文档视界 最新最全的文档下载
当前位置:文档视界 › 四氯化硅制备三氯氢硅的冷氢化工艺资料

四氯化硅制备三氯氢硅的冷氢化工艺资料

四氯化硅制备三氯氢硅的冷氢化工艺资料
四氯化硅制备三氯氢硅的冷氢化工艺资料

洛阳晶辉新能源科技有限公司

1、低温氢化技术方案

“低温氢化”反应原理为:四氯化硅(SiCl4)、硅粉(Si)和氢气(H2)在500℃温度和1.5MPa 压力条件下,通过催化反应转化为三氯氢硅(SiHCl3)。化学反应式为:

3SiCl4+Si+2H2=4SiHCl3

行业“低温氢化”虽然比“热氢化”具有能耗低、设备运行可靠的优点,但是尚存一些不足:

(1)实际转化率偏低——四氯化硅(SiCl4)实际转化率一般在18%左右;

(2)催化剂稳定性差——导致催化剂寿命短、消耗量大、成本高;特别是催化剂载体铝离子容易造成“铝污染”;

(3)设备复杂、系统能耗大——工作温度高,所以氢化炉需要内或外加热,设备复杂,系统无有效的能量回收装置,系统能耗高。

3)“催化氢化”技术方案

针对上述四氯化硅(SiCl4)冷、热氢化存在的缺点和问题,洛阳晶辉新能源科技有限公司和中国工程院院士、中石化权威催

化剂和化工专家合作,在传统“低温氢化”基础上进行改良,自主创新开发出了新一代“改良低温氢化”技术——“催化氢化”。

(1)“催化氢化”技术路线

?开发高活性多元纳米催化剂——在现有单活性金属基础上,引入第二活性金属,并采用特殊负载工艺,使活性金属呈纳米状态,提高催化剂活性;开发高稳定性催化剂载体——解决现有催化剂稳定性差问题,延长催化剂使用寿命,同时解决“铝污染”;

(2)“催化氢化”技术特点

催化剂活性高,特别是反应?选择性好——四氯化硅(SiCl4)单程率达到22%,以上(最高可达25%);

?实现热量耦合、节约能源——需要的外加热量小,减少系统能源消耗;催化剂稳定性好——寿命长、用量小、避免了Al2O3分解带来的“铝污染”;反应温度进一步降低,反应炉不需要内(或外)加热,并设能量综合回收装置,降低了系统能耗;

?

系统用氢细致划分,由电解氢改良为多晶硅生产过程的回收氢气,既节约了制氢站电解氢的消耗量,同时也有利于提高多晶硅

生产中氢气的质量;良好的除尘技术和反应渣吹除技术,保证系统的稳定运行、安全环保,减少了环境污染。针对本项目,根据行业四氯化硅(SiCl4)“低温氢化”成功应用的实际和向“低温氢化”发展的趋势,首先选择“低温氢化”工艺技术;同时,鉴于“催化氢化”在现有“低温氢化”技术的基础之上实现了改良,具有转化率高、物耗能耗低、使用回收氢气、消除“铝污染”的显著优点,本项目技术方案确定采用“催化氢化”技术。

3.2. 项目生产工艺流程

SiCl4“催化氢化”主生产工艺由催化氢化工序、氯硅烷提纯工序组成:

1) SiCl4催化氢化工序工业级硅粉同特定催化剂混合均匀后,装入干燥炉;氢气经加热后,进入干燥炉干燥硅粉、还原催化剂;从干燥炉出来的氢气进入氢气净化装置处理后,返回系统;干燥之后的硅粉、催化剂混合料,暂存于干燥炉,以备反应之用;原料氢(来自多晶硅系统)经压缩机升压到后进入混合器与四氯化硅混合、配比,氢气-四氯化硅混合气体经加热后通入反应炉与来自混合料加入装置的混合料反应生成

三氯氢硅(SiHCl3);生成物三氯氢硅(SiHCl3)和未反应的四氯化硅(SiCl4)、氢气(H2)、二氯二氢硅(SiH2Cl2)及少量氯化氢(HCl),经高效过滤器过滤后进入冷凝装置,被冷凝下

来三氯氢硅(SiHCl3)、四氯化硅(SiCl4)混合液进入氯硅烷提纯塔,得到三氯氢硅(SiHCl3)和四氯化硅(SiCl4);四氯化硅(SiCl4)返回系统再次循环转化,三氯氢硅(SiHCl3)三氯氢硅进入多晶硅生产系统生产多晶硅;未被冷凝的氢气(H2)和少量二氯二氢硅(SiH2Cl2)及氯化氢(HCl)返回系统。

2) 氯硅烷提纯工序

氯硅烷冷凝料经过提纯1#塔、提纯2#塔两塔连续提纯,控制一定的温度、压力、回流比,提纯1#塔塔顶采出轻组分,塔釜物料进入提纯2#塔,提纯2#塔塔顶采出三氯氢硅(SiHCl3),中层塔板采出四氯化硅(SiCl4)返回催化氢化工序,塔釜采出重组分连同提纯1#塔塔顶采出的轻组分水解或外卖。

3.3. 主要工艺技术指标

本项目主要工艺技术指标见下表:

项目技术经济指标备注号

1转化SiCl4量:t/a20000

2生产SiHCl3量:t/a 20000

3单程转化率≥20%

4硅粉耗量:t/a1150

5催化剂耗量:t/a16

回收氢气耗量:

6

200

*104Nm3/a

电解氢气耗量:

36

7

*104Nm3/a

8电耗:*104kW.h/a1600

9残液量:t/a900

10低沸物量:t/a300

四氯化硅高压低温氢化

生产工艺技术

3.1高压低温氢化工艺概述

本建议书提供的氢化工艺反应是在独特的流化床反应炉内、维持高压和一定温度,STC与H2、Si进行反应生成TCS。为了加速反应的进行和提高反应速率、氢化转化率,另还添加了催化剂。反应原理如下:STC、H2、Si粉和催化剂作为原料送入氢化反应炉内,Si粉中的一些杂质也进行反应生成金属氯化物。

氢化主要反应如下:

Si+ 2H2 + 3SiCl4催化剂 4SiHCl3

SiCl4+Si+2H2=2SiH2Cl2

2SiHCl3=SiCl4+SiH2Cl2

在正常工况运行下,STC的最小转化率η≥24%,通过添加催化剂,可使转化率提高至26~28%。STC转化率计算方式如下:

η= ×100%

添加进入反应炉内STC摩尔量流化床内氢化反应发生在近3MPa、500℃条件下。反应炉的设计制造将要考虑这些因素。

3.2工艺流程及工艺描述

本氢化提纯工艺可以被简单称为前段高压、后段低压处理流程。前端高压处理工艺包括氢化反应炉、固/液杂质收集处理系统和氢气回收循环利用系统。后段低压处理工艺主要包括TCS杂质去除系统、TCS/STC分离系统和储存系统。拟选用工艺流程图见图3.1所示。主要设备表见表3.1所示。

STC通过STC给料泵(P-102)将其从储罐内进行给料,液态STC加料时通过泵加压的压力接近30kg/cm2,STC经两台工艺-工艺热交换器加热。第一台工艺-工艺热交换器(STC 预热热交换器E-204)将STC加热至150℃。被预热后的STC经第二台工艺-工艺热交换器(E-203),该热交换器相当于STC的蒸发器,STC 在此被进一步加热到近260℃从而蒸发为气体。被蒸发后的STC

进入电加热器(STC过热器E-202),STC在此被加热至近运行温度550℃。

H2压缩机(K-101)将H2压力提高至30kg/cm2而进入反应炉。H2压缩机进料口的H2来自两处,工厂制氢站(在图3.1未显示)和氢化/提纯系统界区内回收循环利用。经压缩后的H2经缓冲罐(T-103)至电加热器(H2过热器E-201)H2物在此被加热至近550℃。干燥除去水分后硅粉和催化剂混合后进入硅粉给料罐(T-201)。通过双锁给料斗加入氢化反应炉(R-203)。双锁给料斗通入H2使其压力接近30kg/cm2。位于双锁给料斗与充压的氢化炉之间的耐磨盘阀的开启和关闭使给料斗内的硅粉进入反应器。运行过程中的硅粉是批量加料的,每小时平均在1~2次。

