文档视界 最新最全的文档下载
当前位置:文档视界 › 电动汽车工况测试

电动汽车工况测试

电动汽车工况测试
电动汽车工况测试

电动汽车工况测试

作为实现能源革命的重要手段之一,电动汽车已然成为最热门的交通工具,而作为电动汽车核心部件的电驱部分,其性能和稳定性决定了一台电动汽车的品质。电池测试、电机测试、充电桩测试共同构成新能源汽车领域的三大测试项目,今天我们重点聊一聊电机测试。

传统的电机测试主要考察电机的效率及可靠性,常见的测试包括转速测试、扭矩测试、效率测试、温升曲线、堵转以及耐久度测试等。电动汽车电机测试项目与上述测试项目基本一致,新增的重要测试项目为“工况实验”。所谓工况实验就是给电机施加变化的力矩,以模拟电动汽车在实际道路中的运行状况,此过程中测试相关数据最能反映电机性能。长时间工况循环实验也是耐久测试的过程,与传统耐久测试区别在于电机工作在稳态还是非稳态。

电动汽车工况测试参考什么标准呢?国标《GBT 18488.1-2006 电动汽车用电机及其控制器第1部分:技术条件》已明确提到工况实验的测试标准,并且给出工况加载曲线。通过加载和控制扭矩的方式在模拟标准中规定测试中包含的工况,有停车、加速、匀速、减速、上坡、下坡6个工况。让电机工作在额定工况下,测取记录电机转矩、转速随时间的变化曲线。图1、图2是国标《GBT 18488.1-2006 电动汽车用电机及其控制器第1部分:技术条件》提到的相关曲线。

图1市郊循环

图2基本城市循环

但是等我们真正去测试时,翻开最新的2015国标发现上述要求不存在了!其实现在的工况实验这么玩:使用报文记录设备采集车辆在真是路况下的转速、转矩数据,再将此数据输入到电机测试台架中,使负载电机按照此数据进行参数输出。毫无疑问,这种工况测试更加真实。

MPT电机测试系统如何完美解决电动汽车电机工况实验?MPT电机测试系统采用专业的电机测试软件MotoTest,针对工况测试一键化操作,并且支持测试报表导出。功率、效率运算采用致远电子高性能功率分析仪,以保证测试精度。工况实验中,用户只需要配置道路状况,包含平路、上坡、下坡的各项参数,如坡面长度、坡度等,配置汽车参数,如后桥减速比、档位、轮胎半径、重力加速度、风阻系数、截面积等。上位机软件通过数学建模将汽车参数换算出,应该给被测电机所需加载阻力以及转速。控制被测电机按照设置的档位运行,稳定后加载路面文件,模拟道路运行,记录各项数据。除了根据国标进行工况测试,MPT电机测试系统还支持自定义工况实验。实际测试效果如图3、图4。

图3实际软件测试效果界面

图4路面波形和当前扭矩波形

致远电子针对电动汽车电驱部分的核心:逆变器和电机,基于MPT混合型电机测试系统设计出电动汽车电机试验平台解决方案,为电动汽车电机及其逆变器的研发、生产提供专业化的测试系统。有关此测试系统更多信息请登录致远电子官网,致远电子与您共同成长。

新能源汽车项目可行性分析报告详解

新能源电动车项目 可 行 性 分 析 报 告 项目名称:××新能源车项目 项目类别:×× 项目负责人:××× 联系电话:××××× 项目实施单位:××××××××××× 编制日期:2016年10月15日

新能源汽车项目可行性分析报告 第一部分电动汽车成为新能源汽车主要发展 方向 1、进入21世纪,能源问题已成为困扰全球各国经济发展的重大问题,石油这一工业发展黑色血液的逐渐枯竭要求人们不断寻找新的能源,并且逐步改变目前的用能方式及结构。 2、传统汽车在全球保有量的不断增加使人类面临能源短缺、气候变暖、空气和水质量下降等问题。针对这些问题,各国政府部门与跨国汽车企业从不同技术路线出发,加大新能源汽车技术开发力度。 3、从20世纪末发展起来的现代电动汽车在新能源汽车的多种技术中脱颖而出,具有低排放甚至零排放、热辐射低、噪音低且环境友好等特点,是节能、环保和可持续发展的新型交通工具,具有广阔的发展前景。先进的电动汽车包括纯电动(BEV)、混合动力(HEV)与燃料电池汽车(FCEV)等三类。 4、未来的汽车仍将是以电能驱动为主,这是国际汽车界对新能源汽车发展方向的既定共识。具有高效率、无排放,不依赖汽油的纯电动汽车是将来城市用车的主要发展方向,而目前在市场上销售的纯电动汽车,以微型车为主,随着近年来动力电池技术的巨大发展,纯电动汽车技术已进入了快速发展期。虽然混合动力不是未来汽车能源问题的终极解决方案,但作为传统汽车与未来纯电动汽车之间的过渡方案,混合动力汽车是目前较为实用的电动汽车技术。 第二部分新能源汽车立项的背景随着全球能源危机的出现,油价不断上涨,新能源汽车的发展成为近年来汽车工业发展的主要方向之一。政府的大力扶植与推动,产业竞争与合作为我国新能源汽车的发展奠定了一定基础,但是也面临着技术不过硬,配套设施以及相关法律法规不完善等不利因素。在能源与环保的压力下,新能源汽车无疑代表着汽车工业发展的主流方

