文档视界 最新最全的文档下载
当前位置:文档视界 › 永磁同步电机驱动系统使用说明书

永磁同步电机驱动系统使用说明书

永磁同步电机驱动系统使用说明书
永磁同步电机驱动系统使用说明书

永磁同步电机控制系统使用说明书

上海电驱动有限公司

1 电机控制系统的组成该电机控制系统的应用范围:电动车

图1-1 电机控制器

2 注意事项!!!

·电机控制器只能用来控制专门配置的电机。

·电机控制器工作输入电压范围:DC 250V-420V,输入电压上限450VDC,禁止超过输入的电压上限。·电机控制系统使用循环水冷却,严禁在无冷却的条件下带载运行或长时间空载运行;同时,水冷循环系统必须满足电机和电机控制器对于冷却的要求。

·位置传感器的信号传输距离≤2米,超出此距离系统则无法保证正常工作。

·电机控制器的外部接线,要求严格按照本说明书一一对应。

·当该套电机控制系统用于台架试验时,直流电源功率(大功率直流电源柜或电池组)必须与控制系统的电参数相匹配。

·固定动力母线的螺钉若有损坏,必须使用随机配带的螺钉进行更换。

3 电机控制系统电气原理图

图3-1 电机控制系统电气原理图

4 电机控制器外部接口及接线示意图

图4-1 电机控制器对外接口

信号线

电机三相电源

图4-2 电机控制器与电池组接线示意图

图4-3 电机控制器与电机接线示意图

5 电机控制系统外部接插件定义及其示意图电机控制系统外部接插件机械图见附件:北汽外部线束图

永磁同步电动机的分类和特点

永磁同步电动机的分类和特点 技术2008-08-09 15:13:38 阅读178 评论0 字号:大中小一,永磁同步电动机的特点 永磁同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍左右,号称“稀土王国”。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。因此,对我国来说,永磁同步电动机有很好的应用前景。 二,永磁同步电动机的分类

永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法上与直流电动机系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统。 永磁同步电动机转子磁路结构不同,则电动机的运行特性、控制系统等也不同。根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁体位于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。这种永磁电机的重要特点是直、交轴的主电感不相等。因此,这两种电机的性能有所不同。 三无刷直流电动机(BLDCM) 1,BLDCM研究现状

永磁同步电机驱动系统

永磁同步电机驱动系统 架线式电机车是煤矿井下和地面原煤运输和辅助运输的重要设备,被煤矿企业广泛应用。由于现有电机车大都采用直流电机驱动,存在维护工作量大、维修费用高、能量损耗大及相关配套人员量大等缺点,致使电机车使用效率低下,使用费用很高。本项目是针对架线式电机车的现状,开发适用以架线式电机车的永磁同步电动机及其控制装置。采用IGBT或IPM实现逆变器主电路,设计优良的IGBT或IPM驱动电路,保证开关器件工作的安全、可靠。选用高性能数字信号处理器为核心,设计专用控制器,实现电机车的传动控制和工艺控制。 本项目研制成功将会给架线式电机车带来全新的变化,大大提高系统的运行效率和控制性能,延长架线式电机车的使用周期,起到节能的效果,也有效减少维修工作量。 1、国内外现状 电机车是煤矿井下和地面广泛应用的运输设备,现在直流电机驱动设备每年使用费用很高。而现有的电机车驱动及其控制技术共有三代五个阶段:第一代技术为串励式直流电动机及其控制:这一代技术又经历了三个阶段,第一个阶段为电阻调速,存在调速性能差(为有极调速)、能耗大、电机易损、机械磨损大,以上问题直接导致维护工作量和维护费用高;第二个阶段为可控硅斩波调速,第三个阶段为IGBT斩波调速,第二和第三阶段相对于第一阶段仅解决了一个无极调速问题,能量损耗相对于第一阶段要小点,但其他问题均没有解决。 第二代技术为三相异步电动机及其控制,主要采用变频技术进行。由于三相异步电动机的效率较低,变频技术在车辆上应用故障高,而且异步电动机起步转矩较低,不符合煤矿电机车运行环境。目前机车应用的异步电动机存在诸多问题,暂不符合大面积推广使用技术条件。 第三代技术为永磁同步电动机及其控制技术,就是现在在做的技术。在同步电动机中用永磁体取代传统的电激磁磁极,简化了结构,消除了转子的滑环、电刷,实现了无刷结构,缩小了转子体积;省去了激磁直流电源,消除了激磁损耗和发热。在交流驱动中,永磁同步电动机具有结构简单、坚固耐用,工作可靠,

