序状态寄存器; SPSR:程序保护状态寄存器; 2.MAM 使用注意事项: 当改变MAM 定时值时,必须先通过向MAMCR 写入0 来关闭MAM,然后将新值写入MAM ti M。最后,将需要的操作模式的对应值写入MAMCR,再次打开MAM。 对于低于20MHz 的系统时钟,MAMTIM 设定为001。对于20MHz 到40MHz 之间的系统时钟,建议将Flash访问时间设定为2cclk,而在高于40MHz 的系统时钟下,建议使用3cclk。

3.VIC 使用注意事项 如果在片内RAM当中运行代码并且应用程序需要调用中断,那么必须将中断向量重新映射到Flash地址0x0。这样做是因为所有的异常向量都位于地址0x0及以上。通过将寄存器MEMMAP(位于系统控制模块当中)配置为用户RAM模式来实现这一点。用户代码被连接以便使中断向量表装载到0x4000 0000。 4. ARM启动代码设计 ARM启动代码直接面对处理器内核和硬件控制器进行编程,一般使用汇编语言。启动代码一般包括: 中断向量表 初始化存储器系统 初始化堆栈初始化有特殊要求的端口、设备 初始化用户程序执行环境 改变处理器模式 呼叫主应用程序 5.IRQ 和FIQ 之间的区别 IRQ和FIQ是ARM处理器的两种编程模式。IRQ是指中断模式,FIR是指快速中断模式。对于FIQ 你必须尽快处理你的事情并离开这个模式。IRQ 可以被FIQ 所中断,但IRQ 不能中断FIQ。为了使FIQ 更快,所以这种模式有更多的影子寄存器。FIQ 不能调用SWI(软件中断)。FIQ 还必须禁用中断。如果一个FIQ 例程必须重新启用中断,则它太慢了,并应该是IRQ 而不是FIQ。

DSP GPIO相关寄存器的设置最详细的一份资料了

每个通用I/O 端口都受多路复用(MUX),方向(DIR),数据(DAT),置位(SET),清除(CLEAR),以及切换(TOGGLE)寄存器的控制。 下面介绍这些寄存器的功能。 GPxMUX 寄存器(x=A,B,D,E,F,G) 每个I/O 端口都有一个MUX(多路复用)寄存器。这个寄存器用来在每个引脚(PIN)的外设操作及I/O 操作之间进行选择。复位时所有通用I/O 引脚都配置成数字I/O 功能。任何一个引脚都可通过16 位的多路复用寄存器 GPxMUX 进行外设或GPIO 功能的设置: 当GPxMUX.bit = 0,相应的一个引脚配置成I/O 功能; 当GPxMUX.bit = 1,相应的一个引脚配置成外设功能。 GPxDIR 寄存器(x=A,B,D,E,F,G)

每个I/O 端口都有一个方向控制寄存器。不论是将相应的I/O 引脚配置成输入还是输出,都由方向寄存器控制。复位时,所有通用I/O 引脚均配置成输入。 当GPxDIR.bit = 0,引脚配置成输入; 当GPxDIR.bit = 1,引脚配置成输出。 在采用GPxDIR 寄存器位将输入端口改变成输出端口之前,引脚的当前电平反映到GPxDAT 寄存器中。当端口的方向从输入改变成输出时,GPxDAT 寄存器的值用来确定引脚的电平。 例如,如果引脚已经从内部上拉,则复位后上拉将致使GPxDAT 寄存器对应位为1用于反映引脚的当前高电平。当端口的方向从输入改变成输出时,GPxDAT 寄存器已经为1 的位强迫该引脚为同一高电平。这样,在电平不变的情况下,引脚能够从输入转换为输出。 GPxDAT 寄存器(x=A,B,D,E,F,G)

