文档视界 最新最全的文档下载
当前位置:文档视界 › windows操作系统内存管理方式综述

windows操作系统内存管理方式综述

windows操作系统内存管理方式综述
windows操作系统内存管理方式综述

一页式管理

1 页式管理的基本原理将各进程的虚拟空间划分成若干个长度相等的页(page),页式管理把内存空间按页的大小划分成片或者页面(page frame),然后把页式虚拟地址与内存地址建立一一对应页表,并用相应的硬件地址变换机构,来解决离散地址变换问题。页式管理采用请求调页或预调页技术实现了内外存存储器的统一管理。

它分为

1 静态页式管理。静态分页管理的第一步是为要求内存的作业或进程分配足够的页面。系统通过存储页面表、请求表以及页表来完成内存的分配工作。静态页式管理解决了分区管理时的碎片问题。但是,由于静态页式管理要求进程或作业在执行前全部装入内存,如果可用页面数小于用户要求时,该作业或进程只好等待。而且作业和进程的大小仍受内存可用页面数的限制。

2 动态页式管理。动态页式管理是在静态页式管理的基础上发展起来的。它分为请求页式管理和预调入页式管理。

优点:没有外碎片,每个内碎片不超过页大小。一个程序不必连续存放。便于改变程序占用空间的大小(主要指随着程序运行而动态生成的数据增多,要求地址空间相应增长,通常由系统调用完成而不是操作系统自动完成)。

缺点:程序全部装入内存。

要求有相应的硬件支持。例如地址变换机构,缺页中断的产生和选择淘汰页面等都要求有相应的硬件支持。这增加了机器成本。增加了系统开销,例如缺页中断处理机,请求调页的算法如选择不当,有可能产生抖动现象。虽然消除了碎片,但每个作业或进程的最后一页内总有一部分空间得不到利用果页面较大,则这一部分的损失仍然较大。

二段式管理的基本思想

把程序按内容或过程(函数)关系分成段,每段有自己的名字。一个用户作业或进程所包含的段对应一个二维线形虚拟空间,也就是一个二维虚拟存储器。段式管理程序以段为单位分配内存,然后通过地址影射机构把段式虚拟地址转换为实际内存物理地址。

程序通过分段(segmentation)划分为多个模块,如代码段、数据段、共享段。其优点是:可以分别编写和编译。可以针对不同类型的段采取不同的保护。可以按段为单位来进行共享,包括通过动态链接进行代码共享。

三段页式管理的实现原理

1 虚地址的构成

一个进程中所包含的具有独立逻辑功能的程序或数据仍被划分为段,并有各自的段号s。这反映相继承了段式管理的特征。其次,对于段s中的程序或数据,则按照一定的大小将其划分为不同的页。和页式系统一样,最后不足一页的部分仍占一页。这反映了段页式管理中的页式特征。从而,段页式管理时的进程的虚拟地址空间中的虚拟地址由三部分组成:即段号s,页号P和页内相对地址d。虚拟空间的最小单位是页而不是段,从而内存可用区也就被划分成为着干个大小相等的页面,且每段所拥有的程序和数据在内存中可以分开存放。分段的大小也不再受内存可用区的限制。

2 段表和页表

为了实现段页式管理,系统必须为每个作业或进程建立一张段表以管理内存分配与释放、缺段处理、存储保护相地址变换等。另外,由于一个段又被划分成了若干页,每个段又必须建立一张页表以把段中的虚页变换成内存中的实际页面。显然,与页式管理时相同,页表中也要有相应的实现缺页中断处理和页面保护等功能的表项。另外,由于在段页式管理中,页表不再是属于进程而是属于某个段,因此,段表中应有专项指出该段所对应页表的页表始址和页表长度。

3 动态地址变换过程

在一般使用段页式存储管理方式的计算机系统中,都在内存中辟出一块固定的区域存放进程的段表和页表。因此,在段页式管理系统中,要对内存中指令或数据进行一次存取的话,至少需要访问三次以上的内存:

第一次是由段表地址寄存器得段表始址后访问段表,由此取出对应段的页表在内存中的地址。

第二次则是访问页表得到所要访问的物理地址。

第三次才能访问真正需要访问的物理单元。

显然,这将使CPU的执行指令速度大大降低。为了提高地址转换速度,设置快速联想寄存器就显得比段式管理或页式管理时更加需要。在快速联想寄存器中,存放当前最常用的段号s、页号p和对应的内存页面与其它控制用栏目。当要访问内存空间某一单元时,可在通过段表、页表进行内存地址查找的同时,根据快速联想寄存器查找其段号和页号。如果所要访问的段或页在快速联想寄存器中,则系统不再访问内存中的段表、页表而直接把快速联想寄存器中的值与页内相对地址d拼接起来得到内存地址。

总之,因为段页式管理是段式管理的页式管理方案结合而成的,所以具有它们二者的优点。但反过来说,由于管理软件的增加,复杂性和开销也就随之增加了。另外,需要的硬件以及占用的内存也有所增加。更重要的是,如果不采用联想寄存器的方式提高CPU的访内速度,将会使得执行速度大大下降。

内存管理器是Windows 2000/XP执行体的一部分,位于Ntoskrnl.exe文件中。在硬件抽象层(HAL)中没有内存管理器的任何部分。它由以下几个部分组成:

·一组执行体系统服务程序,用于虚拟内存的分配、回收和管理。大多数这些服务都是以Win32API或核心态的设备驱动程序接口形式出现。

·一个转换无效和访问错误陷阱处理程序,用于解决硬件检测到的内存管理异常,并代表进程将虚拟页面装入内存。

·运行在六个不同的核心态系统线程上下文中的几个关键组件:

工作集管理器(working setmanager)(优先级为16) 平衡集管理器(内核创建的系统线程)每

秒钟调用它一次。当空闲内存低于某一界限时,便启动所有的内存管理策略,如工作集的修整、老化和已修改页面的写入等。

进程/堆栈交换程序(process/stackswapper)(优先级为23) 完成进程和内核线程堆栈的

换入和换出操作。当需要进行换人和换出操作时,平衡集管理器和内核中的线程调度代码将唤醒该线程。

已修改页面写入器(modifiedpagewriter)(优先级为17) 将修改链表上的“脏”页写回到适当的页文件。需要减小修改链表的大小时,此线程将被唤醒。

映射页面写入器(mappedpagewriter)(优先级为17) 将映射文件中脏页写回磁盘。需要减小修改链表的大小,或映射文件中某些页面在修改链表中超过了5分钟时,它将被唤醒。

废弃段线程(dereference segmentthread)(优先级为18) 负责系统高速缓存和页面文件的扩大和缩小。(例如,如果没有虚拟地址空间满足分页缓冲池的增加,该线程将减小系统高速缓存的大小。

零页线程(zeropagethread)(优先级为0》将空闲链表中的页面清零,以便有足够的零页面满足将来的零页需求。

正如其他所有的Windows:2000/XP.执行程序组件一样;内存管理器是完全可重人的,它支持多进程并发执行。为了实现可重入,内存管理器使用了几个不同的内部同-步机制来控制它自身数据结构的访问,如旋转锁和执行程序资源。下面将分别介绍Windows 2000/XP内存管理系统,包括进程虚存空间的布局、基于Intel x86体系结构的地址变换过程、分配和回收虚拟内存的系统服务、工作集机制和物理内存的管理,着

