文档视界 最新最全的文档下载
当前位置:文档视界 › 利用氧化锌矿制备饲料级氧化锌的工艺流程

利用氧化锌矿制备饲料级氧化锌的工艺流程

利用氧化锌矿制备饲料级氧化锌的工艺流程
利用氧化锌矿制备饲料级氧化锌的工艺流程

利用氧化锌矿制备饲料级氧化锌的工艺流程

摘要:饲料级的氧化锌基本上都是利用富含氧化锌的化工原料经过一定的处理后所得而成的,此处通过实验条件下的操作流程来进一步解释和说明饲料级氧化锌的制备过程,而工业大批量的生产模式、流程及原理也是如此。

1.原料及相关实验仪器

主要的原料为氧化锌矿、硫酸(质量分数30%)、过氧化氢(质量分数为27.5%的过氧化氢溶液)和碳酸钠(质量分数98%)等。氧化锌矿的主要化学组成成分为锌55.7%、铅3.76%、铁3.12%、二氧化硅0.86%、铜0.95%、镉0.39%、砷未检测出。主要的设备有:磁力搅拌器、布氏漏斗、恒温水浴、恒温烘箱、马弗炉和1000mL的三口烧瓶等。

2.锌的浸出

取100g的氧化锌矿粉,加入装有一定量硫酸的1000mL三口烧瓶中,90℃下恒温搅拌

两小时,过滤去渣。原料中主要元素多以氧化物的形式存在,说话的金属氧化物将发生以下反应:

MO n

2+nH + M n+ +n

2

H2O

式中M表示Zn、Fe、Cu、Cd等。在酸浸过程中除Zn以外,Pb、Fe、Si、Cu、Cd等杂质元素将大量被浸出,浸出液的组成及含量为锌106.3 g/L、铅0.31 g/L、铁0.65 g/L、二氧化硅0.032 g/L、铜0.16g/L、镉0.06 g/L、砷未检测出。

3.浸出液的净化

浸出液的净化主要包括三个步骤:①双氧水氧化除铁:将浸出液加入1000mL三口烧瓶中,80℃恒温下加入双氧水,控制双氧水用量为理论量的1.5倍,搅拌反应一小时。在酸性条件及氧化剂的共同作用下,浸出液中大量的二价铁转化为三价,溶液由深绿色变成红棕色。

然后向溶液中加入氧化锌矿粉,调节pH值至5.0~5.3,此时三价铁发生反应生成氢氧化铁沉淀被除去。②锌粉的置换:饲料级氧化锌产品对重金属杂质如Pb、Cu、Cd的含量要求相当严格(要求质量分数不大于0.0005%),浸出液中的重金属杂质会影响饲料级氧化锌产品质量,必须除去。实验采用锌粉置换除去溶液中的Pb、Cu、Cd等杂质,同时又不会引入新的杂质。③深度除杂:据相关文献,金属硫化物CdS、PbS、CuS的溶度积比ZnS的小得多,故可以加入硫化钠生成难溶性沉淀除去Cd、Pb、Cu等杂质。为确保重金属杂质沉淀完全而又不致于引入过多新杂质影响产品质量,控制硫化钠的加入量为理论量的105%。

4.碱锌合成

将碳酸钠加入精制硫酸锌溶液中,得到碱式碳酸锌沉淀。反应式如下:

3Na2CO3+ 3ZnSO4+ 3H2O

3Na2SO4+ZnCO3· 2Zn(OH)2·H2O↑+ 2CO2

5.洗涤干燥与煅烧

将碱式碳酸锌转入布氏漏斗进行固液分离,分3次每次采用100mL去离子水洗涤滤饼,后将滤饼取出放置在恒温烘箱设定干燥温度为110℃烘干两小时,后置于马弗炉中在900℃下煅烧四小时得到饲料级氧化锌产品。

结语:

凡特施特所生产的饲料级氧化锌正是严格按照类似的相关规定和原理进行一步一步的分离和提纯,最后得到高纯度的饲料级氧化锌,请买家放心使用。

纳米氧化锌制备法

氧化锌制备工艺 2008-06-04 12:21阅读(4)评 论(0) D0208、氧化锌制备工艺(本技术资料含国家发明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺 流程等,全套价格26 0元) (氧化锌*制备氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途 7、超声波-微波联合法

从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌22、改性的超细氧化锌

及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法 39、纳米氧化锌材料的

氧化锌粉体的制备方法

1.纳米氧化锌的性质 1.1表面效应 表面效应是指纳米粒子表面原子与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化,随着粒径减小,表面原子数迅速增加,另外 ,随着粒径的减小,纳米粒子的表面积、表面能及表面结合都迅速增大这主要是由于粒径越小,处于表面的原子数越多表面原子的晶场环境和结合能与内部原子不同表面原子周围缺少相邻的原子,有许多悬空键,具有不饱和性质 ,易与其它原子相结合而稳定下来,故具有很大的化学活性 ,晶体微粒化伴有这种活性表面原子的增多,其表面能大大增加伴随表面能的增加 ,其颗粒的表面原子数增多 ,表面原子数与颗粒的总原子数的比值被增大 ,于是便产生了“表面效应”,即“表面能”与“体积能”的区分就失去了意义 ,使其表面与内部的晶格振动产生了显著变化 ,导致纳米材料具有许多奇特的性能 1.2体积效应 当纳米粒子的尺寸与传导电子的德布罗意波长相当或更小时,周期性的边界条件将被破坏,磁性、内压、光吸收、热阻、化学活性、催化剂及熔点等都较普通粒子发生了很大的变化 ,这就是纳米粒子的体积效应这种体积效应为实用开拓了广阔的新领域。 2.纳米氧化锌的制备技术 制备纳米氧化锌的方法主要是物理法和化学法。其中,化学法是常用的方法。 2.1物理法 物理法包括机械粉碎法和深度塑性变形法。机械粉碎法是采用特殊的机械粉碎、电火花爆炸等技术 ,将普通级别的氧化锌粉碎至超细。其中张伟等人利用立 式振动磨制备纳米粉体 ,得到了α-Al 2O 3 ,ZnO、MgSiO 3 等超微粉 ,最细粒度达 到 0. 1μm此法虽然工艺简单 ,但却具有能耗大,产品纯度低 ,粒度分布不均匀 ,研磨介质的尺寸和进料的细度影响粉碎效能等缺点。最大的不足是该法得不到1—100nm 的粉体 ,因此工业上并不常用此法;而深度塑性变形法是使原材料在净静压作用下发生严重塑性形变 ,使材料的尺寸细化到纳米量级。这种独特的方法最初是由 Islamgaliev 等人于 1994 年初发展起来的。该法制得的氧化锌粉体纯度高,粒度可控,但对生产设备的要求却很高。总的说来 ,物理法制备纳米氧化锌存在着耗能大 ,产品粒度不均匀,甚至达不到纳米级,产品纯度不高等缺点,工业上不常采用,发展前景也不大。 2.2化学法 化学法具有成本低 ,设备简单 ,易放大进行工业化生产等特点。主要分为溶胶-凝胶法、醇盐水解法、直接沉淀法、均匀沉淀法等。 2.2.1溶胶-凝胶法 溶胶-凝胶法制备纳米粉体的工作开始于 20 世纪60年代。近年来,用此法制备纳米微粒、纳米薄膜、纳米复合材料等的报道很多。它是以金属醇盐Zn(OR) 2为原料 ,在有机介质中对其进行水解、缩聚反应 ,使溶液经溶胶化得到凝胶 ,凝胶再经干燥、煅烧成粉体的方法。此法生产的产品粒度小、纯度高、反应温度低(可以比传统方法低 400 —500 ℃) ,过程易控制;颗粒分布均匀、团聚少、介电性能较好。但成本昂贵 ,排放物对环境有污染 ,有待改善。