大功率高速永磁同步电机的设计与分析

大功率高速永磁同步电机的设计与分析 发表时间:2016-07-19T10:13:33.690Z 来源:《电力设备》2016年第8期作者:陆焕瑞王钢汪佳龙[导读] 从安全性、可靠性、稳定性、准确性等方面入手,通过自主研发,以此来研制出满足用户要求的高性能产品。陆焕瑞王钢汪佳龙(上海海事大学上海 201306) 摘要:针对西气东输过程中的10MW级变频驱动压缩机组(PDS)中,对高速直驱电动机的技术、结构和组成的要求,提出了大功率高速永磁同步电机的研制方案。本文尝试以10MW等级调速范围3120~4800rpm和额定频率160Hz的技术要求,来设计适合西气东输PDS中的大功率高速永磁同步电机。本文主要以Ansoft软件来设计电机,通过选择合适的技术参数来完成相应的设计。 关键词:PDS组,大功率,高速,永磁同步电机,Ansoft,设计与分析1 引言 根据10 MW级变频电驱压缩机组中压大功率变频调速驱动系统(简称PDS)国产化研制及应用的项目背景,提出了10MW级变频电驱系统的技术要求,通过比较分析市场各种变频器的结构特点和国产变频电驱系统技术力量,电机通常为正压通风防爆无刷励磁同步电机,一般有低速(1000~1500 r/min)加齿轮箱和4500~5200 r/min与压缩机高速直联驱动2种方式。由于国内厂家没有成熟的产品和应用业绩,主要由SIEMENS,ABB,TEMEI。由于变频永磁同步电机能够通过降低输入电压频率实现自起动,而内置的永磁体能够提供磁通以及产生相应的同步转矩,这样可以保证电机稳定运行时为同步电机运行状态。同时对于电机来说无需励磁电流,大大减少了定子上电流以及相应的损耗,并且在转子上几乎无电流以及铜耗。因此与传统的感应电机和励磁电机相比,具有效率高、功率因数高的优点。 2 大功率高速永磁同步电机的设计2.1 主要设计特点永磁同步电机的定子一般与相应的异步电机的定子冲片相同,最主要的是对转子的设计。本文设计的大功率高速永磁同步电机的使用场合较为特殊,对于这样的大电机要求运行可靠、大功率、高转速、高效率、防爆要求较高。所以不仅要设计合理的电磁磁路,又要在相应的技术参数基础上(机、电、热、材料、工艺、环境)对电机的性能进行改善。所以在设计过程中要综合以下方面综合考虑:(1)高压变频 高压变频起动永磁同步电机无需起动绕组,这样需要大功率的变频器来与之相匹配,同样还要加强电气强度,提高安全系数。 (2)大容量 电机为4级,定子额定电流约为660A,额定电压约为10kV,额定功率约为10MW,定子绕组采用Y型连接方式,相数为3相,额定频率为160Hz,额定转矩为20 。 (3)高转速 电机额定转速约为4800rpm,功率大、效率高、转速高,调速宽而且能持续运行。结合实际大功率高速永磁电机技术水平,合理选择驱动压缩机方式。 (4)防爆 天然气是极易发生燃烧爆炸的气体,所以对电机要进行防爆措施,选择合适的材料以及防爆等级。 (5)冷却 中小功率电机一般是利用空气进行通风冷却,但随着单机容量的增加,大功率高速电机的散热面积和风路安排受到诸多限制,使通风冷却较为困难。所以,为了保证电机温升不超过允许值需要用不同的冷却方式和通风系统。一般采用水风混合冷却,即内循环冷却采用水冷,外循环冷却采用风冷。 2.2 定转子设计 图1 定转子结构主要计算公式:

基于SiC MOSFET的永磁同步高速电机驱动平台研发

基于SiC MOSFET的永磁同步高速电机驱动平台研发随着电动汽车的飞速发展,电动汽车驱动系统向着高速、高效、高压、高功率密度方向发展。由于国内电动汽车驱动主要使用永磁同步高速电机,电动汽车驱动的发展,一方面推动永磁同步电机的发展,另一方面也对电机驱动有了更高的要求。 随着电动汽车驱动系统效率、功率密度、母线电压、驱动电机转速的提高,对电机驱动的开关损耗、开关频率、耐高温工作能力、电压应力有了更高的要求,目前大多电机驱动器使用的主流的Si IGBT功率器件,已越来越难以满足需求。而新型宽禁带半导体碳化硅功率器件具有开关速度快、开关损耗低、导通损耗低、阻断电压高、耐高温等优势,在永磁同步高速电机应用上有无可替代的优势。 随着碳化硅材料制造工艺的进步与发展,碳化硅功率器件的电气性能在不断优化,所以碳化硅功率器件在永磁同步高速电机驱动的应用方面的研究有了较强的实际应用价值。碳化硅功率器件在电气性能上具有许多优势,但是其应用在电机驱动上仍然存在许多问题要解决。 本文分析了SiC MOSFET应用于高速电机驱动上的三个常见问题,一是开关速度的提高,换流回路寄生电感会带来漏源电压过冲与振荡等问题,文章通过主电路换流回路建模分析漏源电压振荡产生原因,提出漏源电压过冲与振荡的抑制方法并通过实验验证了抑制方案的可行性;二是控制闭环刷新频率的提高,对控制平台与控制算法要求提高,文章通过硬件升级与程序改进两个方面来提高控制频率;第三个也是最主要的问题,SiC MOSFET应用时的容易产生桥臂串扰与栅源电压振荡。与传统的Si IGBT不同,SiC MOSFET功率器件由于开关速度大幅提升,开关瞬间漏源间会产生很高的电压变化率,从而使桥臂串扰与栅源电压振荡问题

