文档视界 最新最全的文档下载
当前位置:文档视界 › 水体中八类污染物

水体中八类污染物

水体中八类污染物
水体中八类污染物

●病原体污染物

生活污水、畜禽饲养场污水以及制革、洗毛、屠宰业和医院等排出的废水,常含有各种病原体,如病毒、病菌、寄生虫。水体受到病原体的污染会传播疾病,如血吸虫病、霍乱、伤寒、痢疾、病毒性肝炎等。

受病原体污染后的水体,微生物激增,其中许多是致病菌、病虫卵和病毒,它们往往与其他细菌和大肠杆菌共存,所以通常规定用细菌总数和大肠杆菌指数及菌值数为病原体污染的直接指标。病原体污染的特点是:(1)数量大;(2)分布广;(3)存活时间较长;(4)繁殖速度快;(5)易产生抗药性,很难绝灭;(6)传统的二级生化污水处理及加氯消毒后,某些病原微生物、病毒仍能大量存活。

●耗氧污染物

在生活污水、食品加工和造纸等工业废水中,含有碳水化合物、蛋白质、油脂、木质素等有机物质。这些物质以悬浮或溶解状态存在于污水中,可通过微生物的生物化学作用而分解。在其分解过程中需要消耗氧气,因而被称为耗氧污染物。这种污染物可造成水中溶解氧减少,影响鱼类和其他水生生物的生长。水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、氨和硫醇等难闻气味,使水质进一步恶化。水体中有机物成分非常复杂,耗氧有机物浓度常用单位体积水中耗氧物质生化分解过程中所消耗的氧量表示,即以生化需氧量(BOD)表示。一般用20℃时,五天生化需氧量(BOD5)表示。

●植物营养物

植物营养物主要指氮、磷等能刺激藻类及水草生长、干扰水质净化,使BOD5升高的物质。水体中营养物质过量所造成的"富营养化"对于湖泊及流动缓慢的水体所造成的危害已成为水源保护的严重问题。

富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。

植物营养物质的来源广、数量大,有生活污水(有机质、洗涤剂)、农业(化肥、农家肥)、工业废水、垃圾等。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。天然水体中磷和氮(特别是磷)的含量在一定程度上是浮游生物生长的控制因素。当大量氮、磷植物营养物质排入水体后,促使某些生物(如藻类)急剧繁殖生长,生长周期变短。藻类及其他浮游生物死亡后被需氧生物分解,不断消耗水中的溶解氧,或被厌氧微生物所分解,不断产生硫化氢等气体,使水质恶化,造成鱼类和其他水生生物的大量死亡。

藻类及其他浮游生物残体在腐烂过程中,又把生物所需的氮、磷等营养物质释放到水中,供新的一代藻类等生物利用。因此,水体富营养化后,即使切断外界营养物质的来源,也很难自净和恢复到正常水平。水体富养化严重时,湖泊可被某些繁生植物及其残骸淤塞,成为沼泽甚至干地。局部海区可变成"死海",或出现"赤潮"现象。

●有毒污染物

有毒污染物指的是进入生物体后累积到一定数量能使体液和组织发生生化和生理功能的变化,引起暂时或持久的病理状态,甚至危及生命的物质。如重金属和难分解的有机污染物等。污染物的毒性与摄入机体内的数量有密切关系。同一污染物的毒性也与它的存在形态有密切关系。价态或形态不同,其毒性可以有很大的差异。如Cr(Ⅵ)的毒性比Cr(Ⅲ)大;As(Ⅲ)的毒性比As(Ⅴ)大;甲基汞的毒性比无机汞大得多。另外污染物的毒性还与若干综合效应有密切关系。从传统毒理学来看,有毒污染物对生物的综合效应有三种:(1)相加作用,即两种以上毒物共存时,其总效果大致是各成分效果之和。(2)协同作用,即两种以上毒物共存时,一种成分能促进另一种成分毒性急剧增加。如铜、锌共存时,其毒性为它们单独存在时的8倍。(3)拮抗作用,两种以上的毒物共存时,其毒性可以抵消一部分或大部分。如锌可以抑制镉的毒性;又如在一定条件下硒对汞能产生拮抗作用。总之,除考虑有毒污染物的含量外,还须考虑它的存在形态和综合效应,这样才能全面深入地了解污染物对水质及人体健康的影响。

有毒污染物主要有以下几类:(1)重金属。如汞、镉、铬、铅、钒、钴、钡等,其中汞、镉、铅危害较大;砷、硒和铍的毒性也较大。重金属在自然界中一般不易消失,它们能通过食物链而被富集;这类物质除直接作用于人体引起疾病外,某些金属还可能促进慢性病的发展。(2)无机阴离子,主要是NO2-、F-、CN-离子。NO2-是致癌物质。剧毒物质氰化物主要来自工业废水排放。(3)有机农药、多氯联苯。目前世界上有机农药大约6000种,常用的大约有200多种。农药喷在农田中,经淋溶等作用进入水体,产生污染作用。有机农药可分为有机磷农药和有机氯农药。有机磷农药的毒性虽大,但一般容易降解,积累性不强,因而对生态系统的影响不明显;而绝大多数的有机氯农药,毒性大,几乎不降解,积累性甚高,对生态系统有显著影响。多氯联苯(PCB)是联苯分子中一部分氢或全部氢被氯取代后所形成的各种异构体混合物的总称。多氯联苯剧毒,脂溶性大,易被生物吸收,化学性质十分稳定,难以和酸、碱、氧化剂等作用,有高度耐热性,在1000~1400℃高温下才能完全分解,因而在水体和生物中很难降解。(4)致癌物质。致癌物质大体分三类:稠环芳香烃(PAHs),如3,4-苯并芘等;杂环化合物,如黄曲霉素等;芳香胺类,如甲、乙苯胺,联苯胺等。(5)一般有机物质。如酚类化合物就有2000多种,最简单的是苯酚,均为高毒性物质;腈类化合物也有毒性,其中丙烯腈的环境影响最为注目。

●石油类污染物

石油污染是水体污染的重要类型之一,特别在河口、近海水域更为突出。

排入海洋的石油估计每年高达数百万吨至上千万吨,约占世界石油总产量的千分之五。石油污染物主要来自工业排放,清洗石油运输船只的船舱、机件及发生意外事故、海上采油等均可造成石油污染。而油船事故属于爆炸性的集中污染源,危害是毁灭性的。

石油是烷烃、烯烃和芳香烃的混合物,进入水体后的危害是多方面的。如在水上形成油膜,能阻碍水体复氧作用,油类粘附在鱼鳃上,可使鱼窒息;粘附在藻类、浮游生物上,可使它们死亡。油类会抑制水鸟产卵和孵化,严重时使鸟类大量死亡。石油污染还能使水产品质量降低。

●放射性污染物

放射性污染是放射性物质进入水体后造成的。放射性污染物主要来源于核动力工厂排出的冷却水,向海洋投弃的放射性废物,核爆炸降落到水体的散落物,核动力船舶事故泄漏的核燃料;开采、提炼和使用放射性物质时,如果处理不当,也会造成放射性污染。水体中的放射性污染物可以附着在生物体表面,也可以进入生物体蓄积起来,还可通过食物链对人产生内照射。

