文档视界 最新最全的文档下载
当前位置:文档视界 › 高中数学选择填空答题技巧

高中数学选择填空答题技巧

高中数学选择填空答题技巧
高中数学选择填空答题技巧

选择题的解题方法与技巧

题型特点概述

选择题是高考数学试卷的三大题型之一.选择题的分数一般占全卷的40%左右,高考数学选择题的基本特点是:

(1)绝大部分数学选择题属于低中档题,且一般按由易到难的顺序排列,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有较好区分度的基本题型之一.

(2)选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点,且每一题几乎都有两种或两种以上的解法,能有效地检测学生的思维层次及观察、分析、判断和推理能力.

目前高考数学选择题采用的是一元选择题(即有且只有一个正确答案),由选择题的结构特点,决定了解选择题除常规方法外还有一些特殊的方法.解选择题的基本原则是:“小题不能大做”,要充分利用题目中(包括题干和选项)提供的各种信息,排除干扰,利用矛盾,作出正确的判断.

数学选择题的求解,一般有两条思路:一是从题干出发考虑,探求结果;二是从题干和选择支联合考虑或从选择支出发探求是否满足题干条件.解答数学选择题的主要方法包括直接对照法、概念辨析法、图象分析法、特例检验法、排除法、逆向思维法等,这些方法既是数学思维的具体体现,也是解题的有效手段.

解题方法例析

题型一 直接对照法

直接对照型选择题是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支.这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解.

例1 设定义在R 上的函数f(x)满足f(x)?f(x +2)=13,若f(1)=2,则f(99)

等于 ( C )

A .13

B .2

C.13

2

D.213

思维启迪: 先求f(x)的周期. 解析 ∵f (x +2)=13

f (x ),

∴f (x +4)=13f (x +2)=13

13

f (x )=f (x ).

∴函数f (x )为周期函数,且T =4. ∴f (99)=f (4×24+3)=f (3)=13f (1)=13

2.

探究提高 直接法是解选择题的最基本方法,运用直接法 时,要注意充分挖掘题设条件的特点,利用有关性质和已有

的结论,迅速得到所需结论.如本题通过分析条件得到f(x)是周期为4的函数,利用周期性是快速解答此题的关键.

变式训练1 函数f (x )对于任意实数x 满足条件f (x +2)=1

f (x ),

若f (1)=-5,则f (f (5))的值为

( D ) A .5

B .-5

C.15

D .-15

解析 由f (x +2)=1f (x ),得f (x +4)=1

f (x +2)=f (x ),

所以f (x )是以4为周期的函数,所以f (5)=f (1)=-5, 从而f (f (5))=f (-5)=f (-1)=1

f (-1+2)

=1f (1)=-15.

例2 设双曲线x 2a 2-y 2

b 2=1的一条渐近线与抛物线y =x 2+1只有

一个公共点,则双曲线的离心率为 ( D ) A.54

B .5

C.52

D.5

思维启迪: 求双曲线的一条渐近线的斜率即ba 的值,尽而求离心率. 解析 设双曲线的渐近线方程为y =kx ,这条直线与抛物线y =x 2+1相切,联立

?

????

y =kx y =x 2

+1,整理得x 2-kx +1=0,则Δ=k 2-4=0,解得k =±2,即b a =2,故双曲线的离心率e =c a =

c 2a 2=a 2+b 2a 2=

1+(b a )2

= 5.

探究提高 关于直线与圆锥曲线位臵关系的题目,通常是联立方程解方程组.本题即是利用渐近线与抛物线相切,求出渐近线斜率.

变式训练2 已知双曲线C :x 2a 2-y 2

b 2=1(a >0,b >0),以C 的右

焦点为圆心且与C 的渐近线相切的圆的半径是( B ) A .a

B .b

C.ab

D.a 2+b 2

解析 x 2a 2-y 2b 2=1的其中一条渐近线方程为:y =-b

a x ,即bx +ay =0,而焦点坐标为(c,0),根据点到直线的距离d =|

b ×a 2+b 2|

a 2+

b 2

=b .故选B 题型二 概念辨析法

概念辨析是从题设条件出发,通过对数学概念的辨析,进行少量运算或推理,直接选择出正确结论的方法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要考生在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时要多加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易误入命题者设臵的“陷阱”.

例3 已知非零向量a =(x 1,y 1),b =(x 2,y 2),给出下列条 件,①a =k b (k ∈R);②x 1x 2+y 1y 2=0;③(a +3b )∥(2a -

b );④a ·b =|a ||b |;⑤x 21y 22+x 22y 21≤2x 1x 2y 1y 2.

其中能够使得a ∥b 的个数是

( D ) A .1

B .2

C .3

D .4

解析 显然①是正确的,这是共线向量的基本定理;②是错误的,这是两个向量垂直的条件;③是正确的,因为由(a +3b )∥(2a -b ),可得(a +3a )=λ(2a -b ),

当λ≠12时,整理得a =λ+32λ-1b ,故a ∥b ,当λ=1

2时也可得到a ∥b ;④是正确的,

若设两个向量的夹角为θ,则由a ·b =|a ||b |cos θ,可知cos θ=1,从而θ=0,

所以a ∥b ;⑤是正确的,由x 21y 22+x 22y 21≤2x 1x 2y 1y 2,

可得(x 1y 2-x 2y 1)2≤0,从而x 1y 2-x 2y 1=0,于是a ∥b .

探究提高 平行向量(共线向量)是一个非常重要和有用的概念,应熟练掌握共线向量的定义以及判断方法,同时要将共线向量与向量中的其他知识(例如向量的数量积、向量的模以及夹角等)有机地联系起来,能够从不同的角度来理解共线向量.

变式训练3 关于平面向量a ,b ,c ,有下列三个命题: ①若a ·b =a ·c ,则b =c .

②若a =(1,k ),b =(-2,6),a ∥b ,则k =-3.

③非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为 60°.

则假命题为

( B )

A .①②

B .①③

C .②③

D .①②③

解析 ①a ·b =a ·c ?a ·(b -c )=0,a 与b -c 可以垂直,而不一定有b =c ,故①为假命题.

②∵a ∥b ,∴1×6=-2k .∴k =-3.故②为真命题.

③由平行四边形法则知围成一菱形且一角为60°,a+b为其对角线上的向量,a 与a+b夹角为30°,故③为假命题.

题型三数形结合法

“数”与“形”是数学这座高楼大厦的两块最重要的基石,二者在内容上互相联系、在方法上互相渗透、在一定条件下可以互相转化,而数形结合法正是在这一学科特点的基础上发展而来的.在解答选择题的过程中,可以先根据题意,做出草图,然后参照图形的做法、形状、位臵、性质,综合图象的特征,得出结论.

例4 用min{a,b,c}表示a,b,c三个数中的最小值.设f(x)=min{2x,x+2,10-x}(x≥0),则f(x)的最大值为( C) A.4 B.5 C.6 D.7 思维启迪:画出函数f(x)的图象,观察最

高点,求出纵坐标即可.本题运用图象来求值,

直观、易懂.