重描述内存管理机构的组件、关键的数据结构以及相应的算法。最后+还介绍了内存保护、写时复制以及地址窗口扩展等技术。

每个进程理论上都有4G的虚拟空间(其实只有< 2G,顶部是系统内核区映射地址空间)。进程实际使用的空间当然远远不到2G,系统给每个进程一个内存映射分配表(以页为计量单位,一页4K),装入一个程序(EXE)的时候,将数据段代码段都从硬盘装入,同时填写内存映射表(物理内存-》虚拟线性内存),所以程序执行的时候看似都是0~4G的访问,但实际上每次访问都有查表隐射到物理内存的过程)。——这点是由当前的CPU架构决定的,跟操作系统没关系,当然有实模式虚模式分。

物理内存的大小跟虚拟地址空间无关,因为运行时候都是虚拟线性地址空间。即使当前系统所有进程的数据程序等要求空间超出物理内存大小,系统也有硬盘上的虚拟内存——这个可以非常大,足够空间需求。系统将当前运行进程的页面放入物理内存,将很久不运行的进程相关数据给倒腾到硬盘上去。所以如果内存小的时候系统打开很多程序就很慢,这就是内存-硬盘来回折腾花费时间。

* 5.3.3 使用全局和局部函数分配和释放内存

**************************************/

/* 头文件*/

#include

#include

/*************************************

* int main(void)

* 功能演示Global*函数的使用

*

* 参数无

*

**************************************/

int main(void)

{

LPVOID lpMem; //内存地址

HGLOBAL hMem; //内存句柄

SIZE_T sizeMem; //内存大小

UINT uFlags; //属性

//分配内存

lpMem = (LPVOID)GlobalAlloc(GPTR,1000);

//将数据复制到内存中

lstrcpy(lpMem,"this is a string");

//获得内存属性,打印

uFlags = GlobalFlags(lpMem);

printf("内存中的内容:\"%s\",内存地址:0x%.8x,内存属性:%u\n", lpMem,lpMem,uFlags);

//释放

GlobalFree(lpMem);

//分配内存,获取信息

hMem = GlobalAlloc(GMEM_MOVEABLE,1000);

sizeMem = GlobalSize(hMem);

uFlags = GlobalFlags(hMem);

//打印信息

printf("内存大小:%d,内存句柄:0x%.8x,内存属性:%u\n", sizeMem,hMem,uFlags);

//锁定

lpMem = GlobalLock(hMem);

//释放

GlobalFree(hMem);

return 0;

}

**************************************/

/* 头文件*/

#include

#include

/* 全局变量*/

HANDLE hHeap;

/* 函数申明*/

DWORD WINAPI ThreadProc(LPVOID lpParameter);

/*************************************

* int main(int argc, PCHAR argv[])

* 功能演示堆的使用

*

* 参数argv[1]如果为“-s”那么使用进程堆

* argv[1]如果为“-a”那么创建一个可变大小的堆* argv[1]如果为其他,那么创建有最大大小的堆。*

* 2007年10月

*

**************************************/

int main(int argc, PCHAR argv[])

{

DWORD dwThreadId;

HANDLE hThread;

DWORD i;

LPVOID lpMem;

hHeap = HeapCreate(HEAP_NO_SERIALIZE,0,0);

if(hHeap != NULL)

{

printf("线程1:创建堆成功\n");

}

else

{

printf("线程1:创建堆失败(%d)\n",GetLastError());

return 1;

}

hThread = CreateThread(

NULL, 0,

ThreadProc,

NULL, 0,

&dwThreadId);

if(hThread == NULL)

printf("线程1:创建线程失败(%d)\n",GetLastError());

return 1;

}

printf("线程1:创建线程成功\n");

for(i = 0; i<30; i++)

{

Sleep(100);

lpMem = HeapAlloc(hHeap,HEAP_ZERO_MEMORY,40960);

if(lpMem == NULL)

{

printf("线程1:分配内存错误(%d)\n",GetLastError());

continue;

}

if(!HeapFree(hHeap,HEAP_NO_SERIALIZE,lpMem))

{

printf("线程1:释放内存错误(%d)\n",GetLastError());

continue;

}

printf("线程1:可以从堆分配到内存\n");

}

return 0;

}

DWORD WINAPI ThreadProc(

LPVOID lpParameter

)

{

LPVOID lpMem;

printf("线程2:等待1秒\n");

Sleep(1000);

if(HeapLock(hHeap))

{

printf("线程2:堆已经被锁定\n");

lpMem = HeapAlloc(hHeap,HEAP_ZERO_MEMORY,40960);

if(lpMem == NULL)

{

goto error;

}

printf("线程2:已经成功分配了内存\n");

printf("线程2:等待1秒\n");

Sleep(1000);

if(HeapFree(hHeap,HEAP_NO_SERIALIZE,lpMem))

{

printf("线程2:已经成功释放了内存\n");

}

else

{

goto error;

}

if(HeapUnlock(hHeap))

{

printf("线程2:已经解除了对堆的锁定\n");

}

else

{

goto error;

}

}

else

{

goto error;

}

return 0;

error:

printf("线程2:错误(%d),退出\n",GetLastError());

ExitProcess(0);

}

获得当前系统内存使用情况

**************************************/

/* 头文件*/

#include

#include

/* 常量定义*/

#define MEM_BLOCK_MAX_SIZE 32

/*************************************

* BOOL ShowMemContent(LPVOID lpMem,SIZE_T dwSize) * 功能显示内存中的内容

*

* 参数LPVOID lpMem 需要显示的内存指针

* SIZE_T dwSize 大小

*

* 返回值BOOL 如果数据过大可能溢出,则返回FALSE。**************************************/

BOOL ShowMemContent(LPVOID lpMem,SIZE_T dwSize) {

BYTE lpShow[MEM_BLOCK_MAX_SIZE];

INT i=0;

//防止栈溢出

if(dwSize>MEM_BLOCK_MAX_SIZE)

{

printf("over-flow");

return FALSE;

}

//复制到数组

CopyMemory((LPVOID)lpShow,lpMem,dwSize);

//显示

for(; i

{

printf("%.2X ",lpShow[i]);

if(!((i+1)%16))

{

printf("\n");

}

}

printf("\n");

return TRUE;

}

/*************************************

* int main(void)

* 功能获取内存使用情况

*

* 参数未使用

**************************************/

int main(void)

{

HANDLE hHeap = GetProcessHeap();

LPVOID lpSrc;

LPVOID lpDis;

//分配内存

lpSrc = HeapAlloc(hHeap,0,MEM_BLOCK_MAX_SIZE);

lpDis = HeapAlloc(hHeap,0,MEM_BLOCK_MAX_SIZE);

//显示新分配的内存

printf("HeapAlloc 分配但不清零:\n");