水中主要的天然放射性元素有40K、238U、286Ra、210Po、14C、氚等。目前,在世界任何海区几乎都能测出90Sr、137Cs。

●酸、碱、盐无机污染物

各种酸、碱、盐等无机物进入水体(酸、碱中和生成盐,它们与水体中某些矿物相互作用产生某些盐类),使淡水资源的矿化度提高,影响各种用水水质。盐污染主要来自生活污水和工矿废水以及某些工业废渣。另外,由于酸雨规模日益扩大,造成土壤酸化、地下水矿化度增高。

水体中无机盐增加能提高水的渗透压,对淡水生物、植物生长产生不良影响。在盐碱化地区,地面水、地下水中的盐将对土壤质量产生更大影响。

●热污染

热污染是一种能量污染,它是工矿企业向水体排放高温废水造成的。一些热电厂及各种工业过程中的冷却水,若不采取措施,直接排放到水体中,均可使水温升高,水中化学反应、生化反应的速度随之加快,使某些有毒物质(如氰化物、重金属离子等)的毒性提高,溶解氧减少,影响鱼类的生存和繁殖,加速某些细菌的繁殖,助长水草丛生,厌气发酵,恶臭。

鱼类生长都有一个最佳的水温区间。水温过高或过低都不适合鱼类生长,甚至会导致死亡。不同鱼类对水温的适应性也是不同的。如热带鱼适于15~32℃,温带鱼适于10~22℃,寒带鱼适于2~10℃的范围。又如鳟鱼虽在24℃的水中生活,但其繁殖温度则要低于14℃。一般水生生物能够生活的水温上限是33~35℃。

除了上述八类污染物以外,洗涤剂等表面活性剂对水环境的主要危害在于使水产生泡沫,阻止了空气与水接触而降低溶解氧,同时由于有机物的生化降解耗用水中溶解氧而导致水体缺氧。高浓度表面活性剂对微生物有明显毒性。

水体污染的主要污染物详细分类与介绍

水体污染的主要污染物详细分类与介绍 生活污水、畜禽饲养场污水以及制革、洗毛、屠宰业和医院等排出的废水,常含有各种病原体,如病毒、病菌、寄生虫。水体受到病原体的污染会传播疾病,如血吸虫病、霍乱、伤寒、痢疾、病毒性肝炎等。历史上流行的瘟疫,有的就是水媒型传染病。如1848年和1854年英国两次霍乱流行,死亡万余人;1892年德国汉堡霍乱流行,死亡750余人,均是水污染引起的。 受病原体污染后的水体,微生物激增,其中许多是致病菌、病虫卵和病毒,它们往往与其他细菌和大肠杆菌共存,所以通常规定用细菌总数和大肠杆菌指数及菌值数为病原体污染的直接指标。病原体污染的特点是:(1)数量大;(2)分布广;(3)存活时间较长;(4)繁殖速度快;(5)易产生抗药性,很难绝灭;(6)传统的二级生化污水处理及加氯消毒后,某些病原微生物、病毒仍能大量存活。常见的混凝、沉淀、过滤、消毒处理能够去除水中99%以上病毒,如出水浊度大于0.5度时,仍会伴随病毒的穿透。病原体污染物可通过多种途径进入水体,一旦条件适合,就会引起人体疾病。 ●耗氧污染物 在生活污水、食品加工和造纸等工业废水中,含有碳水化合物、蛋白质、油脂、木质素等有机物质。这些物质以悬浮或溶解状态存在于污水中,可通过微生物的生物化学作用而分解。在其分解过程中需要消耗氧气,因而被称为耗氧污染物。这种污染物可造成水中溶解氧减少,影响鱼类和其他水生生物的生长。水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、氨和硫醇等难闻气味,使水质进一步恶化。水体中有机物成分非常复杂,耗氧有机物浓度常用单位体积水中耗氧物质生化分解过程中所消耗的氧量表示,即以生化需氧量(BOD)表示。一般用20℃时,五天生化需氧量(BOD5)表示。 ●植物营养物 植物营养物主要指氮、磷等能刺激藻类及水草生长、干扰水质净化,使BOD5升高的物质。水体中营养物质过量所造成的"富营养化"对于湖泊及流动缓慢的水体所造成的危害已成为水源保护的严重问题。 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现 象,可以在短期内出现。 植物营养物质的来源广、数量大,有生活污水(有机质、洗涤剂)、农业(化肥、农家肥)、工业废水、垃圾等。每人每天带进污水中的氮约50g。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。天然水体中磷和氮(特别是磷)的含量在一定程度上是浮游生物生长的控制因素。当大量氮、磷植物营养物质排入水体后,促使某些生物(如藻类)急剧繁殖生长,生长周期变短。藻类及其他浮游生物死亡后被需

常见8类水体污染物的危害

编号:AQ-CS-06644 ( 安全常识) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 常见8类水体污染物的危害 Harm of 8 kinds of common water pollutants

常见8类水体污染物的危害 备注:安全是指没有受到威胁、没有危险、危害、损失。人类的整体与生存环境资源的和谐相处,互相不伤害,不存在危险、危害的隐患, 是免除了不可接受的损害风险的状态,安全是在人类生产过程中,将系统的运行状态对人类的生命、财产、环境可能产生的损害控制在人类能接受水平以下的状态。 环保知识:悬浮固体 固体物会淤塞排水道,窒息水底栖生物,破坏鱼类的产卵地。 悬浮小颗粒物会堵塞鱼类的腮,使之呼吸困难,导致死亡。 颗粒物含量高时会使水中植物因见不到阳光而难以生长或死亡。 悬浮固体物会降低水质,增加净化水的难度和成本。 现代生活垃圾中的难降解固体成分(如塑料包装)进入水体之后,会使水生动物误食后死亡。 有机质和病原体(存在于食物、植物、粪便、动物尸体中的有机成分) 大量消耗水中的溶解氧,危及鱼类的生存。 导致水中缺氧而使需氧微生物死亡。这类微生物能够分解有机质,维持水体的自净功能。它们死亡的后果是:水体发黑,变臭,

毒素积累,伤害人畜。 重金属(汞、铅、镉、镍、硒、砷、铬、铊、铋、钒、金、铂、银等) 对人、畜有直接的生理毒性。 用含有重金属的水来灌溉庄稼,会使作物受到重金属污染,致使农产品有毒性。 沉积到水体底部,通过水生植物或微生物进入食物链,经鱼类等水产品进入人体。 合成化学品(如:苯酚、多氯联苯、二恶英、呋喃等) 这类合成化学品多数是难降解、对水生动物和人有毒性的物质(致癌、干扰内分泌系统、扰乱生殖行为、影响免疫系统等)。它们进入水体会危害水中生物,尤其是引起生物的繁殖行为发生明显变化,进而影响到整个水体的生态系统。 它们的毒性会积累在水生生物体内,通过食物链进入其它生物体,最终进入人体。 它们污染过的水体难以被净化,使人类的饮水安全和健康受到