270V高压大功率永磁同步电机驱动器设计

270V高压大功率永磁同步电机驱动器设计 摘要:近年来270V高压直流供电体制在各种装备上开始大量应用,本文给出了 一种由TMS320F2812、高精度转子位置速度检测装置及高压MOS管组成的高压 大功率永磁同步电机驱动控制方案,详细描述了系统的硬件组成和软件设计结构。试验结果表明,该系统较好的解决了高压供电带来的干扰问题,具有调速性能良好、效率高、抗干扰能力强等特点,满足型号的使用要求。 关键词:270V高压;永磁同步电机驱动器;抗干扰 0 引言 随着我国对高压直流电源系统的深入研究,新一代装备已开始采用270V高压直流供电系统,这种新型电源体制不但具有传输功率大、传输效率高、供电可靠 性高和电源配电重量轻的特点,而且还将大大减小低压直流供电系统的电器设备 的大电流电弧干扰,提高了武器装备的综合能力[1]。 本文给出了一种由TMS320F2812、高精度转子位置速度检测装置及高压MOS 管组成的大功率PMSM驱动控制方案,详细叙述了系统的硬件组成和软件设计结构。并在此基础上,设计了一套大功率PMSM驱动控制系统,该系统具有调速性 能良好,效率高等特点,满足型号的使用要求。 1 系统总体设计 1.1 永磁同步电机(PMSM)数学模型 永磁同步电机由于具备小体积、高效率及功率密度、调速性能良好等优点得 到了越来越广泛的应用。PMSM的数学模型包括电动机的运动方程,物理方程和 转矩方程,这些方程是永磁同步电机数学模型的基础。控制对象的数学模型能够 准确的反应被控系统的静态和动态特性。为方便分析,先做以下假设[2~4]: 1)磁路不饱和,即电机电感大小不受电流变化影响,不计涡流和磁滞损耗; 2)忽略齿槽、换相过程和电枢反应等的影响; 3)三相绕组完全对称,永久磁钢的磁场沿气隙周围正弦分布; 4)电枢绕组在定子内表面均匀连续分布; 5)驱动开关管和续流二极管为理想元件。 优化设计后的永磁同步电机经过Park变换后,其dq坐标系下的数学模型可 表示为方程式: 式1.1 式1.2 式1.3 式中:、—定子电压dq轴分量;、—定子电流dq轴分量; —定子电阻;—转子极对数; —转子角速度;—定子电感; —电磁转矩;—永磁体产生的磁链,为常数; 从电磁转矩方程可以看出只要能准确地检出转子空间位置(d轴),通过控 制逆变器使三相定子的合成电流在q轴上,那么永磁同步电机的电磁转矩只与定 子电流的幅值成正比,即控制定子电流的幅值,就能很好地控制电磁转矩。 1.2 驱动控制策略 永磁同步电机的控制策略有很多种,如直接转矩控制、转子磁场定向控制等[5~6],本系统采用转子磁场定向控制,其基本原理是通过坐标变换,在转子磁场 定向的同步坐标系上对电机的磁场电流和转矩电流进行解耦控制,使其具有和传

永磁同步电机无传感器控制技术

哈尔滨工业大学,电气工程系 Department of Electrical Engineering Harbin Institute of Technology 电力电子与电力传动专题课 报告 报告题目:永磁同步电机无传感器控制技术 哈尔滨工业大学 电气工程系 姓名:沈召源 学号:14S006040 2016年1月

目录 1.1 研究背景 (1) 1.2 国内外研究现状 (1) 1.3 系统模型 (2) 1.4 控制方法设计 (4) 1.5 系统仿真 (7) 1.6 结论 (8) 参考文献 (8)

1.1 研究背景 永磁同步电机具有体积小、惯量小、重量轻等优点,在各领域的应用越来越广泛。目前在永磁同步电机的各种控制算法中,使用最多的是矢量控制和直接转矩控制,而这两种控制方式都需要转子位置,但转子位置传感器的采用限制了系统使用范围。永磁同步电机控制系统大多采用测速发电机或光电码盘等传感器检测速度和位置的反馈量,这不但提高了驱动装置的造价,而且增加了电机与控制系统之间的连接线路和接口电路,使系统易于受环境干扰、可靠性降低。由于永磁同步电机无传感器控制系统具有控制精度高、安装、维护方便、可靠性强等一系列优点,成为近年来研究的一个热点。 1.2 国内外研究现状 无传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用电机绕组中的有关电信号,通过直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量如定子电压、定子电流中提取出与速度、位置有关的量,利用这些检测到的量和电机的数学模型推测出电机转子的位置和转速,取代机械传感器,实现电机闭环控制。 最早出现的无机械传感器控制方法可统称为波形检测法。由于同步电机是一个多变量、强耦合的非线性系统,所要解决的问题是采用何种方法获取转速和转角。目前适合永磁同步电机的最主要的无速度传感器的控制策略主要有以下几种 (1)利用定子端电压和电流直接计算出θ和ω。该方法的基本思想是基于场旋转理论,即在电机稳态运行时,定子磁链和转子磁链同步旋转,且两磁链之间的夹角相差一个功角δ,该方法适用于凸极式和表面式永磁同步电机。该方法计算方法简单,动态响应快,但对电机参数的准确性要求比较高,应用这种方法时需要结合电机参数的在线辨识。 (2)模型参考自适应(MRAS)方法。该方法的主要思想是先假设转子所在位置,利用电机模型计算出该假设位置电机的电压和电流值,并通过与实测的电压、电流比较得出两者的差值,该差值正比于假设位置与实际位置之间的角度差。当该值减小为零时,则可认为此时假设位置为真实位置。采用这种方法,位置精度与模型的选取有关。该方法应用于PMSM时有一些新的需要解决的问题。 (3)观测器基础上的估计方法。观测器的实质是状态重构,其原理是重新构造一个系统,利用原系统中可直接测量的变量,如输出矢量和输入矢量作为它的输入信号,并使输出信号在一定条件下等价于原系统的状态。目前主要存在的观测器:全阶状态观测器、降阶状态观测器、推广卡尔曼滤波和滑模观测器。其中滑模观测器有很好的鲁棒性,但其在本质上是不连续的开关控制,因此会引起系统发生抖动,这对于矢量控制在低速下运行是有害的,将会引起较大的转矩脉动。扩展卡尔曼滤波器提供了一种迭代形式的非线性估计方法,避免了对测量的微分