电动汽车充电桩检测评价系统的设计与分析

电动汽车充电桩检测评价系统的设计与分析 发表时间:2019-07-09T15:27:07.180Z 来源:《电力设备》2019年第6期作者:景琦吴冬张建东宋波张亚萍田振清 [导读] 摘要:现如今,国家政策推动了电动汽车产业的迅猛发展。 (天津平高智能电气有限公司天津 300300) 摘要:现如今,国家政策推动了电动汽车产业的迅猛发展。不少企业、科研院所、高校纷纷投入相当大的精力研发交流充电桩控制系统,并且设计出了多种类型的充电桩控制系统。本课题也对此进行了深入研究,并设计出了一款电动汽车交流充电桩智能控制系统。文章主要研究了面向互联网的电动汽车智能充电系统的设计和应用,并结合应用实例供相关部门参考。 关键词:互联网;电动汽车;智能充电系统 引言 随着汽车工业的快速发展以及汽车保有量不断增长,我国的能源和环境面临的挑战也越来越严峻,为了确保我国能源安全与低碳经济转型,应重视电动汽车的推广应用,未来电动汽车必将成为最主要的交通工具之一。目前,随着对电动汽车重视程度的快速提升,推进了电动汽车技术的发展,而且很好地控制了成本,装备了动力电池的一批电动汽车已经投入市场进行销售。所以,随着大批量电动汽车的产业化,作为电动汽车的核心技术,充电技术变得尤为重要,面向互联网建立健全的智能充电服务系统,存在较大的社会意义。 1设计面向互联网的电动汽车智能充电服务系统 1.1云服务器 1.1.1设计架构 云服务器基于spring开源架构,采用分层处理,并将数据处理压力逐层分解,实现了系统整体稳定性与性能的提高。总体技术架构包括业务层、网络层及应用层。业务层统一表达了各环节数据,构造统一信息模型,使网络层接入的数据规范化,优化了云服务器架构;网络层屏蔽了不同的通信技术,根据统一通信规约传送数据;应用层采用云服务器体系架构,统一管理多种数据信息,并向外提供数据统一服务,对各类业务应用进行支撑。 1.1.2设计功能 (1)监控。监管针对交、直流充电桩,以高效、准确的定位和可视化为基础,监测充电设备的状态、控制充电设备运行。 (2)交易。交易管理是指管理充电交易中的费用流转、账单及明细等,确保电费账目的准确与明晰。 (3)信息采集。采集管理在线实时监测充电设备,包括采集任务与档案管理。 (4)运营工况。运营工况是指通过分析地区、区域及客户的充电数据,得出推广电动汽车的走势,有助于宏观方案的制定,包括充电、财务及工况等分析。 (5)系统。系统管理为系统管理员所用,包括系统用户、角色、菜单、权限、日志、参数和系统消息等的管理。 1.2智能充电桩 交、直流充电是智能充电桩的两种充电形式。在电动汽车外安装交流充电装置,它和交流电网连接,提供交流电源,而且具有计量、计费及通信等功能。直流充电除了具有上述功能外,还可以变换电源、监测汽车状态及管理电池等。相较于传统充电桩,智能充电桩设置了Wi-Fi通信模块,借助Wi-Fi路由器和云服务器进行连接。智能交流充电桩主要包括微控制单元、Wi-Fi通信模块、保护单元及电源转换模块等。 (1)微控制单元。作为充电控制装置的核心,微控制单元进行指令控制和分发信息,利用功耗低、性价比高的芯片,借助串行或串口外围设备的总线接口和Wi-Fi通信模块进行通信,借助485总线和数字电表进行通信,借助I2C总线和Flash存储单元进行通信,微控制单元借助相连的驱动电路和接触器,控制充电电能的通断。 (2)Wi-Fi通信模块。借助功耗低的Wi-Fi模块,和无线网关数据进行通信,上报充电开关的远程控制以及电流、功率和电能信息。(3)保护单元。防雷器与漏电保护器是保护单元,借助防雷器可以避免雷电或内部过电压损坏设备;在设备漏电或有致命危险时,借助漏电保护器可以保护人身安全。 (4)电源转换模块。借助该模块实现交流电向直流电的转换,并提供电压等级不同的直流电,为其他电路供电。 1.3 App客户端 (1)视图层。该界面与用户交互,对用户的请求产生响应,借助业务逻辑层来处理逻辑,以不同的形式将结果展现给用户。地图与状态显示、控制与查询界面及支付结算组成了视图层。 (2)业务逻辑层。它主要对视图层业务提供逻辑支撑,包括地图、支付、控制、查询及状态显示等功能。判断和运算业务逻辑,包括请求服务器的数据和读取本地数据库。 (3)业务实体层。它包括业务实体对网关与平台服务器数据的请求、解析及对数据库的维护。借助App客户端软件,按照用户所选的功能,对相应的业务逻辑层模块进行调用,该层负责组织业务流程,调用业务实体层中的模块,借助网关(或平台)服务器接口与网关(或平台)服务器交换信息。主要包括:地图、状态显示、支付、控制及查询等功能。App客户端的充电服务模式包括:定电量、定时间、定金额和自动(充满为止)的充电模式。 1.4 APP应用 通过专用APP在手机等移动终端上通过客户端实时查找附近的充电站和车位余量,为车主推荐最近的充电站并规划最优路线。 1.5车辆管理 由于电动汽车充电站系开放性结构设计,一般无法设置卡口或道闸,需通过摄像机来抓拍识别车牌号码。所以系统可以通过在充电岛的每个停车车位部署高清检测摄像机,对每辆停车充电的汽车车牌进行抓拍分析,和供电公司充电卡关联的车牌库进行比对(条件允许可单向接入当地车管所车辆信息管理系统),对非电动汽车占用车位行为进行警告。 2实例应用 2.1站端监控系统设计 充电站主要分为高速快充站、城市快充站和充电桩站,按照现场实际情况及用户需求,系统的部署也有一定的差异,以8个充电车位设