氧化锌常识

1 普通氧化锌的生产工艺及制备方法进展 普通氧化锌包括直接法氧化锌、间接法氧化锌和湿法氧化锌。其中直接法氧化锌占10% -20%,间接法氧化锌占70%气80%,而湿法氧化锌只占1%-2%。 直接法也称“韦氏炉”法,因首先出现在美国,又称“美国法”。直接法生产氧化锌,优点是成本较低,热效率高。含锌的原料在1000-1200℃下,被含碳物质(主要是煤)还原。锌原料的含锌质量分数在60%-70%。反应设备一般选用回转窑。常用的回转窑长30m,直径2.5 m左右。燃烧气中含有的锌蒸气和CO,可导入氧化设备,使氧化反应进行完全,再经过热交换器,冷却后进入布袋分离器,以收集成品。直接法生产的氧化锌为针状结构,是工业等级氧化锌。直接法氧化锌因含有未能完全分离的杂质,白度也较差,但因价格较低而有一定的销路。 间接法出现于19世纪中叶,法国使用金属锌在坩埚中高温气化,并使锌蒸气氧化燃烧,而收集到氧化锌粉末,因此也称为“法国法”。工业上,间接法生产ZnO是先将锌块在高温下熔融而蒸发成锌蒸气,进而氧化生成ZnO。产品品型及物理性能与氧化的条件有关,而产品的纯度与所用的锌块纯度有关。 间接法也可使用锌渣等低规格的含锌原料,但需要采用气-液相的分离技术,预先分离出Cd,Pb,Fe及Al等杂质,以提高锌蒸气的纯度。除去杂质的措施如下:1)采用坩埚法或马弗炉法,使不易蒸发的Fe和Pb等杂质成渣而分离;2)采用分馏法,使高温蒸发的原料蒸气中的Cd,Pb,Fe,Al及Cu等杂质在通过由碳化硅材料制成的分馏塔板时得以分离;3)采用二室炉分离法,原料预先在一室炉中分离杂质,进入第二室后,在无氧存在的条件下进行蒸馏,以提高锌蒸气的纯度,如纯度不够,还可以继续用分馏法分离少量的Pb;4)采用回转窑法,在回转窑中使物料熔化、蒸馏,并有部分氧化,可控制温度、CO2及O2的分压等操作条件,以减少Pb杂质的含量,还可控制生成的氧化锌的颗粒和晶体形状。 间接法生产的氧化锌为无定形,可制成光敏氧化锌、彩电玻壳用氧化锌、药用氧化锌及饲料级氧化锌等。 湿法是以ZnSO4或ZnCl2为原料,经去除杂质,加入Na2CO3溶液,生成Zn2(OH)2CO3沉淀,再经过漂洗、过滤、干燥,将所得干粉焙烧得ZnO。所制得的ZnO具有较大的比表面积,所以也有称其为活性ZnO。其反应式如下: ZnSO4+Na2CO3→ZnCO3+N a2SO4 沉淀中可能含有一定量的Zn(OH)2,焙烧后释放出CO2和水蒸气,而得到ZnO。 2 活性氧化锌生产方法及改进 2.1 有机化合物的碱性还原法 1951年日本特许公报昭26-113报道了这种方法。即用有机化合物的碱性还原废锌,再用水洗净,加热到高温,单独或混以少量的硫,生产适合橡胶填料用的活性氧化锌。 2.2 通入二氧化碳的方法

《纳米氧化锌制备法》word版

氧化锌制备工艺2008-06-04 12:21阅读(4)评论 (0) D0208、氧化锌制备工艺(本技术资料含国家发 明专利、实用新型专利、科研成果、技术文献、技术说明书、技术配方、技术关键、工艺流程等,全套价格260元) (氧化锌*制备 氧化锌*制取氧化锌*生产氧化锌*开发氧化锌*研究) (氧化锌制备氧化锌制取氧化锌生产 氧化锌开发氧化锌 研究) 1、氨法制取氧化锌方法 2、氨浸法生产低堆积密度纳米氧化锌的方法 3、氨水·碳铵联合浸取络合制备高纯度活性氧化锌的方法 4、氨水循环络合法生产高纯度活性氧化锌的工艺 5、表面包覆金属钛或铝化合物的纳米氧化锌粉体及制备方法 6、表面改性的纳米氧化锌水分散体及其制备方法和用途

7、超声波-微波联合法从锌浮渣中制备活性氧化锌的方法 8、超微粒子氧化锌及其制造方法和使用其的化妆材料 9、超微氧化锌制取的工艺与装置 10、超细活性氧化锌的制备方法 11、超细氧化锌复合物及其制备方法 12、成核生长分步进行的液相制取超细氧化锌的方法 13、从低品位含锌物料制备纳米活性氧化锌的方法 14、从含锌烟道灰制取氧化锌的工艺 15、从菱锌矿制氧化锌技术 16、从铜--锌废催化剂中回收铜和氧化锌的方法 17、等离子法制取氧化锌工艺及设备 18、低温热分解法制备纳米氧化锌 19、低温易烧结的纳米级氧化锌粉末的制备方法 20、多功能纳米氧化锌悬浮液及其制备方法21、改进的碳酸氢铵全湿法制取高活性氧化锌

22、改性的超细氧化锌及其制备方法 23、高白色氧化锌微粒及其制造方法 24、高级氧化锌制备工艺 25、固相低温热分解合成晶态和非晶态超微氧化锌粉末的制备 26、过氧化锌的制备方法 27、回转窑冶炼生产氧化锌的工艺方法 28、活性氧化锌的生产工艺方法 29、活性氧化锌及高纯氧化锌制备工艺 30、活性氧化锌生产工艺 31、碱法生产活性氧化锌的工艺方法 32、颗粒氧化锌的生产工艺方法 33、颗粒状氧化锌生产装置 34、粒状高活性氧化锌的制造方法及其产品35、联合法矿粉直接生产高纯度氧化锌新工艺36、菱锌矿制取高纯氧化锌的方法 37、硫化锌精矿焙砂与氧化锌矿联合浸出工艺38、硫化锌矿与软锰矿同槽浸出制取氧化锌和碳酸锰的方法