STM32f103寄存器说明

CRC寄存器 (一种算法,用以确认发送过程中是否出错)数据寄存器:CRC_DR 可读写,复位值:0xFFFF FFFF; 独立数据寄存器:CRC_IDR 临时存放任何8位数据; 控制寄存器:CRC_CR 只零位可用,用于复位CRC,对其写1复位,由硬件清零; PWR电源控制(控制和管理电源) 电源控制寄存器:PWR_CR 控制选择系统的电源 电源控制/状态寄存器:PWR_CSR 睡眠或待机模式电源控制 BKP备份寄存器(用以控制和管理备份数据) 备份数据寄存器x:BKP_DRx (x = 1 … 10) 10个16位数据寄存器用以存储用户数据 RTC时钟校准寄存器:BKP_RTCCR 控制实时时钟的运行 备份控制寄存器:BKP_CR 控制选择清除备份数据的类型

备份控制/状态寄存器:BKP_CSR 对侵入事件的控制 RCC寄存器(时钟的选择、复位、分频) 时钟控制寄存器(RCC_CR) 各时钟状态显示 时钟配置寄存器(RCC_CFGR) 时钟分频 时钟中断寄存器(RCC_CIR) 控制就绪中断使能与否 APB2外设复位寄存器(RCC_APB2RSTR) APB1外设复位寄存器(RCC_APB1RSTR) 复位APB各功能寄存器 AHB外设时钟使能寄存器(RCC_AHBENR) AHB时钟使能控制 APB2外设时钟使能寄存器(RCC_APB2ENR) APB1外设时钟使能寄存器(RCC_APB1ENR) APB1时钟使能控制 备份域控制寄存器(RCC_BDCR) 备份域时钟控制 控制/状态寄存器(RCC_CSR) 复位标志寄存器 AHB外设时钟复位寄存器(RCC_AHBRSTR) 复位以太网MAC模块 时钟配置寄存器2(RCC_CFGR2) 时钟选择与分频

ARM技术中英文缩写解说

ARM技术中英文缩写解说 中一些常见英文缩写解释 MSB:最高有效位; LSB:最低有效位; AHB:先进的高性能总线; VPB:连接片内外设功能的VLSI外设总线; EMC:外部存储器控制器; MAM:存储器加速模块; VIC:向量中断控制器; SPI:全双工串行接口; CAN:控制器局域网,一种串行通讯协议; PWM:脉宽调制器; ETM:嵌入式跟踪宏; CPSR:当前程序状态寄存器; SPSR:程序保护状态寄存器; 使用注意事项: 答:当改变 MAM 定时值时,必须先通过向 MAMCR 写入 0 来关闭 MAM,然后将新值写入 MAMTIM。最后,将需要的操作模式的对应值写入MAMCR,再次打开MAM。 对于低于 20MHz 的系统时钟,MAMTIM 设定为 001。对于 20MHz 到 40MHz 之间的系统时钟,建议将Flash 访问时间设定为2cclk,而在高于40MHz的系统时钟下,建议使用3cclk。 使用注意事项 答:如果在片内RAM当中运行代码并且应用程序需要调用中断,那么必须将中断向量重新映射到Flash地址0x0。这样做是因为所有的异常向量都位于地址0x0及以上。通过将寄存器MEMMAP(位于系统控制模块当中)配置为用户RAM模式来实现这一点。用户代码被连接以便使中断向量表装载到0x4000 0000。 4. ARM启动代码设计 答:ARM启动代码直接面对处理器内核和硬件控制器进行编程,一般使用汇编语言。启动代码一般包括:中断向量表 初始化存储器系统 初始化堆栈初始化有特殊要求的端口、设备 初始化用户程序执行环境 改变处理器模式 呼叫主应用程序 和 FIQ 之间的区别 答:IRQ和FIQ是ARM处理器的两种编程模式。IRQ是指中断模式,FIR是指快速中断模式。对于 FIQ 你必须尽快处理你的事情并离开这个模式。IRQ 可以被 FIQ 所中断,但 IRQ 不能中断 FIQ。为了使 FIQ 更快,所以这种模式有更多的影子寄存器。FIQ 不能调用 SWI(软件中断)。FIQ 还必须禁用中断。如果一个 FIQ 例程必须重新启用中断,则它太慢了,并应该是 IRQ 而不是 FIQ。

