文档视界 最新最全的文档下载
当前位置:文档视界 › 我国植物病虫害专家系统的研究进展及发展趋势(精)

我国植物病虫害专家系统的研究进展及发展趋势(精)

基于模糊推理的农业病虫害专家系统

农业病虫害专家系统,也称为农业智能系统,已成为农业信息化的一项重要技术,其主要功能是模拟人类专家的决策分析过程。农业病虫害专家系统建有独立的知识库,具有知识表示、模拟专家推理、结果获取和知识库更新等技术。目前的农业病虫害专家系统能在相对较短的时间内,综合考虑农业专家多年积累的知识和经验,根据用户的实际情况做出专家水平的病虫害诊断[1]。 我国从上世纪80年代开始才进入到农业专家系统的研究中[2]。第一个农业专家系统是由中科院合肥智能化研究所开发的施肥咨询专家系统。上世纪90年代以后,我国农业专家系统的研究蓬勃发展,如1993年研制的作物病虫害诊断专家系统HDS、中国农业科学院研制的棉花高产栽培生育动态模型CGSM等。自1999年以来,中国农业大学等在农业专家系统与3S的结合等方面进行了研究;湖南农业大学开发了基于Web的油菜专家系统[3]。由于我国的农业病虫害问题纷繁复杂且不断变化,而传统农业病虫害专家系统在知识库建立方面存在局限性,因此在我国农业病虫害问题上,模糊推理越来越体现出其得天独厚的优势[4]。随着Web等技术的出现,模糊推理在农业应用中有了飞速发展。近年来涌现出许多 浙江农业学报Acta Agriculturae Zhejiangensis21(5):506~509,2009 基于模糊推理的农业病虫害专家系统 唐惠丽,周炼清*,叶基瑶,梁建设,史舟 (浙江大学农业遥感与信息技术应用研究所,浙江杭州310029) 摘要:针对农业病虫害问题的复杂性,将模糊推理技术应用到农业病虫害专家系统中,建立病虫害介绍、症状及权重数据库。考虑对病症发生起肯定与否定两方面作用的症状,根据隶属度阈值筛选用户提供的信息,选用加权欧式距离法计算相似性,给出有效的病症诊断结果与信度。赋予用户一定的权限以修改数据库。最后说明系统推理过程。 关键词:模糊推理;加权欧式距离法;专家系统;信度 中图分类号:TP182文献标识码:A文章编号:1004-1524(2009)05-0506-04 Agriculture disease and pest diagnosis expert system based on fuzzy reasoning TANG Hui-li,ZHOU Lian-qing*,YE Ji-yao,LIANG Jian-she,SHI Zhou (Institute of Agricultural Remote Sensing&Information Technology,College of Environmental and Resource Sci-ences,Zhejiang University,Hangzhou310029,China) Abstract:In view of the complexity of the disease and pest problem,fuzzy reasoning method was presented in the agriculture disease and pest diagnosis expert system,including disease and pest introduction,symptoms,database of weights.Considering both positive and negative effects of the disease and pest symptoms on the diagnosis results,threshold was used to choose information given by users.Weighted Euclidean distance method was introduced to calculate the comparability.Effective diagnosis results and reliabilities were given out.Besides,users were granted with certain authorities to modify database.Finally,the reasoning process was illustrated. Key words:fuzzy reasoning;weighted Euclidean distance method;expert system;reliability 收稿日期:2008-12-26 基金项目:国家科技支撑项目(2006BAD10A09) 作者简介:唐惠丽(1985-),女,浙江杭州人,硕士,主要从事遥感 应用研究。E-mail:thlsugar@https://www.docsj.com/doc/3310518476.html,;Tel:86-571-86971831 *通讯作者,周炼清,E-mail:lianqing@https://www.docsj.com/doc/3310518476.html,;Tel:86-138********