解析由题意知函数f(x)是三个函数y1=

2x,y2=x+2,y3=10-x中的较小者,作出三

个函数在同一个坐标系之下的图象(如图中实

线部分为f(x)的图象)可知A(4,6)为函数f(x)图

象的最高点.

变式训练4 设集合A =????

??(x ,y )???

x 2

4+y 2

16=1,

B ={}(x ,y )|y =3x

,则A ∩B 的子集的个数是

( A )

A .4

B .3

C .2

D .1

解析 集合A 中的元素是椭圆x 24+y 2

16=1上的点,集合B 中的元素是函数y =3x 的图象上的点.由数形结合,可知A ∩B 中有2个元素,因此A ∩B 的子集的个数为4.

例5 函数f (x )=1-|2x -1|,则方程f (x )·2x =1的实根的个数是 ( C)

A .0

B .1

C .2

D .3

思维启迪:.若直接求解方程显然不可能,考虑到方

程可转化为f (x )=? ????12x ,而函数y =f (x )和y =? ??

??12x

的图象又都可以画出,故可以利用数形结合的方法,通过两个函数图象交点的个数确定相应方程的根的个数.

解析 方程f (x )·2x

=1可化为f (x )=? ??

??12x

,在同一坐标

系下分别画出函数y =f (x )和y =? ??

??12x

的图象,如图所

示.可以发现其图象有两个交点,因此方程f (x )=? ??

??12x

有两个实数根

.变式训练5 函数y =|log 12

x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的

长度b -a 的最小值是 ( D )

A .2

B.32

C .3

D.34

解析 作出函数y =|log 12

x |的图象,如图所示,由y =0解得x =1;由y =2,解

得x =4或x =14.所以区间[a ,b ]的长度b -a 的最小值为1-14=3

4.

题型四 特例检验法

特例检验(也称特例法或特殊值法)是用特殊值(或特殊图形、特殊位臵)代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位臵等. 特例检验是解答选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.

例6 已知A 、B 、C 、D 是抛物线y 2

=8x 上的点,F 是抛物线的焦点,且FA →

FB →+FC →+FD →=0,则|FA →|+|FB →|+|FC →|+|FD →

|的值为 ( D )

A .2

B .4

C .8

D .16

解析 取特殊位置,AB ,CD 为抛物线的通径,显然F A →+FB →+FC →+FD →

=0, 则|FA →|+|FB →|+|FC →|+|FD →

|=4p =16,故选D.

探究提高 本题直接求解较难,利用特殊位臵法,则简便易行.利用特殊检验法的关键是所选特例要符合条件.

变式训练6 已知P 、Q 是椭圆3x 2+5y 2=1上满足∠POQ =90°的两个动点,则1OP 2+1

OQ 2等于 ( B )

A .34

B .8

C.815

D.34225

解析 取两特殊点P (33,0)、Q (0,55)即两个端点,则1OP 2+1

OQ 2=3+5=8.故选B

例7 数列{a n }成等比数列的充要条件是 ( B ) A .a n +1=a n q (q 为常数)

B .a 2

n +1=a n ·

a n +2≠0 C .a n =a 1q n -1(q 为常数)

D .a n +1=a n ·a n +2

解析 考查特殊数列0,0,…,0,…,不是等比数列,但此数列显然适合A ,C ,D 项.故选B.

探究提高 判断一个数列是否为等比数列的基本方法是定义法,也就是看a n +1

a n 是

否为常数,但应注意检验一个数列为等比数列的必要条件是否成立. 变式训练7 已知等差数列{a n }的前n 项和为S n ,若a 2n a n

=4n -1

2n -1,

则S 2n

S n

的值为

( C ) A .2 B .3

C .4

D .8

解析 方法一 (特殊值检验法)

取n =1,得a 2a 1=31,∴a 1+a 2a 1=41=4,于是,当n =1时,S 2n S n =S 2S 1=a 1+a 2

a 1=4.

方法二 (特殊式检验法)

注意到a 2n a n =4n -12n -1=2·

2n -12·n -1,取a n =2n -1,

S 2n

S n =1+(4n -1)

2·2n 1+(2n -1)2·n =4.

方法三 (直接求解法)

由a 2n a n =4n -12n -1,得a 2n -a n a n =2n 2n -1,即nd a n =2n 2n -1,∴a n =d (2n -1)2,于是,S 2n

S n =a 1+a 2n

2·2n

a 1+a n

2

·n

=2·a 1+a 2n

a 1+a n

=2·d 2+d

2(4n -1)d 2+d

2

(2n -1)=4. 题型五 筛选法

数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符

合题意的正确结论.筛选法(又叫排除法)就是通过观察分析或推理运算各项提供的信息或通过特例,对于错误的选项,逐一剔除,从而获得正确的结论. 例8 方程ax 2+2x +1=0至少有一个负根的充要条件是( C )

A .0

B .a<1

C .a≤1

D .0

解析 当a =0时,x =-1

2

,故排除A 、D.当a =1时,x =-1,排除B.故选C. 探究提高 选择具有代表性的值对选项进行排除是解决本题的关键.对“至少有一个负根”的充要条件取值进行验证要比直接运算方便、易行.不但缩短时间,同时提高解题效率.

变式训练8 已知函数f (x )=mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点右侧,则实数m 的取值范围是( D )

A .(0,1)

B .(0,1]

C .(-∞,1)

D .(-∞,1]

解析 令m =0,由f (x )=0得x =1

3

适合,排除A 、B.令m =1,由f (x )=0得:x =1适合,排除C. 题型六 估算法

由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目,

不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出

正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.

例9若A 为不等式组????

?

x ≤0y ≥0

y -x ≤2

表示的平面区域,则当a 从-2连续变化到1

时,动直线x +y =a 扫过A 中的那部分区域的面积为 ( C )

A.3

4

B .1

C.74

D .2

解析 如图知区域的面积是△OAB 去掉一个小直角三角形.阴影部分面积比1大,比S △OAB =1

2×2×2=2小,故选C 项. 探究提高 “估算法”的关键是应该确定结果所在的大致范围,否则“估算”就没有意义.本题的关键在所求值应该比△AOB 的面积小且大于其面积的一半.

变式训练9 已知过球面上A 、B 、C 三点的截面和球心的距离等于球半径的一半,且AB =BC =CA =2,则球面面积是( D )

A.16

9π B.8

3

π C.4π

D.649

π 解析 ∵球的半径R 不小于△ABC 的外接圆半径r =23

3,则S 球=4πR 2≥4πr 2

=16

3π>5π,故选D.

规律方法总结

1.解选择题的基本方法有直接法、排除法、特例法、验证法和数形结合法.但大部分选择题的解法是直接法,在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法.

2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向肯定、否定、筛选、验证,既谨慎选择,又大胆跳跃.

3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.

知能提升演练

1.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(?N B)等于( A) A.{1,5,7} B.{3,5,7} C.{1,3,9} D.{1,2,3}

解析由于3∈?N B,所以3∈A∩(?N B)∴排除B、C、D,故选A.