stm32 BKP寄存器操作操作寄存器+库函数

stm32 BKP 寄存器操作操作寄存器+库函数 BKP 是BACKUP 的缩写,stm32f103RCTE 的内部配备了10 个16 位宽度 的BKP 寄存器。在主电源切断或系统产生复位时间时,BKP 寄存器仍然可以 在备用电源的支持下保持其内容。BKP 在实际应用中可以存入重要数据,防止 被恶意查看,或用于断电等。本例实现对BKP 寄存器的读写操作,和入侵检 测和处理。主程序中写入寄存器后,依次打印出10 个BKP 寄存器数据,然后 触发GPIOC13 的入侵中断(输入低电平),在中断中打印出入侵事件发生后的 寄存器内容(复位为0 )。直接操作寄存器用到的寄存器描述如下:备份数据 寄存器x(BKP_DRx) (x = 1 10):低16 位[15:0]有效,用来写入或读出备份数据。备份控制寄存器(BKP_CR):低两位有效。TPAL[1]:侵入检测TAMPER 引脚有效电平(TAMPER pin active level)0:侵入检测TAMPER 引脚上的高电平会清除所有数据备份寄存器(如果TPE 位为1) 1:侵入检测TAMPER 引脚 上的低电平会清除所有数据备份寄存器(如果TPE 位为1)TPE[0]:启动侵入检 测TAMPER 引脚(TAMPER pin enable)0:侵入检测TAMPER 引脚作为通用IO 口使用1:开启侵入检测引脚作为侵入检测使用备份控制/状态寄存器 (BKP_CSR): TIF[9]:侵入中断标志(Tamper interrupt flag) 0:无侵入中断1:产生侵入中断当检测到有侵入事件且TPIE 位为1 时,此位由硬件置1。通过向CTI 位 写1 来清除此标志位(同时也清除了中断)。如果TPIE 位被清除,则此位也会被 清除。TEF[8]:侵入事件标志(Tamper event flag) 0:无侵入事件1:检测到侵入事件当检测到侵入事件时此位由硬件置1。通过向CTE 位写1 可清除此标 志位TPIE[2]:允许侵入TAMPER 引脚中断(TAMPER pin interrupt enable)0:禁止侵入检测中断1:允许侵入检测中断(BKP_CR 寄存器的TPE 位也必须被置1)注

STM32使用BSRR和BRR寄存器快速操作

STM32使用BSRR和BRR寄存器快速操作 GPI0端口STM32的每个GPIO端口都有两个特别的寄存器,GPIOx_BSR和GPIOx_BRF寄存器,通过这两个寄存器可以直接对对应的GPIOx端口置“或置“ 0。“ GPIOx_BSRR勺高16位中每一位对应端口x的每个位,对高16位中的某位置“狈『端口x的对应位被清“0;“寄存器中的位置“0, “则对它对应的位不起作 用。 GPIOx_BSRR的氐16位中每一位也对应端口x的每个位,对低16位中的某位置“1则“它对应的端口位被置“1;“寄存器中的位置“0,“则对它对应的端口不起作用。 简单地说GPIOx_BSR的高16位称作清除寄存器,而GPIOx_BSR的低氐16 位称作设置寄存器。另一个寄存器GPIOx_BRfl只有低16位有用,与GPIOx_BSR 的高16位具有相同功能。 举个例子说明如何使用这两个寄存器和所体现的优势。例如GPIOE的16个IO都被设置成输出,而每次操作仅需要改变低8位的数据而保持高8位不变,假设新的8 位数据在变量Newdata 中, 这个要求可以通过操作这两个寄存器实现,STM32的固件库中有两个函数GPIO_SetBits和GPIO_ResetBits使用了这两个寄存器操作端口。 上述要求可以这样实现: GPI0_SetBits(GPI0E, Newdata & 0xff); GPI0_ResetBits(GPI0E, (~Newdata & 0xff)); 也可以直接操作这两个寄存器: GPI0E->BSRR = Newdata & 0xff; GPI0E->BRR = ~Newdata & 0xff; 当然还可以一次完成对8位的操作:

《ARM嵌入式系统结构与编程》第二章课后答案

第2章ARM技术与ARM体系结构 1.简述ARM处理器内核调试结构原理 答:ARM处理器一般都带有嵌入式追踪宏单元ETM(Embedded Trace Macro),它是ARM 公司自己推出的调试工具。ARM处理器都支持基于JTAG(Joint Test Action Group 联合测试行动小组)的调试方法。它利用芯片内部的Embedded ICE来控制ARM内核操作,可完成单步调试和断点调试等操作。当CPU处理单步执行完毕或到达断点处时,就可以在宿主机端查看处理器现场数据,但是它不能在CPU运行过程中对实时数据进行仿真。 ETM解决了上述问题,能够在CPU运行过程中实时扫描处理器的现场信息,并数据送往TAP(Test Access Port)控制器。上图中分为三条扫描链(图中的粗实线),分别用来监视ARM核,ETM,嵌入式ICE的状态。 1.分析ARM7TDMI-S各字母所代表的含义。 答:ARM7 T D M I – S 中 ARM是Advanced RISC Machines的缩写 7是系列号; T:支持高密度16位的Thumb指令集; D:支持JTAG片上调试; M:支持用于长乘法操作(64位结果)ARM指令,包含快速乘法器;; I:带有嵌入式追踪宏单元ETM,用来设置断点和观察点的调试硬件; S:可综合版本,意味着处理器内核是以源代码形式提供的。这种源代码形式又可以编译成一种易于EDA工具使用的形式。 2.ARM处理器的工作模式有哪几种,其中哪些为特权模式,哪些为异常模式,并指出处 理器在什么情况下进入相应的模式。 答:ARM技术的设计者将ARM处理器在应用中可能产生的状态进行了分类,并针对同一类型的异常状态设定了一个固定的入口点,当异常产生时,程序会自动跳转到对应异常入口处进行异常服务。 ?1.用户模式:非特权模式,也就是正常程序执行的模式,大部分任务在这种模式下 执行。在用户模式下,如果没异常发生,不允许应用程序自行改变处理器的工作模式,如果有异常发生,处理器不会自动切换工作模式 ?2.FIQ模式:也称为快速中断模式,支持高速数据传输和通道处理,当一个高优先

ARM寄存器详解

ARM 处理器有二十七个寄存器,其中一些是在一定条件下使用的,所以一次只能使用十六 个。 R0~R7:是通用寄存器并可以用做任何目的。 R8~R12:是通用寄存器,但是在切换到FIQ模式的时候,使用它们的影子(shadow)寄存器。 R13:被称为栈指针寄存器,常用来保存栈指针。 R14:链接寄存器,常用来保存函数返回地址 R15:是程序指针PC CPSR:(Current Program Status Register)当前程序状态寄存器,CPSR 寄存期保存当前程序运行的状态。 0 0 0 0 0 User26 模式 0 0 0 0 1 FIQ26 模式 0 0 0 1 0 IRQ26 模式 0 0 0 1 1 SVC26 模式 1 0 0 0 0 User 模式 1 0 0 0 1 FIQ 模式 1 0 0 1 0 IRQ 模式 1 0 0 1 1 SVC 模式 1 0 1 1 1 ABT 模式 1 1 0 1 1 UND 模式

ARM寻址方式 1.立即数寻址 ARM 指令的立即数寻址是一种特殊的寻址方式,操作数本身就在指令中给出,只要取出指令也就取到了操作数。这个操作数被称为立即数。ADD R0,R0,#1 ;R0←R0 + 1 ADD R0,R0,#0x3A ;R0←R0 + 0x3A 在以上 2 条指令中,第2个源操作数即为立即数,实际使用时以“#”符