实验7--沉淀法制备纳米氧化锌粉体

实验七 沉淀法制备纳米氧化锌粉体 一、实验目的 1、了解沉淀法制备纳米粉体的实验原理。 2、掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3、了解反应条件对实验产物形貌的影响,并对实验产物会表征分析。 二、实验原理 氧化锌是一种重要的宽带隙(3.37 eV)半导体氧化物,常温下激发键能为60 meV 。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。氧化锌纳米材料已经应用在纳米发电机、紫外激光器、传感器和燃料电池等方面。通常的制备方法有蒸发法、液相法。我们在这里主要讨论沉淀法。 沉淀法是指包含一种或多种离子的可溶性盐溶液,当加入沉淀剂(如OH --,CO 32-等)后,或在一定温度下使溶液发生水解,形成不溶性的氢氧化物、氧化物或盐类从溶液中析出,并将溶剂和溶液中原有的阴离子洗去,得到所需的化合物粉料。 均匀沉淀法是利用化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来。而加入的沉淀剂不是立即在溶液中发生沉淀反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO 3)2、氯化锌ZnCl 2、醋酸锌。常用的沉淀剂有氢氧化钠(NaOH )、氨水(NH 3. H 2O )、尿素(CO(NH 2)2)。一般情况下,锌盐在碱性条件下只能生产Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体通常需要进行煅烧高温。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH 3 H 2O 与锌离子反应产生沉淀。反应如下: O H NH CO O H NH CO 23222223)(?+→+ (1) OH -的生成: -+ +→?OH NH O H NH 423 (2) CO 32-的生成: O H CO NH CO O H NH 223422322++→+?-+ (3)

利用氧化锌矿制备饲料级氧化锌的工艺流程

利用氧化锌矿制备饲料级氧化锌的工艺流程 摘要:饲料级的氧化锌基本上都是利用富含氧化锌的化工原料经过一定的处理后所得而成的,此处通过实验条件下的操作流程来进一步解释和说明饲料级氧化锌的制备过程,而工业大批量的生产模式、流程及原理也是如此。 1.原料及相关实验仪器 主要的原料为氧化锌矿、硫酸(质量分数30%)、过氧化氢(质量分数为27.5%的过氧化氢溶液)和碳酸钠(质量分数98%)等。氧化锌矿的主要化学组成成分为锌55.7%、铅3.76%、铁3.12%、二氧化硅0.86%、铜0.95%、镉0.39%、砷未检测出。主要的设备有:磁力搅拌器、布氏漏斗、恒温水浴、恒温烘箱、马弗炉和1000mL的三口烧瓶等。 2.锌的浸出 取100g的氧化锌矿粉,加入装有一定量硫酸的1000mL三口烧瓶中,90℃下恒温搅拌 两小时,过滤去渣。原料中主要元素多以氧化物的形式存在,说话的金属氧化物将发生以下反应: MO n 2+nH + M n+ +n 2 H2O 式中M表示Zn、Fe、Cu、Cd等。在酸浸过程中除Zn以外,Pb、Fe、Si、Cu、Cd等杂质元素将大量被浸出,浸出液的组成及含量为锌106.3 g/L、铅0.31 g/L、铁0.65 g/L、二氧化硅0.032 g/L、铜0.16g/L、镉0.06 g/L、砷未检测出。 3.浸出液的净化 浸出液的净化主要包括三个步骤:①双氧水氧化除铁:将浸出液加入1000mL三口烧瓶中,80℃恒温下加入双氧水,控制双氧水用量为理论量的1.5倍,搅拌反应一小时。在酸性条件及氧化剂的共同作用下,浸出液中大量的二价铁转化为三价,溶液由深绿色变成红棕色。

然后向溶液中加入氧化锌矿粉,调节pH值至5.0~5.3,此时三价铁发生反应生成氢氧化铁沉淀被除去。②锌粉的置换:饲料级氧化锌产品对重金属杂质如Pb、Cu、Cd的含量要求相当严格(要求质量分数不大于0.0005%),浸出液中的重金属杂质会影响饲料级氧化锌产品质量,必须除去。实验采用锌粉置换除去溶液中的Pb、Cu、Cd等杂质,同时又不会引入新的杂质。③深度除杂:据相关文献,金属硫化物CdS、PbS、CuS的溶度积比ZnS的小得多,故可以加入硫化钠生成难溶性沉淀除去Cd、Pb、Cu等杂质。为确保重金属杂质沉淀完全而又不致于引入过多新杂质影响产品质量,控制硫化钠的加入量为理论量的105%。 4.碱锌合成 将碳酸钠加入精制硫酸锌溶液中,得到碱式碳酸锌沉淀。反应式如下: 3Na2CO3+ 3ZnSO4+ 3H2O 3Na2SO4+ZnCO3· 2Zn(OH)2·H2O↑+ 2CO2 5.洗涤干燥与煅烧 将碱式碳酸锌转入布氏漏斗进行固液分离,分3次每次采用100mL去离子水洗涤滤饼,后将滤饼取出放置在恒温烘箱设定干燥温度为110℃烘干两小时,后置于马弗炉中在900℃下煅烧四小时得到饲料级氧化锌产品。 结语: 凡特施特所生产的饲料级氧化锌正是严格按照类似的相关规定和原理进行一步一步的分离和提纯,最后得到高纯度的饲料级氧化锌,请买家放心使用。