专家系统习题解答

第七章专家系统 7.1.答: (1)专家系统的定义 费根鲍姆(E.A.Feigenbaum):“专家系统是一种智能的计算机程序,它运用知识和推理步骤来 解决只有专家才能解决的复杂问题” 专家系统是基于知识的系统,用于在某种特定的领域中运用领域专家多年积累的经验和专门知识, 求解需要专家才能解决的困难问题 保存和大面积推广各种专家的宝贵知识 博采众长 比人类专家更可靠,更灵活 (2)专家系统的特点 ①具有专家水平的专门知识 专家系统中的知识按其在问题求解中的作用可分为三个层次:数据级、知识库级和控制级 数据级知识(动态数据):具体问题所提供的初始事实及在问题求解过程中所产生的中间结 论、最终结论 数据级知识通常存放于数据库中 知识库级知识:专家的知识,这一类知识是构成专家系统的基础 一个系统性能高低取决于这种知识质量和数量 控制级知识(元知识):关于如何运用前两种知识的知识 在问题求解中的搜索策略、推理方法 ②能进行有效的推理 推理机构——能根据用户提供的已知事实,通过运用知识库中的知识,进行有效的推理,以实现问题的求解。专家系统的核心是知识库和推理机 ③具有启发性 除能利用大量专业知识外,还必须利用经验判断知识来对求解问题作出多个假设(依据某些条件选定一个假设,使推理继续进行) ④能根据不确定(不精确)的知识进行推理 综合利用模糊的信息和知识进行推理,得出结论 ⑤具有灵活性 知识库与推理机相互独立,使系统易于扩充,具有较大的灵活性 ⑥具有透明性 一般有解释机构,所以具有较好的透明性 解释机构向用户解释推理过程,回答“Why?”、“How?”等问题 ⑦具有交互性 一般都为交互式系统,具有较好的人机界面 一方面它需要与领域专家或知识工程师进行对话以获取知识;另一方面它也需要不断地从用户处 获得所需的已知事实并回答询问。 7.2.答:专家系统的一般结构 人机接口、推理机、知识库、动态数据库、知识获取机构、解释机构 知识库:主要用来存放领域专家提供的专门知识 (1) 知识表达方法的选择(最多的三种表示方法是产生式规则、框架和语义网络) ①充分表示领域知识 ②能充分、有效地进行推理 ③便于对知识的组织、维护与管理

人工智能习题&答案-第6章-专家系统

第六章专家系统 6-1 什么叫做专家系统?它具有哪些特点与优点? 专家系统是一种模拟人类专家解决领域问题的智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题。 特点: (1)启发性 专家系统能运用专家的知识与经验进行推理、判断和决策 (2)透明性 专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户能够了解推理过程,提高对专家系统的信赖感。 (3) 灵活性 专家系统能不断地增长知识,修改原有知识,不断更新。 优点: (1) 专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作。 (2) 专家系统解决实际问题时不受周围环境的影响,也不可能遗漏忘记。 (3) 可以使专家的专长不受时间和空间的限制,以便推广珍贵和稀缺的专家知识与经验。 (4) 专家系统能促进各领域的发展,它使各领域专家的专业知识和经验得到总结和精炼,能够广泛有力地传播专家的知识、经验和能力。 (5) 专家系统能汇集多领域专家的知识和经验以及他们协作解决重大问题的能力,它拥有更渊博的知识、更丰富的经验和更强的工作能力。 (6) 军事专家系统的水平是一个国家国防现代化的重要标志之一。 (7) 专家系统的研制和应用,具有巨大的经济效益和社会效益。 (8) 研究专家系统能够促进整个科学技术的发展。专家系统对人工智能的各个领域的发展起了很大的促进作用,并将对科技、经济、国防、教育、社会和人民生活产生极其深远的影响。

专家系统

专家系统发展概

述 院系:化工学院化工机械系 班级:10自动化(1) 姓名:李正智 学号:1020301016 日期:2013年10月1日 专家系统发展概述 摘要:回顾了专家系统发展的历史和现状。对目前比较成熟的专家系统模型进行分析,指出各自的特点和局限性。最后对专家系统的热点进行展望并介绍了新型专家系统。 关键词:专家系统;知识获取;数据挖掘;多代理系统;人工神经网络 Abstract:The history and recent research ofexpertsystem was reviewed. Severalwell-researched expertsystemmodelswereintroduced respectively, and their featuresand limitationswere analyzed. Finally, the hotspotofexpertsystem wasoverlookedand future research direction ofexpertsystem wasdiscussed. Key words:expertsystem; knowledge acquisition; datamining; multi-agentsystem; artificialneuralnetwork 近三十年来人工智能(Artificial Intelligence,AI)获得了迅速的发展,在很多学科领域都获 得了广泛应用,并取得了丰硕成果。作为人工智能一个重要分支的专家系统在20世纪60年代初期产生并发展起来的一门新兴的应用科学,而且正随着计算机技术的不断发展而日臻完善和成熟。一般认为,专家系统就是应用于某一专门领域,由知识工程师通过知识获取手段, 将领域专家解决特定领域的知识,采用某种知识表示方法编辑或自动生成某种特定表示形式存放在知识库中;然后用户通过人机接口输入信息、数据或命令,运用推理机构控制知识库及整个系统,能像专家一样解决困难的和复杂的实际问题的计算机(软件)统。 专家系统有三个特点:1.启发性,能运用专家的知识和经验进行推理和判断;2.透明性,能解决本身的推理过程,回答用户提出的问题;3.灵活性,能不断地增长知识,修改原有知识。 1 专家系统的产生与发展 专家系统按其发展过程大致可分为三个阶段[1~3],即初创期(1971年前)、成熟期(1972)1977年)和发展期(1978年至今)。 1.1 初创期 人工智能早期工作都是学术性的,其程序都是用来开发游戏的。尽管这些努力产生了如国际象棋、跳棋等有趣的游戏[4],但其真实目的在于在计算机编码中加入人的推理能力,以