ShowMemContent(lpDis, MEM_BLOCK_MAX_SIZE);

//将内存清零并显示

ZeroMemory(lpDis,MEM_BLOCK_MAX_SIZE);

printf("ZeroMemory 清零:\n");

ShowMemContent(lpDis, MEM_BLOCK_MAX_SIZE);

//使用0xBB填充全部内存

FillMemory(lpSrc,MEM_BLOCK_MAX_SIZE,0xBB);

//将内存块的前半部分使用0xAA填充

FillMemory(lpSrc,MEM_BLOCK_MAX_SIZE/2,0xAA);

CopyMemory(lpDis,lpSrc,MEM_BLOCK_MAX_SIZE);

printf("FillMemory 有规律的填充内存:\n");

ShowMemContent(lpDis,MEM_BLOCK_MAX_SIZE);

//释放内存

HeapFree(hHeap,0,lpSrc);

HeapFree(hHeap,0,lpDis);

return 0;

}

操作系统内存管理复习过程

操作系统内存管理

操作系统内存管理 1. 内存管理方法 内存管理主要包括虚地址、地址变换、内存分配和回收、内存扩充、内存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的内存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,内存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和 DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求内

存空间少的程序,造成内存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的内存。 2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把内存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行内存分区的共享。 分区式存储管理引人了两个新的问题:内碎片和外碎片。 内碎片是占用分区内未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。

分区式存储管理常采用的一项技术就是内存紧缩(compaction)。 2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把内存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:内碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程中通过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有内碎

2014-2015(1)操作系统实验

实验项目名称:进程的同步(实验一) 1、实验目的 (1) 掌握进程和线程基本概念和属性; (2) 掌握用PV操作解决并发进程的同步问题; (3) 掌握用于同步的信号量初值的设置; (4) 掌握如何处理共享资源的直接制约关系。 2、实验内容 (1) 设计一个模拟若干售票网点的售票程序。界面可以参考图1。还应设计多个后台售票线程并发运行。 图1售票 (2) 模拟:桌上有一只盘子,每次只能放入一个水果。爸爸专向盘子中放苹果,妈妈专向盘子中放桔子,一个女儿专等吃盘子里的苹果,一个儿子专等吃盘子里的桔子。只要盘子空则爸爸或妈妈都可以向盘子放一个水果,仅当盘子中有自己需要的水果时,儿子或女儿可以从盘子中取出水果。放-取水果的几种情况如图2(a)~(f)所示,可以参照进行设计。 (a)盘子空时取水果 (b)父亲放入苹果

(c) 儿子取水果 (d) 女儿取水果 (e)儿子取走桔子 (f)盘子满时放水果 图2 放-取水果 (3) 自选其它能反映进程互斥问题的应用。 实验项目名称:处理机调度(实验二) 1、实验目的 (1) 掌握几种处理机调度算法的基本思想和特点; (2) 理解并发与并行的区别; (3) 比较几种算法的特点。 2、实验内容 编写程序模拟处理机调度,参照图3。 (1) 时间片轮转 (2) 动态优先权调度 (3) 高响应比优先调度

图3 模拟处理机调度 实验项目名称:银行家算法(实验三) 1、实验目的 银行家算法是避免死锁的一种重要方法,本实验要求用高级语言编写和调试一个简单的银行家算法程序。加深了解有关资源申请、避免死锁等概念,并体会和了解死锁和避免死锁的具体实施方法。 2、实验内容 (1) 设计进程对各类资源最大申请表示及初值确定。 (2) 设定系统提供资源初始状况。 (3) 设定每次某个进程对各类资源的申请表示。 (4) 编制程序,依据银行家算法,决定其申请是否得到满足。 具体设计可参照图4(a)~(c) 进行。

linux内存管理子系统 笔记

4-4 linux内存管理子系统 4-4-1 linux内存管理(参考课件) 物理地址:cpu地址总线上寻址物理内存的地址信号,是地址变换的最终结果 逻辑地址:程序代码经过编译后,出现在汇编程序中的地址(程序设计时使用的地址) 线性地址:又名虚拟地址,32位cpu架构下4G地址空间 CPU要将一个逻辑地址转换为物理地址,需要两步: 1、首先CPU利用段式内存管理单元,将逻辑地址转换成线性地址; 2、再利用页式内存管理单元,把线性地址最终转换为物理地址 相关公式: 逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器)(通用的) 16位CPU:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 线性地址=段寄存器的值×16+逻辑地址的偏移部分 物理地址=线性地址(没有页式管理) 32位CPU:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 线性地址=段寄存器的值+逻辑地址的偏移部分 物理地址<——>线性地址(mapping转换) ARM32位:逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 逻辑地址=段内偏移量(段基地址为0) 线性地址=逻辑地址=段内偏移量(32位不用乘以32) 物理地址<——>线性地址(mapping转换) ************************!!以下都是x86模式下!!********************************* 一、段式管理 1.1、16位CPU:(没有页式管理) 1.1.1、段式管理的由来: 16位CPU内部有20位地址总线,可寻址2的20次方即1M的内存空间,但16位CPU 只有16位的寄存器,因此只能访问2的16次方即64K。因此就采用了内存分段的管理模式,在CPU内部加入了段寄存器,这样1M被分成若干个逻辑段,每个逻辑段的要求如下: 1、逻辑段的起始地址(段地址)必须是16的整数倍,即最后4个二进制位须全是0 (因此不必保存)。 2、逻辑段的最大容量为64K。 1.1.2、物理地址的形成方式: 段地址:将段寄存器中的数值左移4位补4个0(乘以16),得到实际的段地址。 段偏移:在段偏移寄存器中。 1)逻辑地址=段基地址+段内偏移量(段基地址寄存器+段偏移寄存器) 2)由逻辑地址得到物理地址的公式为:(因为没有页式管理,所以这一步就得到了物理地址)物理地址PA=段寄存器的值×16+逻辑地址的偏移部分(注意!!)(段与段可能会重叠)

操作系统实验内存分配

西安邮电大学 (计算机学院) 课内实验报告 实验名称:内存管理 专业名称:软件工程 班级: 学生姓名: 学号(8位): 指导教师: 实验日期:

实验五:进程 1.实验目的 通过深入理解区管理的三种算法,定义相应的数据结构,编写具体代码。充分模拟三种算法的实现过程,并通过对比,分析三种算法的优劣。 (1)掌握内存分配FF,BF,WF策略及实现的思路; (2)掌握内存回收过程及实现思路; (3)参考给出的代码思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。 2.实验要求: 1)掌握内存分配FF,BF,WF策略及实现的思路; 2)掌握内存回收过程及实现思路; 3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。 3.实验过程: 创建进程:

删除其中几个进程:(默认以ff首次适应算法方式排列) Bf最佳适应算法排列方式:

wf最差匹配算法排列方式: 4.实验心得: 这次实验实验时间比较长,而且实验指导书中对内存的管理讲的很详细,老师上课的时候也有讲的很详细,但是代码比较长,刚开始的时候也是不太懂,但是后面经过和同学一起商讨,明白几种算法的含义: ①首次适应算法。在采用空闲分区链作为数据结构时,该算法要求空闲分区链表以地址递增的次序链接。在进行内存分配时,从链首开始顺序查找,直至找到一个能满足进程大小要求的空闲分区为止。然后,再按照进程请求内存的大小,从该分区中划出一块内存空间分配给请求进程,余下的空闲分区仍留在空闲链中。 ②循环首次适应算法。该算法是由首次适应算法演变而形成的,在为进程分配内存空间时,从上次找到的空闲分区的下一个空闲分区开始查找,直至找到第一个能满足要求的空闲分区,并从中划出一块与请求的大小相等的内存空间分配给进程。 ③最佳适应算法将空闲分区链表按分区大小由小到大排序,在链表中查找第一个满足要求的分区。 ④最差匹配算法将空闲分区链表按分区大小由大到小排序,在链表中找到第一个满足要求的空闲分区。 实验中没有用到循环首次适应算法,但是对其他三种的描述还是很详细,总的来说,从实验中还是学到了很多。 5.程序源代码: #include #include #include

操作系统实验之内存管理实验报告

学生学号 实验课成绩 武汉理工大学 学生实验报告书 实验课程名称 计算机操作系统 开 课 学 院 计算机科学与技术学院 指导老师姓名 学 生 姓 名 学生专业班级 2016 — 2017 学年第一学期

实验三 内存管理 一、设计目的、功能与要求 1、实验目的 掌握内存管理的相关内容,对内存的分配和回收有深入的理解。 2、实现功能 模拟实现内存管理机制 3、具体要求 任选一种计算机高级语言编程实现 选择一种内存管理方案:动态分区式、请求页式、段式、段页式等 能够输入给定的内存大小,进程的个数,每个进程所需内存空间的大小等 能够选择分配、回收操作 内购显示进程在内存的储存地址、大小等 显示每次完成内存分配或回收后内存空间的使用情况 二、问题描述 所谓分区,是把内存分为一些大小相等或不等的分区,除操作系统占用一个分区外,其余分区用来存放进程的程序和数据。本次实验中才用动态分区法,也就是在作业的处理过程中划分内存的区域,根据需要确定大小。 动态分区的分配算法:首先从可用表/自由链中找到一个足以容纳该作业的可用空白区,如果这个空白区比需求大,则将它分为两个部分,一部分成为已分配区,剩下部分仍为空白区。最后修改可用表或自由链,并回送一个所分配区的序号或该分区的起始地址。 最先适应法:按分区的起始地址的递增次序,从头查找,找到符合要求的第一个分区。

最佳适应法:按照分区大小的递增次序,查找,找到符合要求的第一个分区。 最坏适应法:按分区大小的递减次序,从头查找,找到符合要求的第一个分区。 三、数据结构及功能设计 1、数据结构 定义空闲分区结构体,用来保存内存中空闲分区的情况。其中size属性表示空闲分区的大小,start_addr表示空闲分区首地址,next指针指向下一个空闲分区。 //空闲分区 typedef struct Free_Block { int size; int start_addr; struct Free_Block *next; } Free_Block; Free_Block *free_block; 定义已分配的内存空间的结构体,用来保存已经被进程占用了内存空间的情况。其中pid作为该被分配分区的编号,用于在释放该内存空间时便于查找。size表示分区的大小,start_addr表示分区的起始地址,process_name存放进程名称,next指针指向下一个分区。 //已分配分区的结构体 typedef struct Allocate_Block { int pid; int size; int start_addr; char process_name[PROCESS_NAME_LEN]; struct Allocate_Block *next; } Allocate_Block; 2、模块说明 2.1 初始化模块 对内存空间进行初始化,初始情况内存空间为空,但是要设置内存的最大容量,该内存空间的首地址,以便之后新建进程的过程中使用。当空闲分区初始化

第四章 操作系统存储管理(练习题)

第四章存储管理 1. C存储管理支持多道程序设计,算法简单,但存储碎片多。 A. 段式 B. 页式 C. 固定分区 D. 段页式 2.虚拟存储技术是 B 。 A. 补充内存物理空间的技术 B. 补充相对地址空间的技术 C. 扩充外存空间的技术 D. 扩充输入输出缓冲区的技术 3.虚拟内存的容量只受 D 的限制。 A. 物理内存的大小 B. 磁盘空间的大小 C. 数据存放的实际地址 D. 计算机地址位数 4.动态页式管理中的 C 是:当内存中没有空闲页时,如何将已占据的页释放。 A. 调入策略 B. 地址变换 C. 替换策略 D. 调度算法 5.多重分区管理要求对每一个作业都分配 B 的内存单元。 A. 地址连续 B. 若干地址不连续 C. 若干连续的帧 D. 若干不连续的帧 6.段页式管理每取一数据,要访问 C 次内存。 A. 1 B. 2 C. 3 D. 4 7.分段管理提供 B 维的地址结构。 A. 1 B. 2 C. 3 D. 4 8.系统抖动是指 B。 A. 使用计算机时,屏幕闪烁的现象 B. 刚被调出内存的页又立刻被调入所形成的频繁调入调出的现象 C. 系统盘不干净,操作系统不稳定的现象 D. 由于内存分配不当,造成内存不够的现象 9.在 A中,不可能产生系统抖动现象。 A. 静态分区管理 B. 请求分页式管理 C. 段式存储管理 D. 段页式存储管理 10.在分段管理中 A 。 A. 以段为单元分配,每段是一个连续存储区 B. 段与段之间必定不连续 C. 段与段之间必定连续 D. 每段是等长的 11.请求分页式管理常用的替换策略之一有 A 。 A. LRU B. BF C. SCBF D. FPF 12.可由CPU调用执行的程序所对应的地址空间为 D 。 A. 名称空间 B. 虚拟地址空间 C. 相对地址空间 D. 物理地址空间 13. C 存储管理方式提供二维地址结构。 A. 固定分区 B. 分页

全面介绍Windows内存管理机制

全面介绍Windows内存管理机制及C++内存分配实例 文章整理: https://www.docsj.com/doc/2510196296.html, 文章来源: 网络- - 本文背景: 在编程中,很多Windows或C++的内存函数不知道有什么区别,更别谈有效使用;根本的原因是,没有清楚的理解操作系统的内存管理机制,本文企图通过简单的总结描述,结合实例来阐明这个机制。 本文目的: 对Windows内存管理机制了解清楚,有效的利用C++内存函数管理和使用内存。本文内容: 本文一共有六节,由于篇幅较多,故按节发表。 1.进程地址空间 1.1地址空间 ?32|64位的系统|CPU 操作系统运行在硬件CPU上,32位操作系统运行于32位CPU 上,64位操作系统运行于64位CPU上;目前没有真正的64位CPU。 32位CPU一次只能操作32位二进制数;位数多CPU设计越复杂,软件设计越简单。 软件的进程运行于32位系统上,其寻址位也是32位,能表示的空间是232=4G,范围从0x0000 0000~0xFFFF FFFF。 ?NULL指针分区 范围:0x0000 0000~0x0000 FFFF 作用:保护内存非法访问 例子:分配内存时,如果由于某种原因分配不成功,则返回空指针0x0000 0000;当用户继续使用比如改写数据时,系统将因为发生访问违规而退出。 那么,为什么需要那么大的区域呢,一个地址值不就行了吗?我在想,是不是因为不让8或16位的程序运行于32位的系统上呢?!因为NULL分区刚好范围是16的进程空间。 ?独享用户分区 范围:0x0001 0000~0x7FFE FFFF 作用:进程只能读取或访问这个范围的虚拟地址;超越这个范围的行为都 会产生违规退出。 例子: 程序的二进制代码中所用的地址大部分将在这个范围,所有exe 和dll文件都加载到这个。每个进程将近2G的空间是独享的。 注意:如果在boot.ini上设置了/3G,这个区域的范围从2G扩大为3G: 0x0001 0000~0xBFFE FFFF。 ?共享内核分区 范围:0x8000 0000~0xFFFF FFFF 作用:这个空间是供操作系统内核代码、设备驱动程序、设备I/O高速缓存、非页面内存池的分配、进程目表和页表等。 例子: 这段地址各进程是可以共享的。