电动汽车安全测试方案

Charles Ma Product Manager T&M c.ma@https://www.docsj.com/doc/339773571.html,

目录
? GMC-I International简介 ? 新能源汽车关键零部件测试
ü ü ü 电机及控制系统测试 车载电池测试 充电系统测试
? 新能源汽车整车测试
Klaus Leibold
11.04.2014
?page 2

德国 GMC-Instruments: 历史与传承
纽伦堡街景
Metrawatt GmbH, 德国 纽伦堡 Gossen GmbH, 德国 爱尔兰根
Gossen MetraWatt GmbH
Camillebauer AG, 瑞士 苏黎世/沃伦 Dranetz, 美国电力士 N.J. GMC-I 欧洲各国销售子公司
纽伦堡教堂
GMCInstrument GmbH
德国纽伦堡
1906
1919
1944
1957
1962
1993
2007

GMC-IInternational
遍布全球90多个国家
Klaus Leibold
11.04.2014
?page 4

德国 GMC-Instrument:关键词
总部位于德国巴伐利亚州纽伦堡市, 全球员工约 600 人
r 公司标识与形象色:
与绿色 - 安全与可靠
r 产品研发生产基地分别位于: 德国, 瑞士, 英国和美国 r 百年历史, 欧洲知名电量测量测试仪器品牌 r ‘Gossenmetrawatt’, ‘GMC-I’, ‘Dranetz’(电力士), ‘Camillebauer ’
‘Kainos’ , ‘ProSyS’ 等品牌商标持有者
r 2013年度净销售额: 8,500 万 欧元 r Internet: https://www.docsj.com/doc/339773571.html, r Email: info@https://www.docsj.com/doc/339773571.html,
纽伦堡冬夜

电动汽车BMS(电池管理系统)EMC测试标准(试行版)

北京汽车新能源汽车有限公司企业标准 电动汽车BMS(电池管理系统)EMC 测试标准(试行版) 2012-06-21发布2012-06-XX实施北京汽车新能源汽车有限公司发布

前言 (1) 1. 范围 (2) 2. 参考标准 (2) 3. 简写、缩写、定义及符号 (2) 4. 通用要求 (4) 4.1基本要求 (4) 4.2功能划分 (4) 4.3测试严酷等级分类 (4) 4.4 发射测试仪器参数设置 (5) 4.5 EMC测试计划 (5) 4.5.1 样品数量 (5) 4.5.2 运行条件 (5) 4.5.3 测试顺序 (5) 4.6 具体测试内容 (6) 5. 传导发射测试:CE 01 (6) 5.1传导发射限值要求 (6) 5.2测试系统 (7) 5.2.1电压测量方法 (7) 5.2.2电流探头测量方法 (8) 5.3数据报告 (8) 6. 辐射发射测试:RE 01 (9) 6.1测试方法选择 (9) 6.2辐射发射限值要求 (9) 6.3数据报告 (9) 7. 辐射抗扰度测试-大电流注入(BCI)法:RI 01 (9) 7.1干扰信号等级 (9) 7.2测试系统 (10) 7.3大电流注入功能等级要求 (11) 7.4数据报告 (12) 8.辐射抗扰度测试-暗室法:RI 02 (12) 8.1测试过程 (12) 8.2暗室法测试等级要求 (12)

9. 电源线瞬态传导抗扰度测试:CI 01 (13) 9.1一般规定 (13) 9.2电源线瞬态传导抗扰性试验布置 (13) 9.3试验脉冲 (14) 9.3.1试验脉冲P1 (14) 9.3.2试验脉冲P2a (14) 9.3.3试验脉冲P2b (15) 9.3.4试验脉冲P3 (16) 9.3.5试验脉冲P4 (17) 9.4电源线瞬态传导抗扰度功能等级要求 (18) 9.5数据报告 (19) 10. 信号线瞬态传导抗扰度测试:CI 02 (19) 10.1一般规定 (19) 10.2测试布置 (21) 10.3信号线瞬态传导抗扰度功能等级要求 (21) 10.4数据报告 (22) 11. 静电放电抗扰度测试:CI 03 (22) 11.1一般规定 (22) 11.2静电放电方式 (22) 11.2.1直接接触放电 (22) 11.2.2空气放电 (22) 11.3为包装、搬运而规定的静电放电敏感度分类试验(不通电进行) (23) 11.3.1试验布置 (23) 11.3.2试验方法 (23) 11.3.3试验等级 (24) 11.3.4性能评价 (24) 11.4静电放电台架试验(通电进行) (24) 11.4.1试验布置 (24) 11.4.2试验方法 (25) 11.4.3试验等级 (26)

电动汽车拆解分析报告

电动汽车拆解分析报告 精品汇编资料 【电动汽车拆解】PCU(一):采用双面冷却构造实现小型化 电装已开始向丰田汽车的部分混合动力车型提供PCU(功率控制单元)。丰田汽车现在的混合动力系统全部为水冷式,而非空冷式。混合动力车在前格栅的发动机室内配置了不同于发动机用散热器的混合动力系统专用散热器。混合动力系统采用冷却水来冷却PCU和驱动马达。 图2:PCU(功率控制单元)主体由控制底板电路、双面散热的功率半导体元件、层叠型冷却器及电容器等构成。PCU内的功率半导体从两面进行冷却。过去采用的是单面冷却。 过去,丰田汽车的“普锐斯”及“皇冠Hybrid”等车型一直利用水冷单面冷却PCU内的功率半导体。 而“雷克萨斯LS600h”采用的最新PCU虽然同样是水冷式,但采用的是双面冷却构造(图1,2)。由于散热面积增大,因此比单面冷却更容易冷却。单位体积的输出功率比原来提高了60%。在相同的输出功率情况下,体积则可比原来减小约30%,重量减轻约20%。 PCU具有逆变器和升降压转换器的作用。逆变器具有将充电电池的直流电压转换成马达驱动用交流电压的功能以机将马达再生的交流电压转换成直流电压的功能。升降压转换器用来升高和降低充电电池供应给马达的电压。 向雷克萨斯LS600h等高功率混合动力车提供PCU,需要提高逆变器和升降压转换器的输出功率,也即需要增大电流。解决方法之一是增加PCU的功率半导体元件数量或使元件比原来流过更大电流。PCU存在问题是散热。现在的车载用功率半导体最高可耐150℃高温,因此需要采用始终将温度保持在150℃