永磁同步伺服电机驱动器设计原理

永磁同步伺服电机(PMSM) 驱动器设计原理 周瑞华周瑞华先生,中达电通股份有限公司应用工程师。 关键词:PMSM 整流功率驱动单元控制单元 永磁交流伺服系统的驱动器经历了模拟式、模拟数字混合式的发展后,目前已经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等缺点,还充分发挥了数字控制在控制精度上的优势和控制方法的灵活,使伺服驱动器不仅结构简单,而且性能更加可靠。现在,高性能的伺服系统大多数采用永磁交流伺服系统,其中包括永磁同步交流伺服电动机和全数字交流永磁同步伺服驱动器两部分。后者由两部分组成:驱动器硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是国外交流伺服技术封锁的主要部分,也是技术垄断的核心。 一交流永磁伺服系统的基本结构 交流永磁伺服系统主要有伺服控制单元、功率驱动单元、通信接口单元、伺服电机及相应的反馈检测器件组成。 其中伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等。我们的交流永磁同步驱动器集先进的控制技术和控制策略为一体,使其非常适用于高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化,是传统的驱动系统所 不可比拟的。 目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,其优点是可以实现比较复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软起动电路,以减小起动过程对驱动器的冲击。 伺服驱动器大体可以划分为功能比较独立的两个模块,如图1所示。功率板(驱动板)是强电部分其中包括两个单元,一是功率驱动单元用于电机的驱动,二是开关电源单元为整个系统提供数字和模拟电源;控制板是弱电部分,是电机的控制核心也是伺服驱动器技术核心,控制算法的运行载体。控制板通过相应的算法输出PWM信号,作为驱动电路的驱动信号,来改变逆变器的输出功率,以达到控制三相永磁式同步交流伺服电机的目的。

永磁同步电机在高速电主轴系统中的应用

永磁同步电主轴技术与应用 摘要: 伴随着高速高效高精加工技术的飞速发展,高端数控机床针对电主轴的技术需求深度和广度都不断拓展。特别是近几年来,基于永磁同步电机的电主轴技术与产品得到了快速的发展和广泛的应用。本文结合笔者在电主轴技术研究和产品开发过程中所涉及的关键技术问题,尤其是永磁同步电机在高速电主轴系统中的应用问题进行了广泛深入的探讨,希望以此对国内永磁同步电主轴产品技术开发与推广应用有所促进。 一、引言 高速高精高效加工,是数控机床永恒的追求目标和发展趋势。高效率需要高速度,在航空零件加工中尤为突出。飞机机身结构件的典型零件有梁、筋、肋板、框、壁板、接头、滑轨等类零件。且以扁平件、细长件、多腔件和超薄壁隔框结构件为主。毛坯为板材、锻件和铝合金挤压型材,90%以上为铝合金件。材料利用率仅为5%-10%左右,原材料去除量非常大大(1)。材料去除量大,在粗加工阶段,需要主轴具备足够的转矩输出能力,满足大吃刀切削。整理结构,多腔超博,又需要用小刀具清根,修光。小刀具则需要主轴有足够高的转速,以满足刀具的切削速度需求。因此,航空铝合金零件的加工就需要机床主轴不但具备低速大转矩输出,同时又能在小刀具加工时具备足够高(20000rpm以上)的工作转速。 在磨具加工行业,近年来大量使用的高速雕铣机,在高速电主轴的助推下,利用小刀具的微刀痕特点,大大提高了各种材质模具制造的精度和速度。随着雕铣机床的进一步发展,雕铣机也逐渐进入零件加工领域,因此对主轴的低速输出转矩也提出较高的要求。 平板电脑、苹果手机等高端电子消费品的快速发展,是当今时代最大的亮点之一。这类日用电子消费品,更新速度之快,不但让人眼花缭乱,而且使数控钻攻中心机得以急速发展。这类机床除了具备现代数控机床的基本特征外,必须具备在6000rpm以上高速刚性攻丝的能力。 综合上述三个典型的行业需求,需要数控机床电主轴同时具备三种特点,低速大转矩输出、20000rpm以上的工作转速、可以高速刚性攻丝。永磁同步电主轴则是同时具备这三个特征的最佳电主轴产品。本文就是通过对永磁同步电主轴基本结构,关键技术,以及在不同机床领域里的应用介绍,希望大家对永磁同步电主轴能有比较全面的认识和借鉴。 二、永磁同步电主轴的基本结构及其特点 永磁同步电主轴与传统电主轴的最大区别是采用了稀土永磁同步电机作为主轴的驱动动力源,除此之外,基本结构与异步电机驱动的电主轴结构基本相同。图1为典型的雕铣机用异步电主轴结构,图2为典型的雕铣机用永磁同步电主轴结构。两者结构上最大的区别是图1中的9为感应式鼠笼转子,图2中的16为稀土永磁转子。另外,图2中的20为编码器,是为了较高的速度控制精度而增加的速度和位置反馈元件。

永磁同步电动机的分类和特点

永磁同步电动机的分类和特点 技术 2008-08-09 15:13:38 阅读178 评论0 字号:大中小 一,永磁同步电动机的特点 永磁同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍左右,号称“稀土王国”。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。因此,对我国来说,永磁同步电动机有很好的应用前景。 二,永磁同步电动机的分类 永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法上与直流电动机系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统。 永磁同步电动机转子磁路结构不同,则电动机的运行特性、控制系统等也不同。根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁体位于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。这种永磁电机的重要特点是直、交轴的主电感不相等。因此,这两种电机的性能有所不同。 三无刷直流电动机(BLDCM) 1,BLDCM研究现状 永磁无刷直流电动机与传统有刷直流电动机相比, 是用电子换向取代原直流电动机的机械换向, 并 将原有刷直流电动机的定转子颠倒(转子采用永磁体)从而省去了机械换向器和电刷,其定子电流为方波, 而且控制较简单, 但在低速运行时性能较差, 主要是受转矩脉动的影响。 引起转矩脉动的因素很多, 主要有以下原因: (1)电枢反应引起的转矩脉动