过热的H2和STC按一定比例混合从氢化炉(R-201)底部进入,混合气体在(P-203)的STC/TCS混合液通过喷头进入淋洗塔,保持塔内STC/TCS液位。喷头规则分布,使进入塔内的气体与塔内液体和补充回流进入的液体充分接触。经过热量交换和除去未反应硅粉、金属氯化物和部分重组分的气体从塔顶进入热交换器(E-204),在此热交换器内,液态STC被预热,气体进一步冷却至85℃。随后进入冷却水冷却器(E-205)、-15℃冷凝器(E206)、-65℃冷凝器(E-207)进一步冷却,STC、TCS被完全冷却下来,流入粗TCS(TCSC)再循环储罐(T-203),不凝气体主要是H2、HCl和极少量的TCS,H2经除雾器(B-201)除

去液态小液滴后,返回循环利用。进入T-203内的氯硅烷混合液体一部份再循环至淋洗塔T-202补充其内STC和TCS。另一部份经过过滤器(F-201)后进入提纯系统的给料罐(T-301)。至此,本工艺系统前段的高压段处理系统结束。粗TCS进入后段低压分离/提纯系统。

后段低压分离/提纯系统主要由两台精馏塔(C-301重组分去除塔)(C-302 SCT、TCS分离塔)和中间储罐等组成,粗TCS

在C-301塔除去氯硅烷的重组分及HCl后,在C-302塔进行STC 和TCS分离;合格的TCS作为产品(TCSP)储存在TCSP储罐(T-304)中,用泵(P-304)输送至三氯氢硅提纯系统进行提纯,而高纯STC(STCP)存储于STCP储罐(T-104)再作为原料循环至氢化炉继续进行氢化转换。

三、主要技术经济指标

表3.1 原料消耗数据表

序号

[/td][td=1,1,151]

名称

[/td][td=1,1,173]

消耗量(公斤/

吨TCS)

[/td][td=1,1,142]

备注[/td][/tr]

1MGS58

2STC960

3H27.8

表3.2 能量和公用工程消耗数据表

消耗量(公斤/吨

备注序号名称

TCS)

1电800kWh

2蒸汽 1.1t1MPa 3冷却水90t 循环

4压缩空气2m³

5仪表气30m³³

6氮气60m³

7氢气80m³

8冷媒16500kg

9冷媒22200kg

表3.3 产品质量指标

名称含量

TCS>98.5%

STC<1.5%

DCS<0.3%

注: 以上指标是根据年处理50000t 四氯化硅量的结果,指标根据四氯化硅处理量的不同,会有变化。

SST冷氢化技术

1、工艺描述

SST冷氢化技术采用Si+H2+SiCl4+歧化+SiH4精馏提纯+硅烷热分解。向我方提供的技术如图3-1

1)

氢化

主要反应Si+2H2+3SiCl4→SiHCl3

吸热反应

反应温度600℃

反应压力 10

转化率

21%

反应温度对转化率的影响是主要的

过程:贮缸内的硅粉干燥除水后一缸一次加入到氢化炉内,属间歇加料方式,非连续式。H2气用压缩机加压到10barg,并加热到600℃连同SiCl4(泵送、10barg、加热到600℃)混合一起加入到氢化炉内,Si+ H2+ SiCl4进行吸热反应生成SiHCl3。SiHCl3混合物经吸收、冷凝、2个精馏塔提纯,得到SiHCl3和SiCl4,SiHCl3送去歧化,SiCl4返回送入氢化炉。在冷凝分离过程中收集的H2气也返回氢化炉使用。氢化过程选用的设备如压缩机、泵、反应器、塔器、加热器、冷凝器、换热器、过滤器器和贮罐等共50台(套)。

1)

铵催化剂

歧化

主要反应:4 SiHCl3

SiH4+3SiCl

转化率:

25%

催化反应塔内在铵催化剂作用下,将送入的SiHCl3歧化成SiH4,在生成物中含有没有起反应的SiHCl3和反应后生成的SiH4及SiCl4。反应塔顶部出的SiH4(含有SiHCl3)送入精馏塔提纯分离,从塔顶得到的纯SiH4送去热分解炉生成太阳能级多晶硅棒;从塔底得到的SiHCl3返回催化反应炉继续歧化。反应炉底部出的SiH4。(含SiHCl3)送入另一台精馏塔分离,塔顶得到的SiHCl3返回催化反应塔继续歧化;反应塔底得到的SiCl4返回氢化炉继续氢化。

如果将纯SiH4经过2台精馏塔提纯,得到高纯SiH4气,一可用于生产电子级多晶硅产品,二可出售给下游产业。

2)

热分解

在热分解炉内,SiH4热分解在硅芯发热体上沉积出多晶硅

主要反应

SiH4→ Si+2H2

转化率

95.2%

多晶硅规格见表3-1,与瓦克的指标基本相同,与我国电子2级品相当。

主要设备

在交流中我方要求SST公司介绍主要设备性能,都被回避,只得到以下信息。

1)

精馏塔。图3-1流程中的4台精馏塔均为填料塔

2)

主要技术经济指标(以氢化Si+H2+SiCl4为例)

3)

太阳能级多晶硅

3000t/a

4)

年工作时间

8000h

5)

平均产多晶硅

3000/8000=375kg/h

主要消耗

7)

硅粉

3600t/a=450kg/h

即1.2kg/kgSi

8)

补充H2

347.43t/a=43.43kg/h=486.4Nm³/n

9)

即1.3 Nm³/kgSi

10)

补充SiCl4

6399t/a=800kg/h

即2.13 kg/kgSi

11)

SiH4

1.2 kg/kgSi

电耗氢化得SiHCl3

1.74kwh/kgSiHCl3

13)

沉积多晶硅

45kwh/ kgSi

14)

注:如果将SiCl4中的Si加上硅粉,则硅粉单耗为1.55 kgSi

三氯氢硅生产工艺流程

硅氢氯化法 该方法是用冶金级硅粉,作原料,与氯化氢气体反应。可使用铜或铁基催化剂。反应在200---800和0。05---3mpa下进行 2Si+HCL======HsiCL3+SiCL4+3H2 该反应所用反应器经历了从固定床、搅拌床到流化床的发展过程。工艺也从间歇发展到连续。反应器由碳钢制成,预先将归粒子加入到反应器,加热到所需地温度后,从底部连续通入氯化氢气体,产物及未反应物料被连续输出,经除尘精制后,用于生产高纯多晶硅和高纯硅烷。 上述反应是放热反应,反应热为-141。8千焦/摩尔升高温度有利于提高反应速率,但同时导致三氯氢硅选择性下降,通过优化反映温度,可明显提高三氯氢硅的选择率。例如在300---425度和2到5千帕条件下使硅和氯化氢反应,产物以600---1000千克/小时输出,三氯氢硅的选择率竟高达80—88%,副产物包括质量分数1%--2%二氯硅烷和1—4%的缩聚物,其余为四氯化硅。 氯化氢气体中的水分三氯氢硅的收率优很大影响。,因此必须严格干燥。硅与氯化氢生成三氯氢硅的反应应该是零级反应,使用纯度大于99。99%的硅原料时氢硅的收率较低。在一个微型反应器中作了研究,结果表明冶金级原料中所含杂质铝对反应有催化作用,可使反应温度降低,三氯氢硅收率提高。, 四氯化硅氢化法 3SiCL4+2H2+Si===============4HsiCL3 反应温度400-----800 压力2---4兆帕 该反应为平衡反应,为提高三氯氢硅的收率,优选在氯化氢存在下进行,原料采用冶金级产产品通过预活化除去表面的氧化物后,可进一步提高三氯氢硅的收率三氯氢硅与四氯化硅沸点差距25度,且不产生共沸物,所以比较容易分离。 三氯氢硅生产工艺流程 三氯氢硅合成。将硅粉卸至转动圆盘,通过管道用气体输送至硅粉仓,再加入硅粉干燥器,经过圆盘给料机并计量后加入三氯氢硅合成炉。在三氯氢硅合成炉内,温度控制在80—310℃,硅粉和氯化氢发生反应,生成三氯氢硅和四氯化硅。生成的三氯氢硅和四氯化硅气体经沉降器、旋风分离器和袋式过滤器除去粉尘及高氯硅烷,经水冷后经隔膜压缩机加压,再用-35℃冷媒冷凝为液体。不凝性气体通过液封罐进入尾气淋洗塔,经酸碱淋洗达标后排放。 三氯氢硅分离。三氯氢硅和四氯化硅混合料(三氯氢硅含量为80—85%)进入加压塔,采用两塔连续提纯分离,通过控制一定的回流比,最终得到三氯氢硅含量为99%以上的产品和四