以下的冷却结构。雷克萨斯LS600h需要提高PCU的性能,同时减小PCU尺寸。由于不能增加元件数量,因此采用了支持更大电流的功率半导体。 图3:过去的PCU构成(单面冷却)每个功率半导体元件流过200A,元件散热措施设想采用单面冷却时。 图4:新型PCU的构成(双面冷却)通过采用高性能功率半导体,每个元件流过300A以上的电流。采用支持大电流的元件,减少元件数量以实现小型化。通过双面冷却进行散热。( 这样,单面冷却就不足以解决大电流功率半导体的散热问题,因此采用了双面冷却结构。过去,每个元件可流过200A的电流,而雷克萨斯LS600h采用了每个元件可流过300A以上电流的高性能功率元件(图3、4)。由此逆变器和升降压转换器均减少了功率半导体的数量。新型功率半导体为富士电机元件科技制造的产品。(未完待续:特约撰稿人:金子高久,电装EHV机器技术部组长) 【电动汽车拆解】PCU(二):实现了与铅蓄电池相当的尺寸 雷克萨斯LS600h是在高级轿车“雷克萨斯LS460”基础上追加混合动力系统而成。如果是混合动力专用车,PCU的尺寸或许会更大一些,而雷克萨斯LS600h 最优先强调的就是要减小PCU的尺寸。LS460将置于车辆前部的铅蓄电池移至车辆后部,PCU的尺寸只能与空出的铅蓄电池容积相当。

电动汽车工况总结

一、世界现有工况情况 车辆在道路上的行驶状况可用一些参数(如加速、减速、匀速和怠速等)来反应,对这种运动特征的调查和解析,绘制出能够代表车辆运动状况,表达形式为速度--时间的曲线,即为车辆形式工况图。 行驶工况分类: 按行驶工况构造形式分为:以美国工况FTP-75为代表的实际行驶工况(瞬态工况); 以欧洲工况ECE+EDUC为代表的合成行驶工况(模态工况)。 按行驶工况的使用目的分为: 认证工况:由权威部门颁布,具有法规效用;通用的评价标准,认证工况范围宽,对低于、、地域针对性不强,是一种由大量真实道路工况合成出的具有代表性的工况。如:日本的10.15工况、欧洲经济委员会的ECE-R15工况、美国联邦城市及高速公路循环CSC-C/H,我国的城市客车四工况循环等。 研究工况:研究工况对车辆的影响比认证工况严厉,在车辆设计开发过程中,为了满足研究需要,有地方型或城市型的代表性车辆行驶工况研究。这种工况在速度区间分布上,研究工况范围窄,需要考虑极端的情形。很多地区和典型城市有各自的“实际行驶工况”,如纽约城市工况、纽约公交车工况、北京市公交车工况等。 I/M工况:用于车辆的排放测试,操作时间短,一般不超过10分钟。 世界范围内车辆排放测试用行驶工况分为3组:美国行驶工况(USDC)、欧洲行驶工况(EDC)和日本行驶工况(JDC)。美国FTP(联邦认证程序)为代表的瞬态工况(FTP72)和ECE为代表的模态工况(NEDC)为世界各国采用。 A.美国行驶工况 美国行驶工况种类繁多,用途各异,大致包括认证用(FTP系)、研究用(WVU系)和短工况(I/M系)3大体系,广为熟知的有联邦测试程序(FTP75)、洛杉矶92(LA92)和负荷模拟工况(IM240)等行驶工况。 1、乘用车和轻型载货汽车用行驶工况 (1)1972年美国环保局(简称EPA)用作认证车辆排放的测试程序(简称FTP72,又称UDDS)。FTP72由冷态过渡工况(0"505s)和稳态工况(506 1370s)构成。 (2)1975年在FTP72基础上加上600s热浸车和热态过渡工况(重复冷态过渡工况)。4

电动汽车调研报告完整版

关于发展电动汽车调研报告 一、国内外电动汽车行业概况 1、国际环境 1.1金融危机后发达国家争先发展新能源产业 国际金融危机爆发后,为了尽快地走出经济衰退,美国、日本、欧盟等发达国家和经济体出台了一系列政策发展新能源等新兴产业。 传统能源和环境问题催生新能源时代渐行渐近。作为新能源的重要领域,未来5-10年全球新能源汽车有望走进大规模产业化阶段,并将带动整个相关产业蓬勃发展。 1.2汽车工业进入后哥本哈根时代 2009年12月7日,在丹麦哥本哈根召开的气候峰会上,减排、低碳成为“重头戏”汽车行业是全球二氧化碳排放的第二大行业,节能减排已成为未来发展趋势。 1.3世界各国政府大力发展电动汽车产业 1.4世界电动汽车行业发展规模惊人