温室大棚植物生长专家系统

温室大棚控制决策 智能系统架构 建立通用数据库: 这是一个复杂的多变量系统,所以在运算过程中需要大量的中间数据。因为无法建立起精确的数学模型,而且因为一般的数学模型缺乏可扩展性以及自适应性,所以需要采用使用经验分析等方法,这是建立在大量数据采集和历史数据储存的基础上的。巨大的数据量和复杂灵活的数据结构需要一个高效、稳定、快速的数据库系统。 考虑到安全性,我们将数据库系统独立于底层系统,如上图所示,通过定时校验的方式来监测数据库的运行状态,一旦出现问题,底层

的动态数据跟随和多站点控制系统仍然可以自成系统独立运行,同时通过网络通知本公司维护人员及时通过网络或直接去现场维护。数据库系统还需要一套自保护措施,在故障发生时,及时处理数据,剔除错误数据,保证系统的有效性。 植物生长数据跟随系统: 1)、植物生长数据监测与分析: 温室大棚是一个农业上比较复杂的设施之一,要实时掌握整个系统的气候数据变化,可以在系统分析的基础上在关键点设置传感器,实时掌握关键点的土壤温度、土壤水分、环境照度、二氧化碳含量、环境温湿度等数据的变化。 通过建立农业灌溉季节模型及视频对比模型,实时分析该温室大棚植物生长变化,同时通过算法进行分析及预测,获得对该植物变化的认识和生长趋势的预测。 在灌溉季节模型及视频对比模型后,需要建立植物生长模型。联立各采集数据点和视频的关系,采用模糊关系矩阵进行耦合分析,从而从理论上掌握各分控的耦合关系,为进一步建立整个温室大棚植物生长数据模型打下基础。 2)、植物生长数据跟随: 在整体模型系统建立后,通过一定的技术算法进行权重运算,对现在植物生长状况进行评价和相关设施数据给定,并进行适当的预测分析。这个评价模型是为温室大棚系统供接口的,它通过已经定义好

疾病诊断专家系统

目录 摘要............................................... 错误!未定义书签。Abstact............................................ 错误!未定义书签。第一章绪论........................................ 错误!未定义书签。 1.1引言........................................ 错误!未定义书签。 1.2问题的提出.................................. 错误!未定义书签。 1.3可行性分析.................................. 错误!未定义书签。 2.1专家系统概述................................ 错误!未定义书签。 2.1.1什么是专家系统........................ 错误!未定义书签。 2.1.2专家系统的组成........................ 错误!未定义书签。 2.1.3专家系统的应用领域.................... 错误!未定义书签。 2.2 知识库..................................... 错误!未定义书签。 2.3推理原理.................................... 错误!未定义书签。 2.3.1推理概念及分类........................ 错误!未定义书签。第三章鸡疾病诊断专家系统知识库的研究............. 错误!未定义书签。 3.1鸡疾病诊断专家系统介绍...................... 错误!未定义书签。 3.2鸡疾病诊断专家系统设计...................... 错误!未定义书签。 3.2.1系统功能.............................. 错误!未定义书签。 3.2.2 鸡疾病诊断专家系统知识开发的技术流程.. 错误!未定义书签。 3.2.3 鸡疾病诊断专家系统知识库的设计........... 错误!未定义书签。 3.3.1 知识表示.............................. 错误!未定义书签。第四章系统调试................................... 错误!未定义书签。 4.1 Prolog软件介绍............................. 错误!未定义书签。 4.1.1 Prolog语言的特征..................... 错误!未定义书签。 4.1.2 Prolog语言基本语句................... 错误!未定义书签。 4.2 程序调试................................... 错误!未定义书签。 4.2.1 推理机的概述.......................... 错误!未定义书签。 4.2.2 推理机的使用.......................... 错误!未定义书签。 4.2.2 调试结果.............................. 错误!未定义书签。第五章毕业设计小结................................ 错误!未定义书签。 5.1论文小结.................................... 错误!未定义书签。 5.2 知识库发展的趋势........................... 错误!未定义书签。致谢............................................... 错误!未定义书签。参考文献........................................... 错误!未定义书签。附录一源程序...................................... 错误!未定义书签。