2.已知向量a,b不共线,c=k a+b(k∈R),d=a-b.如果c∥d,那么( D) A.k=1且c与d同向B.k=1且c与d反向

C .k =-1且c 与d 同向

D .k =-1且c 与d 反向

解析 当k =1时,c =a +b ,不存在实数λ,使得a =λb .所以c 与d 不共线,与c ∥d 矛盾.排除A 、B ;当k =-1时,c =-a +b =-(a -b )=-d ,所以c ∥d ,且c 与d 反向.故应选D.

3.已知函数y =tan ωx 在? ??

??

-π2,π2内是减函数,则( B )

A .0<ω≤1

B .-1≤ω<0

C .ω≥1

D .ω≤-1

解析 可用排除法,∵当ω>0时正切函数在其定义域内各长度为一个周期的连续区间内为增函数,∴排除A 、C ,又当|ω|>1时正切函数的最小正周期长度小

于π,∴y =tan ωx 在? ??

??

-π2,π2内不连续,在这个区间内不是减函数,这样排除D ,

故选B.

4.已知函数f (x )=2mx 2-2(4-m )x +1,g (x )=mx ,若对于任一实数x ,f (x )与g (x )的值至少有一个为正数,则实数m 的取值范围是

( B )

A .(0,2)

B .(0,8)

C .(2,8)

D .(-∞,0)

解析 当m =1时,f (x )=2x 2-6x +1,g (x )=x ,由f (x )与g (x )的图象知,m =1满足题设条件,故排除C 、D.当m =2时,f (x )=4x 2-4x +1,g (x )=2x ,由其图象知, m =2满足题设条件,故排除A.因此,选项B 正确.

5.已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA

与向量OB →

的夹角的取值范围是

( D )

A .[0,π

4]

B .[5π12,π2]

C .[π4

12

] D .[π12,5π

12

]

解析 ∵|CA →

|=

2,∴A 的轨迹是⊙C ,半径为2.由图可知∠COB =π

4,设

向量OA →与向量OB →的夹角为θ,则π4-π6≤θ≤π4+π

6,故选D.

6.设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=?????

f (x ),f (x )≤K ,K ,f (x )>K .

取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间为

( C )

A .(-∞,0)

B .(0,+∞)

C .(-∞,-1)

D .(1,+∞)

解析 函数f (x )=2

-|x |

=(12)|x |,作图f (x )≤K =1

2?x ∈(-∞,-1]∪[1,+∞),故在(-

∞,-1)上是单调递增的,选C 项.

7.设x ,y ∈R ,用2y 是1+x 和1-x 的等比中 项,则动点(x ,y )的轨迹为除去

x 轴上点的

( D )

A .一条直线

B .一个圆

C .双曲线的一支

D .一个椭圆

解析 (2y )2=(1-x )(1+x )(y ≠0)得x 2+4y 2=1(y ≠0).

8.设A 、B 是非空数集,定义A *B ={x |x ∈A ∪B 且x ∈A ∩B },已知集合A ={x |y =2x -x 2},B ={y |y =2x ,x >0},则A *B 等于

( C )

A .[0,1]∪(2,+∞)

B .[0,1)∪(2,+∞)

C .(-∞,1]

D .[0,2]

解析 A =R ,B =(1,+∞),故A *B =(-∞,1],故选C.

9.若点O 和点F (-2,0)分别为双曲线x 2a

2-y 2

=1(a >0)的中心和左焦点,点P 为

双曲线右支上的任意一点,则OP →·FP →

的取值范围为 ( B ) A .[3-23,+∞) B .[3+23,+∞)

C .[-7

4,+∞)

D .[7

4,+∞)

解析 由c =2得a 2+1=4,∴a 2=3,

∴双曲线方程为x 23-y 2

=1.设P (x ,y )(x ≥3), OP →·FP →=(x ,y )·(x +2,y )

=x 2+2x +y 2=x 2+2x +x 23-1=4

3x 2+2x -1(x ≥3).

令g (x )=43x 2

+2x -1(x ≥3),则g (x )在[3,+∞)上单调递增.g (x )min =g (3)=

3+2 3.

10.已知等差数列{a n }满足a 1+a 2+…+a 101=0,则( C ) A .a 1+a 101>0 B .a 2+a 102<0

C .a 3+a 99=0

D .a 51=51

解析 取满足题意的特殊数列a n =0,则a 3+a 99=0,故选C.

11.在等差数列{a n }中,若a 2+a 4+a 6+a 8+a 10=80,则a 7-1

2a 8的值为 (C )

A .4

B .6

C .8

D .10

解析 令等差数列{a n }为常数列a n =16.显然a 7-1

2

a 8=16-8=8.故选C. 12.若1a <1

b <0,则下列不等式:①a +b |b |;③a

b >2中,正确的不等式是 (C )

A .①②

B .②③

C .①④

D .③④

解析 取a =-1,b =-2,则②、③不正确,所以A 、B 、D 错误,故选C. 13.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为

( C )

解析 观察并联想P 运动轨迹与d 的关系,当t =0时,d =2,排除A 、D ;当开始运动时d 递减,排除B.

14.若函数f (x )=????

??

x 2

x 2+1-a +4a 的最小值等于3,则实数a 的值等于 (A )

A. 3

4

B .1 C. 3

4

或1

D .不存在这样的a

解析 方法一 直接对照法令x 2x 2+1

=t ,则t ∈[0,1).若a ≥1,则f (x )=|t -a |+4a =5a -t 不存在最小

值;若0≤a <1,则f (x )=|t -a |+4a ,当t =a 时取得最小值4a ,于是4a =3,得a =3

4

符合题意;若a <0,

f (x )=|t -a |+4a =t +3a ,当t =0时取得最小值3a ,于是3a =3,得a =1不符合题意.综上可知,a =

34

. 方法二 试验法

若a =1,则f (x )=????

??

x 2

x 2+1-1+4>4,显然函数的最小值不是3,故排除选项B 、

C ;若a =34,f (x )=????

??x 2x 2+1-34+3,这时只要令x 2x 2+1-34=0,即x =±3,函数

可取得最小值3,因此A 项正确,D 项错误.

15.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2

<θ<π),则tan θ

2等于( D )

A. m -39-m

B .|m -39-m

|

C. 13

D .5

解析 由于受条件sin 2θ+cos 2θ=1的制约,故m 为一确定的值,于是sin θ,cos θ的值应与m 的值无关,进而tan θ2的值与m 无关,又π2<θ<π,π4<θ2<π2,∴tan θ2>1,故选D 项.

16.已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )图象可能是

( D )

解析 从导函数的图象可知两个函数在x 0处斜率相同,可以排除B 项,再者导

函数的函数值反映的是原函数增加的快慢,可明显看出y=f(x)的导函数是减函数,所以原函数应该增加的越来越慢,排除A、C两项,最后只有D项,可以验证y=g(x)导函数是增函数,增加越来越快.