污染物在水体中的转化

污染物在水体中的转化 污染物进入水体后发生各种反应,根据污染物的不同性质可产生不同的污染过程。有机污染物在水环境中的迁移转化主要取决于有机污染物本身的性质以及水体的环境条件。有机污染物一般通过吸附作用、挥发作用、水解作用、光解作用、生物富集和生物降解作用等过程进行迁移转化,一些重金属污染物在水体中可发生形态或状态的转化。 一、水体中需氧有机物的降解 有机物在水体中的降解主要通过化学氧化、光化学氧化和生物化学氧化来实现,其中生物化学氧化作用具有最重要的意义。 需氧污染物在水体中发生生物降解的问题可以从两方面来考察:从微观看,就是考虑微生物的生活行为和污染物在微生物的作用下发生逐步降解的反应机理;从宏观看,也就是考虑水体本身如何通过生物因素而达到自净结果的。对这两方面的内容将在下文分别予以阐述。 (一)生化需氧过程中的生物系统和生化反应 生物需氧过程中的生物系统可用图 4-2 表示。从这个图中我们可以看到,在降解有机物过程中,微生物中的细菌所起的作用最大(在水体中数量多,氧化功能强),其次是原生动物。 在生物需氧过程三阶段中发生的反应有氧化反应、合成反应和内源呼吸反应(氧化反应在好氧、厌氧条件下皆能发生,而且细菌生长和能量利用情况也很相似,但反应产物是十分相异的)。在三阶段发生的典型反应归纳列举如下:

1. 有机物氧化(呼吸)反应 2. 无机物氧化(呼吸)反应 3. 合成细胞原生质(合成)反应 4. 细菌原生质氧化(内源呼吸)反应 细菌的呼吸是在生活的原生质中进行的一种生物化学过程,由此产生的能量可供细菌的各种生命活动之用;另一方面,细菌的内源呼吸导致细胞物质的自身破坏和内耗。实际上,细菌发挥正常活动功能(如在水体中运动、体内酶的激活)只需很少能量,这一份额的能量单靠内源呼吸也已足够提供。按专业研究人员提出的假说,微生物的生长是以下两种相反过程竞争的结果:同化外来营养物质和内耗体内细胞物质。即使环境中所含营养物质并不缺乏,细菌体内破坏原生质的过程也还是发生着的。对外来营养物质发生同化过程的速率正比于细胞中原生质的质量和细胞的外表面积,内源呼吸的速率则首先取决于外界环境的条件。 (二)需氧有机物的生物降解 有机化合物降解过程中所发生的一系列反应经常按一定程式演变,可以称为径路;有一些径路是周而复始、循环进行的,进入循环的有机物在演变中完成降解,这种形式可称为循环,如具有普遍意义的三羧酸循环即是如此。 1. 营养物质的生物降解机理 包括糖类、脂肪、蛋白质在内的这几类有机物主要来自于人的排泄和动植物废料,是城市污水中的主要成分。 糖类、脂肪、蛋白质这三类物质在有氧条件下生物降解的概貌可用图 4-3 表示。需要指出,在图 4-3 中还没有将能量转移关系显示出来。

水体中八类污染物

●病原体污染物 生活污水、畜禽饲养场污水以及制革、洗毛、屠宰业和医院等排出的废水,常含有各种病原体,如病毒、病菌、寄生虫。水体受到病原体的污染会传播疾病,如血吸虫病、霍乱、伤寒、痢疾、病毒性肝炎等。 受病原体污染后的水体,微生物激增,其中许多是致病菌、病虫卵和病毒,它们往往与其他细菌和大肠杆菌共存,所以通常规定用细菌总数和大肠杆菌指数及菌值数为病原体污染的直接指标。病原体污染的特点是:(1)数量大;(2)分布广;(3)存活时间较长;(4)繁殖速度快;(5)易产生抗药性,很难绝灭;(6)传统的二级生化污水处理及加氯消毒后,某些病原微生物、病毒仍能大量存活。 ●耗氧污染物 在生活污水、食品加工和造纸等工业废水中,含有碳水化合物、蛋白质、油脂、木质素等有机物质。这些物质以悬浮或溶解状态存在于污水中,可通过微生物的生物化学作用而分解。在其分解过程中需要消耗氧气,因而被称为耗氧污染物。这种污染物可造成水中溶解氧减少,影响鱼类和其他水生生物的生长。水中溶解氧耗尽后,有机物进行厌氧分解,产生硫化氢、氨和硫醇等难闻气味,使水质进一步恶化。水体中有机物成分非常复杂,耗氧有机物浓度常用单位体积水中耗氧物质生化分解过程中所消耗的氧量表示,即以生化需氧量(BOD)表示。一般用20℃时,五天生化需氧量(BOD5)表示。 ●植物营养物 植物营养物主要指氮、磷等能刺激藻类及水草生长、干扰水质净化,使BOD5升高的物质。水体中营养物质过量所造成的"富营养化"对于湖泊及流动缓慢的水体所造成的危害已成为水源保护的严重问题。 富营养化(eutrophication)是指在人类活动的影响下,生物所需的氮、磷等营养物质大量进入湖泊、河口、海湾等缓流水体,引起藻类及其他浮游生物迅速繁殖,水体溶解氧量下降,水质恶化,鱼类及其他生物大量死亡的现象。在自然条件下,湖泊也会从贫营养状态过渡到富营养状态,沉积物不断增多,先变为沼泽,后变为陆地。这种自然过程非常缓慢,常需几千年甚至上万年。而人为排放含营养物质的工业废水和生活污水所引起的水体富营养化现象,可以在短期内出现。 植物营养物质的来源广、数量大,有生活污水(有机质、洗涤剂)、农业(化肥、农家肥)、工业废水、垃圾等。生活污水中的磷主要来源于洗涤废水,而施入农田的化肥有50%~80%流入江河、湖海和地下水体中。天然水体中磷和氮(特别是磷)的含量在一定程度上是浮游生物生长的控制因素。当大量氮、磷植物营养物质排入水体后,促使某些生物(如藻类)急剧繁殖生长,生长周期变短。藻类及其他浮游生物死亡后被需氧生物分解,不断消耗水中的溶解氧,或被厌氧微生物所分解,不断产生硫化氢等气体,使水质恶化,造成鱼类和其他水生生物的大量死亡。