号为前缀。 2.寄存器寻址 寄存器寻址就是利用寄存器中的数值作为操作数,这种寻址方式是各类微处理器经常采 用的一种方式,也是一种执行效率较高的寻址方式。如以下的指令。 ADD R0,R1,R2 ;R0←R1 + R2 该指令的执行效果是将寄存器R1和R2的内容相加,其结果存放在寄存器R0中。 3.寄存器间接寻址 寄存器间接寻址就是以寄存器中的值作为操作数的地址,而操作数本身存放在存储器 中。例如以下指令。 ADD R0,R1,[R2] ;R0←R1 + [R2] LDR R0,[R1] ;R0←[R1] 在第1 条指令中,以寄存器R2 的内容作为操作数的地址,然后与R1相加,其结果存入 寄存器R0中。 第2条指令将以 R1 的值为地址的存储器中的内容送到寄存器R0中。 4.基址变址寻址 基址变址的寻址方式就是将寄存器(该寄存器一般称作基址寄存器)的内容与指令中给 出的地址偏移量相加,从而得到一个操作数的有效地址。如下面的几条指令所示。 LDR R0,[R1,#0x0A] ;R0←[R1 + 0x0A] LDR R0,[R1,#0x0A]!;R0←[R1 + 0x0A]、R1←R1 + 0x0A 在第1条指令中,将寄存器R1 的内容加上0x3A 形成操作数的有效地址,将该地址处的 操作数送到寄存器R0中。 在第2条指令中,将寄存器R1的内容加上0x0A形成操作数的有效地址,从而取得操作数存入寄存器R0中,然后,R1的内容自增0x0A个字节。 5.多寄存器寻址 采用多寄存器寻址方式,一条指令可以完成多个寄存器值的传送。这种寻址方式可以用 一条指令完成传送最多 16 个通用寄存器的值。比如下面的指令。LDMIA R0,{R1,R2,R3,R4} ;R1←[R0] ;R2←[R0 + 4]

ARM七种运行模式

s3c2440中断体系结构: 如何用中断? 1.中断发生:保存别人的状态 如何中断可以事先设置,对程序初始化,使能中断。 中断发生后,进入中断模式 2.中断处理 分辨中断源 进行不同的处理 清理工作 3.恢复别人的状态 过程:外界信号上升沿、下降沿,高电平、低电平都可以设置成信号引脚设置,再进入状态寄存器。 状态寄存器连接屏蔽寄存器 进入第二个状态寄存器,储存各种中断,可以储存多个中断 进入优先级寄存器,判断中断运行顺序 再进入屏蔽使能寄存器和模式寄存器 进入优先级寄存器 进入cpu处理 cpu的处理:进入入口地址 b handleIRQ 计算返回地址,被中断处地址 保存现场,即各寄存器状态 调用处理函数 函数运行完后恢复现场 函数的处理:分辨终端 处理中断 清除数据,即清除中断 1.中断寄存器 arm的七种模式 https://www.docsj.com/doc/382276670.html,r 用户模式r0-r15 2.fiq 快中断模式r0-r7 专用寄存器r8-r15, 3.svc 管理模式 专用寄存器r13-r14, 4.abt 数据访问终止模式 5.sys 系统模式 6.und 未定义指令终止模式 7.irq 中断模式 几种模式的区别:

嵌入式的中断: a.不同的寄存器 b.不同的权限 c.触发条件不一样 何时使用几种模式: usr 用户模式:arm处理器正常的程序执行状态 fiq 快中断模式:高速数据传输和通道处理 svc 管理模式:操作系统使用的保护模式 abt 数据访问终止模式:数据或者指令终止时进入,用于虚拟存储或者存储保护 sys 系统模式:运行具有特权的操作系统任务 und 未定义指令终止模式:未定义的指令执行时进入该模式,用于支持硬件处理器的软件仿真. irq 中断模式:用于通用的中断处理 后六种是特权模式,用于处理中断、异常和特殊权限处理 用户模式是最常见的模式 2.中断中的异常 中断是一种异常。 当发生中断时,cpu进入中断模式 cpu进入异常入口,异常入口是硬件规定的一个地址 运行模式 ARM920T 支持7 种运行模式: ●用户(usr)):正常ARM 程序执行状态 ●快中断(fiq)):为支持数据传输或通道处理设计 ●中断(irq)):用于一般用途的中断处理 ●管理(svc)):操作系统保护模式 ●中止(abt ): 数据或指令预取中止后进入 ●系统(sys)):操作系统的特权用户模式 ●未定义(und)):执行了一个未定义指令时进入 模式的改变可由软件控制,或者由外部中断或进入异常引起。大部分应用程序都将在用户模式执行。 被称为特权模式的非用户模式,都将进入到中断服务或异常中去,或者访问受保护的资源。内部寄存器 ARM920T 总共有37 个寄存器,其中31 通用32 位寄存器和6 个状态寄存器,但不能在同一时刻对所有的寄存器可见。处理器状态和运行模式决定了哪些寄存器对程序员可见。 ARM状态时内部寄存器集在ARM 状态,16 个通用寄存器和一个状态寄存器在任意时刻都可见。 在特权(非用户)模式下,将切换到指定模式的分组(banked)寄存器。图2-3 显示了哪些寄存器在各模式下是可见的:

ARM常用概念及基本功能使用说明

论坛推荐:新手必看,关于ARM的22个常用概念2014-04-22 电子发烧友网新手必看,关于ARM的22个常用概念! 1.ARM中一些常见英文缩写解释MSB:最高有效位;LSB:最低有效位;AHB:先进的高性能总线;VPB:连接片内外设功能的VLSI外设总线;EMC:外部存储器控制器;MAM:存储器加速模块;VIC:向量中断控制器;SPI:全双工串行接口;CAN:控制器局域网,一种串行通讯协议;PWM:脉宽调制器;ETM:嵌入式跟踪宏;CPSR:当前程序状态寄存器;SPSR:程序保护状态寄存器; 2.MAM 使用注意事项:答:当改变MAM 定时值时,必须先通过向MAMCR 写入0 来关闭MAM,然后将新值写入MAMTIM。最后,将需要的操作模式的对应值写入MAMCR,再次打开MAM。对于低于20MHz 的系统时钟,MAMTIM 设定为001。对于20MHz 到40MHz 之间的系统时钟,建议将Flash访问时间设定为2cclk,而在高于40MHz的系统时钟下,建议使用3cclk。 3.VIC 使用注意事项答:如果在片内RAM当中运行代码并且应用程序需要调用中断,那么必须将中断向量重新映射到Flash地址0x0。这样做是因为所有的异常向量都位于地址0x0及以上。通过将寄存器MEMMAP(位于系统控制模块当中)配置为用户RAM模式来实现这一点。用户代码被连接以便使中断向量表装载到0x4000 0000。 4.ARM启动代码设计答:ARM启动代码直接面对处理器内