远程农作物病虫害诊断专家系统的设计与实现文献综述

附件 文献综述 论文题目远程农作物病虫害诊断专家系统的设计与实现系别_____ ______ _ 年级______ _ _ _ _ _ 专业_____ ___ ___ 学生姓名______ _____ 学号 ___ __ _ 指导教师______ ___ _ __ _ 职称______ __ ___ 系主任 _________________ _ _ ___ 2012年 04月22 日

文献综述 一、针对农作物病虫害诊断系统的研究 病虫害诊断目前已经在农业领域中得到了广泛的应用,作为一种有别于传统的专家到田里诊断病虫害的新型方式,病虫害诊断代替专家走向田里,在收集知识、整理规则、推理诊断等各个方面均有突出的表现,能正确诊断病虫害。目前已经有很多人对其各个环节进行了大量的研究与设计。 从远程农作物病虫害诊断应用的时间上可以分为“诊断前”和“诊断”两个阶段。对于诊断前,病虫害诊断需要进行收集整理知识,构建知识库;诊断需要进行根据用户输入的事实,从知识库中读取有用的规则来推理诊断。 1、针对诊断前的相关研究 在诊断前需要对专家系统、专家系统的结构进行研究: 参考文献[1]对农业专家系统做了详细的介绍,给出了农业专家系统的定义:它是运用知识表示、推理、知识获取等技术,总结农业专家的宝贵经验、实验数据及数学模型,建造起来的计算机农业软件系统;农业专家系统可应用于农业的各个领域,如作物栽培、植物保护、配方施肥、农业经济效益分析、市场销售管理等。利用系统工程和软件工程的理论和方法,应用先进的软件制作工具,制作出一套果树病虫害测报与防治技术的专家系统软件。该专家系统由三套软件组成,即林果病虫害防治技术专家咨询系统、昆虫图像处理及计算机视觉系统、果树害虫辅助鉴定多媒体专家系统。该套系统软件具有果树害虫的自动识别,害虫的辅助鉴定等害虫鉴定功能,同时其具有浏览、查询、知识学习、病虫害的预防、防治策略、资料输入、资料输出等果树病虫害测报与防治功能。 专家系统是模拟人类专家运用他们所知道的知识和经验来解决实际问题的方法、技巧和步骤。专家系统具有:启发性、透明性和灵活性等特点。选择什么结构最为合适,要根据应用环境和所要做的任务来确定。选择的系统结构,与专家系统的适用性和效率紧密相连。针对专家系统的结构问题,参考文献[2]给出了具体的阐述,总结出了专家系统的基本结构包括知识库、推理机、全局数据库、人机接口、解释器等五个部分,并对这五个部分的功能做出具体的解释。