水污染的主要来源

水污染的主要来源 水是判断一个星球存在生命的可能性的重要依据,由此观之,水对于人类来说,是非常重要的,但是随着世界的发展,水资源越来越缺乏,这是因为水体污染的现象越来越严重了,而我们只有知道水污染的来源,才能治理它,那么水污染的主要来源是什么呢?我认为有以下几点: 一生活污水 人类生活过程中产生的污水,是水体的主要污染源之一。是来源于生活的一种水污染。其组成主要是粪便和洗涤污水。城市每人每日排出的生活污水量为150—400L,其量与生活水平有密切关系。生活污水中含有大量有机物,如纤维素、淀粉、糖类和脂肪蛋白质等;也常含有病原菌、病毒和寄生虫卵;无机盐类的氯化物、硫酸盐、磷酸盐、碳酸氢盐和钠、钾、钙、镁等。总的特点是含氮、含硫和含磷高,在厌氧细菌作用下,容易产生恶臭。随着人们生活水平的提高,生活污水的排放现象越来越严重,不过我认为这个利用好了可以对农业作出很大贡献。现在农村里的沼气池就是对生活污水的利用。 二工业废水 工业废水,包括生产废水和生产污水,是指工业生产过程中产生的废水和废液,其中含有随水流失的工业生产用料、中间产物、副产品以及生产过程中产生的污染物。生产过程中排出的水。在工业生产中,热交换、产品输送、产品清洗、选矿、除渣、生产反应等过程均会产生大量废水。产生工业废水的主要企业有初级金属加工、食品加工、纺织、造纸、开矿、治炼、化学工业等。据调查,我国已有38个国营企业和100多万个乡镇企业,后者设备差,废水排出量也大。其中有很多民营企业根本达不到国家废水排放标准,这样下去,眼前的利益是得到了,而我们的子孙后代却要花大量的人力物力财力来治理前人留下的环境污染。 三农业污水 农业污水是指农作物栽培、牲畜饲养、农产品加工等过程中排出的、影响人体健康和环境质量的污水或液态物质。其来源主要有农田径流、农产品加工污水、饲养场污水。(饲养场污水可作为厩肥,但是工业发达的国家往往弃置不用,造成环境问题。作为厩肥使用,大都采用面施的方法)近年来,化肥、农药等的降解反应,产生的硫化氢、吲哚和粪臭素,使水变得恶臭。生活污水的成分99%为水,固体杂质不到1%,大多为无毒物质,其中无机盐有氰化物、硫酸盐、磷酸盐、铵盐、亚硝酸盐、硝酸盐等;有机物质如纤维素、淀粉、糖类、脂肪、蛋白质和尿素等,另外还有各种洗涤剂和微量金属。农业污水数量大、影响面广。污水中氮、磷等营养元素进入河流、湖泊、内海等水域,会引起水体的富营养化;农药、病原体和其他有毒物质能污染饮用水源,直接危害人体健康;也就是说,我们撒的过多的农药,最后会进入我们人体中,所以说,最终受害的还是我们人类本身。 当然,水污染的来源不止这三个,我的水平有限,现在水污染治理的形势刻不容缓,既然明确了方向,就要朝这个方向努力啊!

水体污染物.

水体污染物主要表现如下: 硫化物、无机酸碱盐(如氯化物、硫酸盐、酸、碱)的无机有害物; 氟化物、氰化物的无机有毒化学物质及汞、砷、铬、铝、镉等重金属元素; 氨基酸、蛋白质、碳水化物、油类、脂类等耗氧有机物; 钾、铵盐、磷、磷酸盐等植物营养源; 苯类、酚类、有机磷农药、有机氯农药、多环芳烃等有毒有机物; 寄生虫、、细菌、病菌等微生物污染; 铯、钚、锶、铀等放射性污染物。 水体污染物的分类 造成水体水质、水中生物群落以及水体底泥质量恶化的各种有害物质(或能量)都可叫做水体污染物。 水体污染物从化学角度可分为无机有害物、无机有毒物、有机有害物、有机有毒物4类。 从环境科学角度则可分为病原体、植物营养物质、需氧化质、石油、放射性物质、有毒化学品、酸碱盐类及热能8类。 无机有害物如砂、土等颗粒状的污染物,它们一般和有机颗粒性污染物混合在一起,统称为悬浮物(SS)或悬浮固体,使水变浑浊。还有酸、碱、无机盐类物质,氮、磷等营养物质。 无机有毒物主要有:非金属无机毒性物质如氰化物(CN)、砷(As),金属毒性物质如汞(Hg)、铬(Cr)、镉(Cd)、铜(Cu)、镍(Ni)等。长期饮用被汞、铬、铅及非金属砷污染的水,会使人发生急、慢性中毒或导致机体癌变,危害严重。 有机有害物如生活及食品工业污水中所含的碳水化合物、蛋白质、脂肪等。 有机有毒物,多属人工合成的有机物质如农药DDT、六六六等、有机含氯化合物、醛、酮、酚、多氯联苯(PCB)和芳香族氨基化合物、高分子聚合物(塑料、合成橡胶、人造纤维)、染料等。有机物污染物因须通过微生物的生化作用分解和氧化,所以要大量消耗水中的氧气,使水质变黑发臭,影响甚至窒息水中鱼类及其他水生生物。 病原体污染物主要是指病毒,病菌,寄生虫等。危害主要表现为传播疾病:病菌可引起痢疾、伤寒、霍乱等;病毒可引起病毒性肝炎、小儿麻痹等;寄生虫可引起血吸虫病、钩端旋体病等。 含植物营养物质的废水进入天然水体,造成水体富营养化,藻类大量繁殖,耗去水中溶解氧,造成水中鱼类窒息而无法生存、水产资源遭到破坏。水中氮化合物的增加,对人畜健康带来很大危害,亚硝酸根与人体内血红蛋白反应,生成高铁血红蛋白,使血红蛋白丧失输氧能力,使人中毒。硝酸盐和亚硝酸盐等是形成亚硝胺的物质,而亚硝胺是致癌物质,在人体消化系统中可诱发食道癌、胃癌等。 石油污染,指在开发、炼制、储运和使用中,原油或石油制品因泄露、渗透而进入水体。它的危害在于原油或其他油类在水面形成油膜,隔绝氧气与水体的气体交换,在漫长的氧化分解过程中会消耗大量的水中溶解氧,堵塞鱼类等动物的呼吸器官,黏附在水生植物或浮游生物上导致大量水鸟和水生生物的死亡,甚至引发水面火灾等。 热电厂等的冷却水是热污染:热污染是指现代工业生产和生活中排放的废热所造成的环境污染。热污染可以污染大气和水体。火力发电厂、核电站和钢铁厂的冷却系统排出的热水,以及石油、化工、造纸等工厂排出的生产性废水中均含有大量废热。这些废热直接排入天然水体,可引起水温上升。水温的上升,会造成水中溶解氧的减少,甚至使溶解氧降

水体受污染原因及常见污染物

水体受污染原因: 当污染物进入水体后会引起水质恶化。因进入水体的污染物在一定时间范围内超过水体自净能力而致。人类生产活动造成的水体污染中。工业排放引起的水体污染最严重。如工业废水,它含污染物多,成分复杂,不仅在水中不易净化,而且处理也比较困难。被污染水质经过分析会发现COD、氨氮、磷、亚硝酸盐含量严重超标,水体透明度极低,水中的悬浮物比较多,在水体不流动的死角处会有树叶杂草和油状物出现,水体有刺鼻异味或臭味。由于水量比较大,一般不采用外河道换水的方法,而采用原位修复的办法。 常见的污染物: (1) 病原微生物污染:如伤寒杆菌、痢疾杆菌、霍乱弧菌等引起传染病的发生或流行; (2) 耗氧污染物:由于氧化分解大量消耗水中溶解氧,甚至转为厌氧分解,水变黑发臭; (3) 酸、碱、盐无机污染物:生活污水、工业污水或农药、化肥等各种酸、碱、盐等无机物进入水体; (4) 植物营养物污染:如锌、磷、氮严重超标使水生植物大量繁殖,水质富营养化; (5) 各种油污染:油田、炼油厂污水排放,饭店潲水排放; (6) 有毒物污染:主要有砷、氟、铅、汞、硝酸盐等; (7) 放射性物质污染:放射性物质。 (8) 热污染:热污染是一种能量污染,它是工矿企业向水体排放高温废水造成的。 污水治理措施: 1、采用人工或物理的方法清理水面的树叶杂草,漂浮物,进行日常性维护; 2、进行水体流动或曝气复氧的设施改造,增加水体的溶解氧含量; 3、采用化学的方法对水体中的悬浮物进行吸附沉降,偶尔用化学杀藻剂进行杀藻;