浅谈高中数学线性变换的解题技巧

浅谈高中数学线性变换的解题技巧 在新课改之后,要求高中生不仅要学会灵活运用学科基础知识解决问题,还要利用课余时间学习自身兴趣的知识点,使得每个人都能得到全面发展和锻炼。高中线性变换虽然作为选修章节,但是其所蕴含的内容是衔接高中与大学的关键点,掌握线性变换的基础知识也就是提前了解和学习了大学所要接触的高等数学知识模块,即矩阵问题。因此,笔者立足于高中选修的重要知识点——线性变换,先阐述其概念及性质,然后来探究如何巧妙解决高中数学中线性变换的难题,从而为初等数学过渡到高等数学做提前的准备。 标签:数学线性变换解题技巧 一、高中数学线性变换的概述 1.线性变换的概念 线性变换一般是指,在构建的xOy坐标系内,存在至少一个点或多个点的集合A与另一个相对应的至少一个或多个点的集合B两者之间按照一定规则可以相互变换,且不同的点与所转变后的点不相同,即在平面直角坐标系中,把形如进行几何变换,这就叫做线性变换。 2.线性变换的基本性质 线性变换具有三个基本性质,第一个性质是任何向量乘于零都为零,数学表达式为:T(0)=0;第二个性质是任何向量乘于任何一个负向量等于两个向量相乘的负数,数学表达式为:T(-a)=-T(a);第三个性质是线性变换满足乘法交换律、结合律,即,其中A是一般矩阵,是平面直角坐标系内任意的两个向量,是任意实数。 二、高中数学线性变换的解题技巧 1.数形结合 例1:在平面直角坐标系xOy中,已知平面区域A={(x,y)|x + y≤1,且x≥0,y≥0},求平面区域B={(x + y,x - y)|(x,y)∈A}的面積。 解析:本题考察的是线性变换结合不等式的应用难点,解决该问题首先要分析题干信息,根据题目给出的信息列出平面区域A的不等式条件。由于本题平面区域B存在与平面区域A相重合的未知数,因此要假设两个新的未知数替代B的条件,再将新的未知数条件代入A中就能很快确定B的向量表示,最后快速建立平面直角坐标系画出平面区域B的图形就能的出其面积的大小。 设:未知数u=x+y,v=x-y

高中数学解题技巧归纳

高中数学破题技巧 主讲人:徐德桦(绍兴一中) 一、列举法 【方法阐释】列举法就是通过枚举集合中所有的元素,然后根据集合的基本运算进行求解的方法。这种方法适用于数集的有关运算以及集合类型的新定义运算问题,也适用于一些集合元素比较少而且类型比较单一类型的题目,如排列组合等等。 【典型实例】 设P,Q为两个非空实数集合,定义集合P*Q={z|z=a/b,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P*Q中元素的个数是() A.2 B.3 C.4 D.5 二、定义法 【方法阐释】利用定义判断充分条件和必要条件的方法就是最基本的、最常规的方法(回忆一下这些条件的判断方法),一般拿到陌生的题目或者一些新定义类型的题目都需要从定义和性质出发寻找突破口。 【典型实例】 “(m-1)(a-1)>0”是“logam>0”的()(logam 意思就是以a为底m的对数) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 三、特殊函数法

【方法阐释】对于一些小题目(譬如,选择题和填空题)一般不需要详细的过程和步骤,只要有一种预感和能说服自己的理由可以尝试地使用一些特定的函数或者说特殊值。给定函数f(x)具备的一些性质来研究它另外的一些性质。对于能看出来是定值的题目一般也宜用特殊值法。 【典型实例】 定义在R上的函数f(x)关于(2,0)对称,且在[2,+无穷)上单调递增,如果x1+x2>4,且(x1-2)(x2-2)<0,则f(x1)+f(x2)与0的大小关系是() A.f(x1)+f(x2)>0 B.f(x1)+f(x2)=0 C.f(x1)+f(x2)<0 D.无法判断 四、换元法 【方法阐释】这是一种高中阶段最常用的数学解题方法,贯穿于高中所有的阶段。解题过程就是将复杂的抽象的难以分辨和讨论的问题转化为简单具体直接而且熟悉的问题。例如,求函数y = x^4+2x^2-8的最值,就可以t=x^2(t>=0),这里t的范围需要特别注意。 【典型实例】 若2=

高中数学经典解题技巧和方法:平面向量

高中数学经典解题技巧:平面向量【编者按】平面向量是高中数学考试的必考内容,而且是这几年考试解答题的必选,无论是期中、期末还是会考、高考,都是高中数学的必考内容之一。因此,马博士教育网数学频道编辑部特意针对这部分的内容和题型总结归纳了具体的解题技巧和方法,希望能够帮助到高中的同学们,让同学们有更多、更好、更快的方法解决数学问题。好了,下面就请同学们跟我们一起来探讨下平面向量的经典解题技巧。 首先,解答平面向量这方面的问题时,先要搞清楚以下几个方面的基本概念性问题,同学们应该先把基本概念和定理完全的吃透了、弄懂了才能更好的解决问题:1.平面向量的实际背景及基本概念 (1)了解向量的实际背景。 (2)理解平面向量的概念,理解两个向量相等的含义。 (3)理解向量的几何意义。 2.向量的线性运算 (1)掌握向量加法、减法的运算,并理解其几何意义。 (2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义。 (3)了解向量线性运算的性质及其几何意义。 3.平面向量的基本定理及坐标表示 (1)了解平面向量的基本定理及其意义。 (2)掌握平面向量的正交分解及其坐标表示。 (3)会用坐标表示平面向量的加法、减法与数乘运算。 (4)理解用坐标表示的平面向量共线的条件。 4.平面向量的数量积 (1)理解平面向量数量积的含义及其物理意义。 (2)了解平面向量的数量积与向量投影的关系。 (3)掌握数量积的坐标表达式,会进行平面向量数量积的运算。 (4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直 关系。 5. 向量的应用 (1)会用向量方法解决某些简单的平面几何问题。 (2)会用向量方法解决简单的力学问题与其他一些实际问题。

高考数学考试的答题技巧和方法_答题技巧

高考数学考试的答题技巧和方法_答题技巧 一、答题和时间的关系 整体而言,高考数学要想考好,必须要有扎实的基础知识和一定量的习题练习,在此基础上辅以一些做题方法和考试技巧。往年考试中总有许多考生抱怨考试时间不够用,导致自己会做的题最后没时间做,觉得很“亏”。 高考考的是个人能力,要求考生不但会做题还要准确快速地解答出来,只有这样才能在规定的时间内做完并能取得较高的分数。因此,对于大部分高考生来说,养成快速而准确的解题习惯并熟练掌握解题技巧是非常有必要的。 二、快与准的关系 在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。 三、审题与解题的关系 有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。只有耐心仔细地审题,准确地把握题目中的关键词与量(如“至少”,“a0”,自变量的取值范围等等),从中获取尽可能多的信息,才能迅速找准解题方向。 四、“会做”与“得分”的关系 要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。只有重视解题过程的语言表述,“会做”的题才能“得分”,高中生物。 五、难题与容易题的关系 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,如去年理19题就比理20、理21要难,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。所以考试中看到“容易”题不可掉以轻心,看到新面孔的“难”题不要胆怯,冷静思考、仔细分析,定能得到应有的分数。 选择题绝大部分是低中档题,所以必须争取多得分或得满分。选择题的答法审题要慢,答题要快。因此对选择题除直接求解外,还要做到不择手段,即小题要小做,小题要尽量巧做。答选择题常用的方法还有:数形结合法(根据题意做出草图,结合图象解决问题);特例检验法(利用特殊情况代替题设中的普遍条件,得出结论);筛选法(根据各选项的不同,从选项中选特殊情况检验是否符合题意);等价转化法(化陌生为熟悉);构造法(如立几中的“割补”思想)。另外,答选择题不要恋战,要学会暂时放弃。