专家系统及其设计

《专家系统及其设计》教学设计 天津电子计算机职专冯莉 人工智能作为一门研究运用计算机模拟和延伸人脑功能的综合性学科,在一定程度上代表着信息技术的发展前沿。但是人工智能在国内中学的开设尚属首次,教师教学经验缺乏,对学生来说,也是一个陌生的事物,与其他课程相比,难度较大。专家系统是人工智能领域的重要组成内容,也是该领域发展得较为成熟的部分。为了缩小现实与理想之间的矛盾,在人工智能课程“专家系统”内容的教学中,采用“以问题解决为中心”的教学方式,通过小组协作,让学生在感受什么是专家系统的基础上既了解有关专家系统的基本知识,又能利用专家系统外壳自行开发一个简易的专家系统,由此既增强他们对人工智能的认识,又促进问题解决能力,发散性思维能力和社会合作能力的培养。 一、学习者分析 选修这门课程的学生通常已具有一定的信息技术基础知识,懂得如何操作计算机、上网浏览信息和收集资料等。“专家系统”的学习内容在人工智能教材中一般都是置于“知识表示”之后,因此学生对各种知识表示方式都有初步了解,掌握了例如产生式规则、状态空间图、语义网络等的基本表示方法。但是各种知识表示如何在人工智能中得到应用,学生们对这个问题在上一阶段的学习中还难以深入体会。专家系统通过把领域专家的大量知识加以计算机编程嵌入到计算机内部,产生式规则的知识表示方式在专家系统的知识库建设中得到了实际应用。因此对于学生来说,虽然专家系统完全是个新事物,但是它与各种知识表示,尤其是产生式规则表示方式,有着理论与实际应用的关系。教师在教学设计时,不能忽视这个有利于学生知识增长和能力发展的“最邻近发展区”。 二、教学目标 知识与技能目标: 1. 感受什么是专家系统,知道专家系统和专家系统外壳之间的区别和联系 2.了解专家系统的基本构造和工作机制 3.能利用专家系统外壳自行开发一个简易的专家系统 过程与方法: 1.能够根据任务的要求,有效采集、分类和管理信息 2.通过感受人类专家解决复杂问题的思路,增强逻辑思维和问题解决能力 情感态度与价值观: 1.进一步增强对人工智能领域的认识,感受人工智能技术的丰富魅力 2.增强协作学习和人际交流能力 三、学习时间 本次教学计划用3个课时完成《专家系统及其设计》的课程内容 第1课时:主要让学生感受什么是专家系统,并了解有关专家系统的一些基本知识 第2课时:主要让学生能够利用InterModeller专家系统外壳自行设计一个简易的植物识别专家系统 第3课时:学生展示设计的植物识别专家系统,在互相交流中提高口头表达能力和作品鉴赏能力 四、课前准备

医疗专家系统方法

医生一般是 ①通过询问病史、体格检查、实验室检查和辅助检查手段搜集临床资料;②整理、分析、评价资料;③提出诊断;④给出治疗处理。 医学专家系统的推理方法: 1.基于规则推理 基于规则的推理是从领域专家那获取问题求解的知识,概括、转化为易于被计算机表示和推理的形式,然后以知识库中已有知识构成的规则为基础,将初始证据与知识库中的规则进行匹配的推理技术。而当知识库中的规则太多时会导致系统推理前后产生矛盾,另外,自学习能力很弱。 2.基于案例推理 基于案例的推理是通过查找知识库中过去同类问题的解决方案从而获得当前问题解决的一种推理模式,这一过程与医生看病采取的方法很相似。然而这种系统也有局限性:怎样有效地表示病例以及如何在大型病例库中快速有效地检索相似病例等问题。 3.模糊数学推理 模糊推理是运用模糊数学的理论建立模型,对不明确的信息进行分类,解决用一般数学模型难以描述的高度复杂和非线性的问题。 4.基于规则的神经网络推理 在许多疾病的诊断中,由于获得的临床信息可能不完整又含有假象,经常遇到不确定性信息,决策规则可能相互矛盾,有时表现无明显的规律可循,这给传统推理方法的专家系统应用造成极大困难。人工神经网络(artificial neural network,ANN)能突破这些障碍。但也存在缺点:①仅适用于解决一些规模较小的问题;②系统的性能在很大程度上受训练数据集的限制,难以解决异类数据源的融合和共享;③知识提取过程繁杂而低效。④得出结论的“黑箱”特征也限制了系统对诊断结果的解释功能。

医学专家系统的发展趋势 医学专家系统可借鉴数据库关于信息存贮、共享、并发控制和故障恢复技术,对知识库的管理、设计以及大型知识库、共享知识库和分布式知识库提供帮助,改善专家系统的特性,扩大规模。 将多媒体技术应用于医学专家系统,可集多种知识表达形式为一体(文字、图形、图像、影像及声音);能够充分发挥其高速处理综合问题的特点,提高系统识别速度,有效地模拟医生在临床诊断中用的直觉和模拟诊断功能;并具有友好的用户界面,系统将能以类似人类专家的方式来传播信息,与用户深入沟通,用户可向系统寻求解释、咨询、谈话;利用多媒体专家系统的知识获取模块,采用图像扫描器,可直接将医学图像及精确的解剖位置转化为系统内部知识表示,也可由人类专家用话筒直接向系统传授知识,从而使知识获取更方便。 将网络技术用于医学专家系统,一是可采用分布式知识库结构,将知识按其专业和特点分为若干个相关的知识库,提高数据的安全性,方便用户访问数据;二是可采用分布式推理机制,改善应用环境的系统运行能力,提高专家系统推理的速度和灵活性;三是可采用分布式结构,在一个网络运行多个专家系统,为疑难杂症诊断提供多种途径;四是远程医疗的蓬勃发展和网上医疗站的出现。 ⑴医学专家系统应以解决一些特殊的问题为目的。这些特殊的问题在计算机视觉和人工智能方面没有被研究过。人类对可视图案的认识不同于常规的推理, 并且代表明确的领域知识常常在视觉认识过程中下意识地忽略了被用到的那些因素。 ⑵医学专家系统的模型可能会是以多种智能技术为基础, 以并行处理方式、自学能力、记忆功能、预测事件发展能力为目的。目前发展起来的遗传算法、模糊算法、粗糙集理论等非线性数学方法, 有可能会跟人工神经网络技术、人工智能技术综合起来构造成新的医学专 家系统模型。