氧化锌生产设备 工艺

氧化锌生产设备工艺 氧化锌生产工艺: 间接法:间接法的原材料是经过冶炼得到的金属锌锭或锌渣。锌在石墨坩埚内于1000°C的高温下转换为锌蒸汽,随后被鼓入的空气氧化生成氧化锌,并在冷却管后收集得氧化锌颗粒。 间接法生产氧化锌的工艺技术简单,成本受原料的影响较大。间接法生产的氧化锌颗粒直径在0.1-10微米左右,纯度在99.5%-99.7%之间。按总产量计算,间接法是生产氧化锌最主要的方法。 间接法生产的氧化锌可用于橡胶、压敏电阻、油漆等产业。锌锭或锌渣的重金属含量直接影响产物的重金属杂质含量,重金属含量低的产品,还可用于家畜饲料、药品、医疗保健等产业。 直接法:直接法以各种含锌矿物或杂物为原料。氧化锌在与焦炭加热反应时,被还原成金属锌被蒸汽,同时再被空气中的氧气氧化为氧化锌,以除去大部分杂质。直接法获得的氧化锌颗粒粗,产品纯度在75%-95%之间,一般用于要求较低的橡胶、陶瓷行业。 湿化学法:湿化学法大体可分为两类:酸法与氨法。二者分别使用酸或碱与原料反应,而后制备碳酸锌或氢氧化锌沉淀。经过过滤、洗涤、烘干和800°C的煅烧后,最终得到粒径在1~100纳米的高纯度轻质氧化锌。 喷雾热分解法:喷雾热解法是将金属盐溶液以雾状喷入高温气氛中,通过溶剂的蒸发及随后的金属盐热分解,直接获得纳米氧化物粉体,或者是将溶液喷入高温气氛中干燥,然后经热处理形成粉体的生产方法。 经洛阳钙丰工贸实践可知该法制备的纳米粉体纯度高,分散性好,粒径分布均匀,化学活性好,并且工艺操作简单,易于控制,设备造价低廉,是最具产业化潜力的纳米级别氧化锌粉体的制备方法之一。 生产氧化锌的设备有: 1、氧化锌选矿设备:锌矿石按其所含矿物不同而分为硫化矿和氧化矿用黄药作氧化铅的捕收剂、胺作氧化锌的捕收剂、优先浮铅的开路流程能够获得的锌品位和锌回收率分别为30%和65%。 2、氧化锌烘干机:转筒式烘干机简称烘干机是一种处理大量物料的干燥器。由于运转可靠、操作弹性大、适应性强、处理量大,广泛使用于冶金、化工等产业中。 3、氧化锌转炉筒体设备:该旋转炉适用范围极广,可以用于:化工粉料和颗粒料的干燥和焙烧;金属氧化物的干燥和焙烧分解;无机盐和稀土材料的干燥和焙烧等。

氧化锌压敏电阻的原理

压敏电阻原理概述 本文就氧化锌压敏电阻的原理、特性、正确选用等问题进行简介,并提供一些应用电路实例供各位参考。 ZnO压敏电阻实际上是一种伏安特性呈非线性的敏感元件,在正常电压条件下,这相当于一只小电容器,而当电路出现过电压时,它的内阻急剧下降并迅速导通,其工作电流增加几个数量级,从而有效地保护了电路中的其它元器件不致过压而损坏,它的伏安特性是对称的,如图(1)a 所示。这种元件是利用陶瓷工艺制成的,它的内部微观结构如图(1)b 所示。微观结构中包括氧化锌晶粒以及晶粒周围的晶界层。氧化锌晶粒的电阻率很低,而晶界层的电阻率却很高,相接触的两个晶粒之间形成了一个相当于齐纳二极管的势垒,这就是一压敏电阻单元,每个单元击穿电压大约为 3.5V,如果将许多的这种单元加以串联和并联就构成了压敏电阻的基体。串联的单元越多,其击穿电压就超高,基片的横截面积越大,其通流容量也越大。压敏电阻在工作时,每个压敏电阻单元都在承受浪涌电能量,而不象齐纳二极管那样只是结区承受电功率,这就是压敏电阻为什么比齐纳二极管能承受大得多的电能量的原因。 压敏电阻在电路中通常并接在被保护电器的输入端,如图(2)所示 压敏电阻的Zv与电路总阻抗(包括浪涌源阻抗Zs)构成分压器,因此压敏电阻的限制电压为V=VsZv/(Zs+Zv)。Zv的阻值可以从正常时的兆欧级降到几欧,甚至小于1Ω。由此可见Zv在瞬间流过很大的电流,过电压大部分降落在Zs上,而用电器的输入电压比较稳定,因

而能起到的保护作用。图(3)所示特性曲线可以说明其保护原理。直线段是总阻抗Zs,曲线是压敏电阻的特性曲线,两者相交于点Q,即保护工作点,对应的限制电压为V,它是使用了压敏电阻后加在用电器上的工作电压。Vs为浪涌电压,它已超过了用电器的耐压值VL,加上压敏电阻后,用电器的工作电压V小于耐压值VL,从而有效地保护了用电器。不同的线路阻抗具有不同的保护特性,从保护效果来看,Zs越大,其保护效果就越好,若Zs=0,即电路阻抗为零,压敏电阻就不起保护作用了。图(4)所描述的曲线可以说明Zs与保护特性之间的关系。

纳米氧化锌的制备实验报告

纳米ZnO2的制备 实验报告 班级:应091-4 组号:第九组 指导老师:翁永根老师 成员:任晓洁 1428 邵凯 1429 孙希静 1432 【实验目的】 1.了解纳米氧化锌的基本性质及主要应用 2.通过本实验掌握纳米氧化锌的制备方法

3.对于纳米氧化锌的常见产品掌握制备原理和方法,并学会制备简易产 品。 4.通过本实验复习并掌握EDTA溶液的配制和标定,掌握配位滴定的原 理,方法,基准物质的选择依据以及指示剂的选择和pH的控制。 5.掌握基础常用的缓冲溶液的配制方法和原理。 6.加深对实验技能的掌握及提高查阅文献资料的能力。 【实验原理】 1. 超细氧化锌是一种近年来发展的新型高功能无机产品,晶体为六方结构,其颗粒大小约在1~100纳米。纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。纳米氧化锌一系列的优异性和十分诱人的应用前景。 2. 纳米氧化锌的制备方法主要有:水热法,均相沉淀法,溶胶一凝胶法,微乳液法,直接沉淀法 3. 本工艺是将锌焙砂(主要成份是ZnO,主要伴生元素及杂质为铁,铜,铅,镍,铬,镍,此外,还含有其它微量杂质,因而用锌焙砂直接酸浸湿法生产活性氧化锌,必须利用合理的酸浸及除杂工艺,分离铅,脱铁、锰,除钙、镁等重金属)与硫酸反应,生产出粗制硫酸锌,加高锰酸钾、锌粉等,经过提纯得到精制硫酸锌溶液后,再经碳化母液沉淀,制得碱式碳酸锌,最后经烘干,煅烧制成活性氧化锌成品。 4. 氧化锌含量的测定采用配位滴定法测定,用NH3-NH4Cl缓冲溶液控 制溶液pH≈10,以铬黑T为指示剂,用EDTA标准溶液进行滴定,其主要反应如下: 在氨性溶液中: Zn2++4NH3?Zn(NH3)42+ 加入EBT(铬黑T)时: Zn(NH3)42++EBT(蓝色)?Zn-EBT(酒红色)+4NH3 滴定开始-计量点前: Zn(NH3)42++EDTA?Zn-EDTA+4NH3 计量点时: Zn-EBT(酒红色)+EDTA?Zn-EDTA+EBT(蓝色)