浅谈高中数学解题步骤及方法

浅谈高中数学解题步骤及方法 【摘要】在高中数学教学中,进行数学解题是十分重要的.本文结合实际论述了高中数学解题的一般步?E及方法. 【关键词】数学;解题步骤;解题方法 高中数学包括了很多的理论知识,这就要求我们高中生要掌握解题方法和技巧,并且要对学习有更高的总结和观察的能力.因此,对于数学的学习,我们一定要先把解题方法和步骤牢固掌握,这一点对我们来讲是非常重要的.基于此,本文将对高中数学的解题方法和步骤进行分析讨论. 一、解题基本步骤 (一)认真审题是关键 要探寻出良好的数学解题方法,首先,要弄清楚在解题时应该采取怎样的步骤.在解题的过程中,我们首先要做的就是“审题”,这一步是为了让我们深刻理解题意.当拿到一道数学题目时,我们应该充分掌握出题人的意图,然后,再对已知条件和问题进行仔细地思考和分析,从而在脑海里建立起解题的基本框架.只有通过这种步骤,明确地抓住题目的类型,才能充分理解题目的准确意思,才能在自己已有的知识中找出和题目相关的知识点,利用正确的理论和公式进行作答.我们在解答数学问题时,一定要充分重视“审题”的关键

作用,并且在这个基础上培养自己善于审题的良好习惯,在这个过程中把题目和已掌握的知识点进行联系和转化,把问题变得更加清晰、简单,从而实现正确地解答. (二)进行联想是重点 对问题进行联想就是要充分利用已经掌握的知识和内容,对知识进行正确地迁移,能够做到活学活用、举一反三.我们如果能把联想的方法运用到数学学习中,就能够促进我们对问题的深层次挖掘,而且我们对于题目线索的挖掘和提取,有利于他们唤醒自己已经掌握的定义、公式、定理和类似题目的解答方法等内容,然后连接起题目和自己熟悉的知识. (三)深入分析是保障 对问题进行细致的分析是高中数学解题中最重要的一个步骤,分析问题需要做的就是提出猜想,对解题的步骤等进行制订,如果题目比较开放的话,可能还需要去探索出多元化的解题思路.在数学问题的解答过程中,我们可以把问题的条件和结论进行互换,也可以在不同的条件间进行转换,从而把数学问题变得一般或特殊.这种分析的方法,可以帮助我们把相关的数学知识融会贯通,提高学习的质量.除了这种方法,也可以提出一些和题目相关的问题来辅助求解,从而运用自己熟悉的解题方法进行解答. (四)进行类化是方法

高中数学解题方法大全

第一章 高中数学解题基本方法 一、 配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy 项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a +b) =a +2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 + b 2=(a +b)2 -2ab =(a -b)2 +2ab ; a 2 +a b +b 2 =(a +b)2 -ab =(a -b)2 +3ab ; a 2 + b 2 + c 2 +ab +bc +ca = 2 1[(a +b)2 +(b +c) 2+(c +a) 2] a 2+b 2+c 2=(a +b +c) 2-2(ab +bc +ca)=(a +b -c)2 -2(ab -bc -ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sin αcos α=(sin α+cos α) ; x + =(x + ) -2=(x - ) +2 ;…… 等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a }中,a ?a +2a ?a +a ?a =25,则 a +a =_______。 2. 方程x +y -4kx -2y +5k =0表示圆的充要条件是_____。 A. 1 C. k ∈R D. k = 或k =1 3. 已知sin α+cos α=1,则sin α+cos α的值为______。

高中数学函数解题技巧及方法

专题1 函数 (理科) 一、考点回顾 1.理解函数的概念,了解映射的概念. 2.了解函数的单调性的概念,掌握判断一些简单函数的单调性的方法. 3.了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数. 4.理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质. 5.理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质. 6.能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 二、经典例题剖析 考点一:函数的性质与图象 函数的性质是研究初等函数的基石,也是高考考查的重点内容.在复习中要肯于在对定义的深入理解上下功夫. 复习函数的性质,可以从“数”和“形”两个方面,从理解函数的单调性和奇偶性的定义入手,在判断和证明函数的性质的问题中得以巩固,在求复合函数的单调区间、函数的最值及应用问题的过程中得以深化.具体要求是: 1.正确理解函数单调性和奇偶性的定义,能准确判断函数的奇偶性,以及函数在某一区间的单调性,能熟练运用定义证明函数的单调性和奇偶性. 2.从数形结合的角度认识函数的单调性和奇偶性,深化对函数性质几何特征的理解和运用,归纳总结求函数最大值和最小值的常用方法. 3.培养学生用运动变化的观点分析问题,提高学生用换元、转化、数形结合等数学思想方法解决问题的能力. 这部分内容的重点是对函数单调性和奇偶性定义的深入理解. 函数的单调性只能在函数的定义域内来讨论.函数y=f(x)在给定区间上的单调性,反映了函数在区间上函数值的变化趋势,是函数在区间上的整体性质,但不一定是函数在定义域上的整体性质.函数的单调性是对某个区间而言的,所以要受到区间的限制. 对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称.这是函数具备奇偶性的必要条件.稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立.函数的奇偶性是其相应图象的特殊的对称性的反映.这部分的难点是函数的单调性和奇偶性的综合运用.根据已知条件,调动相关知识,选择恰当的方法解决问题,是对学生能力的较高要求. 函数的图象是函数性质的直观载体,函数的性质可以通过函数的图像直观地表现出来。

高中数学六种解题技巧与五种数学答题思路.doc

高中数学六种解题技巧与五种数学答题思 路 高中数学六种解题技巧与五种数学答题思路 六种解题技巧 一、三角函数题 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。 二、数列题 1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列; 2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证; 3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。 三、立体几何题 1、证明线面位置关系,一般不需要去建系,更简单; 2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系; 3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范

围)的关系(符号问题、钝角、锐角问题)。 四、概率问题 1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数; 2、搞清是什么概率模型,套用哪个公式; 3、记准均值、方差、标准差公式; 4、求概率时,正难则反(根据p1+p2+...+pn=1); 5、注意计数时利用列举、树图等基本方法; 6、注意放回抽样,不放回抽样; 7、注意零散的的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透; 8、注意条件概率公式; 9、注意平均分组、不完全平均分组问题。 五、圆锥曲线问题 1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法; 2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等; 3、战术上整体思路要保7分,争9分,想12分。 六、导数、极值、最值、不等式恒成立(或逆用求参)问题 1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用和或,隔开(知函数求单调