Solaris 8内存管理机制研究

Solaris 8内存管理机制研究 吴海燕 戚丽 冯珂 摘 要:寻找性能瓶颈是性能分析中的一项重要任务,内存瓶颈的表现并不像CPU或磁盘那样直接,本文通过对Solaris 8内存管理机制的研究,给出了寻找Solaris 8系统内存瓶颈的方法。 关键词:Solaris 8,内存管理,性能优化 一、问题的提出 清华大学计算机与信息管理中心数据中心现有服务器近百台,其中包括了SUN Fire 15000、SUN Enterprise 5500、SUN Enterprise 5000等大型SUN服务器,Solaris 8是主流操作系统。为了对服务器的资源(如CPU、内存、磁盘、网络)的使用情况进行长期监控,建立性能优化(performance tuning)的基准值,我们开发了一套脚本程序定时采集系统运行参数。在长期的监控中,我们发现Solaris 8系统的空闲内存(freemem)呈现一个有趣的变化规律,如图1所示: 图1 空闲内存(freemem)变化图 图1是某Solaris 8系统(在下文中我们称之为15k-a)自2003年2月份以来的freemem 变化情况,横坐标是时间,纵坐标是freemem的数量,以8K字节为单位。15k-a配置是10路Super SPARCIII CPU,10GB物理内存。从上图可以看到在正常运行时,freemem应该是比较稳定的,15k-a主要是运行数据库,数据库在运行时会占用2G内存作为SGA区使用,因此在通常的负载下,freemem保持在6~7G之间是比较正常的。稳定一段时间后,

15k-a的freemem会持续走低,直到最低值,约为18893×8KMB,然后系统开始回收内存,我们就会看到freemem数量急剧上升。freemem的陡降都发生在凌晨1:00之后,检查系统作业发现每天1:00都会有一个数据库备份脚本开始运行:首先是用“exp”命令给数据库做逻辑备份,然后用“cp”命令把备份出来的文件拷贝到后备存储上。这两个命令都是正常退出,没有任何报错。开始时我们曾怀疑是有内存泄漏,当某一天freemem大幅攀升时,此怀疑被解除了,因为如果有内存泄漏,系统是无法将内存回收回来的。 对于一个物理内存为10GB的系统来说,如果空闲内存(freemem)真的减少到不到二百兆,那将存在着严重的问题。但奇怪的是系统的CPU使用率一直很低,所有进程的反应也很快,系统没有任何资源匮乏的迹象。如何解释这些问题呢,为此我们对Solaris 2.x 的内存管理机制进行了研究。 二、Solaris的内存管理机制 Solaris 8的内存管理为虚拟内存管理。[1]简单地说,虚拟内存就是进程看到比它实际使用的物理内存多得多的内存空间,对于64位的Solaris 8操作系统,进程可以通过8K 大小的段寻址访问2的64次方字节的内存空间,这种8K的段被称为页(page)。传统的UNIX通过进程(pagedaemon)完成虚拟地址和物理地址间的转换,在Solaris中这些是通过一个硬件-MMU(Memory Management Unit)-来实现的。在多处理器系统中,每个CPU 都有自己的MMU。Solaris 8的虚拟存储体系由系统寄存器、CPU CACHE、主存(RAM,物理内存)、外存(磁盘、磁带等)构成。 有两个基本的虚拟内存系统管理模型[2]:交换(swapping)和按需换页(demand paged)模型。交换模型的内存管理粒度是用户进程,当内存不足时,最不活跃的进程被交换出内存(swapping out)。按需换页模型的内存管理粒度是页(page),当内存匮乏时,只有最不经常使用的页被换出。Solaris 8结合使用了这两种内存管理模型,在通常情况下使用按需换页模型,当内存严重不足时,使用交换模型来进行内存释放。 与传统UNIX系统相比,Solaris虚拟内存系统的功能要丰富得多,它负责管理所有与I/O和内存相关的对象,包括内核、用户应用程序、共享库和文件系统。传统的UNIX系统V(System V)使用一个单独的缓冲区来加速文件系统的I/O, Solaris 8则使用虚拟内存系统来管理文件系统的缓存,系统的所有空闲内存都可以被用来做为文件I/O缓存,因为RAM的访问速度比磁盘快得多,所以这样做带来的性能提高是可观的。这也意味着在存在大量文件系统I/O的系统上,空闲内存的数量几乎是0。 了解系统内存被分配到了什么地方,系统在什么情况下进行内存整理是系统管理的重

操作系统内存管理系统

操作系统存管理 1. 存管理方法 存管理主要包括虚地址、地址变换、存分配和回收、存扩充、存共享和保护等功能。 2. 连续分配存储管理方式 连续分配是指为一个用户程序分配连续的存空间。连续分配有单一连续存储管理和分区式储管理两种方式。 2.1 单一连续存储管理 在这种管理方式中,存被分为两个区域:系统区和用户区。应用程序装入到用户区,可使用用户区全部空间。其特点是,最简单,适用于单用户、单任务的操作系统。CP/M和DOS 2.0以下就是采用此种方式。这种方式的最大优点就是易于管理。但也存在着一些问题和不足之处,例如对要求存空间少的程序,造成存浪费;程序全部装入,使得很少使用的程序部分也占用—定数量的存。

2.2 分区式存储管理 为了支持多道程序系统和分时系统,支持多个程序并发执行,引入了分区式存储管理。分区式存储管理是把存分为一些大小相等或不等的分区,操作系统占用其中一个分区,其余的分区由应用程序使用,每个应用程序占用一个或几个分区。分区式存储管理虽然可以支持并发,但难以进行存分区的共享。 分区式存储管理引人了两个新的问题:碎片和外碎片。 碎片是占用分区未被利用的空间,外碎片是占用分区之间难以利用的空闲分区(通常是小空闲分区)。 为实现分区式存储管理,操作系统应维护的数据结构为分区表或分区链表。表中各表项一般包括每个分区的起始地址、大小及状态(是否已分配)。 分区式存储管理常采用的一项技术就是存紧缩(compaction)。