饲料级氧化锌、硫酸锌、硫酸锰生产工艺

无机盐生产厂学习总结 一、衡山绿衡氧化锌生产: 1、主要生产流程:原料验收—氨浸—氧化除杂—置换压滤—浓缩干燥工序(蒸氨—漂洗—闪蒸)—煅烧(成品ZnO) 2、关键点控制: 1)、原料验收(次氧化锌:As≤30 ppm) 2)、氨浸(循环氨水、碳酸氢铵、氨水) Zn形成可溶的碱式四铵络锌 3)、多次除杂(氧化除:Fe、As、Mn 、Zn粉置换除:Pb、Cd)直至产品符合标准 A:置换除杂:置换前检测压滤后清液Pb和Cd含量,加入适量的Zn粉置换;B:氧化除杂:加入氧化剂之前检测Fe、Mn、As的含量,加入适量的氧化剂;PH:4.5(ZnO),除杂最佳PH,温度是60-80℃; FeSO4功能:净水剂(砷酸铁沉淀:量少、絮状沉淀,加入了FeSO4后起促沉剂作用,达到除杂的目的); C:除杂后检测每次压滤后净液(Fe、Mn、As、Pb、Cd),如果超标重复置换和氧化工序; 4)精液浓缩干燥工序(蒸氨-漂洗-闪蒸-煅烧) 蒸氨:碱式四铵络锌-碱式碳酸锌,氨回收利用; 漂洗:碱式碳酸锌不溶于水,可洗掉SO4-和Cl-离子;(此道工序为兴嘉指定添加) 闪蒸干燥:碳酸锌湿料变干料; 煅烧:碱式碳酸锌-氧化锌 二、衡山华兴一水硫酸锌生产: 1、酸浸(硫酸) 2、除杂:除铁、砷(双氧水)、铅、铬等 3、浓缩干燥

三、嘉威一水硫酸锌、七水硫酸锌生产: 1、主要生产流程:原料控制—中浸+高酸浸取—多次除杂(氧化、置换)—隔膜压滤—浓缩干燥—高温结晶(一水硫酸锌)、低温结晶(七水硫酸锌) 2、关键点控制: 1)、原料控制: 次氧化锌来源:管道灰、布袋灰 管道灰:粒度大,浸出率(85%)低于布袋灰,Zn含量低,所以杂质等有害物质多些; 布袋灰:粒度细,浸出率高(95%),Zn含量高些;(我公司选用的原料) 主要检测指标:Zn、Pb、Cr、Ni、Fe、Cu等。 原料外观判断: 浅灰色:Fe含量偏高 青绿色:Cl含量偏高 灰白色:镉和铅含量偏高 2)、中浸、高酸浸取杂质 中浸后反应液状态:45波美度,1个波美度5g Zn 高酸浸取:中浸液压滤后的渣泥进行高酸浸取,浸出杂质里面的Zn; 3)、除杂(富氧除杂、置换除杂) A:富氧除杂:池底鼓氧除杂(区别于常规的高锰酸钾和双氧水除杂) 双氧水缺点:1:造成氧化剂残留;2:双氧水除杂渣液成胶状,容易带走Zn,造成滤液Zn含量降低; 高锰酸钾缺点:1:氧化剂残留;2:带来Mn离子残留; B:PH=5.0,PH最适宜沉淀的生成,;我们用ZnO或ZnCO3(一般厂家用石灰)C:多次除杂(3次);每次除杂前都检测重金属残留,加入适量的氧化剂或者Zn粉 D:隔膜压滤机,重金属残留少,特别是Ca、Mg的除去效果好,Ca、Mg味苦,而且具有轻泄作用 4)浓缩干燥 A:有毒物质(二噁英和多氯联苯)

氧化锌制备方法

将mol·L-1的NaOH乙醇溶液缓慢滴加到含有mol·L-1的Zn(NO3)2·6H2O乙醇溶液中. 将混合溶液转移至高压反应釜中, 在130℃下反应12 h, 将反应产物经二次去离子水、乙醇等洗涤后, 在130 摄氏度下干燥,即可获得纯ZnO纳米棒. 在 ZnCl2 溶液 mol/L) 中加入一定量的 SDS, 搅拌下于 65 ℃将 Na2CO3 溶 液滴加到该溶液中 (120 滴/min, n(Na 2CO 3 )/n(ZnCl2) = 2),恒温反应 h. 将反 应液倒入聚四氟乙烯罐中, 在150~160 ℃进行水热反应 12 h, 自然冷却后离心分离, 用去离子水洗涤到无水Cl?离子, 再用无水乙醇洗涤 2~3 次, 50 ℃真空干燥 2 h, 300 ℃焙烧 3 h, 即制得 ZnO 纳米管. 将0. 1 L0. 1 mo l/ L二水合醋酸锌的乙醇溶液置于带冷凝管和干燥管的0. 5 L 圆底烧瓶中, 在80 ℃搅拌3 h, 不断收集冷凝物, 最后可获得0. 04 L 中间物和0. 06 L 冷凝物. 将中间物迅速用冷的绝对乙醇稀释至0. 1 L, 冷至室温, 得0. 1 mol/ L 中间产物. 氨水沉淀法制备纳米氧化锌 在水——乙醇介质中用氨水沉淀法制备出了纳米Zn(OH) 2 和ZnO材料,讨论了介质组成对沉淀产物ZnO微粒的粒径范围及形貌的影响,并研究出由Zn(OH)2分解为纳米ZnO的最佳干燥脱水条件为200℃、2h。表明本方法不需高温处理就可得到颗粒均匀且分布窄的ZnO纳米材料,粒径可达17~6nm。 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂。 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱。 二、试验方法 以水——乙醇为溶剂,其中醇的体积含量分别为0%(去离子水)、20%、60%、100%。将氯化锌、氨水配制成不同浓度的溶液(不同浓度是多少)。取一定体积(一定体积是多少)的氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度的氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应。控制氨水用量,调节pH值为左右,确定滴定终点。反应得到的白色沉淀物,经抽滤洗涤后自然风干 即为Zn(OH) 2纳米粉,Zn(OH) 2 经干燥(200℃、2h)脱水后,为ZnO纳米粉

集成电路氧化锌压敏电阻器的原理简介与使用性能参数

【集成电路(IC)】氧化锌压敏电阻器的原理简介与使用 【集成电路氧化锌压敏电阻器的原理简介与使用性能参数】 “压敏电阻是中国大陆的名词,意思是"在一定电流电压范围内电阻值随电压而变",或者是说"电阻值对电压敏感"的阻器。相应的英文名称叫“Voltage Dependent Resistor”简写为“VDR”。 压敏电阻器的电阻体材料是半导体,所以它是半导体电阻器的一个品种。现在大量使用的"氧化锌"(ZnO)压敏电阻器,它的主体材料有二价元素(Zn)和六价元素氧(O)所构成。所以从材料的角度来看,氧化锌压敏电阻器是一种“Ⅱ-Ⅵ族氧化物半导体”。 在中国台湾,压敏电阻器是按其用途来命名的,称为"突波吸收器"。压敏电阻器按其用途有时也称为“电冲击(浪涌)抑制器(吸收器)”。 一、氧化锌压敏电阻器微观结构及特性 氧化锌压敏电阻器是一种以氧化锌为主体、添加多种金属氧化物、经典型的电子陶瓷工艺制成的多晶半导体陶瓷元件。它的微观结构如图1所示。氧化锌陶瓷是由氧化锌晶粒及晶界物质组成的,其中氧化锌晶粒中掺有施主杂质而呈N型半导体,晶界物质中含有大量金属氧化物形成大量界面态,这样每一微观单元是一个背靠背肖特基势垒,整个陶瓷就是由许多背靠背肖特基垫垒串并联的组合体。图2是压敏电阻器的等效电路。