浅谈高中数学教学中的解题方法

浅谈高中数学教学中的解题方法 发表时间:2017-08-07T15:55:47.000Z 来源:《教育学》2017年6月总第121期作者:谭雪燕 [导读] 在高中数学教学过程中,学生普遍存在这些现象:在学习上“一听就懂,一做就错”、考试时“解题思路和老师分析的一样。广西钦州市灵山县第二中学535400 摘要:针对高中数学教学过程中学生能听懂老师讲课但不会解题的现象,从审题和基础知识这两个方面分析了导致这一个现象的原因,并对这两个方面给出了建议。 关键词:审题基础知识解题方法 在高中数学教学过程中,学生普遍存在这些现象:在学习上“一听就懂,一做就错”、考试时“解题思路和老师分析的一样,但没有做出来,或者考试时没有思路,老师在评讲时,一分析就知道如何解题”、“考试粗心”等。以上这些问题导致学生在考试中没有取得理想的成绩,对此问题,我不断思考,努力去寻找解决此问题的方法,最终得出结论:“这不是偶然,而是学生没有掌握高中数学的解题方法”。以下将从审题和基础知识这两个方面做深入的分析。 一、理解题目 著名数学教育家G·波利亚在《怎样解题》一书中,把数学解题分为四个步骤:(1)弄清问题;(2)拟定计划;(3)实施计划;(4)检验回顾。 而不少学生在这四个步骤中的“弄清问题”存在问题,对题目难以理解,导致解题困难。 1.审题时存在问题的原因主要有: (1)肤浅阅读。读题时,就以读题而读题,只限于字认识,不会去思考、去挖掘题目条件暗含怎样的数学基础知识。(2)心理障碍。当学生看到题目的文字多、关系式子较复杂,或者新题时,便会产生畏惧心理,变得紧张起来,在读题时就会出现读不懂,认为有一定难度,便选择放弃。 (3)节省时间。采用阅读的方式,加快读题的速度,争取更多解题时间,但往往适得其反,遇到不清楚的地方再重复读,导致没有思路,结果是更加浪费时间。 2.审题能力的培养: (1)理解题目。学生首先要把题目读懂,能够把题中每一个条件经过转换、化简等方法把其隐藏的基础知识点挖掘出来。再根据条件逐一联想所学知识、方法、类似的题目、注意点和关键点。这样才能发现题目中条件与结论的联系,从而逐步入题,找到解题的关键点、突破口。 (2)树立自信。帮助学生建立正确的人生观、世界观和价值观。遇到困难,相信自我,挑战困难,战胜困难,以提高他们勇于消除心理障碍、克服学习困难的心理素质。 (3)稳定沉着。读题时要慢、要细心,边读边想边理解,逐字逐句分析。若读一遍找不到解题思路,多读几遍,读清楚题目内容,会从题目中找到解题的思路。读懂题,理解题是解题的基础,然后在理解题意基础之上结合知识与技能联系题目相关的知识、方法,进而深入理解题目的本质,为下一步的解题做好基础准备。 二、理解概念,掌握基础 要想学好高中数学,必须先理解概念,就像设计师在设计房屋时,首先要知道什么是房子;同时数学基础知识是学好数学最基本的,就像建房子一样,房基就不可少,只有坚固的根基,你才能建设出更牢固、更有特色的房子,所以学好数学,理解概念,掌握数学基础知识是学好数学必不可少的要素,只有理解概念,掌握基础知识才能灵活运用。 理解概念,可以让学生感觉到学数学是轻松、容易的,学习数学离不开数学概念的学习,在数学中的概念是核心,把数学中各个知识点特有属性及之间的关系联系起来。在数学学习中,学生经常会遇到一些形似而质异的易混问题,如果概念不清,这样的题是非常容易错的。 例如,函数f(x)=x3-12x,求函数与x的交点,零点,极值点。 解答此题,首先要理解交点、零点和极值点的定义,方能解题。 (1)根据题意f(x)=x3-12x,x3-12x=0,x(x2-12x)=0,解得x1=0,x2=2和x3=-2所以函数f(x)=x3-12x的图象与x轴交点坐标(0,0),(2,0)和(-2,0)。 (2)函数f(x)=x3-12x的零点是0,2和-2。 (3)又因为f`(x)=3x2-12,3x2-12=0,解得x1=2或x2=-2;当f`(x)>0时,函数在区间(-∞,-2)、(2,+∞)上是单调递增函数;当f`(x)<0时,函数f(x)在区间(-2,2)上是单调递减函数,所以x=2是函数f(x)的极大值点,x=-2是函数f(x)的极小值点。只有把数学基础知识正确地掌握好,才有可能做到思路清晰,条理分明,容易找到解决问题的突破口,顺利解题。而每一个题目都是由多个知识点综合而得,于是要解决它就必须掌握数学基础知识。 总之,想学好高中数学,必须具备较强的解题能力,掌握解题方法。审题是解题的前提,基础知识是解题的基础,在此基础上解决问题。只有掌握基础,才谈得上创新。在以后的教学中,加强培养学生的审题能力、理解能力,同时注重基础知识掌握和应用,让学生掌握解题的方法,对学习数学达到事半功倍的效果,爱学、乐学数学。 参考文献 [1]朱华伟数学解题策略[J].科学出版社有限责任公司,2009。 [2][美]G.波利亚数学思维的新方法[M].上海科技教育出版社,2007。 [3]陈晓敏拓展思维,简洁直观——例谈向量法在高中数学解题中的妙用[J].中学数学,2014,(5):14-16。 [4]潘文德. 以退为进灵活解题——浅析高中数学解题技巧[J].新课程学习:中,2014,(1):71-71。

高中数学50个解题小技巧

高中数学50个解题小技巧 XX:__________ 指导:__________ 日期:__________

1 . 适用条件 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。 2 . 函数的周期性问题(记忆三个) (1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。 注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。 c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。 3 . 关于对称问题(无数人搞不懂的问题)总结如下 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a, b)中心对称 4 . 函数奇偶性 (1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空 5 . 数列爆强定律 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:

S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q 6 . 数列的终极利器,特征根方程 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p2(n-1)+x,这是一阶特征根方程的运用。 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数) 7 . 函数详解补充 1、复合函数奇偶性:内偶则偶,内奇同外 2、复合函数单调性:同增异减 3、重点知识关于三次函数:恐怕没有多少人知道三次函数曲线其实是中心对称图形。它有一个对称中心,求法为二阶导后导数为0,根x即为中心横坐标,纵坐标可以用x带入原函数界定。另外,必有唯一一条过该中心的直线与两旁相切。 8 . 常用数列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2记忆方法 前面减去一个1,后面加一个,再整体加一个2 9 . 适用于标准方程(焦点在x轴)爆强公式 k椭=-{(b2)xo}/{(a2)yo}k双={(b2)xo}/{(a2)yo}k抛=p/yo 注:(xo,yo)均为直线过圆锥曲线所截段的中点。 10 . 强烈推荐一个两直线垂直或平行的必杀技 已知直线L1:a1x+b1y+c1=0直线L2:a2x+b2y+c2=0若它们垂直:(充要条件)a1a2+b1b2=0;若它们平行:(充要条件)a1b2=a2b1且a1c2≠a2c1[这个条件为了