2.2.1 固定分区(nxedpartitioning)。 固定式分区的特点是把存划分为若干个固定大小的连续分区。分区大小可以相等:这种作法只适合于多个相同程序的并发执行(处理多个类型相同的对象)。分区大小也可以不等:有多个小分区、适量的中等分区以及少量的大分区。根据程序的大小,分配当前空闲的、适当大小的分区。 优点:易于实现,开销小。 缺点主要有两个:碎片造成浪费;分区总数固定,限制了并发执行的程序数目。 2.2.2动态分区(dynamic partitioning)。 动态分区的特点是动态创建分区:在装入程序时按其初始要求分配,或在其执行过程过系统调用进行分配或改变分区大小。与固定分区相比较其优点是:没有碎片。但它却引入了另一种碎片——外碎片。动态分区的分区分配就是寻找某个空闲分区,其大小需大于或等于程序的要求。若是大于要求,则将该分区分割成两个分区,其中一个分区为要

操作系统课程设计内存管理

内存管理模拟 实验目标: 本实验的目的是从不同侧面了解Windows 2000/XP 对用户进程的虚拟内存空间的管理、分配方法。同时需要了解跟踪程序的编写方法(与被跟踪程序保持同步,使用Windows提供的信号量)。对Windows分配虚拟内存、改变内存状态,以及对物理内存(physical memory)和页面文件(pagefile)状态查询的API 函数的功能、参数限制、使用规则要进一步了解。 默认情况下,32 位Windows 2000/XP 上每个用户进程可以占有2GB 的私有地址空间,操作系统占有剩下的2GB。Windows 2000/XP 在X86 体系结构上利用二级页表结构来实现虚拟地址向物理地址的变换。一个32 位虚拟地址被解释为三个独立的分量——页目录索引、页表索引和字节索引——它们用于找出描述页面映射结构的索引。页面大小及页表项的宽度决定了页目录和页表索引的宽度。 实验要求: 使用Windows 2000/XP 的API 函数,编写一个包含两个线程的进程,一个线程用于模拟内存分配活动,一个线程用于跟踪第一个线程的内存行为,而且要求两个线程之间通过信号量实现同步。模拟内存活动的线程可以从一个文件中读出要进行的内存操作,每个内存操作包括如下内容: 时间:操作等待时间。 块数:分配内存的粒度。 操作:包括保留(reserve)一个区域、提交(commit)一个区域、释放(release)一个区域、回收(decommit)一个区域和加锁(lock)与解锁(unlock)一个区域,可以将这些操作编号存放于文件。保留是指保留进程的虚拟地址空间,而不分配物理 存储空间。提交在内存中分配物理存储空间。回收是指释放物理内存空间,但在虚拟地址空间仍然保留,它与提交相对应,即可以回收已经提交的内存块。释放是指将物理存储和虚拟地址空间全部释放,它与保留(reserve)相对应,即可以释放已经保留的内存块。 大小:块的大小。 访问权限:共五种,分别为PAGE_READONLY,PAGE_READWRITE ,PAGE_EXECUTE,PAGE_EXECUTE_READ 和PAGE EXETUTE_READWRITE。可以将这些权限编号存放于文件中跟踪线程将页面大小、已使用的地址范围、物理内存总量,以及虚拟内存总量等信息显示出来。

JVM原理以及JVM内存管理机制

一、 JVM简介 JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。JVM工作原理和特点主要是指操作系统装入JVM是通过jdk中Java.exe来完成, 首先来说一下JVM工作原理中的jdk这个东西, .JVM 在整个jdk中处于最底层,负责于操作系统的交互,用来屏蔽操作系统环境,提供一个完整的Java运行环境,因此也就虚拟计算机. 操作系统装入JVM是通过jdk中Java.exe来完成。 通过下面4步来完成JVM环境. 1.创建JVM装载环境和配置 2.装载JVM.dll 3.初始化JVM.dll并挂界到JNIENV(JNI调用接口)实例 4.调用JNIEnv实例装载并处理class类。 对于JVM自身的物理结构,我们可以从下图了解:

JVM的一个重要的特征就是它的自动内存管理机制,在执行一段Java代码的时候,会把它所管理的内存划分 成几个不同的数据区域,其中包括: 1. 程序计数器,众所周知,JVM的多线程是通过线程轮流切换并 分配CPU执行时间的方式来实现的,那么每一个线程在切换 后都必须记住它所执行的字节码的行号,以便线程在得到CPU 时间时进行恢复,这个计数器用于记录正在执行的字节码指令的地址,这里要强调的是“字节码”,如果执行的是Native方法,那么这个计数器应该为null; 2.

3. Java计算栈,可以说整个Java程序的执行就是一个出栈入栈 的过程,JVM会为每一个线程创建一个计算栈,用于记录线程中方法的调用和变量的创建,由于在计算栈里分配的内存出栈后立即被抛弃,因此在计算栈里不存在垃圾回收,如果线程请求的栈深度大于JVM允许的深度,会抛出StackOverflowError 异常,在内存耗尽时会抛出OutOfMemoryError异常; 4. Native方法栈,JVM在调用操作系统本地方法的时候会使用到 这个栈; 5. Java堆,由于每个线程分配到的计算栈容量有限,对于可能会 占据大量内存的对象,则会被分配到Java堆中,在栈中包含了指向该对象内存的地址;对于一个Java程序来说,只有一个Java堆,也就是说,所有线程共享一个堆中的对象;由于Java堆不受线程的控制,如果在一个方法结束之后立即回收这个方法使用到的对象,并不能保证其他线程是否正在使用该对象;因此堆中对象的回收由JVM的垃圾收集器统一管理,和某一个线程无关;在HotSpot虚拟机中Java堆被划分为三代:o新生代,正常情况下新创建的对象会被分配到新生代,但如果对象占据的内存足够大以致超过了新生代的容量限 制,也可能被分配到老年代;新生代对象的一个特点是最 新、且生命周期不长,被回收的可能性高;