(完整word版)开题报告:永磁同步电机控制系统仿真

1.课题背景及意义 1.1课题研究背景、目的及意义 近年来,随着电力电子技术、微电子技术、微型计算机技术、传感器技术、稀土永磁材料与电动机控制理论的发展,交流伺服控制技术有了长足的进步,交流伺服系统将逐步取代直流伺服系统,借助于计算机技术、现代控制理论的发展,人们可以构成高精度、快速响应的交流伺服驱动系统。因此,近年来,世界各国在高精度速度和位置控制场合,己经由交流电力传动取代液压和直流传动[1][2]。 二十世纪八十年代以来,随着价格低廉的钕铁硼(REFEB)永磁材料的出现,使永磁同步电机得到了很大的发展,世界各国(以德国和日本为首)掀起了一股研制和生产永磁同步电机及其伺服控制器的热潮,在数控机床、工业机器人等小功率应用场合,永磁同步电机伺服系统是主要的发展趋势。永磁同步电机的控制技术将逐渐走向成熟并日趋完善[3]。以往同步电机的概念和应用范围己被当今的永磁同步电机大大扩展。可以毫不夸张地说,永磁同步电机已在从小到大,从一般控制驱动到高精度的伺服驱动,从人们日常生活到各种高精尖的科技领域作为最主要的驱动电机出现,而且前景会越来越明显。 由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速范围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合获得广泛的应用[4][5]。 尽管永磁同步电动机的控制技术得到了很大的发展,各种控制技术的应用 - 1 -

永磁式同步电机的特点及其分类

永磁式同步电机的特点及其分类 永磁式同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。 近年来,随着永磁材料性能的不断提高和完善,特别是钕铁硼永磁的热稳定性和耐腐蚀性的改善和价格的逐步降低以及电力电子器件的进一步发展,加上永磁电机研究开发经验的逐步成熟,经大力推广和应用已有研究成果,使永磁电机在国防、工农业生产和日常生活等方面获得越来越广泛的应用。正向大功率化(高转速、高转矩) 、高功能化和微型化方面发展。目前,稀土永磁电机的单台容量已超过1000KW,最高转速已超过300000r/min ,最低转速低于0.01r/min ,最小电机的外径只有 0.8mm,长1.2mm 我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4 倍左右,号称“稀土王国”。稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。因此,对我国来说,永磁同步电动机有很好的应用前景。充分发挥我国稀土资源丰富的优势,大力研究和推广应用以稀土永磁电机为代表的各种永磁电机,对实现我国社会主义现代化具有重要的理论意义和实用价值。 永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)

永磁同步伺服电机驱动器原理

永磁同步伺服电机驱动器原理: 1、引言: 随着现代电机技术、现代电力电子技术、微电子技术、永磁材料技术、交 流可调速技术及控制技术等支撑技术的快速发展,使得永磁交流伺服技术有着 长足的发展。永磁交流伺服系统的性能日渐提高,价格趋于合理,使得永磁交 流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成 了现代电伺服驱动系统的一个发展趋势。永磁交流伺服系统具有以下等优点:(1)电动机无电刷和换向器,工作可靠,维护和保养简单; (2)定子绕组散热快; (3)惯量小,易提高系统的快速性; (4)适应于高速大力矩工作状态; (5)相同功率下,体积和重量较小,广泛的应用于机床、机械设备、搬运机构、印刷设备、装配机器人、加工机械、高速卷绕机、纺织机械等场合,满 足了传动领域的发展需求。 永磁交流伺服系统的驱动器经历了模拟式、模式混合式的发展后,目前已 经进入了全数字的时代。全数字伺服驱动器不仅克服了模拟式伺服的分散性大、零漂、低可靠性等确定,还充分发挥了数字控制在控制精度上的优势和控制方 法的灵活,使伺服驱动器不仅结构简单,而且性能更加的可靠。现在,高性能 的伺服系统,大多数采用永磁交流伺服系统其中包括永磁同步交流伺服电动机 和全数字交流永磁同步伺服驱动器两部分。伺服驱动器有两部分组成:驱动器 硬件和控制算法。控制算法是决定交流伺服系统性能好坏的关键技术之一,是 国外交流伺服技术封锁的主要部分,也是在技术垄断的核心。 2、交流永磁伺服系统的基本结构: 交流永磁同步伺服驱动器主要有伺服控制单元、功率驱动单元、通讯接口 单元、伺服电动机及相应的反馈检测器件组成,其结构组成如图1所示。其中 伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等等。我们的 交流永磁同步驱动器其集先进的控制技术和控制策略为一体,使其非常适用于 高精度、高性能要求的伺服驱动领域,还体现了强大的智能化、柔性化是传统 的驱动系统所不可比拟的。