四氯化硅制备三氯氢硅的冷氢化工艺资料

洛阳晶辉新能源科技有限公司 1、低温氢化技术方案 “低温氢化”反应原理为:四氯化硅(SiCl4)、硅粉(Si)和氢气(H2)在500℃温度和1.5MPa 压力条件下,通过催化反应转化为三氯氢硅(SiHCl3)。化学反应式为: 3SiCl4+Si+2H2=4SiHCl3 行业“低温氢化”虽然比“热氢化”具有能耗低、设备运行可靠的优点,但是尚存一些不足: (1)实际转化率偏低——四氯化硅(SiCl4)实际转化率一般在18%左右; (2)催化剂稳定性差——导致催化剂寿命短、消耗量大、成本高;特别是催化剂载体铝离子容易造成“铝污染”; (3)设备复杂、系统能耗大——工作温度高,所以氢化炉需要内或外加热,设备复杂,系统无有效的能量回收装置,系统能耗高。 3)“催化氢化”技术方案 针对上述四氯化硅(SiCl4)冷、热氢化存在的缺点和问题,洛阳晶辉新能源科技有限公司和中国工程院院士、中石化权威催

化剂和化工专家合作,在传统“低温氢化”基础上进行改良,自主创新开发出了新一代“改良低温氢化”技术——“催化氢化”。 (1)“催化氢化”技术路线 ?开发高活性多元纳米催化剂——在现有单活性金属基础上,引入第二活性金属,并采用特殊负载工艺,使活性金属呈纳米状态,提高催化剂活性;开发高稳定性催化剂载体——解决现有催化剂稳定性差问题,延长催化剂使用寿命,同时解决“铝污染”; (2)“催化氢化”技术特点 催化剂活性高,特别是反应?选择性好——四氯化硅(SiCl4)单程率达到22%,以上(最高可达25%); ?实现热量耦合、节约能源——需要的外加热量小,减少系统能源消耗;催化剂稳定性好——寿命长、用量小、避免了Al2O3分解带来的“铝污染”;反应温度进一步降低,反应炉不需要内(或外)加热,并设能量综合回收装置,降低了系统能耗; ? 系统用氢细致划分,由电解氢改良为多晶硅生产过程的回收氢气,既节约了制氢站电解氢的消耗量,同时也有利于提高多晶硅

三氯氢硅1

三氯氢硅

目录 (1)产品名称,物化性质,技术标准及作用;(2)原料名称及质量标准; (3)生产基本原理及反应式; (4)生产工艺流程叙述; (5)岗位操作法及控制:a.岗位操作范围;b.开车前准备;c.开停车操作;d.各岗位控制要点; (6)某些不正常现象及消除方法; (7)安全生产要点; (8 )生产过程中的三废排放和处理;

(一)产品名称,物化性质,技术标准及作用 (1)产品名称:三氯氢硅SiHCl 3 (2) 物理性质:常温下纯净的三氯氢硅是无色、透明、挥发性、可燃液体,有较 四氯化硅更强的刺鼻气味。分子式:SiHCl 3 ,分子量:135.4 ,液体密度:1.318kg/l (常温状态),气体密度:6.5g/l(标准状态),1atm下沸点:31.5℃,1atm下熔点:-128℃ (3)化学性质:易水解、潮解、在空气中强烈发烟,生成HC l 和H 2 ,HCl遇水立 即转化为盐酸,盐酸具有很强的腐蚀性;H 2 易燃易爆。 更易挥发、更易气化、更沸点低; 易着火、易爆炸、着火点28℃、着火温度220℃,燃烧时产生氯化氢和氢气; 其蒸汽具有弱毒性,与无水醋酸和二氯乙烯毒性程度相同。 (二)原料名称及质量标准 1.氯化氢(Hcl):氯化氢含量92%∽94%,氯气不过量; 2.硅粉:冶晶级多晶硅(95%∽99%),块密度约2.0×103kg/m3,硬度为7,其颗粒大小为80∽120目。 (三)生产基本原理及反应式 1. 基本原理: 80∽120目的硅粉与干燥的92%∽94%的氯化氢在催化剂(催化剂用量 si:cucl 2 =100(0.4∽1))作用下,在280∽320℃、小于0.05Mpa条件下生成三氯氢硅。合成SiHCl3必须先将硅粉预热到250℃以上。不过,该反应是放热反应,只要启动后就不再需要补充热能,而是带走热量。 2. 主要反应 Si+3HCl→SiHCl 3+H 2 +Q 当温度不再上述制控制范围内,怎发生下列副反应: A.温度大于350℃时:Si + 4HCl → SiCl 4 + 2H 2 + Q B.温度小于280℃时:Si + 4HCl → SiH 2Cl 2 + 2H 2 + Q C.硅粉与HCl反应过程中,硅粉中的少量杂质Ca、Fe、Al、Zn、Ti、P、B等主 要生成CaCl2、FeCl3、AlCl3、ZnCl2、TiCl4、PCl3、BCl3化合物,这些物质

三氯氢硅生产的火灾危险及对策实用版

YF-ED-J7614 可按资料类型定义编号 三氯氢硅生产的火灾危险 及对策实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

三氯氢硅生产的火灾危险及对策 实用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 三氯氢硅又称三氯硅烷、硅氯仿,英文名 称:trichlorosilane或silicochloroform, 分子式为SiHCl3,用于有机硅烷和烷基、芳基 以及有机官能团氯硅烷的合成,是有机硅烷偶 联剂中最基本的单体,也是生产半导体硅、单 晶硅的原料,随着有机硅烷偶联剂工业的发展 而出现供不应求,生产量越来越大。 一、三氯氢硅的理化特性及生产原理

三氯氢硅是采用硅粉与氯化氢气体在流化床反应器中生成。它是无色液体,易挥发,易潮解,在空气中发生反应产生白烟,遇水分解,溶于苯、醚等有机溶剂。属一级遇湿易燃物品,易燃易爆,遇水反应产生氯化氢气体;它与氧化剂发生强烈反应,遇明火、高热时发生燃烧或爆炸。 其物理特性如下:比重:1.35;相对气体密度:4.7;沸点:31.8℃;饱和蒸气压(14.5℃)53.33Kpa;闪点:-13.9℃(开杯);自燃温度:175℃;爆炸下限:6.9%;爆炸上限:70%;溶解性:溶于苯、醚等有机溶剂;具有急性毒性。