核和硬件控制器进行编程,一般使用汇编语言。启动代码一般包括:中断向量表初始化存储器系统初始化堆栈初始化有特殊要求的端口、设备初始化用户程序执行环境改变处理器模式呼叫主应用程序 5.IRQ 和FIQ 之间的区别答:IRQ和FIQ是ARM处理器的两种编程模式。IRQ是指中断模式,FIR是指快速中断模式。对于FIQ 你必须尽快处理你的事情并离开这个模式。IRQ 可以被FIQ 所中断,但IRQ 不能中断FIQ。为了使FIQ 更快,所以这种模式有更多的影子寄存器。FIQ 不能调用SWI(软件中断)。FIQ 还必须禁用中断。如果一个FIQ 例程必须重新启用中断,则它太慢了,并应该是IRQ 而不是FIQ。 6.ARM处理器对异常中断的响应过程答:ARM处理器对异常中断的响应过程如下所述:保存处理器当前状态、中断屏蔽位以及各条件标志位;设置当前程序状态寄存器CPSR中的相应位;将寄存器lr_mode设置成返回地址;将程序计数器值PC,设置成该异常中断的中断向量地址,跳转到相应异常中断处执行。 7.ARM指令与Thumb指令的区别答:在ARM体系结构中,ARM指令集中的指令是32位的指令,其执行效率很高。对于存储系统数据总线为16位的应用系统,ARM体系提供了Thumb指令集。Thumb指令集是对ARM指令集的一个子集重新编码得到的,指令长度为16位。通常在处理器执行ARM程序时,称处理器处于ARM

ARM处理器共有37个寄存器其中包括.

ARM处理器共有37个寄存器。其中包括: **31个通用寄存器,包括程序计数器(PC)在内。这些寄存器都是32位寄存器。 **6个状态寄存器。这些寄存器都是32位寄存器。 ARM处理器共有7种不同的处理器模式,每一种模式中都有一组相应的寄存器组。在任何时刻,可见的寄存器包括15个通用寄存器(R0-R14),一个或两个状态寄存器及程序计数器(PC)。在所有的寄存器中,有些是各模式公用一个物理寄存器,有一些寄存器各模式拥有自己独立的物理寄存器。 **************************************************** 通用寄存器 ***************************************************8 通用寄存器分为以下三类:备份寄存器、未备份寄存器、程序计数器PC 未备份寄存器 未备份寄存器包括R0-R7。对于每一个未备份寄存器来说,所有处理器模式下都是使用同一个物理寄存器。未备份寄存器没有被系统用于特别的用途,任何可采用通用寄存器的场合都可以使用未备份寄存器。 备份寄存器 对于R8-R12备份寄存器来说,每个寄存器对应两个不同的物理寄存器。系统为将备份寄存器用于任何的特殊用途,但是当中断处理非常简单,仅仅使用R8-R14寄存器时,FIQ处理程序可以不必执行保存和恢复中断现场的指令,从而可以使中断处理非常迅速。 对于R13,R14备份寄存器来说,每个寄存器对应六个不同的物理寄存器,其中的一个是系统模式和用户模式共用的;另外的五个对应于其他的五种处理器模式。采用下面的记号来区分各个物理寄存器: R13_ 其中MODE可以是下面几种模式之一:usr,svc,abt,und,irq,fiq 程序计数器PC 可以作为一般的通用寄存器使用,但有一些指令在使用R15时有一些限制。由于ARM采用了流水线处理器机制,当正确读取了PC的值时,该值为当前指令地址值加上8个字节。也就是说,对于ARM指令集来说,PC指向当前指令的下两条指令的地址。由于ARM指令是字对齐的,PC值的第0位和第一位总为0。