病虫害监测系统的应用实例分析

病虫害监测系统的应用实例分析 我国很多省区都有种植小麦,在小麦的种植过程中,病虫害是不可避免的,基本上在小麦播种期、返青拔节期、穗期、灌浆期这四个阶段都会发生不同程度上的病虫害,就拿小麦播种期的病虫害来说,常见的病虫害主要有吸浆虫、纹枯病等,如果在该阶段采取一定的病虫害防治技术,可以产生良好的防治效果,能够使小麦整个生育期的病虫基数得到降低。对病虫害的防治离不开对病虫害的监测预警,利用病虫害监测系统来对作物病虫害以及作物的生长情况进行实时监测,不仅能够有效地提高病虫害监测水平和农业病虫害的防治效果,而且能够帮助农业种植者有效控制病虫害,减轻损失。 托普云农病虫害监测系统由小气候采集设备、生态环境监测设备、虫情信息采集设备、病菌孢子捕捉培养系统以及预警预报系统、专家系统、信息管理平台组成。不仅可做到病虫害发生状况地监测,还可以采集农林气象信息,并可将数据上传至云服务器,用过通过电脑、手机即可联合作物管理知识、作物图库、灾害指标等模块,对作物实时远程监测与诊断,提供智能化、自动化管理决策。 在小麦病虫害防治工作中使用病虫害监测系统,不仅能够帮助各地植保部门从病、虫害、生态环境等多个方面对作物生长情况进行监测,而且应用物联网技术以提高病虫害数据传达的时效性,可以让植保工作人员能够实时的查看病虫害监测预警情况,及时处理田间作物生长情况异常,降低病虫害对农作物生长的危害。而且小麦的病虫害种类繁多,农业种植者每年都需要投入较大的精力来防病治虫,而病虫害监测系统的应用则可以对小麦病虫害的全面监测、信息化监测,避免病虫害防控时机的延误、避免错误用药,滥用药,实现农药减量增效,有效保障农业生产安全。

专家控制系统

第三章 专家控制系统 3.1 专家系统概述 1.专家及专家系统的定义 专家指的是那些对解决专门问题非常熟悉的人们,他们的这种专门技术通常源于丰富的经验以及他们处理问题的详细专业知识。 定义 3.1专家系统主要指的是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。也就是说,专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家才能处理好的复杂问题。简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。 专家系统的基本功能取决于它所含有的知识,因此,有时也把专家系统称为基于知识的系统(knowledge-based system)。 3.1.1 专家系统的特点及优点 1.专家系统的特点 与常规的计算机程序系统比较,专家系统具有下列特点: (1)启发性 专家系统要解决的问题,其结构往往是不合理的,其问题求解(problem-solving)知识不仅包括理论知识和常识,而且包括专家本人的启发知识。 (2)透明性 专家系统能够解释本身的推理过程和回答用户提出的问题,以便让用户了解推理过程,增大对专家系统的信任感。 (3) 灵活性 专家系统的灵活性是指它的扩展和丰富知识库的能力,以及改善非编程状态下的系统性能,即自学习能力。 (4)符号操作。与常规程序进行数据处理和数字计算不同,专家系统强调符号处理和符号操作(运算),使用符号表示知识,用符号集合表示问题的概念。一个符号是一串程序设计,并可用于表示现实世界中的概念。 (5)不确定性推理。领域专家求解问题的方法大多数是经验性的;经验知识一般用于表示不精确性并存在一定概率的问题。此外,所提供的有关问题的信息往往是不确定的。专家系统能够综合应用模糊和不确定的信息与知识,进行推理。 2.专家系统的优点 (1) 专家系统能够高效率、准确、周到、迅速和不知疲倦地进行工作。 (2) 专家系统解决实际问题时不受周围环境的影响,也不可能遗漏和忘记。 (3) 可以使专家的专长不受时间和空间的限制,以便推广珍贵和稀缺的专家知识与经验。 (4) 专家系统能促进各领域的发展,它使各领域专家的专业知识和经验得到总结和精炼,能够广泛有力地传播专家的知识、经验和能力。 (5) 专家系统能汇集多领域专家的知识和经验以及他们协作解决重大问题的能力,它拥有更渊博的知识、更丰富的经验和更强的工作能力。 (6) 军事专家系统的水平是一个国家国防现代化的重要标志之一。 (7) 专家系统的研制和应用,具有巨大的经济效益和社会效益。 (8) 研究专家系统能够促进整个科学技术的发展。专家系统对人工智能各个领域的发展起了很大的促进作用,并将对科技、经济、国防、教育、社会和人民生活产生极其深远的影响。 3.1.2 专家系统的结构与类型 1. 专家系统的结构 专家系统的结构是指专家系统各组成部分的构造方法和组织形式。系统结构选择恰当与否,是与专家系统的适用性和有效性密切相关的,选择什么结构最为恰当,要根据系统的应用环境和所执行任务的特点确定。例如,MYCIN系统的任务是疾病诊断与解释,其问题的特点是