三氯氢硅的精馏

三氯氢硅的精馏 在三氯氢硅合成工序生成,经合成气干法分离工序分离出来的氯硅烷液体送入氯硅烷贮存工序的原料氯硅烷贮槽;在三氯氢硅还原工序生成,经还原尾气干法分离工序分离出来的氯硅烷液体送入氯硅烷贮存工序的还原氯硅烷贮槽;在四氯化硅氢化工序生成,经氢化气干法分离工序分离出来的氯硅烷液体送入氯硅烷贮存工序的氢化氯硅烷贮槽。原料氯硅烷液体、还原氯硅烷液体和氢化氯硅烷液体分别用泵抽出,送入氯硅烷分离提纯工序的不同精馏塔中。从原料氯硅烷贮槽送来的原料氯硅烷液体经预热器预热后,从中部送入1级精馏塔,进行除去低沸物的精馏操作。塔顶排出不凝气体和部分二氯二氢硅,送往废气处理工序进行处理;塔顶馏出液为含有低[wiki]沸点[/wiki]和高沸点杂质的三氯氢硅冷凝液,依靠压差送入2级精馏塔;塔釜得到含杂质的四氯化硅,用泵送四氯化硅回收塔进行处理。 2级精馏塔为反应精馏,是通过用湿润的氮对三氯氢硅处理,把其中易于水解的杂质化合物转化成难于挥发的形态,以便用精馏的方法除去。2级精馏为双系列生产线。2级精馏塔塔顶排出不凝气体同样送往废气处理工序进行处理;塔顶馏出三氯氢硅冷凝液,依靠压差送入沉淀槽;塔釜含悬浮物的釜液,用泵送至四氯化硅回收塔进行处理。 3级精馏目的是脱除三氯氢硅中的低沸点杂质。三氯氢硅清液经三级进料预热器后,进入3 级精馏塔中部。塔顶馏出含有二氯硅烷和三氯氢硅的冷凝液,靠位差流至二级三氯氢硅槽;塔底釜液为三氯氢硅,用泵送入4级精馏塔。 4级、5级精馏目的是分两段脱除三氯氢硅中的高沸点杂质。3级釜液送入4级精馏塔中部。4级塔顶馏出三氯氢硅冷凝液,靠位差流至5级精馏塔,进行脱除高沸点杂质的第二阶段。5级塔顶馏出的三氯氢硅冷凝液送入五级冷凝液槽,一个贮槽注满后分析三氯氢硅是否符合工业级三氯氢硅对杂质含量的要求,在分析有效的情况下,工业级精制的三氯氢硅从贮槽靠位差流至8级精馏塔。4级、5级塔釜排出的含有高沸点杂质的三氯氢硅,用泵送入二级三氯氢硅槽。 从5级塔顶馏出的三氯氢硅,在6级精馏塔进行最终脱除三氯氢硅中的高沸点杂质的过程。6级塔顶馏出物为去除了高、低沸点杂质的精制三氯氢硅,分析符合多晶硅生产的质量要求后,靠位差流至多晶硅制取工序。塔底釜液为含高沸点杂质的三氯氢硅,用泵送至二级三氯氢硅槽。 还原氯硅烷冷凝液经7级进料预热器进入7级精馏塔。塔顶馏出物为三氯氢硅,靠位差流至8级精馏塔;塔底釜液为四氯化硅,经分析符合质量要求后,用泵将其部分送去四氯化硅加氢,部分送往氯硅烷贮存工序的工业级四氯化硅贮槽。 8级精馏塔用于还原氯硅烷中高沸点杂质的脱除。塔顶馏出物是精制的循环三氯氢硅,送入8级冷凝液槽,经分析符合质量要求后,精制三氯氢硅靠位差循环回多晶硅制取工序。塔底釜液是含有高沸点馏份的三氯氢硅,用泵送至二级三氯氢硅槽。 四氯化硅氢化后的氯硅烷冷凝液,经9级进料预热器连续送入9级精馏塔。塔顶的馏出物是三氯氢硅,连续送往10级精馏塔,进行进一步精馏。塔底釜液是含有高沸点杂质的四氯化硅,用泵连续送往11级精馏塔。 9级精馏塔塔顶馏出的三氯氢硅在10级精馏塔中脱除高沸点杂质。10级精馏塔塔顶馏出物是精制的循环三氯氢硅,送入10级冷凝液槽,经分析符合质量要求后,精制三氯氢硅靠位差循环回多晶硅制取工序。塔底釜液是含有高沸点馏份的三氯氢硅,用泵送至二级三氯氢硅槽。11级精馏塔的进料为9级精馏塔釜液。塔顶馏出物是精制的循环四氯化硅,经分析符合质量要求后,用泵送去四氯化硅加氢工序。塔底釜液是含有高沸点杂质的四氯化硅,送往氯硅烷贮存工序的工业级四氯化硅贮槽。

三氯氢硅合成尾气处理工艺

三氯氢硅合成尾气处理工艺 谷文军3,孟祥考,吴军祥 (河北邢矿硅业科技有限公司,河北邢台054000) [关键词]三氯氢硅;尾气处理;变压吸附 [摘 要]介绍了几种处理三氯氢硅合成尾气的工艺,分析了各自的优缺点。 [中图分类号]T Q127.2 [文献标志码]B [文章编号]1008-133X(2009)10-0035-02 Process of trea ti n g t a il ga s from tr i chlorosil ane syn thesis G U W enjun,M EN G X iangkao,WU Junxiang (Hebei Xingkuang Silicon I ndustry Science and Technol ogy Co.,L td.,Xingtai054000,China) Key words:trichl or osilane;tail gas treat m ent;p ressure s wing ads or p ti on Abstract:So me kinds of p r ocess f or treating the tail gas fr om trichl or osilane synthesis are intr oduced, and their res pective advances and disadvantages are analyzed. 三氯氢硅合成尾气的主要成分有氯化氢、三氯氢硅(氯硅烷)、氢气,具体组成(体积分数)为:三氯氢硅5.942%,四氯化硅0.295%,氯化氢15.818%,氮气4.779%,氢气73.166%。此尾气须处理后才能排放。 1 水吸收工艺 水吸收工艺也称湿法回收技术,是把出三氯氢硅合成炉的尾气直接用水喷射泵吸收,尾气中的氯化氢被水吸收成盐酸,氯硅烷水解生成二氧化硅。二氧化硅以大量白色泡沫的形式出现,未被吸收的氢气和氮气排入大气。 2 CD I工艺 CD I工艺过程是将尾气进行低温洗涤、分离,将尾气加压冷凝,使尾气中大量的三氯氢硅冷凝下来作为回收的产品;大量的氯化氢用低温氯硅烷洗涤、分离,微量的HCl、氯硅烷采用变温吸附(TS A)干法脱除;剩下的尾气含有大量的N 2 ,再结合变压吸附 (PS A),可以生产出高纯度的H 2 。 2.1 冷凝工序 三氯氢硅合成尾气(压力为0.2MPa)含有大量的氯硅烷,如果直接排出,将会降低经济效益。冷凝工序就是将尾气冷至-5℃,有效地回收氯硅烷,降低原料消耗。 2.2 低温洗涤分离 在低温和一定压力的条件下,氯硅烷液体对氯化氢气体具有吸收能力,将尾气中大部分的氯化氢洗涤吸收分离出来,气体中少量的氯硅烷也被冷凝捕集下来。洗涤净化后的气体主要为氢气,只含有少量的氯化氢和氯硅烷,这两组分的总体积分数小于1%。富含氯化氢的氯硅烷洗液通过精馏,氯化氢等低沸物与氯硅烷分离,在塔顶得到较高纯度的氯化氢,在塔底得到纯氯硅烷液体。 2.3 TSA工序 由变温吸附的特性可知:当气体杂质组分分压高、温度低时,吸附剂的吸附容量大;当气体杂质组分分压低、温度高时,吸附剂的吸附容量低[1]。由HCl吸收工序来的1.1MPa的合成尾气进入变温吸附单元,在此单元将脱除合成尾气中除氢气、氮气以外的所有组分。 尾气干法分离工艺主要用于分离氯化氢、氢气、氯硅烷,如果合成气含有氮气等杂质气体,这些杂质气体将不会被完全分离去除,混入产品氢气中,影响 53 第45卷 第10期2009年10月 氯碱工业 Chl or2A lkali I ndustry Vol.45,No.10 Oct.,2009 3[作者简介]谷文军(1965—),男,高级工程师,毕业于河北大学,现从事化工生产管理工作。 [收稿日期]2009-07-30 [编者注]本文作者之一孟祥考为《氯碱工业》第4届编委会委员