高考数学选择题满分答题技巧

高考数学选择题满分答题技巧 前面讲到,高考选择题占高考分数比重十分可观,750分中约有320分为选择题,占总分的45%左右。其中数学选择题的分数为60分,而且单项分数很高,两道选择题的分数等于一道大题的分数。学生的在选择题这类题型上,又普遍失分严重,据不完全统计,400分左右的学生,选择题丢分高达150~240分。500分左右的学生选择题丢分80~150分。所以,一直以来,选择题是拉开同学们分数距离的一条屏障,老师总是利用选择题的特点,让高考的选拔形成梯度。如果选择题不丢分,同学们的总分就可以大幅度的提升,快速跨越当前的局限。 解答高考选择题既要求准确破解,又要快速选择,正如《考试说明》中明确指出的,应“多一点想的,少一点算的”。我们都会有算错的时候,怎样才不会算错呢?“不算就不会算错” 因此,在解答时应该突出一个"选"字,尽量减少书写解题过程,在对照选择支的同时,多方考虑间接解法,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取。我们不要给任何“方法”做出限定,重要的是这种解答的思想方式。下面略举数例加以说明: 快速解题思维一、利用题目中的已知条件和选项的特殊性。对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。 大家看题目,就可以看到所有选项都是数值。并且这个数值正是我们所求的k1k2的值。这么说来,无论任何情况下,都能满足这个条件。于是我们可以令A、B分别为椭圆的长轴上的两个顶点,C为短轴上的一个顶点,那么就极大地简化了计算过程,省去了“标准答案”中提供的设置未知数,产生庞大的计算量。通过特殊图形的构建,就能简化整个计算过程,最终得出选项为B(请大家自行计算)。 例2 △ABC中,a、b、c分别是角A、B、C所对的边,B是A和C的等差中项,则a+c与2b的大小关系是 () A a+c<2b B a+c>2b C a+c≥2b D a+c≤2b 大家看这道题,本题中没有给定三角形的具体形状,故说明任何三角形都可以得出一个唯一选项。所以我们不妨令A=B=C=600,则可排除A、B,再取角A,B,C分别为300,600,900,可排除C,故答案为D。

高中数学考试答题技巧及方法

高中数学考试答题技巧及方法 如何学好高中数学高中数学解题方法与技巧怎样学好高中数学高中数学怎么学成绩提 高快 掌握时间 由于,基础中考能力,所以要注重解题的快法和巧法,能在30分钟左右,完成全部 的选择填空题,这是夺取高分的关键。在平时当中一定要求自己选择填空一分钟一道题。 用数学思想方法高速解答选择填空题。 先易后难 所以,只做选择,填空和前三道大题是不够全面的。因为,后“三难”题中的容易部 分比前面的基础部分还要容易,所以我们应该志在必得。在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。然后,再提高解答“三难”题的 能力,争取“三难”题得分20分到30分。这样,你的总分就可以超过130分,向145分 冲刺。 后三题尽量多得分 第二段是解答题的前三题,分值不到40分。这样前两个阶段的总分在110分左右。 第三段是最后“三难”题,分值不到40分。“三难”题并不全难,难点的分值只有12分 到18分,平均每道题只有4分到6分。首先,应在“三难”题中夺得12分到20分,剩 下最难的步骤分在努力争取。后3题不是只做第一问的问题,而应该猜想评分标准,按步 骤由前向后争取高分。 最强高考励志书,淘宝搜索《高考蝶变》购买! 填空题 填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标 集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。不过填 空题和选择题也有质的区别。首先,表现为填空题没有备选项。因此,解答时既有不受诱 误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会 高一些。 选择题 解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。尤其是数学 选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为 解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。

浅谈高中数学解题策略 张忠传

浅谈高中数学解题策略张忠传 发表时间:2018-11-07T10:05:53.660Z 来源:《教育学》2018年10月总第157期作者:张忠传 [导读] 只有将知识的学习与解题技巧相互结合,才能够在考试中更好地解决问题,学习的效率才会大大提高。安徽省金寨第一中学237322 摘要:在教学过程中,教师要注重对学生解题思维的教授与培养,引导学生在解题的过程中不断总结方法与规律,提高学生解题时的准确率与效率,从而减轻学生学习的压力,在解题方面能够更加自如。只有将知识的学习与解题技巧相互结合,才能够在考试中更好地解决问题,学习的效率才会大大提高。 关键词:高中数学解题策略有效性 一、多元方程的问题——逆向思维解题策略 在解决多元方程的问题中,最为常用的就是逆向思维的方法。在多元方程的解题中,如果仅仅是通过题目条件,正常地进行问题的分析与解决,就会遇到许多新的不必要的麻烦,导致问题不能及时地解决;并且多元方程的解决要求学生思维的转变,这对于很多同学来说存在一定的困难,因为惯性思维会阻碍其纵深发展。因此,在对多元方程的解决中就应该有意识地采取逆向思维的方法。新课改要求的过程和方法,需要让同学们打破常规,积极改变自己的思维模式,思维也要有所突破,老师在教学引导中应该鼓励同学们用逆向思维去解答。 例1:实数l,m,n,满足m-n=8,且mn+l2+16=0。求证:m+n+l=0。 分析:用顺推法直接求得l、m、n的值,运算量很大且容易出现运算错误。简单的方法是用韦达定理的逆定理,从题目中的两个条件来结合进行计算,求出m、n的关系,然后进行关系的转换,将其转变为x的关系,再带入到原式中进行求解。 证明:由m-n=8可以得到m+(-n)=8,由mn+l2+16=0得到m(-n)=l2+16,那么根据m和n的关系就能够将两者通过一个新的未知数x来代替,则m、-n即为一元二次方程x2-8x+l2+16=0的两个根。又因为m、-n为实数,所以,△=(-8)2-4(l2+16)≥0,解得4l2≥0,所以l=0,则m,-n即为一元二次方程x2-8x+16=0的两个根,解得m=-n=4,则有m+n+l=0成立。 以上就是通过逆向思维的方法,由此也能够看出在面对这种多元函数的证明问题时,通过逆向思维就能够有效地解决。 二、函数与方程问题——分类讨论解题策略 1.在解方程中的应用。 在高中初级阶段解方程中最为常见的就是所给的未知数或者条件有着两方面的情况,此时就需要借助分类讨论的方法对每一个未知的情况分几个方面进行讨论求解。 2.在函数题目中的应用。 例2:当m=____时,函数y=(m+5)x2m-1+7x-3(x≠0)是一个一次函数。 解:当(m+5)x2m-1是一次项时,2m-1=1,m=1,整理为y=13x-3。当(m+5)x2m-1是常数项时,2m-1=0,m=1/2,整理为y=7x+5/2。m+5=0,m=-5,整理为y=7x-3。 在讨论(m+5)x2m-1的情况时,就需要分为两种情况,第一种就是为一次项,第二种就是结果为常数。而通过不同的m值也就能够得到不同的解果,最终进行整理就能够得出正确的答案。 三、不等式证明问题——构造函数解题策略 在解决不等式问题时最为适合采用构造函数的解题策略。通过构造函数的方法,能够将不等式的问题转化为函数方程的问题,并根据题目中的信息,来求出相应方程的单调性、值域、定义域,从而结合多种条件来证明不等式的正确。 例3:如已知a、b、c∈R,|a|<1,|b|<1,|c|<1,证明ab+bc+ca+1>0。 对于该不等式的解题过程:构造函数f(x)=(b+c)x+bc+1,证明x(-1,1)时函数f(x)>0恒成立。当b+c=0时,f(x)=1-b2>0恒成立。当b+c≠0时,函数f(x)=(b+c)x+bc+1在区间(-1,1)上是单调的。由于f(1)=bc+b+c+1=(b+1)(c+1)>0,f(-1)=bc-(b+c)+1=(1-b)(1-c)>0,因此f(x)=(b+c)x+bc+1在区间(-1,1)上恒大于零。 综上可知,当|a|<1、|b|<1、|c|<1时,ab+bc+ca+1>0恒成立。 所以,通过以上的解题,就能将一些不等式的问题通过函数的方法来解决,更加有效。 总之,高中数学对于学生的逻辑思维方面有着更高的要求,高中数学的学习阶段也要更加重视对学生数学思维以及解题思维的培养,培养学生做题时的应变性以及灵活性,从而提高解题的效率。教师在教学过程中也要不时地将自己多年解题经验中得来的解题方法教授给学生,渗透学习思维。数学题目的形式千变万化,但是核心不会改变,只要学生能够熟练地掌握解题技巧,并且灵活地运用,相信不管遇到什么问题都能迎刃而解,更好地达到学习的目标。 参考文献 [1]梅松竹冷平王燕荣城乡数学教师对新课程的解题教学的研究——函数解题技巧[J].教育与教学研究,2010,(08)。 [2]马玉武探究数形结合思想在高中数学教学中的应用[J].中国校外教育(下旬刊),2012,(12)。 [3]李文婕解题思维在高中数学教学中的应用探析[J].中华少年教育论坛,2017,(03)。 [4]吴冬香探究高中数学解题教学方法的应用研究[J].中国考试教育周刊(上、下旬),2017,(12)。