4、用微生物活菌制剂进行水体调理和改善,主要利用微生物对水体中的有机物进行分解和转化,降低水体中的有机物、COD、氨氮、磷、亚硝酸盐等指标。 5、控制水生植物的种植面积,用以吸收水体中的营养物质,并进行有效管理,及时收割,转移营养成分。 6、适当控制水生动物,保持生物链的连续性和物种的多样性,并能够保持平衡。 现代污水处理技术: 污水处理按处理程度划分,可分为一级、二级和三级处理。 一级处理:主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 一级处理过程为:通过粗格删的原污水经过污水提升泵提升后——经过格删或者筛率器——之后进入沉砂池——经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理)。沉砂池的功能是去除比重较大的无机颗粒。常用的沉砂池有平流沉砂池、曝气沉砂池、多尔沉砂池和钟式沉砂池。 二级处理:主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD 物质),去除率可达90%以上,使有机污染物达到排放标准。 二级处理过程为:从初沉池流出的水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),从生物处理设备流出的水进入二次沉淀池,二次沉淀池的出水经过消毒排放或者进入三级处理。

常见8类水体污染物的危害

常见8类水体污染物的危害环保知识:悬浮固体 固体物会淤塞排水道,窒息水底栖生物,破坏鱼类的产卵地。 悬浮小颗粒物会堵塞鱼类的腮,使之呼吸困难,导致死亡。 颗粒物含量高时会使水中植物因见不到阳光而难以生长或死亡。 悬浮固体物会降低水质,增加净化水的难度和成本。 现代生活垃圾中的难降解固体成分(如塑料包装)进入水体之后,会使水生动物误食后死亡。 有机质和病原体(存在于食物、植物、粪便、动物尸体中的有机成分)

大量消耗水中的溶解氧,危及鱼类的生存。 导致水中缺氧而使需氧微生物死亡。这类微生物能够分解有机质,维持水体的自净功能。它们死亡的后果是:水体发黑,变臭,毒素积累,伤害人畜。 重金属(汞、铅、镉、镍、硒、砷、铬、铊、铋、钒、金、铂、银等) 对人、畜有直接的生理毒性。 用含有重金属的水来灌溉庄稼,会使作物受到重金属污染,致使农产品有毒性。 沉积到水体底部,通过水生植物或微生物进入食物链,经鱼类等水产品进入人体。

合成化学品(如:苯酚、多氯联苯、二恶英、呋喃等) 这类合成化学品多数是难降解、对水生动物和人有毒性的物质(致癌、干扰内分泌系统、扰乱生殖行为、影响免疫系统等)。它们进入水体会危害水中生物,尤其是引起生物的繁殖行为发生明显变化,进而影响到整个水体的生态系统。 它们的毒性会积累在水生生物体内,通过食物链进入其它生物体,最终进入人体。 它们污染过的水体难以被净化,使人类的饮水安全和健康受到威胁。 酸性废水 降低水体的pH值,杀死幼鱼和其它水生动物种群,并使成年鱼类无法繁殖。

酸化的水体使金属和其它有毒物质更易溶解于水中,这会进一步损害水体的生态系统。 酸化作用会杀死一些大型的鱼类。 酸化水体中水生生物的灭绝会使依赖它们为食物的其它物种(比如一些鸟类)的灭绝。 磷酸盐 增加水体中藻类生长所需的重要元素磷,因而引起藻类疯长。 导致水体中细菌大量繁殖。疯长的藻类死亡之后成为水体中细菌的营养,于是细菌迅速增殖。 致使鱼类死亡。大量增殖的细菌会消耗水中的氧气,水体缺氧会引起鱼类死亡。

工业废水中的主要污染物

一、废水中的主要污染物及其危害 了解废水中污染物的种类、性质和浓度,对于废水的收集、处理、处置设施的设计和操作,以及环境质量的技术管理都是重要的;对于该废水危害环境的评价,也是只管重要的。 废水中污染物种类较多。根据废水对环境污染所造成危害的不同,大致可划分为固体污染物、有机污染物、油类污染物、有毒污染物、生物污染物、酸碱污染物、需氧污染物、营养性污染物、感官污染物和热污染等。 二、水质指标 为了表征废水水质,规定了许多水质指标。主要有化学耗氧量、有毒物质、有机物质、悬浮物、细菌总数、pH值、色度、氨氮、磷、生化耗氧量等。一种水质指标可能包括集中污染物的综合指标,而一种污染物也可以造成集中水质指标的表征。如悬浮物可能包括有机污染物、无机污染物、藻类等,而一种有机污染物就可以造成COD、BOD、pH值等几种水质指标的表征。 (一)固体污染物 固体污染物以悬浮物、胶状物和溶解固形物三种形态存在于水中。 1.悬浮物:水中粒径大雨100nm的杂质,一般呈悬浮状态,常造成水质混浊。由无机泥砂类和有机藻类、微生物与菌泥等组成。 2.胶状物:粒径在1~10nm之间,呈胶状。一般是黏土类无机胶体和高分子有机胶体组成。 3.溶解固形物:粒径小于1nm的杂质,主要是一些低分子的化合物,溶解在水中,不影响

水的透明度。 废水水质分析中,把固体污染物分为两类:凡能透过滤膜(孔径0.45μm)的称为溶解性固体(以DS表示);凡是不能透过的称为悬浮物(以SS表示);DS与SS的总量称为总固形物(以TS表示)。 固体悬浮物的危害:当水被悬浮物污染,再大量排入自然界水体,将造成水体混浊,颜色改变。会自行沉降的悬浮物沉于水体底部,会危害水底栖生物的繁殖,影响渔业生产;沉积于灌溉的农田,会堵塞土壤空隙,不利于农作物生长;淤积严重,还会堵塞水道。 溶解固形物的危害:当水中溶解固形物的浓度大,造成pH值变化或盐分增加,也将危害水生生物的生长或使水体富营养化,造成藻类疯长,对农业和渔业危害很大。盐分过大,对水质生化处理造成困难。 (二)需氧污染物 废水中凡是能通过生物化学或化学作用而消耗水中溶解氧的物质,统称为需氧污染物。绝大多数需氧污染物都是有机物质,无机物仅有Fe、Fe2+、S2-、CN-等。因此,一般情况下,需氧污染物专指有机污染物。 由于有机物种类繁杂,难以将各种工业废水中的有机物全面定性与定量,现一般用生化耗氧量(BOD)、化学耗氧量(COD)和总耗氧量(TOD)来表征。 (三)油类污染物 油类污染物主要是“石油类”和“动植物油类”有机化合物。