2国内环境 2.1 2010年“两会”催热新能源汽车产业发展 在2010年的年会上,“调结构、促转变、谋发展”成为汽车界代表、委员的共识,关于汽车产业的提案均指向汽车产业调整、新能源汽车、汽车质量等行业关注的话题。电动汽车产业被确立为国家战略新兴产业之前三甲。 2.2 2010年世博会大规模开启新能源汽车商业运营 为体现“城市让生活更美好”的主题,上海市结合世博科技行动计划,在2010年上海世博会期间与科技部合作开展纯电动、混合动力、燃料电池等1017辆各类新能源车示范运行。 2.3 2010北京车展“新能源、概念车”受观众热拥 2010年北京车展90余款新能源汽车登台。 2.4 我国“十城千辆”计划进程加快 “十城千辆”工程计划用3年左右的时间,每年发展10个城市,每个城市推出1000辆新能源汽车开展示范运行,涉及这些大中城市的公交、出租、公务、市政、邮政等领域,力争使全国新能源汽车的运营规模到2012年占到汽车市场份额的10%。 2.5 “政策性补贴”助推新能源产业发展 新能源客车补贴:“十城千辆”补贴政策规定,混合动力客车最高每辆可获补贴42万元,纯电动和燃料电池客车每辆补贴分别高达50万元和60万元,随着国家对

电动汽车用动力蓄电池技术要求及试验方法

《电动客车安全要求》 征求意见稿编制说明 一、工作简况 1、任务来源 为引导和规范我国电动客车产业健康可持续发展,提高电动客车安全技术水平,落实工业和信息化部建设符合电动客车特点的整车、电池、电机、高压线束等系统的安全条件及测试评价标准体系的要求,全国汽车标准化技术委员会于2016年8月启动了本强标的立项和编制工作。 2、主要工作过程 根据有关部门对电动客车安全标准制定工作的要求,全国汽车标准化技术委员会电动车辆分技术委员会组织成立“电动客车安全要求工作组”(以下简称工作组),系统开展电动客车安全要求标准的制定工作。 (1)GB《电动客车安全要求》于2016年底完成立项(计划号20160968-Q-339),2016年12月29日在南充电动汽车整车标准工作组会议上组建了标准制定的核心工作组,启动了强标制定工作,并由起草组代表介绍了标准的背景、编制思路、以及与相关标准的协调性关系。 (2) 2017年2月-3月,基于已开始执行的《电动客车安全技术条件》(工信部装[2016]377号,以下简称《条件》)的工作基础,工作组向电动客车行业主要企业、检测机构等16家单位征求《条件》的实施情况反馈与强制性国标制定建议。 (3) 2017年4月18日,工作组在重庆组织召开标准制定讨论会,会议对《条件》制定情况进行了回顾,对收集到的《条件》执行情况进行了分析讨论。根据讨论结果,针对共性问题形成了专项征求意见表。 (4) 2017年5月-6月,工作组根据重庆会议讨论结果向行业进行强标制定专项意见征求意见。 (5) 2017年6月6日,在株洲召开工作组会议,会议对专项征求意见期间收集的反馈意见进行研究讨论。 (6)2017年6月-10月,工作组依据意见反馈情况和会议讨论结果进行标

电动汽车工况测试

电动汽车工况测试 作为实现能源革命的重要手段之一,电动汽车已然成为最热门的交通工具,而作为电动汽车核心部件的电驱部分,其性能和稳定性决定了一台电动汽车的品质。电池测试、电机测试、充电桩测试共同构成新能源汽车领域的三大测试项目,今天我们重点聊一聊电机测试。 传统的电机测试主要考察电机的效率及可靠性,常见的测试包括转速测试、扭矩测试、效率测试、温升曲线、堵转以及耐久度测试等。电动汽车电机测试项目与上述测试项目基本一致,新增的重要测试项目为“工况实验”。所谓工况实验就是给电机施加变化的力矩,以模拟电动汽车在实际道路中的运行状况,此过程中测试相关数据最能反映电机性能。长时间工况循环实验也是耐久测试的过程,与传统耐久测试区别在于电机工作在稳态还是非稳态。 电动汽车工况测试参考什么标准呢?国标《GBT 18488.1-2006 电动汽车用电机及其控制器第1部分:技术条件》已明确提到工况实验的测试标准,并且给出工况加载曲线。通过加载和控制扭矩的方式在模拟标准中规定测试中包含的工况,有停车、加速、匀速、减速、上坡、下坡6个工况。让电机工作在额定工况下,测取记录电机转矩、转速随时间的变化曲线。图1、图2是国标《GBT 18488.1-2006 电动汽车用电机及其控制器第1部分:技术条件》提到的相关曲线。 图1市郊循环 图2基本城市循环

但是等我们真正去测试时,翻开最新的2015国标发现上述要求不存在了!其实现在的工况实验这么玩:使用报文记录设备采集车辆在真是路况下的转速、转矩数据,再将此数据输入到电机测试台架中,使负载电机按照此数据进行参数输出。毫无疑问,这种工况测试更加真实。 MPT电机测试系统如何完美解决电动汽车电机工况实验?MPT电机测试系统采用专业的电机测试软件MotoTest,针对工况测试一键化操作,并且支持测试报表导出。功率、效率运算采用致远电子高性能功率分析仪,以保证测试精度。工况实验中,用户只需要配置道路状况,包含平路、上坡、下坡的各项参数,如坡面长度、坡度等,配置汽车参数,如后桥减速比、档位、轮胎半径、重力加速度、风阻系数、截面积等。上位机软件通过数学建模将汽车参数换算出,应该给被测电机所需加载阻力以及转速。控制被测电机按照设置的档位运行,稳定后加载路面文件,模拟道路运行,记录各项数据。除了根据国标进行工况测试,MPT电机测试系统还支持自定义工况实验。实际测试效果如图3、图4。 图3实际软件测试效果界面 图4路面波形和当前扭矩波形 致远电子针对电动汽车电驱部分的核心:逆变器和电机,基于MPT混合型电机测试系统设计出电动汽车电机试验平台解决方案,为电动汽车电机及其逆变器的研发、生产提供专业化的测试系统。有关此测试系统更多信息请登录致远电子官网,致远电子与您共同成长。