三氯氢硅及合成工艺

三氯氢硅及合成 一、三氯氢硅的基本性质 三氯氢硅在常温常压下为具有刺激性恶臭、易流动、易挥发的无色透明液体。分子量:135.43,熔点(101.325kPa):-134℃;沸点(101.325kPa):31.8℃;液体密度(0℃):1350kg/m3;相对密度(气体,空气=1):4.7;蒸气压(-16.4℃):13.3kPa;(14.5℃):53.3kPa;燃点:-27.8℃;自燃点:104.4℃;闪点:-14℃;爆炸极限:6.9~70%;在空气中极易燃烧,在-18℃以下也有着火的危险,遇明火则强烈燃烧,三氯氢硅燃烧时发出红色火焰和白色烟;三氯氢硅的蒸气能与空气形成浓度范围很宽的爆炸性混合气,受热时引起猛烈的爆炸。它的热稳定性比二氯硅烷好,三氯氢硅在900℃时分解产生氯化物有毒烟雾;遇潮气时发烟,与水激烈反应;在碱液中分解放出氢气;三氯氢硅与氧化性物质接触时产生爆炸性反应。与乙炔、烃等碳氢化合物反应产生有机氯硅烷;在氢化铝锂、氢化硼锂存在条件下,三氯氢硅可被还原为硅烷。容器中的液态三氯氢硅当容器受到强烈撞击时会着火。可溶解于苯、醚等。无水状态下三氯硅烷对铁和不锈钢不腐蚀,但是在有水分存在时腐蚀大部分金属。 二、三氯氢硅的用途 用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅偶联剂中最基本的单体,同时也是制备多晶硅的主要原料。将三氯硅烷与氯乙烯或氯丙烯进行合成反应,再经精馏提纯,得到乙烯基或丙烯基系列硅烷偶联剂产品。硅烷偶联

剂几乎可以与任何一种材料交联,包括热固性材料、热塑性材料、密封剂、橡胶、亲水性聚合物以及无机材料等,在太阳能电池、玻璃纤维、增强树脂、精密陶瓷纤维和光纤保护膜等方面扮演着重要的角色,并在这些行业中发挥着不可或缺的重要作用。 三、三氯氢硅生产工艺 1、主要化学反应方程式为: Si + 3HCl = SiHCl3 + H2 Si + 4HCl = SiHCl4 + 2H2 2、生产装置主要由氯化氢干燥、三氯氢硅合成、三氯氢硅提纯和分离工序组成。生产工艺流程简述如下: 用管道送来的氯化氢气体,经冷却除水干燥、加压后依次进入氯化氢缓冲罐、-35℃石墨冷却器,酸雾脱水后,进入硫酸液环泵加压。加压后的氯化氢先经酸雾捕集器、氯化氢缓冲罐、再分别经流量调节阀、流量计、止逆阀进入三氯氢硅合成炉。外购袋装硅粉倒入硅粉池,用胶管借水环真空泵的抽力吸至硅粉干燥器,干燥后的硅粉经计量罐计量后由给料阀加入三氯氢硅合成炉,与来自氯化氢缓冲罐氯化氢在合成炉反应生成三氯氢硅和四氯化硅。 氯化氢与硅粉在三氯氢硅合成炉内反应生成三氯氢硅、四氯化硅、氢气。混合气体经沉降器、旋涡分离器、袋式过滤器、一级水冷器、二级水冷器、-35℃冷凝器,大部分三氯硅烷在膜压机前先冷凝下来,进入机前计量罐中,未冷凝的少量三氯硅烷、氯化氢和氢气进入隔膜压缩机加压,再经机后水冷凝器、-35℃盐水冷凝器冷凝,液体经机后产品计量罐计量后进入中间产品贮罐,不凝气送尾气变压吸附回收系统回收微量的三氯氢硅和氯化氢,氢气从尾气淋洗塔顶放空。变压吸附装置吸附的三氯氢硅和氯化氢定期用干式真空泵抽真空解析、并用隔膜压缩机加压送至硫酸液循

三氯氢硅资料

第三讲三氯氢硅资料 第三讲三氯氢硅合成 目录 3.1,原料工业硅粉简介 3.2,三氯氢硅的主要性质 3.2.1,与水反应 3.2.2,热分解 3.2.3,与有机物反应 3.3,三氯氢硅合成 3.3.1,反应原理 3.3.2,反应过程温度控制 3.3.3,杂质发生反应 3.3.4,三氯氢硅合成炉的发展与改进3.4,沸腾床(流化床)技术 3.4.1,沸腾床的形成及流体力学原理3.4.2,沸腾床的传热 3.4.3,沸腾床的结构及工艺技术要求3.4.4,沸腾床的设计 3.5,影响三氯氢硅合成效率的几个重要因素3.5.1,反应温度

3.5.2,氧与水份的影响 3.5.3,游离氯的控制 3.5.4,硅粉粒度 3.5.5,硅粉料层高度与HCL流量 3.6,三氯氢硅合成工艺简介 3.6.1,硅粉加料系统 3.6.2,三氯氢硅工艺控制 3.7,干法除尘和湿法除尘工艺简介 3.8,尾气回收工艺简介 3.9,湿法除尘釜液回收工艺简介 3.10,硅粉回收工艺简介 附图3-1,三氯氢硅合成工艺流程图 三氯氢硅合成系统包括:1,硅粉加料装置,2,三氯氢硅合成炉,3,旋风干法除尘,4,过滤装置,5,STC湿法除尘,6,合成气分离回收(CDI)等工序。

硅粉加料装置完成向合成炉连续定量地供应硅粉;三氯氢硅合成炉是生产三氯氢硅的关键设备;旋风干法除尘、过滤装置与STC湿法除尘是回收硅粉和除去合成气的硅尘,CDI是将合成气进行分离回收,它们都是不可或缺的设备。 合成三氯氢硅的原料是硅粉与HCL气体。 3.1. 原料工业硅简介 工业硅的外观为深灰色与生铁颜色接近,也称硅铁。工业硅的块密度约2.0×103kg/m3,硬度为7,纯度一般为95%~99%,其中的主要杂质为Fe、Al、Ca。 工业硅的制备一般采用冶炼法,在冶炼炉中用还原剂将SiO2还原成单质硅(冶金硅)。通常用的还原剂有碳、镁、铝等。用镁或铝还原SiO2,如果还原剂的纯度较高得到的单质硅纯度可达3~4个“9”。不过,由于纯度较高的镁、铝价格高,会增加工业硅的生产成本,因此,目前国内的生产厂家都采用在电炉中用焦炭还原SiO2来制取单质硅(冶金硅),即把碳电极插入由焦炭(或木炭)和石英石组成的炉料中,温度控制在1600℃~1800℃还原出硅,反应式如下: 石英砂(硅石)与炭在电弧炉里还原成硅 (MG-Si) 反应是在电弧炉(见图二)里的相邻电极之间发生的,该处温度超过2000℃,释放出来的SiO 和 CO流到上部较冷区域(小于1500℃),形成所必要的SiC。 还原后的单质硅是以液态从反应炉中流进硅液煲,在这一过程中如