主要水污染物总量分配指导意见

—3 — 附件: 主要水污染物总量分配指导意见 一、总则 (一)为控制全国主要水污染物(化学需氧量)排放总量,防 治水环境污染,促进经济、社会和环境可持续发展,根据国家有关 环境保护法律法规的规定、《国务院关于“十一五”期间全国主要 污染物排放总量控制计划的批复》和环保总局受国务院委托与各省 级人民政府签订的《“十一五”水污染物总量削减目标责任书》的 要求,制定本指导意见。 (二)本指导意见适用于地方环境保护部门对区域(流域)和 排污单位分配化学需氧量总量指标。 本指导意见所称排污单位,是指直接或间接向环境排放水污染 物的单位,包括企事业单位、城市污水处理设施或其它工业污水集 中处理设施等。 (三)各级环境保护部门依据本指导意见逐级分配给区域(流 域)的化学需氧量排放量,即为核定的区域(流域)总量控制指标; 分配给排污单位的化学需氧量排放量,即为核定的排污许可量。 (四)各级环境保护部门制定的化学需氧量总量分配方案,应 报本级人民政府批准,并报上一级环境保护部门备案。下一级环境 保护部门分配的化学需氧量总量指标之和不得突破上一级下达的区 域总量控制指标,也不得突破国家确定的水污染防治重点流域等专 —4 — 项规划下达的流域总量控制指标。 二、区域(流域)总量指标分配 (五)各级环境保护部门在分配区域(流域)化学需氧量总量 指标时,应综合考虑不同地区的环境质量状况、环境容量、排放基 数、经济发展水平和削减能力以及有关污染防治专项规划的要求, 对重点保护水系、污染严重水体、一般水域等实行区别对待,确保 流域水环境质量的总体改善。 (六)区域(流域)化学需氧量总量指标在水质控制目标容量 测算和出境断面污染物总量削减的基础上进行分配,计算方法如下:(1)以2005 年环境统计数据为基准,核算2005 年区域(流域) 化学需氧量出境量,计算公式如下: Pc=∑PsiKi Pc—省(市、县)控断面化学需氧量出境量; Psi—流域内第i个控制区域的实际排放量; Ki—流域内第i个控制区域的污染物综合传递系数。 污染物综合传递系数Ki按下式计算: Ki=K1i×K2i×K3i×K4i K1i—入河系数(以企业排放口和城市污水处理设施排放口到入 河排污口的距离(L)远近确定:L≤1km,入河系数取1.0;1<L≤10km,入河系数取0.9;10<L≤20km,入河系数取0.8;20<L≤40km,入 河系数取0.7;L>40km,入河系数取0.6);

污染物在水体中的迁移

第四章 污染物在水体中的迁移 水质模型的目的是模拟污染物浓度在环境中的变化过程,这种过程包括物理、化学和生物过程,其中物理过程主要表现在对流、扩散和弥散等;化学过程主要表现于物质由于化学反应在水体中的变化规律;生物过程则是在微生物的作用下而产生的变化过程。主要控制因素是污染性质、环境因素和排放的方式方法。所以有必要在这里介绍污染物的基本转化规律和机理。 (1) 对流与扩散 对于溶解性和悬浮性的污染物质,其物理过程主要有对流和扩散两种基本方式。对流指的是由于含有污染物的水体运动而产生的迁移过程;而扩散是指由于水体中污染物迁移所产生浓度梯度的非平流转移过程,这种过程是由于布朗宁(BROWNIAN )运动而引起物质分子的随机运动,或由于湍流而引起的分子级迁移过程。 对于保守物质,分子扩散可用Fick ’s 第一定律来描述:物质由分子扩散通过液体单位面积的速度与液体中的浓度梯度成正比。 扩散物质通量=x c D m ??- (6-1) 其中,D m 是扩散系数或比例常数,它与绝对温度成正比,与扩散相的分子量和扩散相的浓度成正比。负号表示由于扩散过程物质从高浓度向低浓度方向运动。 (2) 物理化学过程动力学 (a) 零级反应:零级反应的反应速率与反应浓度无关,当方程中的指数v 和w 为零时,反应物浓度变化速率可用下列方程表示: []k dt A d =/ (b) 一级反应:一级反应速率与反应物浓度成正比,其速率常数可用下列方程表示: [][]A k dt A d =/ (6-3) 方程的解为: [][])exp(0kt A A -= (6-4) 式中,[A 0]是初始浓度;[A]是时间t 时的浓度。 (c) 二级反应:典型的二级反应式有两种形式 (3)吸附-解吸 水中溶解的污染物或胶状物,当与悬浮于水中的泥沙等固相物质接触时,会被吸附在泥沙表面,并在适宜的条件下随泥沙一起沉入水低,使水的污染浓度降低,起到净化作用。另外,河流的底岸也有吸附作用.与之相反,被吸附的污染物,当水流条件(如浓度、流速、pH 、温度等)改变时,也可能从吸附面上解脱一部分又进入水中,使水的污染浓度增加。前者称吸附,后者称解吸。大量研究表明:吸附能力远远大于解吸能力,常可大过几个数量级。因此,吸附—解析的总趋势是使水体溶解的污染物浓度降低。 (4) 沉淀与再悬浮 水中悬浮的有机物微粒和吸附有机物的泥沙,当流速减缓时,可能出现沉淀,使水体净化;当流速变大时,沉积为底泥的有机物可能被冲刷再浮于水中,使污染浓度增大。在水质模型中考虑这种影响,一般有两种途径:一是按照河流动力学原理,先计算河段的冲淤过程,

污染物在水体中的运动特征

污染物在水体中的运动特征 污染物进入水体之后,随着水的迁移运动、污染物的分散运动以及污染物质的衰减转化运动,使污染物在水体中得到稀释和扩散,从而降低了污染物在水体中的浓度,它起着一种重要的“自净作用”。根据自然界水体运动的不同特点,可形成不同形式的扩散类型,如河流、河口、湖泊以及海湾中的污染物扩散类型。这里重点介绍河流中污染物扩散。 一、推流迁移 推流迁移是指污染物在水流作用下产生的迁移作用。推流作用只改变水流中污染物的位置,并不能降低污染物的浓度。 在推流的作用下污染物的迁移通量可按下式计算: f x =u x c ,f y =u y c ,f z =u z c (3-1) 式中:f x 、f y 、f z ——x 、y 、z 方向上的污染物推流迁移通量;u x 、u y 、u z ——在x 、y 、z 方向上的水流速度分量;c ——污染物河流水体中的浓度。 二、分散作用 污染物在河流水体中的分散作用包含三个方面内容:分子扩散、湍流扩散和弥散。 在确定污染物的分散作用时,假定污染物质点的动力学特性与水的质点一致。这一假设对于多数溶解污染物或呈胶体状污染物质是可以满足的。 分子扩散是由分子的随机运动引起的质点分散现象。分子扩散过程服从费克(Fick )第一定律,即分子扩散的质量通量与扩散物质的浓度梯度成正比,即 E M ——分子扩散系数; c ——分子扩散所传递物质的浓度。