氧化锌压敏电阻器的典型V-I特性曲线如图3所示: 预击穿区:在此区域内,施加于压敏电阻器两端的电压小于其压敏电压,其导电属于热激发电子电导机理。因此,压敏电阻器相当于一个10MΩ以上的绝缘电阻(Rb远大于Rg),这时通过压敏电阻器的阻性电流仅为微安级,可看作为开路。该区域是电路正常运行时压敏电阻器所处的状态。 击穿区:压敏电阻器两端施加一大于压敏电压的过电压时,其导电属于隧道击穿电子电导机理(Rb与Rg相当),其伏安特性呈优异的非线性电导特性,即: I=CVα 其中I通过压敏电阻器的电流C与配方和工艺有关的常数 V压敏电阻器两端的电压α为非线性系数,一般大于30 由上式可见,在击穿区,压敏电阻器端电压的微小变化就可引起电流的急剧变化,压敏电阻器正是用这一特性来抑制过电压幅值和吸收或对地释放过电压引起的浪涌能量。 上升区:当过电压很大,使得通过压敏电阻器的电流大于约100A/cm2时,压敏电阻器的伏安特性主要由晶粒电阻的伏安特性来决定。此时压敏电阻器的伏安特性呈线性电导特性,即: I=V/Rg 上升区电流与电压几乎呈线性关系,压敏电阻器在该区域已经劣化,失去了其抑制过电压、吸收或释放浪涌的能量等特性。 根据压敏电阻器的导电机理,其对过电压的响应速度很快,如带引线式和专用电极产品,一般响应时间小于25纳秒。因此只要选择和使用得当,压敏电阻器对线路中出现的瞬态过电压有优良的抑制作用,从而达到保护电路中其它元件免遭过电压破坏的目的。 二、特点 (1) 通流容量大 (2) 限制电压低 (3) 响应速度快 (4) 无续流 (5) 对称的伏安特性(即产品无极性) (6) 电压温度系数低 三、氧化锌压敏电阻器应用及注意事项 1、氧化锌压敏电阻器应用原理 压敏电阻器与被保护的电器设备或元器件并联使用。当电路中出现雷电过电压或瞬态操作过电压Vs时,压敏电阻器和被保护的设备及元器件同时承受Vs,由于压敏电阻器响应速度很快,它以纳秒级时间迅速呈

沉淀法制备纳米氧化锌粉体讲义

沉淀法制备纳米氧化锌粉体 一、实验目的 1.了解沉淀法制备纳米粉体的实验原理。 2.掌握沉淀法制备纳米氧化锌的制备过程和化学反应原理。 3.了解实验产物粒度的表征手段,掌握激光纳米粒度仪的使用。 4.了解沉淀剂、实验条件对产物粒径分布的影响。 二、实验原理 氧化锌是一种重要的宽带隙(3.37eV)半导体氧化物,常温下激发键能为60meV。近年来,低维(0维、1维、2维)纳米材料由于具有新颖的性质已经引起了人们广泛的兴趣。纳米氧化锌由于晶粒的细微化,其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点,已经广泛的应用在陶瓷、化工、电子、光学、生物、医药等许多领域。纳米氧化锌的制备方法有物理法和化学法,物理法主要包括机械粉碎法和深度塑形变形法,化学法包括沉淀法、溶胶—凝胶法、水热法、微乳液法等方法。本实验采用沉淀法制备纳米氧化锌粉体。 沉淀法包括直接沉淀法和均匀沉淀法。直接沉淀法是制备纳米氧化锌广泛采用的一种方法。其原理是在包含一种或多种离子的可溶性盐溶液中,加入沉淀剂(如OH-,CO32-等)后,在一定条件下生成沉淀并使其沉淀从溶液中析出,再将阴离子除去,沉淀经热分解最终制得纳米氧化锌。其中选用不同的沉淀剂,可得到不同的沉淀产物。均匀沉淀法是利用某一化学反应使溶液中的构晶离子从溶液中缓慢地、均匀地释放出来,所加入的沉淀剂并不直接与被沉淀组分发生反应,而是通过沉淀剂在加热的情况下缓慢水解,在溶液中均匀地反应。 纳米颗粒在液相中的形成和析出分为两个过程,一个是核的形成过程,称为成核过程;另一个是核的长大,称为生长过程。这两个过程的控制对于产物的晶相、尺寸和形貌是非常重要的。 制备氧化锌常用的原料是可溶性的锌盐,如硝酸锌Zn(NO3)2、氯化锌ZnCl2、醋酸锌ZnAc2。常用的沉淀剂有氢氧化钠(NaOH)、氨水(NH3·H2O)、尿素(CO(NH2)2)等。一般情况下,锌盐在碱性条件下只能生成Zn(OH)2沉淀,不能得到氧化锌晶体,要得到氧化锌晶体需要进行高温煅烧。均匀沉淀法通常使用尿素作为沉淀剂,通过尿素分解反应在反应过程中产生NH3·H2O与锌离子反应生成沉淀。反应如下: OH-的生成: CO32-的生成: 形成前驱物碱式碳酸锌的反应: 热处理后得产物ZnO: 用NaOH作沉淀剂一步法直接制备纳米氧化锌的反应式如下: 该实验方法过程简单,不需要后煅烧处理就可以得到氧化锌晶体,而且可以通过调控Zn2+/OH-的摩尔比控制氧化锌纳米材料的形貌。 三、实验仪器与试剂

