文档视界 最新最全的文档下载
当前位置:文档视界 › 光谱分析 实验报告

光谱分析 实验报告

光谱分析 实验报告
光谱分析 实验报告

实验报告

课程名称: 材料科学基础实验 指导老师: 乔旭升 成绩: 实验名称: 光谱分析 实验类型: 同组学生姓名:

一、实验目的和要求(必填)

三、主要仪器设备(必填)

五、实验数据记录和处理

七、讨论、心得

二、实验内容和原理(必填) 四、操作方法和实验步骤 六、实验结果与分析(必填)一、实验目的

通过本实验了解紫光/可见光光度计、傅里叶变换红外光谱仪(FTIR )和荧光光谱仪的基本原理、主要用途和实际操作过程。掌握玻璃透光率、薄膜吸收光谱、固体粉末红外光谱和固体发光材料荧光光谱的测试方法。学习分析影响测试结果的主要因素。

二、实验原理

电磁波可与多种物质相互作用。如果这种作用导致能量从电磁波转移至物质,就称为吸收。当光波与某一受体作用时,光子和接受体之间就存在碰撞。光子的能量可被传递给接受体而被吸收,由此产生吸收光谱。通常紫外和可见光的能量接近于某两个电子能级地能量差,故紫外与可见光吸收光谱起源于价电子在电子能级之间的跃迁,又称为电子光谱。

当一束平行单色光照射到非散射的均匀介质时,光的一部分将被介质所反射,一部分被介质吸收,一部分透过介质。如果入射光强度为I0.反射光强度为Ir ,吸收光强度为Ia ,透过光强度为It ,则有I0=Ir+Ia+It 投射光强度与入射光强度之比称为透光率 T=It/I0

当一束具有连续波长的红外光照射某化合物时,其分子要吸收一部分光能转变为分子的震动能量或转动能量。此时若将其透过的光用单色器进行色散,就可得到一带暗条的谱带。以红外光的波长或波数为横坐标,以吸收率或者透过率百分数为纵坐标,把该谱带记录下来,就可得到该化合物的红外吸收光谱图。不同的化合物均有标准特征谱,将实验所得的光谱与标准谱对照,就可进行分子结构的基础研究和化合组成的分析。可由吸收峰的位置和形状来推知被测物的结构,按照特征峰的强度来测定混合物中各组分的含量。

当分子吸收来自光辐射的能量后,其本身就由处于稳定的基态跃迁至不稳定的激发态: M+h

ν→。激发态是不稳定的,寿命极短,激发态分子会迅速以向周围散热或再发射电磁波(荧光或磷光)的方式回到基态:

→M+荧光(或磷光)。任何能产生荧光(或磷光)的物质都具有两个特征光谱:激发光谱和发射光谱。

激发光谱:荧光(或磷光)为光致发光,因此必须选择合适的激发光波长,这可通过激发

光谱曲线来确定。选择荧光(或磷光)的最大发射波长为测量波长(监控波长),改变激发光的波长,测量荧光强度变化。以激发光波长为横坐标,荧光强度为纵坐标作图,即可获得激发光谱。激发光谱形状与吸收光谱形状极为相似,经校正后的激发光谱与吸收光谱不仅形状相同,而且波长位置一致。这是因为物质吸收能量的过程就是激发过程。

发射光谱:将激发波长固定在最大激发波长处,然后扫描发射波长,测定不同波长处的荧光(或磷光)强度,即可得到荧光(或磷光)发射光谱。

三、仪器简介

1.紫外/可见光分光光度计

PE公司的Lambda20双光束紫外/可见光分光光度计,测量光谱范围190-1100nm;杂散光

0.01%T;波长精度0.1nm;最高扫描速度2880nm/min。该仪器的整个操作过程可完全由计算

机控制,随机提供的UV-Winlab窗口式操作软件,使样品测试、结果处理、图形变换和实验报告编程及实验结果都可在计算机中方便地完成。

2.傅里叶变换红外光谱仪(FTIR)

早起提供的红外光谱仪多为色散型双光束分光光度计,它们的构造系统基本上与紫外/可见光分光光度计一样。但这类有两个明显的缺陷,一是这种色散型红外分光光度计是借助依次测定从出射狭缝分出来的“单色光”而获得样品光谱的,在通常的红外分光光光度计中,要得到一张可用的谱图至少要2分种左右时间。另一个缺陷是必须使用狭缝,故进入单色器的光能不能太低,否则检测困难,这使得镜反射光谱、常温样品的红外发射光谱和光源能量小的远红外光谱仪等受到限制。因此,随着计算机数据处理技术的发展,目前大量使用的红外光谱仪为傅里叶变换红外光谱仪(FTIR)。傅里叶变换红外光谱仪由迈克尔逊干涉仪和数据处理系统组合而成,它的工作原理就是迈克尔逊干涉仪的工作原理。

Nicolet公司的Avatar360傅里叶变换红外光谱仪,测量范围4000-400cm-1;分辨率

0.9cm-1;信噪比15000:1。该仪器的整个操作过程完全由计算机控制,随机提供的窗口式操

作软件,使样品测试、结果处理、图形变换、结果打印都可在计算机中方便地完成。

3.荧光光谱仪

日立公司的F-4500荧光光谱仪,测量光谱范围200-730nm,最高灵敏度S/N100:1,最快

扫描速度30000nm/min。该仪器整个操作过程可完全由计算机控制,随机提供的UV-Winlab 窗口式操作软件,使样品测试、结果处理、图形变换和实验报告编程及实验结果都可在计算机中方便地完成。