实际道路工况对电动汽车能耗的影响

Open Journal of Transportation Technologies 交通技术, 2019, 8(6), 403-416 Published Online November 2019 in Hans. https://www.docsj.com/doc/339773571.html,/journal/ojtt https://https://www.docsj.com/doc/339773571.html,/10.12677/ojtt.2019.86049 Effect of Actual Road Conditions on the Energy Consumption of Electric Vehicles Zhicheng Sun1,2, Guang Chen1, Tianlu Dai1, Kai Zhu1, Kexun He1, Su Li2* 1CATARC Automotive Test Center (Tianjin) Co., Ltd., Tianjin 2Hebei University of Technology, Tianjin Received: Nov. 1st, 2019; accepted: Nov. 13th, 2019; published: Nov. 20th, 2019 Abstract In order to study the factors affecting the power consumption of electric vehicles in the actual road, three typical routes were selected in Tianjin, namely urban congestion, suburban smooth and suburban high speed, and several road tests were carried out. Then, based on a certain elec-tric vehicle, AVL Cruise was used to establish the dynamic model of the whole vehicle system to research the influence of road condition on energy consumption of electric vehicle based on si-mulation of three kinds of road condition. The results show that the speed and acceleration dis-tribution of the three kinds of road conditions are different, and the energy consumption was the highest on highway condition, the urban congestion is the second most, and the suburban smooth is the least, which indicates that the speed and acceleration in the road conditions is one of the main factors affecting the energy consumption of electric vehicles. Keywords Electric Vehicle, Road Test, Condition Characteristics, Energy Consumption 实际道路工况对电动汽车能耗的影响 孙志诚1,2,陈光1,戴天禄1,朱凯1,贺可勋1,黎苏2* 1中汽研汽车检验中心(天津)有限公司,天津 2河北工业大学,天津 收稿日期:2019年11月1日;录用日期:2019年11月13日;发布日期:2019年11月20日 *通讯作者。

新能源电动汽车驱动器可靠性试验规范V2.0(2018)

新能源汽车驱动器环境可靠性试验规范 目录 一.目的和范围 (4) 二.引用标准 (4) 三.试验设备要求 (5) 四.术语定义 (5) 1.标准大气条件 (5) 2.高温贮存试验 (5) 3.低温贮存试验 (5)

4.高温运行试验 (5) 5.低温运行试验 (6) 6.恒定湿热试验 (6) 7.温度循环试验 (6) 8.高温极限试验 (6) 9.低温极限试验 (6) 10.冷启动试验 (6) 11.冷热冲击试验 (6) 12.盐雾试验 (7) 13.粉尘试验 (7) 14.防水试验 (7) 15.符号定义 (7) 16.正弦振动 (7) 17.随机振动 (7) 18.跌落 (7) 19.HALT(Highly Accelerated Life Test) (8) 20.加速寿命试验 (8) 21.绝缘电阻 (8) 五.规范内容 (8) 1.一般试验步骤 (8) 2.试验应力 (9) 2.1高温贮存 (9)

2.2低温贮存 (10) 2.3高温运行 (11) 2.4低温运行 (12) 2.5恒定湿热试验 (13) 2.6温度循环试验 (14) 2.7交变湿热试验 (15) 2.8低温极限测试 (17) 2.9高温极限测试 (18) 2.10盐雾试验 (19) 2.11冷热冲击 (20) 2.12正弦振动试验 (21) 2.13粉尘试验 (22) 2.14防水试验 (22) 2.15包装随机振动试验 (23) 2.16包装跌落试验 (23) 2.17 HALT试验 (24) 2.18 随机振动寿命试验 (24) 六.顺序应力测试 (25) 七.附录 (26) 1. 附录一:不同环境应力对应的失效模式 (26) 2. 附录二:IPXX(防尘等级&防水等级),参考如下 (27) 八.注意事项 (28)

电动客车安全技术条件

电动客车安全技术条件 1 范围 本文件规定了电动客车的安全技术要求和试验方法。 本文件适用于车长大于等于6m的单层电动客车,包括纯电动客车、混合动力客车(含插电式混合动力客车)、燃料电池电动客车。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2408—2008 塑料燃烧性能的测定水平法和垂直法 GB/T 4208—2008 外壳防护等级(IP代码) GB 8410—2006 汽车内饰材料的燃烧特性 GB 8624 建筑材料及制品燃烧性能分级 GB/T 10297-2008 非金属固体材料导热系数的测定热线法 GB 13094 客车结构安全要求 GB/T 18384.3—2015 电动汽车安全要求第3部分:人员触电防护 GB/T 19596 电动汽车术语 GB 24407—2012 专用校车安全技术条件 GB/T 28046.2-2011 道路车辆电气及电子设备的环境条件和试验第2部分:电气负荷 GB/T 31467.3—2015 电动汽车用锂离子动力蓄电池包和系统第3部分:安全性要求与测试方法GB/T 31498—2015 电动汽车碰撞后安全要求 QC/T 413 汽车电气设备基本技术条件 QC/T 417.1 车用电线束插接器第1部分定义,试验方法和一般性能要求(汽车部分) QC/T 417.3 车用电线束插接器第3部分单线片式插接件的尺寸和特殊要求 QC/T 417.4 车用电线束插接器第4部分多线片式插接件的尺寸和特殊要求 QC/T 897—2011 电动汽车用电池管理系统技术条件 QC/T 1037—2016 道路车辆用高压电缆 QC/T 29106—2014 汽车电线束技术条件 3 术语和定义 GB 13094、GB/T 18384.3、GB/T 19596确立的及下列术语和定义适用于本文件。 3.1 热失控thermal runaway 单体蓄电池放热连锁反应引起电池自温升速率急剧变化的过热、起火、爆炸现象。