永磁同步电机性能要求与技术现状分析

在各类驱动电机中, 永磁同步电机能量密度高, 效率高、体积小、惯性低、响应快, 有很好的应用前景。永磁电动机既具有交流电动机的无电刷结构、运行可靠等优点, 又具有直流电动机的调速性能好的优点, 且无需励磁绕组, 可以做到体积小、控制效率高, 是当前电动汽车电动机研发与应用的热点。 永磁同步电动机( PMSM)系统具有高控制精度、高转矩密度、良好的转矩平稳性以及低噪声的特点, 通过合理设计永磁磁路结构能获得较高的弱磁性能, 提高电动机的调速范围, 因此在电动汽车驱动方面具有较高的应用价值。 作为车辆电驱动系统的中心环节, 驱动电机的总体性能是设计研制技术的关键之一。根据车辆运行的特殊环境以及电驱动车辆自身的特点, 对驱动电机的技术要求主要是: ( 1)体积小、重量轻; 有较高的功率和转矩密度; ( 2)要求在宽速域范围内, 电动机和驱动控制器都有较高的效率; ( 3)有良好的控制性能以及过载能力, 以提高车辆的起动和加速性能。 永磁同步电机的功率因数大, 效率高, 功率密度大, 是一种比较理想的驱动电机。但正由于电磁结构中转子励磁不能随意改变, 导致电机弱磁困难, 调速特性不如直流电机。目前, 永磁同步电机理论还不如直流电机和感应电机完善, 还有许多问题需要进一步研究, 主要有以下方面。 1) 电机效率: 永磁同步电机低速效率较低, 如何通过设计降低低速损耗, 减小低速额定电流是目前研究的热点之一。 2)提高电机转矩特性 电动车驱动电机要求低速大转矩且有一定的高速恒功率运行范围, 所以相应控制策略的研究也主要集中在提高低速转矩特性和高速恒功率特性上。 1.低速控制策略: 为了提高驱动电机的低速转矩,一般采用最大转矩控制。早期永磁同步电机转子采用表面式磁钢, 由于直轴和交轴磁路的磁阻相同, 所以采用 id= 0 控制。控制命令中直轴电流设为 0, 从而实现最大转矩控制。随着同步电机结构的发展, 永磁同步电机转子多采用内置式磁钢, 利用磁阻转矩增加电机的输出转矩。id= 0 控制电机电枢电流的直轴分量为 0, 不能利用电机的磁阻转矩, 控制效果不好。目前, 永磁同步电机低速时常采用矢量控制, 包括气隙磁场定向、转子磁链定向、定子磁链定向等。 2.高速控制策略: 为了获得更宽广的恒功率运行范围, 永磁同步电机高速运行通常采用弱磁控制。另外, 在电机采用低速转矩控制和高速弱磁控制的同时, 还要考虑如何

新能源汽车永磁同步驱动电机性能提升分析

新能源汽车永磁同步驱动电机性能提升分析 2017-02-15磁材在线磁材在线 通过分析永磁材料磁特性、转子结构形式、电枢绕组方式和控制策略对永磁同步驱动电机性能的影响。选用具有高剩磁感应强度、高内禀矫顽力和高最大磁能积的钕铁硼稀土永磁材料,采用稳态性能好、功率密度高的内嵌永磁钢转子。槽满率高、铜材消耗少、齿槽转矩小的分数槽集中绕组以及直接转矩弱磁扩速控制策略.给出了提升新能源汽车永磁同步驱动电机性能的最优设计方法。 引言 目前世界范围内能源严重缺乏.生态环境急剧恶化,环境保护问题日益突出,发展低碳经济迫在眉睫,新能源汽车成为全球节能与环保领域里最受推崇的新兴产业。汽车电气化技术提高更受人们关注。而作为混合动力汽车和纯电动汽车“发动机”的驱动电机.成为直接关系新能源汽车性能与节能减排的核心部件。永磁同步驱动电机具有高功率密度、高效率、脉动转矩小和较宽的弱磁调速范围,是节能、环保新能源汽车驱动电机的最佳选择。为了更好发挥永磁同步驱动电机的价值,本文在继续突破永磁材料研究瓶颈的基础上,优化电机结构设计,提升永磁同步驱动电机性能,推进新能源汽车更好地发展。 1永磁材料对永磁同步驱动电机性能的影响 近年来,永磁材料发展迅速、种类繁多,目前最常用的主要种类有:铁氧体永磁材料、铝镍钴永磁材料和钕铁硼稀土永磁材料等。永磁材料的发展历程如图1所示。

铁氧体永磁材料的突出优点是不含稀土元素和钴、镍等贵重金属,价格低廉,制造工艺简单,矫顽力大,抗去磁能力强,密度小,质量轻。但铁氧体永磁材料硬而脆,不能进行电加工,生产出来的电机功率小、效率低。铝镍钴永磁材料的特点是温度系数低、剩磁感应强度高、矫顽力低.易充磁和去磁,但含有钴这种贵重金属,所以价格很高。钕铁硼稀土永磁材料以其优异的磁性能成为永磁材料的主力军,其磁性能远超过铁氧体和铝镍钴等其他磁性材料。新一代钕铁硼永磁材料发展至今,其室温下剩余磁感应强度曰,已达到147 T。内禀矫顽力巩最高可超过1 000 kA/m,最大磁能积(BH)高达398 kj/m,为铁氧体永磁材料的5~12倍、铝镍钴永磁材料的3~10倍。钕铁硼永磁材料的不足之处是居里温度较低,在高温下使用时磁损失较大,热稳定性、耐腐蚀性和抗氧化性差,因此要根据磁体的使用环境来对其表面进行涂层处理.以满足车用环境要求。