分子扩散是各向同性的,上式中的负号表示质点的迁移指向负梯度方向。 湍流扩散是在河流水体的流湍流场中质点的各种状态(流速、压力、浓度等)的瞬时值相对于其平均值的随机脉动而导致的分散现象。当水流体的质点的紊流瞬时脉动速度为稳定的随机变量时,湍流扩散规律可以用费克第一定律表达,即 E x、E y、E z——x、y、z 方向的湍流扩散系数; 由于湍流的特点,湍流扩散系数是各向异性的。湍流扩散作用是由于计算中采用时间平均值描述湍流的各种状态导致的,如果直接用瞬时值计算,就不会出现湍流扩散项。 弥散作用是由于横断面上实际的流速分布不均匀引起的,在用断面平均流速描述实际的运动时,就必须考虑一个附加的,由流速不均匀引起的作用——弥散。弥散作用可以定义为:由空间各点湍流流速(或其他状态)的时平均值与流速时平均值的空间平均值的系统差别所产生的分散现象。弥散作用所导致的质量通量也可以按费克第一定律来描述: D x、D y、D z——x、y、z方向上的弥散系数; 由于在实际计算中一般都采用湍流时平均值,因此必然要引入湍流扩散系数。分子扩散系数的数值在河流中为10-5-10-4m2/s;而湍流扩散系数要大得多。在河流中的量级为10-2-100m2/s。弥散作用只有在取湍流时平均值的空间平均值时才发生,因此弥散作用大多发生在河流中。一般河流中弥散作用的量值为101-104m2/s。 三、污染物的衰减和转化 进入水环境中的污染物可以分为两大类:保守物质和非保守物质。 保守物质进入水环境以后,随着水流的运动而不断变换所处的空间位置,还由于分散作用不断向周围扩散而降低其初始浓度,但它不会因此而改变总量。重金属,很多高分子有机化合物都属保守物质。对于那些对生态系统有害,或

污染物在环境中的迁移和转化

污染物在环境中的迁移和转化 第一节概述 一、污染物的迁移和转化的定义 污染物在环境中发生的各种变化过程称之为污染物的迁移和转化(transport and transformation of pollutants),有时也称之为污染物的环境行为(environmental behavior)或环境转归(environmental fate)。 二、研究污染物在环境中迁移和转化过程及其规律性的意义 1. 可阐明污染物种类,接触的浓度、时间、途径、方式和条件,从而研究相关毒作用。 研究污染物在环境中的迁移和转化的过程及其规律性,对于阐明人类在环境中接触的是什么污染物,接触的浓度、时间、途径、方式和条件等都具有十分重要的环境毒理学意义,否则就不能阐明有预谋中接触而导致的一系列毒作用。 2. 环境毒理学的许多基本问题在一定程度上也取决于对污染物在环境中的迁移和转化规律的认识。 例如:污染物的物质形态、联合作用、毒作用的影响因素、剂量效应关系等,都要涉及到接触污染物的真实情况的确定。 第二节环境污染物的迁移 一、概念 污染物的迁移(transport of pollutants)是指污染物在环境中发生的空间位置的相对移动过程。迁移的结果导致局部环境中污染物的种类、数量和综合毒性强度发生变化。 二、机械性迁移 根据污染物在环境中发生机械性迁移的作用力,可以将其分为气的、水的、和重力机械性迁移三种作用。 1.气的机械性迁移作用,包括污染物在大气中的自由扩散作用和被气流搬运的作用。 其影响因素有:气象条件、地形地貌、排放浓度、排放高度。 一般规律:污染物在大气中的排放量成正比,于平均风速和垂直混合高度成反比。 2.水的机械性迁移作用,包括污染物在水中的自由扩散作用和被水流的搬运作用。 一般规律:污染物在水体中的浓度与污染源的排放量成正比,与平均流速和距污染源的距离成反比。3.重力的机械迁移作用,主要包括悬浮物污染物的沉降作用以及人为的搬运作用。 三、物理化学迁移 物理化学迁移是污染物在环境中最基本的迁移过程。污染物以简单的离子或可溶性分子的形势发生溶解-沉淀、吸附-解吸附。同时还会发生降解等作用。 1.风化淋溶作用风化淋溶作用是指环境中的水在重力作用下运动时通过水解作用使岩石、矿物中的化学元素溶入水中的过程,其作用的结果是产生游离态的元素离子。 2.溶解挥发作用降水、固体废弃物水溶性成份的溶解;VOC 3.酸碱作用(常表现为环境pH值的变化) ①酸性环境促进了污染物的迁移,使大多数污染物形成易溶性化学物质。如酸雨:加速岩石和矿物风化、淋溶的速度;促使土壤中铝的活化。 ②环境pH值偏高时,许多污染物就可能沉淀下来,在沉积物中,形成相对富集。 4.络合作用(改变毒物吸附和溶解的能力)络合物的形成大大改变了污染物的迁移能力和归宿。 例如:当含有Hg2+的河水流入海洋时,水中氯离子浓度逐渐增高,河口水体中的Hg2+逐次形成Hg(OH)2→Hg(OH)Cl →HgCl2→HgCl3- →HgCl42-。其中的Hg(OH)Cl与水体中的悬浮态黏土矿物和氧化物吸附力最强,而HgCl2的吸附力最差。因而,Hg(OH)Cl部分的汞大量转移到悬浮态固相或沉积物中,而部分的汞仍留在水体中。 5.吸附作用吸附是发生在固体或液体表面对其他物质的一种吸着作用。重金属和有机污染物常吸附于胶体或颗粒物,随之迁移。

4、主要的水污染指标有哪些

4、主要的水污染指标有哪些 1、要紧的水污染指标有哪些 生化需氧量,化学需氧量,总需氧量,总有机碳,悬浮物,有毒物质,PH值,大肠菌群数。 2、废水处理方法分为哪几类 物理处理法,化学处理法,物理化学法和生物处理法。 3、土壤中的要紧污染源有哪些 工业污染源,农业污染源,生物污染源。 4、如何样进行噪声污染综合防治 操纵噪声源,操纵传声途径,接收者的防护。 5、大气污染有哪些类型 还原型,氧化型,石油型,混合型,专门型。 6、什么是生活污水 生活废水是指都市机关、学校和居民在日常生活中产生的废水,包括厕所粪尿,洗衣、洗澡水以及厨房、商业、医院和游乐场所的排水等。 7、废水处理方法分为哪几类 物理处理法,化学处理法,物理化学法和生物处理法。 8、按辐射特性及传播距离可将噪声分为哪几类 点噪声源,线噪声源,面噪声源。 9、如何减少室内空气污染 通风换气;合理采光;合理利用室内面积;湿式除尘;改变不良生活适应。 10、什么是紫外线指数 阳光中有大量的紫外线,紫外线对人们的生活和生物的生长有专门大阻碍。 11、什么是绿色食品 绿色食品是无污染、无公害、安全营养型食品的通称。 12、什么是环境容量