浅谈专家系统应用与发展

浅谈专家系统应用与发展 摘要:专家系统作为人工智能应用研究的课题之一在各个领域得到广泛应用,但也存在一些突出问题限制了其进一步的发展。本文就专家系统的应用领域和研究热点及其存在问题作了讨论,并提出了新型专家系统的一些特点,指出发展新型专家系统是很有必要的。 关键字:专家系统,知识获取,数据挖掘,多Angent Application and Prospect of Expert System Abstract:Expert system is one of the research subjects of the application of AI(artificial intelligence),and widely uesd in many fields,but some predominant problems confined its development.This article discussed the application areas and research hotspots of expert system,and brought up some characteristics of new style expert system,finally pointed that it’s necessary for us to develop new style expert system. Key words:expert system; knowledge acquisition; data mining; multi-agent system 1专家系统概述 1.1 专家系统的起源与含义 专家系统(expert system)是人工智能领域应用研究最活跃和最广泛的课题之一。第一个专家系统是在1956年由Allen Newell、Herbert Simon及J. C. Shaw 所发展。其后,许多专家系统也纷纷随之建立,但在前期多半是属于研究性质的雏形系统。1970年代之后,人工智能与专家系统专用的程序语言及软件开发工具逐渐开始发展,而各种知识表示法及算法也被广泛地研究,使得专家系统的建构与发展方式产生了不小的改变。在1980年代后期开始,专家系统便能够逐渐脱离实验室的研究而广泛应用于各行业中[1,2]。 专家系统是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,根据某领域一个或多个专家提供的知识和经验,进行推理和判断,模拟人类专家的决策过程,以便解决那些需要人类专家处理的复杂问题[1]。 1.2 专家系统的结构 专家系统的基本结构如图1所示,其中箭头方向为数据流动的方向。专家系统通常由人机交互界面、知识库、推理机、解释器、综合数据库、知识获取等6个部分构成。