新能源电动汽车市场分析报告

新能源电动汽车行业分析报告 班级:车辆122 姓名:刘书成 学号:201210603103

在这深入研究新能源汽车的产业,包括它的产业链、产业结构、产业运营等。还将通过国内外数个案例来进行具体分析。进一步让读者了解新能源电动汽车的发展。 一、产业研究(一)新能源产业链上游:IC制造、正极材料、负极材料、电解液、隔膜、有色资源、钢铁等。 中游:电控系统(电池管理系统、电机控制系统、动力总成控制系统)、电池系统(电芯、电池组)、电机系统(驱动电机)、充电配套设备(充电桩、充电机)、仪表仪器、橡胶轮胎、变速箱系统、配件内饰等。 下游:乘用车、客车 后服务:销售、维修保养、金融、保险、二手车、充电设施、电池回收、汽车租赁、车联网、增值应用。 (二)产业链上游是资源类公司,主要为新能源汽车提供原始材料有色资源:天齐锂业、赣峰锂业、吉思镍业、贵研铂业、包钢稀土、厦门钨业 负极材料:杉杉股份、中国宝安 电解液:新亩邦、天赐材料、多氟多 隔膜:沧州明珠、南洋科技、云天化 正极材料:中信国安、杉杉股份、中国宝安、恒店东磁、当升科技 钢铁:宝钢股份、鞍钢股份、武钢股份、马钢股份、方大股份 (三)产业链中游的三大核心技术:电池+电机+电控,其中电池厂商可以成为东软的潜在合作伙伴新能源汽车=插电式混合动力+纯电动 核心技术: 1、镍氢电池:科力远、春兰股份、中炬高新、凯恩股份、北方稀土 2、锂电池: (1)电芯:比亚迪、成飞集团、万向集团、东莞ATL、佛山照明 (2)BMS:比亚迪、德赛电池、欣旺达、凹凸科技 3、电机+电控:大洋电机、江特电机、宁波韵升、方正电机、湘电股份、信质电机、宗升

电动汽车后部碰撞试验的电安全研究

电动汽车后部碰撞试验的电安全研究 本文将对比分析国际成熟的电动汽车碰撞标准法规,并结合我国电动汽车后部碰撞中电安全技术研究的现状和发展需求,研究制定相关试验流程及方法,通过严苛的实车碰撞试验进行方法验证与分析,探讨电动汽车后部碰撞的电安全问题。鉴于此,本文是对电动汽车后部碰撞试验的电安全进行研究,仅供参考。 标签:电动汽车;后部碰撞试验;电安全 一、标准法规比对分析 目前国际上关于电动汽车碰撞安全的标准有ISO6469—4、SAEJ1766—2014;法规主要有美国FMVSS305,欧洲ECER12、R94、R95,日本Attachment111以及中國GB/T31498—2015。对于碰撞形式,ISO6469—4没有指定特定的碰撞形式,使用其标准时参考各国已有的传统汽车碰撞法规进行试验;SAEJ1766—2014、FMVSS305以及Attachment111明确提出电动汽车需开展正面碰撞、侧面碰撞和后部碰撞,SAEJ1766—2014和FMVSS305还规定每次碰撞后须进行静态翻转试验;欧洲法规和GB/T31498—2015对正面碰撞和侧面碰撞进行了规定,但不涉及后部碰撞和静态翻转的测试要求。 然而,据公安部交通管理局发布的历年交通事故统计数据显示,汽车后部碰撞一直是典型的碰撞型式,事故量、人员伤亡和财产损失居高不下(图1)。 其中2015年,车辆后部碰撞的事故量为14397起,死亡人数5497人,受伤人数16019人,直接经济损失达19228万余元。电动汽车在整车设计中,为了提高续驶里程,往往在车辆后部增设了动力电池及电路配置,当车辆发生后部碰撞事故时,车辆高压电部件存在较大的碰撞冲击隐患和安全性能考验。为此,我国的安全法规有必要规定对电动汽车进行后部碰撞测试。 虽然GB/T31498—2015暂未提出对静态翻转的测试要求,但增加该项目的考核,对于提高我国电动汽车安全整体水平,无疑将起到积极作用。关于电安全测试项目,各标准法规的关注点主要集中在防触电保护、电解液泄漏和电池位置移动三个方面。防触电保护方面,除FMVSS305只关注绝缘电阻(含绝缘监测)以外,其它标准法规还对碰撞后的安全电压限值、电能量限值、物理接触防护等项目进行了规定。同时,GB/T31498—2015还增加了碰撞后车辆不得爆炸、起火的要求,各测试项目及指标要求见表1。 由表1可知,我国暂未将碰撞后电池电压和温度的监测列入考核项目。然而,电动汽车动力电池因碰撞可能导致短路,电池电压将出现较大波动。同时,内部材料发生热化学反应,将产生大量热和气体,引起电池热失控、温度大幅升高,诱发起火、爆炸事故。2011年,美国NHTSA进行雪佛兰V olt碰撞测试后未进行电池监控和险情排查,3周后因电池损坏导致电池起火,引燃本车及其它3辆汽车。此后,美国IIHS特别规定碰撞试验后实施电池温度的监测,监测结果直