三氯氢硅合成原理

三氯氢硅合成原理 三氯氢硅合成系统包括:1,硅粉加料装置,2,三氯氢硅合成炉,3,旋风干法除尘,4,过滤装置,5,STC湿法除尘,6,合成气分离回收(CDI)等工序。 硅粉加料装置完成向合成炉连续定量地供应硅粉;三氯氢硅合成炉是生产三氯氢硅的关键设备;旋风干法除尘、过滤装置与STC湿法除尘是回收硅粉和除去合成气的硅尘,CDI是将合成气进行分离回收,它们都是不可或缺的设备。 合成三氯氢硅的原料是硅粉与HCL气体。 3.1. 原料工业硅简介 工业硅的外观为深灰色与生铁颜色接近,也称硅铁。工业硅的块密度约2.0×103kg/m3,硬度为7,纯度一般为95%~99%,其中的主要杂质为Fe、Al、Ca。 工业硅的制备一般采用冶炼法,在冶炼炉中用还原剂将SiO2还原成单质硅(冶金硅)。通常用的还原剂有碳、镁、铝等。用镁或铝还原SiO2,如果还原剂的纯度较高得到的单质硅纯度可达3~4个“9”。不过,由于纯度较高的镁、铝价格高,会增加工业硅的生产成本,因此,目前国内的生产厂家都采用在电炉中用焦炭还原SiO2来制取单质硅(冶金硅),即把碳电极插入由焦炭(或木炭)和石英石组成的炉料中,温度控制在1600℃~1800℃还原出硅,反应式如下: 石英砂(硅石)与炭在电弧炉里还原成硅(MG-Si)

反应是在电弧炉(见图二)里的相邻电极之间发生的,该处温度超过2000℃,释放出来的SiO 和CO流到上部较冷区域(小于1500℃),形成所必要的SiC。 还原后的单质硅是以液态从反应炉中流进硅液煲,在这一过程中如Fe、Al、Ca、B、P、Cu等杂质也会以不同化合态进入液态的单质硅中,为了保证产品符合要求(一般控制在99%以上),硅液需要经过进一步处理去除其中的杂质。处理方法是利用杂质的化合态(氯化物或氧化物、硅酸盐等)在液体状态时会逐步离析到液体表面的规律,通过除去表层硅液来达到去除杂质的目的。因此,工业硅厂大都采用在硅液保温槽中通入Cl2或O2,促使大部分Fe、Al、Ca等杂质生成氯化盐或硅酸盐等物质,定期清除表层。这个过程会持续较长时间,并根据石英矿的杂质含量、成分和客户要求而定。这种方法主要是去除Fe、Al、Ca。 硅在常温下的化学性质很稳定,跟多数物质都不反应,只与部分强碱(NaOH、KOH)和酸(HF)反应。但在加热条件下(300℃±20℃)可以与多种物质反应,如与干燥的HCl气体反应生成氯硅烷,与Cl2反应生成四氯化硅,更高温度时还能和氧气反应生成氧化硅。 石灰砂(硅石) 煤、焦炭、木屑(CO、SiO、H2O)

三氯氢硅合成

目前,国内外应用最广,最主要的制备超纯硅的方法,是以三氯氢硅为原料,(即改良西门子法)。故三氯氢硅的合成在半导体材料硅的生产中引起了广泛注意,并取得不少成果。 三氯氢硅和四氯化硅的结构、化学性质相似。因此,它们的制备方法基本相似,只是前者用氯化氢气体代替氯气进行反应,在方法、设备、工艺操作等方面有共同之处,本章只介绍其特性。 三氯氢硅的制备方法很多,如: 1)用卤硅烷和过量的氢或氯化氢的混合物通过Al,Zn,或Mg的表面。 2)以氯化铝作催化剂,用氯化氢气体氯化SiH4。 3)在高温下用氢气部分还原SiCl4。 4)用干燥氯化氢气体氯化粗硅或硅合金。 前三种方法产率低、过程繁、产品沾污机会多、实用价值很小。因此,工厂和试验室多采用第4种方法制备三氯氢硅。 第一节三氯氢硅的性质 三氯氢硅(SiHCl3)又称三氯硅烷或硅氯仿。三氯氢硅是无色透明、在空气中强烈发烟的液体。极易挥发、易水解、易燃易爆、易溶于有机溶剂。有强腐蚀性、有毒,对人体呼吸系统有强烈的刺激作用。其物理化学性质见表 表3-1 三氯氢硅的物理化学性质 名称数值名称数值 分子量 135.45 氢含量% 0.74 液体密度(31.5℃) 1.318 闪点℃ 28 蒸气密度(31.5℃) 0.0055 在空气中的自燃点℃ 175 溶点℃ -128 偶极距德拜 0.85 沸点℃ 31.5 蒸发潜热kcal/mol 6.36 氯含量% 78.53 比热 kcal/kg.℃ 0.23(l) 0.132(g) 三氯氢硅在空气中的爆炸极 限% 1.2~90.5 附:四氯化硅的性质 四氯化硅(SiCl4)是无色透明、无极性、易挥发、有强烈刺激性的液体。水解后生成二氧化硅和氯化氢。可与苯、乙醚、氯仿及挥发油混合;与醇反应生成硅酸酯。因其易水解,并生成氯化氢,故它具有强腐蚀性。 表3-2 四氯化硅的性质 名称数值名称数值 分子量 169.2 蒸发热 kcal/mol 6.96 液体密度(在25℃)t/m³ 1.49 生成热 kcal/mol -153.0 蒸气密度kg/m³ 6.3 标准生成自由能kcal/mol 136.9 熔点℃ -70 临界温度℃ 206 沸点℃ 57.6 第二节三氯氢硅合成反应原理 三氯氢硅合成反应是一个放热反应,所以应将反应热及时导出,保持炉内反应温度相对稳定,以提高产品质量和收率。 化学反应(主反应):

三氯氢硅及四氯化硅的物化性质

三氯氢硅及四氯化硅的物化性质 - 我正在做一个三氯氢硅的项目设计,但三氯氢硅及四氯化硅的物化性质怎么也查不全,不知哪位高手能不吝赐教,万分感激。 TOP - 三氯氢硅又名三氯硅烷、硅氯仿,分子式SiHCl3,分子量135.45,相对密度1.34KG/L,熔点-126.5℃,沸点33.0℃,与水易分解,溶于CS2,CCl4,Cl Cl3苯,易燃,在空气中能自燃,燃点-27.8℃,自燃点104.4℃,与空气的爆炸极限:20.2~33.2%,有刺激性气体,有毒,吸入三氯氢硅蒸汽损伤呼吸道。四氯化硅的性质分子量169.90,相对密度1.483KG/L,熔点-70℃,沸点57.57℃,主要无色透明发烟液体具有难闻的窒息性气体,溅上皮肤会坏死,在潮湿的空气中水解放出HCL气体,遇氮气及氨剧烈反应生成氮化硅。 3 三氯氢硅三氯氢硅主要参数:三氯氢硅又称三氯硅烷、硅氯仿,英文名称:trichlorosilane 或silicochloroform ,分子式为SiHCl3 ,用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅烷偶联剂中最基本的单体,也是生产半导体硅、单晶硅的原料,随着有机硅烷偶联剂工业的发展而出现供不应求,三氯氢硅生产量越来越大。三氯氢硅是无色液体,易挥发,易潮解,在空气中发生反应产生白烟,遇水分解,溶于苯、醚等有机溶剂。属一级遇湿易燃物品,易燃易爆,遇水反应产生氯化氢气体;它与氧化剂发生强烈反应,遇明火、高热时发生燃烧或爆炸。【CAS号】10025-78-2 【分子式】CL3-H-SI 【分子量】135.44 【比重】1.35 (0℃) 【熔点】-134 ℃【沸点】31.8 ℃【蒸汽压】400 毫米汞柱【蒸汽密度】4.7 【急性毒性】口服-大鼠LD50:1030毫克/公斤;吸入-小鼠LC50:1500毫克/立方米/2小时【毒性分级】中毒【闪点】-13.89 ℃【可燃性危险特性】遇明火、高温、氧化剂易燃;遇水或高温产生有毒氯化物烟雾【储运事项】库房通风低温干燥;与氧化剂、酸类分开存放【灭火剂】干粉、干砂、二氧化碳、泡沫三氯氢硅物理特性如下:比重:1.35 ;相对气体密度:4.7 ;沸点:31.8 ℃;饱和蒸气压(14. 5 ℃)53 .33Kpa ;闪点:-13.9 ℃(开杯);自燃温度:175 ℃;爆炸下限:6. 9 %;爆炸上限:70 %;溶解性:溶于苯、醚等有机溶剂;具有急性毒性。 7# 大中小发表于2008-12-22 08:36 只看该作者 三氯氢硅又称三氯硅烷、硅氯仿,英文名称:trichlorosilane或silicochloroform,分子式为SiHCl3,用于有机硅烷和烷基、芳基以及有机官能团氯硅烷的合成,是有机硅烷偶联剂中最基本的单体,也是生产半导体硅、单晶硅的原料,随着有机硅烷偶联剂工业的发展而出现供不应求,生产量越来越大。一、三氯氢硅的理化特性及生产原理三氯氢硅是采用硅粉与氯化氢气体在流化床反应器中生成。它是无色液体,易挥发,易潮解,在空气中发生反应产生白烟,遇水分解,溶于苯、醚等有机溶剂。属一级遇湿易燃物品,易燃易爆,遇水反应产生氯化氢气体;它与氧化剂发生强烈反应,遇明火、高热时发生燃烧或爆炸。其物理特性如下:比重:1.35;相对气体密度:4.7;沸点:31.8℃;饱和蒸气压(14.5℃)53.33Kpa;闪点:-13.9℃(开杯);自燃温度:175℃;爆炸下限:6.9%;爆炸上限:70%;溶解性:溶于苯、醚等有机溶剂;具有急性毒性。二、三氯氢硅生产的火灾危险性分析三氯氢硅生产的原料都是不燃物质,但是其生产过程中的产物大都是易燃易爆物质,如氢气、三氯氢硅、氯气等。1、电解食盐水的火灾危险性(1)电解时有强大的