饲料级氧化锌和饲料级硫酸锌的对比

饲料级氧化锌和饲料级硫酸锌的对比摘要:锌是动物机体不可或缺的一种微量元素,其与动物机体的生长性能、免疫性能和抗氧化性能密切相关。然而在畜牧业中可以通过多种不同形式的锌源饲料添加剂来满足动物机体对锌的需要。在诸多的无机锌源添加剂中以饲料级硫酸锌添加为最多,而饲料级氧化锌则相对略少,饲料级硫酸锌具有饲料级氧化锌不可替代的优点。 1.饲料级氧化锌 饲料级氧化锌为白色六角晶体或粉末,无气味,难溶于水,可溶于酸和氢氧化钠水溶液。氧化锌的元素含量为72%,其成本低,且对饲料中维生素影响小,储存时间相对长,稳定性好,不易结块,具有良好的加工特性,其能够作为饲料添加剂补充畜禽所需的锌,目前主要用在仔猪料中预防仔猪拉稀。但是氧化锌的生物利用度较低,生物利用度仅为50%~80%(相对于一水硫酸锌),其在畜禽日粮中的添加量较大,当高锌时其添加量能达2500 mg/kg。(《饲料添加剂安全使用规范》中仔猪断奶后前2周锌的允许添加量为≤2250 mg/kg),但其可抑制动物机体内其他矿物元素的吸收,而且畜禽粪便内由于含有大量的锌,也会对环境造成污染。Roselli等研究发现,Heo等研究结果发现,日粮中添加2500 mg/kg氧化锌能降低断奶仔猪腹泻率,促进仔猪生长。 2.饲料级硫酸锌 硫酸锌常见的存在形式为一水硫酸锌(其锌的元素含量为35.5%)和七水硫酸锌(其锌的元素含量为22.3%)。一水硫酸锌为白色结晶粉末,在干燥空气中易风化,100℃加热后会失去6分子水而变成一水硫酸锌。由于价格和生物利用度的原因,硫酸锌是目前饲料中锌最常见的添加形式,可用于补充日粮中缺乏的锌元素。研究表明,硫酸锌与氧化锌和碳酸锌相比,硫酸锌能显著提高蛋鸡饲料转化率、产蛋率及机体的抗氧化能力;张亚男等研究日粮中添加硫酸锌对海蓝灰蛋鸡生产性能和蛋壳品质的影响,结果表明,日粮中添加硫酸锌锌对产蛋后期蛋鸡生产性能无显著影响,但能改善蛋壳微观结构,提高蛋壳品质,且当日粮中添加

一水硫酸锌在水产养殖中的作用及添加量

一水硫酸锌在水产养殖中的作用及添加量 一水硫酸锌在水产养殖中的作用 一水硫酸锌又名皓矾、锌矾。是一种无色针状结晶,易溶于水,是水产养殖中常用的杀纤毛虫类药物。硫酸锌属重金属盐类杀虫药,其在水中生成的锌离子与虫体细胞的蛋白质结合成蛋白盐,使其沉淀;另外锌离子容易与虫体细胞酶的巯基相结合,巯基为此酶的活性基因,当与锌离子结合后就失去了作用,从而达到杀灭的目的。用于防治河蟹、虾类等水产养殖动物的固着类纤毛虫病。另外硫酸锌中含有多种矿质元素,在水体中能有效调节虾蟹细胞内外渗透压,能有效抑制虾蟹在水体盐度聚降时的应激反应,同时还可起到表皮收敛的作用,使虾蟹体表清晰。从而提高商品上市率。 因温湿度高而多的闷热气候,伴随养殖物个体增大,鲜活饵料投量增加、排泄物累积,造成混浊、过肥的水体环境,是聚缩虫繁殖高峰期。聚缩虫在养殖物体表、附肢、鳃部频频寄生,形成所谓“长毛病”。患病的虾、蟹肉眼可见体表有绒毛状物且粘滑,导致虾蟹呼吸、脱壳困难。如不及时杀灭,会使养殖物行动迟缓、体质瘦弱、皮肤溃疡,抗病能力降低,严重的则会出现大量死亡。 一水硫酸锌的使用方法:加水搅拌,一次性全塘均匀泼洒。 一水硫酸锌的用量: 治疗用量: 每1m3水体用本品0.4至0.6g(每亩水体深1米用本品300-400g)一日1次,病情严重可连用1至2次。 预防用量: 每1m3水体用本品0.1-0.2g(每亩水体深1米用本品80-120g)每15-20日1次。 此药物尚未发现不良反应。 使用一水硫酸锌的注意要点: (1)鳗鱼禁止使用此药物。幼苗期及脱壳期中期需要谨慎使用。 (2)在施药时要尽量加大稀释量,根据水体深浅调节泼洒数量,保证施药浓度均匀。 (3)此病发生与水过肥有关,因此在施用一水硫酸锌之前.可先换水,再配合施用一些水质改良剂,既能提高疗效,又能延缓耐药性产生,杜绝频繁复发。 (4)使用后,及时、长时间全池增氧。

氧化锌电阻片使用说明书

氧化锌电阻片使用说明书 乐清市天极高压电气有限公司的氧化锌电阻片(以下简称电阻片),用于220伏~500千伏电压等级氧化锌避雷器,采用先进的配方和工艺生产,正确使用可避免产生质量问题,使其优越性能得到充分发挥。为此目的,并为了广大用户充分保证避雷器的装配质量,现就阀片使用中的要求与注意事项说明如下: 1.电阻片在芯体装配前的干燥 为了加强电阻片侧面绝缘强度,在电阻片侧面涂敷了具有高绝缘性能的有机涂料。目前国内普遍使用的有机涂料都有一定吸潮性,加上还有吸附水和表面凝露现象(如:夏天的自来水管表面产生水珠的现象即明显的表面凝露现象),因此,避雷器芯体装配前必须对电阻片进行干燥处理。 注:避雷器是保护电器。如避雷器内部有潮气,或者密封不良潮气侵入了内部,就不仅起不了保护作用,自身还会爆炸。因此避雷器装配工艺中的一个带关键性的要点,就是装配中必须确保避雷器内部干燥,并采取严密的密封措施确保长期使用过程中潮气不能侵入。避雷器芯体装配前对电阻片进行干燥处理,是确保避雷器内部干燥的重要措施。 对电阻片进行干燥处理应注意以下几点: ⑴.电阻片干燥处理应使用有热风循环的烘箱进行,烘箱内温差不大于5℃。没有热风循环的烘箱时必须用水银温度计测定确认烘箱内上下左右的温差,温差大于10℃的应慎重使用。 ⑵.电阻片摆放烘箱内应分行、分层摆放,行间层间必须留有一定的通风空间,不可堆放成一大堆。同时要注意电阻片必须远离加热器(如:电阻丝、加热管)放置,不堵塞通风孔(道),以避免局部温度过高使有机涂层老化。 ⑶.电阻片干燥的温度以100℃±5℃,保温3~4小时为佳。对升温速度无要求,但保温时间必须是温度到达100℃后再开始计时。 ⑷.保温后电阻片必须随烘箱冷却到60℃以下方可开门取出使用。需要加速冷却时可将烘箱门打开1~10cm,但当烘箱内温度降到60℃时必须将烘箱门关严。取出使用必须随用随取,每次取出少量,不可一次大量取出放置,以免再次吸潮。 ⑸.当天没有用完的电阻片,必须放入60℃烘箱内保管,或者下次使用前重新干燥。 2. 芯体装配 避雷器芯体装配间应安装空调机和除湿机,控制装配间温度在20℃~25℃、相对湿度不大于45%. 温度、湿度达到要求并且做好了各项准备工作后,再取出电阻片装配。装配中应注意电阻片的方向,全部电阻片都必须是印有电压数字的一端朝上(避雷器高压端),印有批号的一端朝下(避雷器接地端)。装配好的芯体保管中必须采取防潮措施,不可在没有防潮措施的情况下长时间放置。110kV 及以上电压等级的避雷器,阀片以外的其他零部件(包括金属零部件)装配前也都必须进行干燥处理。 3. 芯体固化 无纬带缠绕芯体烘烤固化,必须注意以下几点: ⑴.应使用有热风循环的烘箱进行,烘箱内温差不大于5℃。没有热风循环的烘箱同样必须用水银温度计测定确认烘箱内上下左右的温差,温差大于10℃的应慎重使用。 ⑵.芯体装入烘箱内相互之间必须留有一定通风间隙,芯体也不可贴近加热器,不要堵塞通风孔(道),以防止局部温度过高导致树脂老化。 ⑶.固化时必须逐渐升温,并在100℃左右保温1小时再逐渐升温至最高温度。