旋转变压器在高速永磁同步电动机中的应用

旋转变压器在高速永磁同步电动机中的应用 黄科元,董恒,黄守道 (湖南大学,湖南长沙4l0082) 摘要:介绍一种用于高速永磁同步电动机控制的转子位置检测方法,该方法采用旋转变压器/数字转换器Au6802N1,将旋转变压器输出的模拟信号转化为数字位置信号。设计了Au6802N1与旋转变压器和TMs320F2812之间的接口电路,并提出了’种具有较强容错性的位置信号数字处理方法。试验表明,该方案能够准确地实现电机位置和速度的检测。 O引言 在采用磁场定向控制的永磁同步电动机调速系统中,需要实时地检测电机转子位置及转速,以实现转矩、速度的闭环控制。通常的检测方法是使用光电编码器,而常用的正交光电编码器起动时需要一段时间进行转轴定位,而且抗冲击震动性差,因此在需要快速响应的高速运行且对抗震要求较高的场合,往往使用旋转变压器。 旋转变压器的输出是含位置信息的模拟信号,需要将其转换为数字信号才可输入到单片机或DsP等控制芯片。本文采用多摩川公司的旋转变压器数字转换器Au6802N1将模拟位置信号转换成12位数字位置信号,同时采用TMs320F2812作主控cPu,可满足系统对转子位置与速度信号实时快速检测和处理的要求。实验表明该方案确实可行,并具有较高的控制精度。 1旋转变压器的原理 本系统选用的无刷旋转变压器如图1所示。经过无刷化设计,旋转变压器初级励磁绕组(R1一R2)和二相正交的次级感应绕组(s1一s3,s2一S4)同在定子侧,转子侧是与初级绕组和次级绕组磁通耦合的特殊结构的线圈绕组。

当旋转变压器转子随电机同步旋转、初级励磁绕组外加交流励磁电压后,次级两输出绕组中便会产生感应电势,大小为励磁与转子旋转角的正、余弦值的乘积。旋转变压器输入输出关系如下: 式中:F0——励磁最大幅值; ω——励磁角频率; K——旋转变压器变比; θ——转子旋转角度。 2基于Au6802N1的接口电路 2 1旋转变压器与Au6802N1的接口电路 Au6802N1提供给旋转变压器的交流励磁电压由RsO—cOM口输出,频率由引脚FsEL1和FsEL2设置,在图2的电路中励磁电压信号的频率设置为10 kHz。励磁电压的有效值通过双电源B00ster放大电路进行调节。该励磁电压信号又反馈回R1ER2E端口,用于实现内部相位同步检测和断相检测。旋转变压器产生的cos和sin信号经过调理后分别由s3-s1和s4-s2端口进入解码芯片。参数选择:V=15 V,R i=22 kΩ,R f=100 kΩ,R1=R2=3. 3 kΩ,R3=R4=4. 7 Ω,R ext=12 Ω,R Rl=R R2=3.3 kΩ,R11=20 kΩ,R12=200 kΩ,R BH=68 kΩ,R BL=20 kΩ;C i=O.1μF,C f=200 pF,C n=100 pF,C c=1 000 pF。

永磁电机、驱动、控制的集成开发

永磁电机、驱动、控制的集成开发 一永磁电机驱动系统 永磁电机的应用主要包括两类,一类用于异步起动的同步电动机,另一类用于运动控制系统和传动。前者主要为了节能的目的,因为永磁同步电动机的效率、功率因素都高于异步电机,其电源是50Hz的三相交流电,但同步电动机不能在高频直接起动,转子上需放置起动绕组。后者则需要调速,需要专用的电源变换装置,俗称变频器或驱动器。小于5kW的永磁电机驱动系统大部分用于伺服控制,即控制系统的转矩、速度、位置、加速度,甚至加速度的变化率,改善应用系统的动态过程。在日本,这类小功率的应用系统被称为机械电子系统,欧美则称为运动控制系统。功率较大的系统即功率从5kW到30kW,一般称为传动系统,因为这类系统主要用来控制系统的速度,位置及加减速不是重要指标。在我国笼统地将运动控制系统和数十千瓦的传动系统称为驱动系统。 用于上述第二类的永磁电机常常称为永磁无刷电机,根据电流或电势波形可分为无刷直流和无刷交流两种。用逆变器和位置传感器代替直流电机的电刷和换向器,并将电枢绕组放到定子上,磁极移到转子上就得到直流无刷电机,转子发热显著改善,传感器采用霍尔(Hall)元

件或光电器件,转子每转60°电角度产生一个位置信号,任一瞬间只有两相绕组导通,即120°通电方式,绕组电流为方波或梯形波,控制软件简单。无刷交流电机也叫永磁同步电机,绕组电流为正弦波,多采用磁场定向控制,又称矢量控制,传感器为相对或绝对编码器,分辨率从每转几百到几千个脉冲。因此,无刷直流电机多用于调速场合,永磁同步电机多用于速度及位置控制等伺服系统。 在30kW以下的调速系统中,永磁电机调速系统和异步电机调速系统相比有以下优点: (1)节能:由于异步电机的绕组电流包含励磁电流分量,同样功率的电机,永磁电机的效率高于异步电机; (2)可控性:方波控制的直流无刷电机比电压频率比恒定的开环控制的异步电机速度响应快,永磁同步电机的磁场定向控制比异步电机的磁场定向控制简洁,控制性能较少受电机参数变化的影响; (3)省材料:永磁电机的功率密度高于异步电机,同样的输出功率,机座号显著减小,节省的硅钢片和漆包线等材料,弥补了永磁电机中