环境容量是指环境单元所承诺容纳污染物的最大数量,也指在人类生存和自然环境或环境组成要素对污染物质的最大承担量或负荷量。 13、什么是无废技术 无废技术是为满足人们的需要而合理地利用自然资源和能源,并爱护环境的技术与措施。 14、什么是排污收费制度 排污收费制度是关于向环境排放污染物的排污者,按所排放污染物的种类、数量、浓度,按照国家的有关规定收取一定的费用。 15、固体废物污染防治原则的要紧内容是什么 固体废物污染防治指的是减量化、资源化和无害化,简称“三化原则”。 16、水体中的污染物质要紧有哪些类型 水体中的污染物质类型要紧有三种:悬浮固体物、胶体物质、可溶解物质。 17、什么是环境监测 它是对环境研究区域内间断或连续地测量环境中污染物浓度、研究其变化和对环境阻碍的工作,也是一项具有重要社会意义的活动。 18、一次污染物是指什么 一次污染物又称“原生污染物”,是由污染源直截了当排放进入环境的,其物理和化学性状未发生变化的污染物质。 19、二次污染物是指什么 二次污染物也称“次生污染物”是一次污染物在物理、化学因素或生物作用下发生变化,或与环境中的其他物质发生反应,所形成的物化特点与一次污染物不能的新污染物。 20、“三同时”制度要紧内容是什么 “三同时”制度是我国创立的预防和操纵新污染的环境治理制度,核心内容是一切新、改、扩建的建设项目、技术改造工程项目和自然开发项目中,防治污染和爱护环境的设施,必须与主体工程同地设计、同时施工、同时投产。

最新微生物对污染物的降解和转化

微生物对污染物的降解和转化 ?有机污染物生物净化(天然物质、人工合成物质) ?无机污染物生物净化 第一节有机污染物的生物净化机理 ?净化本质——微生物转化有机物为无机物 ?依靠——好氧分解与厌氧分解 一、好氧分解 ?细菌是其中的主力军 ?原理:好氧有机物呼吸 ? C → CO2 + 碳酸盐和重碳酸盐 ? H → H2O ? N → NH3→ HNO2→ HNO3 ? S → H2SO4 ? P → H3PO4 ?二、厌氧分解?厌氧细菌 ?原理:发酵、厌氧无机盐呼吸C → RCOOH(有机酸)→CH4 + CO2 ?N → RCHNH2COOH → NH3(臭味) + 有机酸(臭味) ?S → H2S(臭味) ?P → PO 3- 4 ?水体自净的天然过程中 厌氧分解(开始)→好氧分解(后续)第二节各类有机污染物的转化 一、碳源污染物的转化

?包括糖类、蛋白质、脂类、石油和人工合成的有机化合物等。 1.纤维素的转化 ?β葡萄糖高聚物,每个纤维素分子含1400~10000个葡萄糖基(β1-4糖苷键)。 ?来源:棉纺印染废水、造纸废水、人造纤维废水及城市垃圾等,其中均含有大量纤维素。 A.微生物分解途径 B.分解纤维素的微生物 ?好氧细菌——粘细菌、镰状纤维菌和纤维弧菌 ?厌氧细菌——产纤维二糖芽孢梭菌、无芽孢厌氧分解菌及嗜热纤维芽孢梭菌。?放线菌——链霉菌属。 ?真菌——青霉菌、曲霉、镰刀霉、木霉及毛霉。 ?需要时可以向有菌种库的研究机构购买或自行筛选。 2.半纤维素的转化 ?存在于植物细胞壁的杂多糖。造纸废水和人造纤维废水中含半纤维素。 ?分解过程 ?分解纤维素的微生物大多数能分解半纤维素。 ?许多芽孢杆菌、假单胞菌、节细菌及放线菌能分解半纤维素。霉菌有根霉、曲霉、小克银汉霉、青霉及镰刀霉。 3.木质素的转化自然界中哪些微生物能够进行木质素的降解呢??确证的只有真菌中的黄孢原毛平革菌,疑似的有软腐菌。 黄孢原平毛革菌(Phanerochaete chrysosprium)是白腐真菌的一种,隶属于担子菌纲、同担子菌亚纲、非褶菌目、丝核菌科。 白腐—树皮上木质素被该菌分解后漏出白色的纤维素部分。*木质素降解的意义何在呢?(二)油脂的转化

水体中污染物浓度分布模型

污染物浓度分布模型 水质模型是一个用于描述物质在水中混合、迁移等变化过程的数学方程,即描述水体中污染物与时间、空间的定量关系。水质模型按照水域类型、水质组分、水力学以及排放条件等不同因素划分具有不同的分类。当污染物排放入水体中后,会经历一个混合的过程,直至完全混合均匀,如图1所示。 图1 污染物排放入水体中混合示意图 在环境介质中处于稳定流动状态和污染源稳定排放的条件下,环境中的污染物分布状况也是稳定的。这时,污染物在某一空间位置的浓度不随时间变化,这种不随时间变化的状态称为稳态。基于水质运移、扩散、物质降解等基础理论,产生了众多稳态环境下的水质模型。下面将介绍四种主要的水质模型以及各自的适用范围: 1.完全混合模型 完全混合模型适合无支流和其他排污口进入的河流,下游某点废水和和河水中的持久性污染物在整个断面上达到了均匀混合。在最早出现的水质完全混合断面有: h h P P E P C Q C Q C Q Q +=+ 式中:Q h -河水流量,m 3/s ; C h -河水背景段的污染物浓度,mg/L C P -废水中污染物的浓度, mg/L

Q P -废水的流量,m 3/s C-完全混合的水质浓度,mg/L 2.零维模型 零维是一种理想状态,把所研究的水体如一条河流或一个水库看成一个完整的体系,当污染物进入这个体系后,立即均匀的分散到这个体系中,污染物的浓度不会随时间的变化而变化。 对于较浅、较窄的河流,如果不考虑污染物的降解时,当满足下列两个条件之一时的环境问题可化为零维模型:(1)河水流量与污水流量之比大于20;(2)不需要考虑污水进入水体的混合距离。此时,有: 00=x 1kt 1k()86400u C C C =++ 式中:C-流出河段的污染物浓度,mg/L C 0-完全混合模型计算出的浓度值,mg/L x-河段长度,m k-污染物的衰减速率常数 1/d u-河水的流速,m/s t-两个断面之间的流动时间 3.一维模型 一维模型适用的假设条件是横向和垂直方向混合相当快,认为断面中的污染物的浓度是均匀的,或者是根据水质管理的精确度要求不考虑混合过程而假设在排污口断面瞬时完成充分混合。一维模型适用于符合一维动力学降解规律的一般污染物,如氰、酚、有机毒物、重金属、BOD 、COD 等单项指标的污染物。其中估算混合过程长度十分重要,如果河段长度大于下列计算结果时,可以用一维模型进行模拟: L =式中,L-混合过程的长度 B-河流宽度 A-排放口距岸边的距离 u-河流断面平均流速 H-平均水深

相关文档
相关文档 最新文档