PIC18F4550单片机三个操作寄存器的使用方法

PIC18F4550单片机三个操作寄存器的使用方法 试验芯片:Microchip PIC 18F4550 集成开发环境:MPLAB IDE v8.53 编译器:Microchip C18 PIC18系列单片机是美国微芯公司(Microchip)8位单片机系列中的高档系列,其任一I/O 引脚允许的最大灌电流或最大拉电流达25mA,可以直接驱动LED和继电器。PORTA、PORTB和PORTE的最大灌电流或最大拉电流总和为200mA,PORTC和PORTD的最大灌电流或最大拉电流总和为200mA,PORTF和PORTG的最大灌电流或最大拉电流总和为100mA(注:PIC18F4550没有这两个端口)。 单片机和外设的交互都是通过I/O端口进行,每个I/O端口均有三个操作寄存器: 1、TRISx———数据方向寄存器 用来控制I/O引脚的方向,即用来控制PORTx是输入还是输出。 2、PORTx———端口寄存器 用来锁存输出数据。当读PORTx时,器件直接读I/O引脚电平(而不是锁存值)。 3、LATx———输出数据锁存器 写端口就是写该锁存器(LATx)。数据锁存器也可以直接读写。如果外设没有使用该引脚,并且TRISx位配置该引脚为输出,则将锁存器内的数据输出到引脚。 在复位状态下,TRISx的复位值为0xff,即TRISx寄存器的8个位(D0 ~ D7)的值均为1。此时相应的PORTx引脚被定义为输入,相应的输出驱动器呈现高阻状态。设置为0时表示相应的引脚定义为输出。 这里应注意的是写PORT就是写LAT,但读PORT和读LAT不同。读PORT读的是引脚的状态,无论该引脚设置为输入引脚还是输出引脚。而读LAT得到的是输出数据锁存器的存储值,读LAT得到的值可能和读PORT得到的值存在不同。

(整理)基于STM32的LCD操作

嵌入式系统》课程报告 基于 STM32的 LCD 操作 组长:曾昭智 组员:邓 宁、张小扬、牛洪澄 光电学院 电信 2班、3 班 2014.05.29 姓名 学院 班级 完成日期

目录 1、原理方案(功能框图介绍) (1) 2、电路连线及资源分配. (2) 3、所用主要器件或模块说明. (3) 4、程序流程图. (4) 5、调试心得. (5) 6、源代码 (6)

1.TFT-LCD 原理 1.1 TFT-LCD 简介 TFT-LCD即薄膜晶体管液晶显示器。其英文全称为:Thin Film Transistor-Liquid Crystal Display 。TFT-LCD与无源TN-LCD、STN-LCD 的简单 矩阵不同,它在液晶显示屏的每一个象素上都设置有一个薄膜晶体管(TFT),可有效地克服非选通时的串扰,使显示液晶屏的静态特性与扫描线数无关,因此大大提高了图像质量。TFT-LCD也被叫做真彩液晶显示器。 上一节介绍了OLED模块,这一节,我们给大家介绍ALIENTEK TFTLC模D 块,该模块有如下特点: 1,2.4 '/2.8 '两种大小的屏幕可选。 2,320×240的分辨率。 3,16位真彩显示。 4,自带触摸屏,可以用来作为控制输入。 5,通用的接口,除了ALIENTEK MiniSTM32开发板,该液晶模块还可以使用在优异特、STMSK、Y 红牛等开发板上。 本节,我们以 2.8 寸的ALIENTEKT FTLCD模块为例介绍,该模块采用的是显尚光电的DST2001PHT FTLCD,DST2001PH的控制器为ILI9320 ,采用26 万色的TFTLCD 屏,分辨率为320×240,采用16 位的80并口。 1.2 80 并口 ALIENTEK TFTLCD 模块采用80并口口方与外部链接,采用16位数据线(低了速度太慢,用彩色就没什么效果了)。该模块的80并口有如下一些信号线:CS:TFTLCD 片选信号。 WR:向TFTLCD 写入数据。 RD:从TFTLCD 读取数据。 D[15:0] :16位双向数据线。 RST:硬复位TFTLCD 。 RS:命令/数据标志(0,读写命令;1,读写数据)。 TFTLCD 模块的RST信号线和OLED 模块一样,也是直接接到STM32 的复位脚上,并 不由软件控制,这样可以省下来一个IO 口。另外我们还需要一个背光控制线来控制TFTLCD 的背光。所以,我们总共需要的IO 口数目为21 个。 1.3 ILI9320 模块的控制器为ILI9320 ,该控制器自带显存,其显存总大小为172820 (240*320*18/8 ),即18位模式(26万色)下的显存量。模块的16位数据线与显寸的对应关系为565 方式,如下图所示: 1.4 GRAM显示方向设置

相关文档