windows操作系统内存管理方式综述

一页式管理 1 页式管理的基本原理将各进程的虚拟空间划分成若干个长度相等的页(page),页式管理把内存空间按页的大小划分成片或者页面(page frame),然后把页式虚拟地址与内存地址建立一一对应页表,并用相应的硬件地址变换机构,来解决离散地址变换问题。页式管理采用请求调页或预调页技术实现了内外存存储器的统一管理。 它分为 1 静态页式管理。静态分页管理的第一步是为要求内存的作业或进程分配足够的页面。系统通过存储页面表、请求表以及页表来完成内存的分配工作。静态页式管理解决了分区管理时的碎片问题。但是,由于静态页式管理要求进程或作业在执行前全部装入内存,如果可用页面数小于用户要求时,该作业或进程只好等待。而且作业和进程的大小仍受内存可用页面数的限制。 2 动态页式管理。动态页式管理是在静态页式管理的基础上发展起来的。它分为请求页式管理和预调入页式管理。 优点:没有外碎片,每个内碎片不超过页大小。一个程序不必连续存放。便于改变程序占用空间的大小(主要指随着程序运行而动态生成的数据增多,要求地址空间相应增长,通常由系统调用完成而不是操作系统自动完成)。 缺点:程序全部装入内存。 要求有相应的硬件支持。例如地址变换机构,缺页中断的产生和选择淘汰页面等都要求有相应的硬件支持。这增加了机器成本。增加了系统开销,例如缺页中断处理机,请求调页的算法如选择不当,有可能产生抖动现象。虽然消除了碎片,但每个作业或进程的最后一页内总有一部分空间得不到利用果页面较大,则这一部分的损失仍然较大。 二段式管理的基本思想 把程序按内容或过程(函数)关系分成段,每段有自己的名字。一个用户作业或进程所包含的段对应一个二维线形虚拟空间,也就是一个二维虚拟存储器。段式管理程序以段为单位分配内存,然后通过地址影射机构把段式虚拟地址转换为实际内存物理地址。 程序通过分段(segmentation)划分为多个模块,如代码段、数据段、共享段。其优点是:可以分别编写和编译。可以针对不同类型的段采取不同的保护。可以按段为单位来进行共享,包括通过动态链接进行代码共享。 三段页式管理的实现原理 1 虚地址的构成 一个进程中所包含的具有独立逻辑功能的程序或数据仍被划分为段,并有各自的段号s。这反映相继承了段式管理的特征。其次,对于段s中的程序或数据,则按照一定的大小将其划分为不同的页。和页式系统一样,最后不足一页的部分仍占一页。这反映了段页式管理中的页式特征。从而,段页式管理时的进程的虚拟地址空间中的虚拟地址由三部分组成:即段号s,页号P和页内相对地址d。虚拟空间的最小单位是页而不是段,从而内存可用区也就被划分成为着干个大小相等的页面,且每段所拥有的程序和数据在内存中可以分开存放。分段的大小也不再受内存可用区的限制。 2 段表和页表

实验操作系统存储管理实验报告

实验四操作系统存储管理实验报告 一、实验目的 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。 本实验的目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 二、实验内容 (1)通过计算不同算法的命中率比较算法的优劣。同时也考虑了用户内存容量对命中率的影响。 页面失效次数为每次访问相应指令时,该指令所对应的页不在内存中的次数。 在本实验中,假定页面大小为1k,用户虚存容量为32k,用户内存容量为4页到32页。 (2)produce_addstream通过随机数产生一个指令序列,共320条指令。 A、指令的地址按下述原则生成: 1)50%的指令是顺序执行的 2)25%的指令是均匀分布在前地址部分 3)25%的指令是均匀分布在后地址部分 B、具体的实施方法是: 1)在[0,319]的指令地址之间随机选取一起点m; 2)顺序执行一条指令,即执行地址为m+1的指令; 3)在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; 4)顺序执行一条指令,地址为m’+1的指令 5)在后地址[m’+2,319]中随机选取一条指令并执行; 6)重复上述步骤1)~5),直到执行320次指令 C、将指令序列变换称为页地址流

在用户虚存中,按每k存放10条指令排列虚存地址,即320条指令在虚存中 的存放方式为: 第0条~第9条指令为第0页<对应虚存地址为[0,9]); 第10条~第19条指令为第1页<对应虚存地址为[10,19]); 。。。。。。 第310条~第319条指令为第31页<对应虚存地址为[310,319]); 按以上方式,用户指令可组成32页。 (3)计算并输出下属算法在不同内存容量下的命中率。 1)先进先出的算法

操作系统内存管理原理

内存分段和请求式分页 在深入i386架构的技术细节之前,让我们先返回1978年,那一年Intel 发布了PC处理器之母:8086。我想将讨论限制到这个有重大意义的里程碑上。如果你打算知道更多,阅读Robert L.的80486程序员参考(Hummel 1992)将是一个很棒的开始。现在看来这有些过时了,因为它没有涵盖Pentium处理器家族的新特性;不过,该参考手册中仍保留了大量i386架构的基本信息。尽管8086能够访问1MB RAM的地址空间,但应用程序还是无法“看到”整个的物理地址空间,这是因为CPU寄存器的地址仅有16位。这就意味着应用程序可访问的连续线性地址空间仅有64KB,但是通过16位段寄存器的帮助,这个64KB大小的内存窗口就可以在整个物理空间中上下移动,64KB逻辑空间中的线性地址作为偏移量和基地址(由16位的段寄存器给处)相加,从而构成有效的20位地址。这种古老的内存模型仍然被最新的Pentium CPU支持,它被称为:实地址模式,通常叫做:实模式。 80286 CPU引入了另一种模式,称为:受保护的虚拟地址模式,或者简单的称之为:保护模式。该模式提供的内存模型中使用的物理地址不再是简单的将线性地址和段基址相加。为了保持与8086和80186的向后兼容,80286仍然使用段寄存器,但是在切换到保护模式后,它们将不再包含物理段的地址。替代的是,它们提供了一个选择器(selector),该选择器由一个描述符表的索引构成。描述符表中的每一项都定义了一个24位的物理基址,允许访问16MB RAM,在当时这是一个很不可思议的数量。不过,80286仍然是16位CPU,因此线性地址空间仍然被限制在64KB。 1985年的80386 CPU突破了这一限制。该芯片最终砍断了16位寻址的锁链,将线性地址空间推到了4GB,并在引入32位线性地址的同时保留了基本的选择器/描述符架构。幸运的是,80286的描述符结构中还有一些剩余的位可以拿来使用。从16位迁移到32位地址后,CPU的数据寄存器的大小也相应的增加了两倍,并同时增加了一个新的强大的寻址模型。真正的32位的数据和地址为程序员带了实际的便利。事实上,在微软的Windows平台真正完全支持32位模型是在好几年之后。Windows NT的第一个版本在1993年7月26日发布,实现了真正意义上的Win32 API。但是Windows 3.x程序员仍然要处理由独立的代码和数据段构成的64KB内存片,Windows NT提供了平坦的4GB地址空间,在那儿可以使用简单的32位指针来寻址所有的代码和数据,而不需要分段。在内部,当然,分段仍然在起作用,就像我在前面提及的那样。不过管理段的所有责任都被移给了操作系统。

操作系统实验内存分配

精心整理西安邮电大学 (计算机学院) 课内实验报告 1. (1 (2 (3 原因,写出实验报告。 2.实验要求: 1)掌握内存分配FF,BF,WF策略及实现的思路; 2)掌握内存回收过程及实现思路; 3)参考本程序思路,实现内存的申请、释放的管理程序,调试运行,总结程序设计中出现的问题并找出原因,写出实验报告。

3.实验过程: 创建进程: 删除其中几个进程:(默认以ff首次适应算法方式排列) Bf最佳适应算法排列方式: wf最差匹配算法排列方式: 4.实验心得: 明 实验中没有用到循环首次适应算法,但是对其他三种的描述还是很详细,总的来说,从实验中还是学到了很多。 5.程序源代码: #include #include #include #include