永磁同步电机矢量控制简要原理

关于1.5KW永磁同步电机控制器的初步方案 基于永磁同步电机自身的结构特点,要实现对转速及位置的伺服控制,采用矢量控制算法结合SVPWM技术实现对电机的精确控制,通过改变电机定子电压频率即可实现调速,为防止失步,采用自控方式,利用转子位置检测信号控制逆变器输出电流频率,同时转子位置检测信号作为同步电机的启动以及实现位置伺服功能的组成部分。 矢量控制的基本思想是在三相永磁同步电动机上设法模拟直流 电动机转矩控制的规律,在磁场定向坐标上,将电流矢量分量分解成产生磁通的励磁电流分量id和产生转矩的转矩电流iq分量,并使两分量互相垂直,彼此独立。当给定Id=0,这时根据电机的转矩公式可以得到转矩与主磁通和iq乘积成正比。由于给定Id=0,那么主磁通就基本恒定,这样只要调节电流转矩分量iq就可以像控制直流电动机一样控制永磁同步电机。 根据这一思想,初步设想系统的主要组成部分为:主控制板部分,电源及驱动板部分,输入输出部分。 其中主控制板部分即DSP板,根据控制指令和位置速度传感器以及采集的电压电流信号进行运算,并输出用于控制逆变器部分的控制信号。 电源和驱动板部分主要负责给各个部分供电,并提供给逆变器部分相应的驱动信号,以及将控制信号与主回路的高压部分隔离开。 输入输出部分用来输入控制量,显示实时信息等。

原理框图如下: 基本控制过程:速度给定信号与检测到的转子信号相比较,经过速度控制器的调节,产生定子电流转矩分量Isq_ref,用这个电流量作为电流控制器的给定信号。励磁分量Isd_ref由外部给定,当励磁分量为零时,从电机端口看,永磁同步电机相当于一台他励直流电机,磁通基本恒定,简化了控制问题。另一端通过电流采样得到三相定子电流,经过Clarke变换将其变为α-β两相静止坐标系下的电流,再通过park 变换将其变为d-q两相旋转坐标系下电流Isq,Isd,分别与两个调节器的参考值比较,经过控制器调节后变为电压信号Vsd_ref和Vsq_ref,再经过park逆变换,得到Vsa_ref和Vsb_ref作为SVPWM的控制信

基于某SVPWM的永磁同步电机控制系统的仿真

基于SVPWM的永磁同步电机控制系统的仿真随着电动机在社会生产中的广泛应用,由于永磁同步电机具有结构简单、体积小、效率高、转矩电流比高、转动惯量低,易于散热及维护等优点,特别是随着永磁材料价格的下降、材料的磁性能的提高、以及新型的永磁材料的出现,在中小功率、高精度、高可靠性、宽调速围的伺服控制系统中,永磁同步电动机引起了众多研究与开发人员的青睐,其应用领域逐步推广,尤其在航空航天、数控机床、加工中心、机器人等场合已获得广泛的应用。我国制作永磁电机永磁材料的稀土资源丰富,稀土资占全世界的80%以上,发展永磁电机具有广阔的前景。 第一章永磁同步电机的矢量控制原理 1.1 永磁同步电机控制中应用的坐标系 交流电机的数学模型具有高阶次,多变量耦合,非线性等特征,难以直接应用于系统的设计和控制,与直流电机单变量,自然解耦和线性的数学模型相比较,交流电机显得异常复杂。因此需要通过适当的转换,将交流电机的控制变换为类似直流电机的控制将大大简化交流电机控制的复杂程度。 永磁同步电机矢量控制的基本思想是把交流电机当成直流电机来控制,即模拟直流电机的控制特点进行永磁同步电机的控制。为简化感应电机模型,可将电机三相绕组电流产生的磁动势按平面矢量的叠加原理进行合成和分解,使得能够用两相正交绕组来等效实际电动机的三相绕组。由于两相绕组的正交性,变量之间的耦合大大减小。 1.1.1系统中的坐标系 1)三相定子坐标系(U-V-W坐标系) 其中三相交流电机绕组轴线分别为U、V、W,彼此之间互差120度空间

电角度,构成了一个U-V-W三相坐标系。空间任意一矢量在三个坐标上的投影代表了该矢量在三个绕组上的分量。 2)两相定子坐标系(α-β坐标系) 两相对称绕组通以两相对称电流也能产生旋转磁场。对于空间的任意一矢量,数学描述时习惯采用两相直角坐标系来描述,所以定义一个两相静止坐标系,即α-β坐标系。它的轴α和三相定子坐标系的A轴重合,β轴逆时针超前α轴90度空间电角度。由于α轴固定在定子A相绕组轴线上,所以α-β坐标系也是静止坐标系。 3)转子坐标系(d-q坐标系) 转子坐标系d轴位于转子磁链轴线上,q轴逆时针超前d轴90度空间电角度,该坐标系和转子一起在空间上以转子角速度旋转,故为旋转坐标系。对于同步电动机,d轴是转子磁极的轴线。 矢量控制中用到的变换有:将三相平面坐标系向两相平面直角坐标系的转换(Clarke 变换)和将两相静止直角坐标系向两相旋转直角坐标系的变换(Park变换)。 1.1.2 由三项平面坐标系向两相平面坐标系(Clarke变换) 三相同步电动机的集中绕组U、V、W的轴线在与转子垂直的平面分布如上图所示,轴线依次相差120°,可将每相绕组在气隙中产生的磁势分别记为:Fu、Fv、Fw。由于Fu、Fv、Fw不会在轴向上产生分量,所以可以把气隙的磁场简化为一个二维的平面场。简单起见,可以U为α轴,由α起逆时针旋转90°作β轴,建立起二维坐标系,用此两相坐标系(α-β)产生的磁动势来等效三相静止坐标系(U-V-W)产生的磁动势。如图1.1所示。

相关文档
相关文档 最新文档