简单的制备纳米氧化锌的制备方法

在水——乙醇介质中用氨水沉淀法制备出了纳米()和材料,讨论了介质组成对沉淀产物微粒地粒径范围及形貌地影响,并研究出由()分解为纳米地最佳干燥脱水条件为℃、.表明本方法不需高温处理就可得到颗粒均匀且分布窄地纳米材料,粒径可达~. 一、试剂与仪器 主要原料为氯化锌、无水乙醇、氨水等,均为分析纯试剂. 仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱. 二、试验方法 以水——乙醇为溶剂,其中醇地体积含量分别为(去离子水)、、、.将氯化锌、氨水配制成不同浓度地溶液(不同浓度是多少?).取一定体积(一定体积是多少?)地氯化锌乙醇溶液于烧杯中,加以适当速度搅拌,不同浓度地氨水从微型滴管中缓慢滴入氯化锌乙醇溶液中,使之进行反应.控制氨水用量,调节值为左右,确定滴定终点.反应得到地白色沉淀物,经抽滤洗涤后自然风干即为()纳米粉,()经干燥(℃、)脱水后,为纳米粉体.资料个人收集整理,勿做商业用途 三、不同乙醇浓度对粒径地影响 并且含量越高,这种抑制作用也越强.资料个人收集整理,勿做商业用途 氯化锌地浓度对地粒径影响不大,规律性不强;氨水地浓度对地粒径稍有影响,浓度增大,粒径是减小趋势,浓度为时,粒径为~,浓度为时,粒径为~.资料个人收集整理,勿做商业用途 五、该方法操作简单,条件温和,所用原材料成本低,过程易控制等,是制备纳米粉地好方法,值得推广. 固相合成氧化锌 一、试剂与前驱物地准备 七水硫酸锌、无水草酸纳均为分析纯; 准确称取比为地七水硫酸锌和无水草酸纳,分别研磨后,充分混合,再转入同一研钵中共研磨.热水洗去副产物后,再用无水乙醇淋次,于℃烘干.资料个人收集整理,勿做商业用途二、纳米氧化锌地制备 由前驱物地热分析得地热分解温度为℃.将置于马弗炉中加热升温至分解温度,保持,即得浅黄色纳米氧化锌.资料个人收集整理,勿做商业用途 液相沉淀制备氧化锌 一、单组分锌氨溶液地制备

沉淀法制备纳米ZnO

设计性实验2 沉淀法制备纳米ZnO 摘要:本实验以Zn(NO 3) 2 ·6H 2 O和NH 4 HCO 3 为原料,聚乙二醇(PEG600)为模板,采用 直接沉淀法制备纳米氧化锌,并计算产率和晶粒尺寸,讨论影响纳米ZnO晶粒大小的影响因素。 关键词:纳米氧化锌;直接沉淀法;产率;晶粒尺寸 1.直接沉淀发制备纳米ZnO的理论基础 氧化锌俗称锌白,常作白色颜料,是一种重要的工业原料,它广泛应用于涂料、橡胶、陶瓷、玻璃等多种工业。纳米氧化锌与普通氧化锌相比显示出诸多特殊性能,如:压电性、荧光性、非迁移性、吸收和散射紫外线能力等,因而其用途大大扩展,如可用于压敏材料、压电材料、荧光体、化妆品、气体传感器、吸湿离子传导温度计、图象记录材料、磁性材料、紫外线屏蔽材料、高效催化剂和光催化剂。国内外专家学者一致认为,纳米氧化锌必将逐步取代传统的氧化锌系列。 纳米材料是指晶粒(或组成相)在任一维的尺寸小于100nm的材料,是由粒径尺寸介于1 ~ 100nm之间的超细微粒组成的固体材料,按空间形态可分为一维纳米丝、二维纳米膜和三维纳米粒。 纳米材料的制备方法分类如下表:

本实验采用化学沉淀法里的直接沉淀法制备纳米ZnO ,直接沉淀法的原理是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。 X-射线衍射仪可以利用衍射原理,精确测定物质的晶体结构,织构及应力,精确的进行物相分析,定性分析,定量分析.利用谢乐公式:Dc = 0.89λ /(B cos θ) (λ为X 射线波长, B 为衍射峰半高宽, θ 为衍射角) ,根据粉体X-射线衍射图可以得到相关数据,计算得到粒子的尺寸。 2.实验 2.1实验药品及仪器 Zn(NO 3)2·6H 2O 、 NH 4HCO 3、聚乙二醇(PEG600)、无水乙醇、去离子水 烘箱、500ml 烧杯、250ml 烧杯两个、玻璃棒、PH 计、马弗炉、X 射线衍射仪,胶头滴管。 2.2制备原理及实验步骤 配制0.8mol/l 的聚乙二醇(PEG600)溶液,称取23.8g 的 Zn(NO 3)2·6H 2O 溶于100ml 去离子水,并加入1g 上述配制的聚乙二醇(PEG600)溶液。称取31.6g NH 4HCO 3定容至200ml 配制成2.0mol/l 的溶液。然后将NH 4HCO 3溶液缓慢滴加到锌盐溶液中。调节反应体系的终点PH 值为7.5.将所得的沉淀物减压抽滤,用1mol/L 的NH 4HCO 3溶液无水乙醇分别洗涤3次,60-80℃烘干后放于马弗炉400℃煅烧2h ,即得纳米ZnO 粉体。 主要反应历程如下: Zn 2++2CO 3→ZnCO 3(↓)+CO 2↑+H 2O ZnCO 3→ZnO+CO 2(↑)

相关文档