果树病虫害诊断与防治专家系统知识库的构建

山东农业大学学报(自然科学版),2005,36(3):475~480 Journal of Shandong Agricultural University(Natural Science) 果树病虫害诊断与防治专家系统知识库的构建 王衍安1,李明1,王丽辉1,刘士勇2,闫志强1,于庆燕1 (1.山东农业大学科技学院,山东泰安271000;2.肥城市林业局,山东肥城271600)摘要:基于知识工程方法,采用农业专家系统开发平台PAID,开发了肥城桃、设施桃、设施杏等果树的病虫害诊断与防治专家系统。阐述了该系统知识库的构建策略:知识获取立足本地化、特色化原则和无公害标准化生产规范;知识库结构设计中建立病虫害分辨决策;病害诊断与防治决策分为侵染性病害和非侵染性病害两部分;营养失调症诊断与防治决策中建立形态诊断和叶片养分诊断决策相互配合使用的机制;利用模板编辑知识规则。最后,对果树专家系统应用前景进行了展望。 关键词:果树;病虫害;专家系统;知识库;模板 中图分类号:S436.611 文献标识码:A 文章编号:1000-2324(2005)03-0475-06 THE KNOWLEDGE DATABASE CONSTRUCTION OF FRUIT TREESˊEXPERT SYSTEM FOR DIAGNOSIS,PREVENTION AND CONTROL OF DISEASE AND PEST WANG Yan-an1,LI Ming1,WANG Li-hui1,LIU Shi-yong2,YAN Zhi-qiang1,YU Qing-yan1(College of Science and Technology,Shandong Agricultural University,Taian271000,China; 2.Department of Forestry,Feicheng county,Feicheng271600,China) Abstract:Based on knowledge engineering and PAID,the fruit treesˊexpert systems for diagnosis,prevention and control of disease and pest were studied.The construction method of the knowledge database was introduced:knowledge acquirement was based on localization,specialization and standardization.In the design of its struc-ture,decision for differentiation between diseases and pests was set up.Diseases diagnosis,prevention and control decision was divided into infectious and noninfectious diseases.Diagnosis,prevention and control decision of nu-tition drbieient were based on the combination of morphological symptom and leaves nutrition analysis.Knowledge rules were edited by template.The prospect of application foreground on the fruit treesˊexpert system was also dis-cussed. Key Words:fruit tree,disease and pest,expert system,knowledge database,template 病虫害诊断与防治是果树无公害生产的关键环节之一。生产上由于误诊或防治措施不当,造成果树减产或果实品质下降的现象时有发生,其主要原因在于许多果农缺少科学有效的病虫害诊断与防治技术,同时由于植保专家和基层技术人员相对缺乏,果农得不到及时有效的科学指导。 面对一种异常现象,如何科学准确的判断其为病害还是虫害所致,如果是病害,是侵染性病害还是非侵染性病害;是哪一类因子所造成的非侵染性病害,或是哪一类病原物所致的侵染性病害[1]。目前国内外的果树专家系统,多集中于侵染性病害和虫害的诊断与防治;而对于果树非侵染性病害的诊断与防治,国内尚未见报道。对于营养失调症的诊断,多集中于形态诊断,缺少其他诊断方法。针对于此,采用知识工程的方法,利用农业专家系统开发平台PAID(Platform for Agricultural Intelligence-system Development),开发出了肥城桃、设施桃、设施杏等果树的病虫害诊断与防治专家系统,并在开发过程中,逐步形成了一套果树病虫害专家系统知识库构建策略,对以上问题进行了探索。 收稿日期:2004-03-16 基金项目:泰安市“十五”重点规划项目(2001003):“果树智能化信息技术研究与开发”和山东省2003年重点推广计划项目。 作者简介:王衍安(1968-),男,副教授,在职博士,主要从事果树营养生理与农业信息技术研究工作。

机床整体控制专家系统及智能柔性驱动编程方案

机床整体控制专家系统及智能柔性驱动编程方 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

Adaptive fuzzy logic controller for DC–DC converters Expert Systems with Applications This paper introduces a complete design method to construct an adaptive fuzzy logic controller (AFLC) for DC–DC converter. In a conventional fuzzy logic controller (FLC), knowledge on the system supplied by an expert is required for developing membership functions (parameters) and control rules. The proposed AFLC, on the other hand, do not required expert for making parameters and control rules. Instead, parameters and rules are generated using a model data file, which contains summary of input–output pairs. The FLC use Mamdani type fuzzy logic controllers for the defuzzification strategy and inference operators. The proposed controller is designed and verified by digital computer simulation and then implemented for buck, boost and buck–boost converters by using an 8-bit microcontroller. Article Outline 1. Introduction 2. Basic design of adaptive fuzzy logic controller 3. Adaptation algorithm for the fuzzy logic controller 4. Computer simulation of the AFLC 5. Implementation of the AFLC with microcontroller 6. Conclusion Commissioning of textor CC, the new TEXTOR control system and first operating experiences Fusion Engineering and Design The old TEXTOR control systems have successfully been updated. The machine control has replaced by textor CC, a solution based on the software package WinCC produced by Siemens. WinCC, and therefore textor CC, can be easily integrated with the already available Siemens S5/S7 hardware components. This new system has the advantage that it is based on industrial soft- and hardware , the lifetime of the control system is extended and the maintenance effort is reduced. The installation and commissioning of the new control system was done in parallel to TEXTOR operation. During this time each function was tested and compared with the actual TEXTOR data. All functionality of the former control system was step-by-step replaced. Special attention was given to the visualization, data and error logging. The machine control timing system has been replaced by an in house development in partnership with Siemens. It consists of transmitters and receivers based on PROFIBUS modules

相关文档