三氯氢硅

一、三氯氢硅的市场发展前景 三氯氢硅是合成有机硅的重要中间体,也是制备多晶硅的主要原料,目前国内市场上三氯氢硅供不应求,缺口较大。有机硅产品是一类性能优异而独特的新型化工材料,应用范围遍及国防、国民经济乃至人们日常生活的各个领域,已发展成为技术密集、资金密集、附加值高、在国民经济中占有一定地位的新型工业体系,并使相关行业获得了巨大的经济效益。硅烷偶联剂的可水解基团可使非交联树脂实现交联固化或改性,使近年来硅烷偶联剂在玻璃纤维、铸造、高级油漆、轮胎橡胶等行业得到广泛应用,产品出口量和国内需求量较大。 三氯氢硅是生产有机硅烷偶联剂的重要原料,将三氯氢硅与氯乙烯或氯丙烯进行合成反应,再经精馏提纯,得到乙烯基或丙烯基系列硅烷偶联剂产品。硅烷偶联剂几乎可与任何一种材料交联,包括热固性材料、热塑性材料、密封剂、橡胶、亲水性聚合物以及无机材料等,在太阳能电池、玻璃纤维、增强树脂、精密陶瓷纤维和光纤保护膜等方面扮演着重要角色,并在这些行业中发挥着不可或缺的重要作用。四氯化硅是三氯氢硅生产中极为重要的原辅料,同样具有广阔的市场需求空间。 二、产业政策的符合性及行业准入条件分析 我国有机硅工业是在近几年才有所发展,有机硅产品生产厂家如雨后春笋般出现,遍布全国.国内对硅烷偶联剂产品的需求增长很快,每年均有新建企业投产,老厂也纷纷扩大规模,有机硅产业的迅猛发

展,对三氯氢硅的需求量激增,。而受技术条件等的限制,目前国内仅有几家三氯氢硅生产企业,产量不能满足市场需求,产品呈现供不应求的局面。由此可见,三氯氢硅是氯碱企业可规划的一个产值高,有发展前途的产品. 三、工艺技术方案 三氯氢硅(SiHCl3)又名硅氯仿、硅仿、三氯硅烷; 1、工艺制法 (1)在高温下Si和HCl反应。 (2)用氢还原四氯化硅(采用含铝化合物的催化剂)。 2、三氯氢硅性质 1)理化性质 分子量:135.43 熔点(101.325kPa):-134℃;沸点(101.325kPa):31.8℃;液体密度(0℃):1350kg/m3;相对密度(气体,空气=1): 4.7;蒸气压(-16.4℃):13.3kPa;(14.5℃):53.3kPa;燃点:-27.8℃;自燃点:104.4℃;闪点:-14℃;爆炸极限:6.9~70%;毒性级别:3;易燃性级别:4;易爆性级别: 2)化学性质 三氯硅烷在常温常压下为具有刺激性恶臭易流动易挥发的无 色透明液体。在空气中极易燃烧,在-18℃以下也有着火的危险,遇明火则强烈燃烧,燃烧时发出红色火焰和白色烟,生成SiO2、HCl和Cl2:

三氯氢硅合成工艺的影响因素及控制

三氯氢硅合成工艺的影响因素及控制 摘要:本文介绍了目前三氯氢硅合成工艺中工业硅粉粒度、氯化氢气体含水量及纯度、流化床生产工艺参数对合成系统的影响。本文通过生产实践发现:将硅粉的粒度控制在125~425μm之间,氯化氢合成工艺中通过工艺控制使氢气过量,合成的氯化氢气体纯度控制在90%左右,含水量控制在0.05%以下,合成炉内部温度控制在320℃左右,进出口压差在15Kpa左右,可大大提高三氯氢硅合成反应的转化率和降低生产周期。 关键词:三氯氢硅;工业硅粉;氯化氢气体;流化床;工艺控制 The influence factors and control of the process trichlorosilane synthesis Xiao RonghuiXin ChaoWan Ye China ENFI Engineering CorporationBeijing100038 Abstract:The study introduces the influence factors of the process trichlorosilane synthesis, included the size of silicon powder, themoisture content and gas purity of hydrogen chloride, the process parameters of fluidized bed. The results show that: we control the size of silicon powder between 125~425μm, gas purity of hydrogen chloride is about 90% and moisture content is below 0.05%, the temperature of synthesis furnace is about 320℃, the differential pressure of import and export is about 15kpa. It can improve the conversion rateof trichlorosilane synthesis and reduce the production cycle. Keywords: trichlorosilane; silicon powder; hydrogen chloride; fluidized bed; process control 1.引言 目前在太阳能电池生产领域中,晶体硅太阳能电池占有主导地位,有超过85%的太阳能电池为晶体硅太阳能电池。因此高纯硅材料尤其是多晶硅在今后相当长的一段时期也依然是太阳能电池的主流材料[1]。目前国际上多晶硅生产主要的传统工艺有:改良西门子法和硅烷法。但是目前大规模多晶硅生产中,80%的生产厂采用改良西门子法来生产多晶硅,其生产工艺中主要的原料就为三氯氢硅,每生产1t多晶硅,就需要补充大约5~6t三氯氢硅。因此研究三氯氢硅合成工艺、影响因素以及生产过程的控制就具有十分重要的意义。 2.三氯氢硅合成工艺流程 目前三氯氢硅合成一般采用硅氢氯化法:该生产工艺是以冶金级工业硅粉为原料,与氯化氢气体在280~350℃发生反应,其主要的化学反应式如下:

三氯氢硅提纯工艺综述

三氯氢硅提纯工艺综述 摘要三氯氢硅是多晶硅生产的一种基础原料,有效的控制精制三氯氢硅的质量,是提高多晶硅产品质量的关键。而影响精制三氯氢硅质量的因素又是方方面面的,因此深挖影响精制三氯氢硅质量的因素,规范生产操作及加强过程的管控,并在技术上不断创新、突破,是保证精制三氯氢硅质量,进一步保证多晶硅质量的必经之路。本文结合改良西门子法生产多晶硅的实际工艺情况,介绍了三氯氢硅提纯的各种工艺方法,重点对三氯氢硅精馏提纯法作了详细介绍,并阐述了精馏提纯三氯氢硅过程中应注意的问题。 关键词三氯氢硅;提纯;精馏 精制三氯氢硅在还原炉内与氢气发生化学气相沉积反应生成多晶硅。可见,在整个改良西门子法生产工艺流程中,精馏提纯工艺是实现提高多晶硅产品质量的关键。如何能够连续稳定的生产合格的精三氯氢硅产品,仍是国内大部分多晶硅企业的难点和方向。由于三氯氢硅和四氯化硅沸点相差25℃,并且不形成共沸物,比较容易去除,关键是氯硅烷混合液中含有微量的金属杂质、硼磷化合物及含碳杂质等较难去除,如不去除将会带进多晶硅产品中降低多晶硅质量。 1 概述 1.1 改良西门子法简介 改良西门子法是一种化学方法,又称闭环式三氯氢硅氢还原法,是在传统西门子工艺的基础上增加了尾气回收和四氯化硅氢化工艺,实现了原材料的循环利用,具备节能降耗、生产成本低、对环境无污染等明显优势,是“综合素质”最优的多晶硅生产工艺,短时间内被其他工艺替代的可能性很小。 1.2 三氯氢硅的性质 三氯氢硅又名三氯硅烷或硅仿,英文名Trichlorosilane 或Silicochloroform,工业上一般采用硅氯氢化(工业硅粉与HCl气体在高温合成炉内合成SiHCl3)法和四氯化硅氢还原(SiCl4与Si和H2在Cu作催化剂条件下反应生成SiHCl3)法制取,两种方法涉及的反应式(1)和(2)。纯净的SiHCl3常温下为无色透明液体,沸点为31.8℃,闪点为-13.9℃,在空氣中的爆炸极限为6.9%~70%,属易燃易爆物品[1]。 2 三氯氢硅提纯工艺简介 目前提纯SiHCl3的方法主要有精馏法、络合物法、固体吸附法以及多步精制法[5]。由于精馏提纯法简单而有效,又避免引进任何试剂,绝大多数杂质都能被完全分离,是目前应用最广泛的提纯方法。

三氯氢硅合成操作规程

精氢净化岗位操作规程 (一)开车操作方法与步骤: 1、与氯碱厂调度室联系,得到可以送氢的明确指示后,马上用氮气置换系统。置换顺序: ①将氮气重入缓冲罐与阻火器之间的管道,从缓冲罐与阻火器下部排空阀放空。 ②打开阻火器后阀,将氮气赶入1#冷凝器,从下部把排水阀放空。 ③依次赶入2#、3#、4#冷凝器放空。 ④最后分别赶入4组氢气干燥器放空。置换结束后,将氮气压力保持0.03MPa。 2、置换好氮气后,请化学公司送氢气,氢气经氢气泵、缓冲罐、阻火器放空5分钟后进入1#冷凝器放空,依次进入2#、3#、4#冷凝器与4组氢气干燥器。 3、氢气在本系统正常后,开启本系统盐水、冷却水。 4、与氯化岗位联系,开启总出口阀,将氢气送人氯化,并做好开车记录。(二)工作职责: 1、氢气缓冲罐、冷凝器排水阀每10分钟排水一次; 2、氢气缓冲罐、泵、冷凝器、氢气进出处的压力表每30分钟记录一次; 3、氢气纯度>98%,氢气露点≤-25℃; 4、氢气进口压力在0.01~0.03MPa,出口压力在0.07~0.08 MPa; 5、泵里水保持在~范围内。 (三)硅胶倒组操作:(A→B) 1、缓慢开完B组氢气干燥器进口阀,关闭放空阀,排压2-3次后打开干燥器之间连接阀和氢气出口阀; 2、当B组氢气干燥器进行正常后,关闭A组氢气出口阀、干燥器之间连接阀; 3、打开B组干燥器冷却水进出口阀,使干燥器夹套及蛇管内保持冷却。 (四)氢气干燥器组再生操作: 1、干燥器停用2小时后进行再生操作; 2、关闭干燥器冷却水出口阀,排完蛇管及夹套余水; 3、打开干燥器蒸汽进出口阀,微量打开干燥器上方氢气进出口阀,并打开干燥器下部放空阀、空气平衡阀; 4、再生结束后(达72小时以上),关闭蒸汽进出口阀,干燥器下部放空阀,干燥器组氢气进出口阀。 (五)开泵及倒泵: 1、开泵前打开冷却水及进口阀,再缓慢打开口流阀,再按按钮开关; 2、倒泵时先打开备用出口,再打开冷却水; 3、按上述操作开泵;

三氯氢硅生产性质

三氯氢硅生产性质 Company Document number : WTUT-WT88Y-W8BBGB-BWYTT-19998 —?氯气 1氯气的理化性质 (1)物理性质:氯气在常温常压下为黄绿色有刺激性气味的有毒气体。密度为,是 空气的倍。易溶于碱溶液、二硫化碳和四氯化碳,难溶于饱和食盐水。在常温

下,氯气被加压到~或在常压下冷却到-3H4crc时就能液化为黄绿色透明液体。 液氯的密度为,熔点-i02r.沸点 (2)化学性质:氯气的化学性质很活泼,是一种活泼的非金属。 2液氯的用途 用于农药、塑料、增塑剂、合成橡胶、合成纤维、消毒漂白、炼镁和稀有金属等行业。 3氯气泄漏爆炸的危害 液氯为第二类危险化学品,人体吸入浓度为m3的氯气时,就会死亡。氯气爆炸的危害包括两部分:爆炸本身造成的危害及泄漏的氯气造成的二次危害。 4化学性爆炸 氯气中含有XC13. H2,在一定浓度、条件下可引起爆炸;氯气与有机物、氨及金属粉末反应易引起爆炸。 0腐蚀 氯气微溶于水,在温度°C时溶解度为理,部分氯与水反应生成HC1和 HC10,故湿氯具有强氧化性。当氯中含水量小于%时,碳钢的腐蚀速率小于6 亦即干燥氯对碳钢基本上不腐蚀。当氯中含水量大于%时,不仅会腐蚀碳钢,而且还会腐蚀不锈钢,氯会破坏不锈钢表面的钝化膜而产生孔蚀或应力腐蚀破裂。在一定范围内,随着氯气含水量增大,对碳钢、不锈钢的腐蚀速率也随着增大。 液氯产品含有~%的水量,会对金属贮槽产生腐蚀,长期使用能引起局部器壁变薄、强度下降,可导致贮槽开裂发生液氯蒸气爆炸。 —■鑫气 1、氢是无色、无嗅的可燃气体。它是已知最轻的气体。其沸点为一c。。 2、化学性质 在环境温度下,虽然氢相对而言不是十分活泼,但在高温下,它可以和几乎所有别的元素发生反应。通常?氢和氧在高温下的反应异常激烈升高温度,氢可以还原金属氧化物。 三?氯化氢 1氯化氢的理化性质 (1)物理性质:氯化氢在常温常压下为具有刺激性臭味的无色有毒气体。盐酸为氯化氢的水溶液,是无色或微黄色的液体。空气中不燃烧,热稳定,到约 1500C。才分解。与氟激烈反应,与许多金属反应生成氯化物和氢,与氨激烈反应生成氯化钱白烟,与乙烯混合形成爆炸性气体。氯化氢与水不反应但易溶于水,空气中常以盐酸烟雾的形式存在。浓盐酸因氯化氢蒸气而在空气中发烟。易溶于乙醇和醯,也能

相关文档