#define PROCESS_NAME_LEN 32 //进程名长度 #define MIN_SLICE 10 //最小碎片的大小#define DEFAULT_MEM_SIZE 1024 //内存大小 #define DEFAULT_MEM_START 0 //起始位置 /*内存分配算法*/ #define MA_FF 1 #define MA_BF 2 #define MA_WF 3 /*描述每一个空闲块的数据结构*/ struct free_block_type { }; /* /* { }; /* /* void display_menu(); int set_mem_size(); void set_algorithm(); void rearrange(int algorithm); int rearrange_WF(); int rearrange_BF(); int rearrange_FF(); int new_process(); int allocate_mem(struct allocated_block *ab);

操作系统 内存管理实验报告

同组同学学号: 同组同学姓名: 实验日期:交报告日期: 实验(No. 4 )题目:编程与调试:内存管理 实验目的及要求: 实验目的: 操作系统的发展使得系统完成了大部分的内存管理工作,对于程序员而言,这些内存管理的过程是完全透明不可见的。因此,程序员开发时从不关心系统如何为自己分配内存,而且永远认为系统可以分配给程序所需的内存。在程序开发时,程序员真正需要做的就是:申请内存、使用内存、释放内存。其它一概无需过问。本章的3个实验程序帮助同学们更好地理解从程序员的角度应如何使用内存。 实验要求: 练习一:用vim编辑创建下列文件,用GCC编译工具,生成可调试的可执行文件,记录并分析执行结果,分析遇到的问题和解决方法。 练习二:用vim编辑创建下列文件,用GCC编译工具,生成可调试的可执行文件,记录并分析执行结果。 练习三:用vim编辑创建下列文件,用GCC编译工具,生成可调试的可执行文件,记录并分析执行结果。 改编实验中的程序,并运行出结果。 实验设备:多媒体电脑 实验内容以及步骤: 在虚拟机中编写好以下程序: #include #include #include int main(void) { char *str; /* 为字符串申请分配一块内存*/ if ((str = (char *) malloc(10)) == NULL) { printf("Not enough memory to allocate buffer\n"); return(1); /* 若失败则结束程序*/ } /* 拷贝字符串“Hello”到已分配的内存空间*/ strcpy(str, "Hello"); /* 显示该字符串*/ printf("String is %s\n", str); /* 内存使用完毕,释放它*/ free(str); return 0; } 调试过后得出的结果截图如下:(由图可看出我将此程序以aa.c为文件名保存,调试后出现aa1文件,调试结果出现语句“String is Hello”)

计算机操作系统试题库new

计算机操作系统试题 一填空: 1.操作系统为用户提供三种类型的使用接口,它们是命令方式和系统调用和图形用户界面。 2.主存储器与外围设备之间的数据传送控制方式有程序直接控制、中断驱动方式、DMA方式和通道控制方式。 3.在响应比最高者优先的作业调度算法中,当各个作业等待时间相同时,运行时间短的作业将得到优先调度;当各个作业要求运行的时间相同时,等待时间长的作业得到优先调度。 4.当一个进程独占处理器顺序执行时,具有两个特性:封闭性和可再现性。 5.程序经编译或汇编以后形成目标程序,其指令的顺序都是以零作为参考地址,这些地址称为逻辑地址。 6.文件的逻辑结构分流式文件和记录式文件二种。 7.进程由程度、数据和FCB组成。 9.操作系统是运行在计算机裸机系统上的最基本的系统软件。11.文件系统中,用于文件的描述和控制并与文件一一对应的是文件控制块。 12.段式管理中,以段为单位,每段分配一个连续区。由于各段长度不同,所以这些存储区的大小不一,而且同一进程的各段之间不要求连续。 13.逻辑设备表(LUT)的主要功能是实现设备独立性。

17.文件的物理结构分为顺序文件、索引文件和索引顺序文件。18.所谓设备控制器,是一块能控制一台或多台外围设备与CPU并行工作的硬件。 20分页管理储管理方式能使存储碎片尽可能少,而且使存利用率较高,管理开销小。 20.计算机操作系统是方便用户、管理和控制计算机软硬件资源的系统软件。 21.操作系统目前有五大类型:批处理操作系统、分时操作系统、实时操作系统、网络操作系统和分布式操作系统。 22.按文件的逻辑存储结构分,文件分为有结构文件,又称为记录式文件和无结构文件,又称流式文件。 23.主存储器与外围设备之间的信息传送操作称为输入输出操作。 24、在设备管理中,为了克服独占设备速度较慢、降低设备资源利用率的缺点,引入了虚拟分配技术,即用共享设备模拟独占设备。 25、常用的存管理方法有分区管理、页式管理、段式管理和段页 式管理。 26、动态存储分配时,要靠硬件地址变换机构实现重定位。 27、在存储管理中常用虚拟存储器方式来摆脱主存容量的限制。 28、在请求页式管理中,当硬件变换机构发现所需的页不在存时,产生缺页中断信号,中断处理程序作相应的处理。 30、在段页式存储管理系统中,面向用户的地址空间是段式划分,面向物理实现的地址空间是页式划分。

Windows内存管理机制及C++内存分配实例(三):虚拟内存

本文背景: 在编程中,很多Windows或C++的内存函数不知道有什么区别,更别谈有效使用;根本的原因是,没有清楚的理解操作系统的内存管理机制,本文企图通过简单的总结描述,结合实例来阐明这个机制。 本文目的: 对Windows内存管理机制了解清楚,有效的利用C++内存函数管理和使用内存。 本文内容: 3. 内存管理机制--虚拟内存 (VM) · 虚拟内存使用场合 虚拟内存最适合用来管理大型对象或数据结构。比如说,电子表格程序,有很多单元格,但是也许大多数的单元格是没有数据的,用不着分配空间。也许,你会想到用动态链表,但是访问又没有数组快。定义二维数组,就会浪费很多空间。 它的优点是同时具有数组的快速和链表的小空间的优点。 · 分配虚拟内存 如果你程序需要大块内存,你可以先保留内存,需要的时候再提交物理存储器。在需要的时候再提交才能有效的利用内存。一般来说,如果需要内存大于1M,用虚拟内存比较好。 · 保留 用以下Windows 函数保留内存块

VirtualAlloc (PVOID 开始地址,SIZE_T 大小,DWORD 类型,DWORD 保护 属性) 一般情况下,你不需要指定“开始地址”,因为你不知道进程的那段空间 是不是已经被占用了;所以你可以用NULL。“大小”是你需要的内存字 节;“类型”有MEM_RESERVE(保留)、MEM_RELEASE(释放)和 MEM_COMMIT(提交)。“保护属性”在前面章节有详细介绍,只能用前 六种属性。 如果你要保留的是长久不会释放的内存区,就保留在较高的空间区域, 这样不会产生碎片。用这个类型标志可以达到: MEM_RESERVE|MEM_TOP_DOWN。 C++程序:保留1G的空间 LPVOID pV=VirtualAlloc(NULL,1000*1024*1024,MEM_RESERVE|MEM_TOP_DOWN,PAGE_READW if(pV==NULL) cout<<"没有那么多虚拟空间!"<

相关文档 最新文档