高中数学知识点以及解题方法大全

前言 (2) 第一章高中数学解题基本方法 (3) 一、配方法 (3) 二、换元法 (7) 三、待定系数法 (14) 四、定义法 (19) 五、数学归纳法 (23) 六、参数法 (28) 七、反证法 (32) 八、消去法……………………………………… 九、分析与综合法……………………………… 十、特殊与一般法……………………………… 十一、类比与归纳法………………………… 十二、观察与实验法………………………… 第二章高中数学常用的数学思想 (35) 一、数形结合思想 (35) 二、分类讨论思想 (41) 三、函数与方程思想 (47) 四、转化(化归)思想 (54) 第三章高考热点问题和解题策略 (59) 一、应用问题 (59) 二、探索性问题 (65) 三、选择题解答策略 (71) 四、填空题解答策略 (77) 附录……………………………………………………… 一、高考数学试卷分析………………………… 二、两套高考模拟试卷………………………… 三、参考答案…………………………………… 前言 美国著名数学教育家波利亚说过,掌握数学就意味着要善于解题。而当我们解题时遇到一个新问题,总想用熟悉的题型去“套”,这只是满足于解出来,只有对数学思想、数学方法理解透彻及融会贯通时,才能提出新看法、巧解法。高考试题十分重视对于数学思想方法的考查,特别是突出考查能力的试题,其解答过程都蕴含着重要的数学思想方法。我们要有意识地应用数学思想方法去分析问题解决问题,形成能力,提高数学素质,使自己具有数学头脑和眼光。 高考试题主要从以下几个方面对数学思想方法进行考查: ①常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去 法等; ②数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; ③数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、 归纳和演绎等; ④常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化 归)思想等。 数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。 数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。 可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。 为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化( 第一章高中数学解题基本方法 一、配方法 配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。 最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。 配方法使用的最基本的配方依据是二项完全平方公式(a+b) 2 =a 2 +2ab+b 2 ,将这个公式灵活运用,可得到各种基本配方形式,如: a 2 +b 2 =(a+b) 2 -2ab=(a-b) 2 +2ab; a 2 +ab+b 2 =(a+b) 2 -ab=(a-b) 2 +3ab=(a+ b 2) 2 +( 3 2b) 2 ; a 2 +b 2 +c 2 +ab+bc+ca= 1 2[(a+b) 2 +(b+c) 2 +(c+a) 2 ] a 2 +b 2 +c 2 =(a+b+c) 2 -2(ab+bc+ca)=(a+b-c) 2 -2(ab-bc-ca)=… 结合其它数学知识和性质,相应有另外的一些配方形式,如: 1+sin2α=1+2sinαcosα=(sinα+cosα) 2 ; x 2 + 1 2 x=(x+ 1 x) 2 -2=(x- 1 x) 2 +2 ;……等等。 Ⅰ、再现性题组: 1. 在正项等比数列{a n}中,a1?a5+2a3?a5+a3?a7=25,则 a3+a5=_______。 2. 方程x 2 +y 2 -4kx-2y+5k=0表示圆的充要条件是_____。 A. 1 41 C. k∈R D. k= 1 4或k=1 3. 已知sin 4 α+cos 4 α=1,则sinα+cosα的值为______。 A. 1 B. -1 C. 1或-1 D. 0 4. 函数y=log1 2 (-2x 2 +5x+3)的单调递增区间是_____。 A. (-∞, 5 4] B. [ 5 4,+∞) C. (- 1 2, 5 4] D. [ 5 4,3) 5. 已知方程x 2 +(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x 2 +y 2 =4上,则实数a=_____。 【简解】 1小题:利用等比数列性质a m p -a m p +=a m 2 ,将已知等式左边后配方(a3+a5) 2 易求。答案是:5。 2小题:配方成圆的标准方程形式(x-a) 2 +(y-b) 2 =r 2 ,解r 2 >0即可,选B。 3小题:已知等式经配方成(sin 2 α+cos 2 α) 2 -2sin 2 αcos 2 α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。 4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。 5小题:答案3-11。 Ⅱ、示范性题组: 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。 A. 23 B. 14 C. 5 D. 6 【分析】先转换为数学表达式:设长方体长宽高分别为x,y,z,则211 424 () () xy yz xz x y z ++= ++= ? ? ? ,而欲求对角线长x y z 222 ++,将其配凑成两已知式的组合形式可得。

相关文档
相关文档 最新文档