北汽福田电动汽车测试方案参考

北汽福田电动汽车测试方案参考 方案制作:青岛仪迪电子有限公司

1、产品测试需求 欧辉新能源电动汽车安全性能测试: 总装电气调试工位规划配备1套综合安规测试仪,对整车实施绝缘电阻、耐压、电位均衡在线测试,确保总装电气调试前的防触电安全。测试节拍:30分钟/台。具体项目包括动力电池绝缘、绝缘、耐压、接地(电位均衡)等;测试对象为汽车的八个负载组合和一个动力电池组。 测试数据包括:1、动力电池绝缘电阻值(电池组与车架之间的绝缘电阻≥0.21M); 2、各负载的总耐压电流值(≤5mA); 3、电位均衡(八个分负载接地端与车架的阻值均≤0.1Ω); 测试仪还需配备扫码枪,可以实现各组件和整机条码的扫描和记录,测试结果可以存储和打印,也可实现后续的查询和追溯。 2.测试方案 2.1测试系统示意图 2.2测试流程 2.2.1 测试准备 a、根据所测试产品,设置相应的测试参数,若参数已设置,可直接从记忆组调用; b、对仪器进行线路补偿操作; C、测试顺序:动力电池绝缘电阻测试、高压零部件绝缘电阻测试、高压零部件耐压测试、高压零部件电位均衡测试。

2.2.2测试前连线 依据产品需要测试的部位和项目,进行连接线路; 仪表输出测试分配 a、动力电池组绝缘连线: 测试方式:将测试夹一端接到仪表“动力电池组绝缘”的红、黑接线柱另一端分别夹到REESS电源的正端、负端以车架之间。 注:1)、仪表自行切换:REESS电源的正端与车架、负端与车架之间的电压测试,同时根据两者间电压有效值的最大端与车架间增加100kΩ电阻后进行电压测试,此三步测试有仪表内部进行自行切换。 2)、由于有仪表内部自行切换,所以其测试时间相对需要加长。

电动汽车市场分析报告

新能源汽车行业 概述: ●十二五规划中明确要求,重点发展新兴产业,新能源汽车要着重发展插电式混 合动力汽车、纯电动汽车、燃料电池汽车等安全、节能的汽车。 ●即将出台的《节能与新能源汽车产业发展规划》(2011 年~2020 年),为我国新能源汽车的发展指明了方向。 ●在油价和政策的双重影响,节能和新能源汽车将更受关注。油价上涨在一定程 度上影响到消费者利益的同时,也在发挥着它的积极作用,促使一些消费者改变消费习惯。可以预见的是,随着燃油成本上升和消费者对燃油经济性的关注,再加上“节能产品惠民工程”的惠及面不断扩大,小排量、经济型轿车和新能与汽车的市场前景要乐观一些。 ●新能源汽车必将取代传统内燃机汽车。在石油资源枯竭和环境污染严重的双重 压力下,传统汽车产业已经走到了穷途末路,人类再次站在了交通能源动力系统变革的十字路口,以纯电动汽车为代表的新能源汽车将最终取代传统内燃机汽车。 ●新能源汽车有望成为“再次改变世界的机器”。汽车曾被誉为“改变世界的机 器”,在给我们带来快捷交通方式的同时,也产生了能源安全、环境污染和全球气候变暖等一系列问题。目前节能减排已成为全球汽车产业的首要任务,发展新能源汽车产业已成为我国汽车工业的战略方向。 ●中国发展新能源汽车产业的优势。巨大的市场容量,明确的增长预期;政策的

大力扶持;较好的技术储备;众多企业和科研机构的联合攻关;能源状况、自然资源对发展新能源汽车产业比较有利。预计到2015年中国新能源汽车将达到100万辆左右,年均复合增长率在216%左右。 ●初步建立了“三纵三横”的研发布局和技术体系,技术路线基本明确。混合动 力汽车具有较好的节能减排效果,技术上易实现,是近期产业化重点,但其过渡性特征明显;纯电动汽车是中长期发展方向;燃料电池是未来汽车工业发展战略方向。预计“三纵”各类产品将各领风骚数十年。与此同时,多能源动力总成控制、驱动电机和动力蓄电池”三横”技术得到很大提升。 ●产业政策加快新能源汽车技术进步的步伐。国家对私人购买新能源汽车补贴政 策意义重大,政策效果将远大于政府补贴对公交领域新能源汽车的影响。预计国家近期将出台全面、系统的新能源汽车发展规划,为新能源汽车产业发展增添新动力,同时也将成为新能源汽车类股票表现的催化剂。 ●新能源汽车的产业带动作用强。将带动上游矿产资源开采、电池材料制造和充 电设备需求的大幅增长,此外还将产生电池租赁等新的商业模式。整车领域则看好传统汽车基础扎实、具有一定新能源产业链技术、较强整合匹配能力和产业化能力的公司。 ●驱动电机系统是新能源车三大核心部件之一。电机驱动控制系统是新能源汽车 车辆行使中的主要执行结构,其驱动特性决定了汽车行驶的主要性能指标,它是电动汽车的重要部件。电机驱动系统主要由电动机、功率转换器、控制器、各种检测传感器以及电源等部分构成。 ●动力电池是新能源汽车的绿色心脏。动力电池是电动汽车的动力之源,是能量

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力蓄电池包和系统测 试规程 电动汽车用锂离子动力电池包和系统测试规程 1范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 2规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008电工电子产品环境试验第2部分:试验方法试验Db交变湿热(12h+ 12h循环)(IEC 60068-2- 30:2005,IDT )

GB/T 2423.43-2008电工电子产品环境试验第2 部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006电工电子产品环境试验第2 部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001电动汽车安全要求第1部分: 车载储能装置(ISO/DIS 6469-1:2000,EQV ) GB/T 18384.3-2001电动汽车安全要求第3部分: 人员触电防护(ISO/DIS 6469-3:2000,EQV ) GB/T 19596-2004 电动汽车术语 (ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - En vir onmen tal con diti ons and testi ng for electrical and electronic equipment Part 1: Gen eral,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - En vir onmen tal con diti ons and testi ng for electrical and electronic equipment Part 3: Mecha ni cal loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条

相关文档
相关文档 最新文档