四、实验步骤和操作方法

(一)固体试样的红外吸收光谱测试

1.样品制备

1.本实验进行固体式样的红外光谱分析采用压片法制备样品。压片法是指把固体样品分散

在碱金属卤化物中并压成透明薄片来减少粒子的散射影响,同时还排除了溶剂等的吸收干扰,能一次完整地获得样品的吸收光谱,且薄片的厚度和样品浓度可用天平精确称取,便于定量分析。

(1)样品:KBr=1:20的混合物放于洁净的玛瑙研钵中,并在红外干燥灯下均匀研磨,使其颗

粒在2μ左右。

(2)将少量研磨好的混合物小心铲入简易压膜装置中并摊匀,旋转螺帽尽量压紧,并在压力装

下保持2-3分钟,然后将两边的螺帽旋出,观察螺母中的薄片,应为半透明状,如果不透明,则薄膜太厚,表明放入的样品太多,需将压好的薄膜捣碎清理掉,重新压片。(注意膜不破,均匀且透光)

2.红外光谱测试

(1)检查Avatar360傅里叶变化红外光谱仪电源开关置“关”位置,光谱仪样品室中无任何

样品。

(2)打开计算机开关,计算机自动进入Windows桌面。

(3)打开光谱仪开关,光谱仪左后方的电源指示灯与扫描指示灯亮,此时在计算机的Windows

桌面上双击“IMNICE.S.P.”图标,计算机进入OMNIC窗口,扫描指示灯开始闪亮。

(4)打开样品室,将压有薄膜样品的螺母放入光谱仪的样品室中,关上样品室。

(5)在OMNIC窗口的“Experimental”处选择Ddfault-default,该实验程序的基本参数为扫

描次数32次,分辨率4cm-1,如果要改变实验参数,可在“Collect”中进入Experiment setup 进行修改。

(6)单击OMNIC窗口第三行的第二个图标(Collect Sample图标)

测试,测试结束后,显示屏上将自动显示要求进行背底测试扫描的窗口

(7)打开样品室,取出样品,然后关上样品室,在要求进行背底测试扫描的窗口上单击“OK”,

仪器开始进行背底测试扫描,同时对前面测试的样品进行自动背底扣除,在显示屏上显示已扣除背底的红外吸收光谱图。

(8)在OMNIC窗口的“file”中保存所测试的光谱图。

3.测试结果处理

分别进行投射光谱和吸收光谱的互换,自动基线校正,自动寻峰,坐标归一化。根据结果,进行充分的光谱图形处理。

(二)光功能薄膜的紫外/可见光吸收光谱测试(测光的透过率)

1.检查电源开关置“关”位置,光度计样品室光路上无任何阻挡物。

2.打开电源,启动计算机,进入“UV Winlab”操作程序。

3.打开光度计电源,光度计首先自动进行自检。一段时间后,屏上出现“Remote Standard”,表明一切正常。

4.进入下一个界面“Scan”,设置参数(包括起始波长等):

Start Wavelength:800nm Ordinate max:2.00

End Wavelength:350nm; Ordinate min:0.00 Data Interval:1.0nm

5.进入“inst.”界面,设置参数:

Ordinate mode:A; Scan Speed:240nm; Smooth:2nm;

Lamp UV:off; Lamp Vis:on

6.在参比式样架和样品式样架上分别放入没有镀上光功能薄膜的两块空白玻璃基板,盖上样品室,单击“Autozero”光度计进行自动校零。

7.校零结束后,打开样品室,在样品式样架上放入镀有光功能薄膜的玻璃样品,盖上样品室。单击“Start”,开始样品测试,结束后保存结果。作出图并倒数出数据。

8.数据处理。

(三)发光材料的荧光光谱测试

1.检查F-4500荧光光谱仪电源开关置“关”位置,光谱仪样品室中无任何样品。

2.打开光谱仪主机电源开关,预热5分钟,按下灯电源,再过5分钟,打开“run”。

3.双击“FLSolutuons”,进入荧光光谱仪的控制窗口,进入测试状态。

4.打开样品室,将待测试样放入样品室,关上。

5.为测定激发光谱,在“Method”设置参数。

6.设置完成后,按测试控制画面的“Measure”,仪器开始为测定样品的激发光谱,在荧光光谱仪控制窗口的“Method”中在设置参数。

7.按“Measure”一起开始测试激发光谱。测试激发光谱。

8.为测定样品的发射光谱,在荧光光谱仪控制窗口的“Method”中在设置参数

9. 设置完成后,按测试控制画面的“Measure”,仪器开始自动测试发射光谱。

五.实验数据及处理

(一)红外光谱图见下。

(二)光的透过率随波长的变化关系及图见下。

(三)首先是设定荧光(磷光)的最大发射波长为467nm为监控波长,改变激发光的波长,测量荧光强度的变化,得到激发光谱作图见下。并找出最大荧光光强对应的为541nm最大激发波长。将激发波长固定在最大激发波长处,然后扫描发射波长,测定不同波长处的荧光强度,得到发射光谱,作图并得到在469nm处光强最大,即最大发射波长为469nm,与原先的467nm相近。

六.实验结果及讨论

根据实验得到的数据导出在origin中作图并进行分析,如下:

(一)红外光谱图

图1、红外光谱图

(二)光透过率随波长变化的曲线:

图2、光透过率随波长变化的曲线(三)KBr激发光谱图:

图3、KBr激发光谱图

发射光谱:

图4、发射光谱

七.思考题

1.简述傅里叶变换红外光谱仪的测试原理?

因为傅里叶变换红外光谱仪由迈克耳逊干涉仪和数据处理系统组合而成,所以它的工作原理就是迈克耳逊干涉仪的原理。迈克耳逊干涉仪是利用分振幅法产生双光束以实现干涉。

如图所示,图中M1和M2是在相互垂直的两臂上放置的两个平面反射镜,其中M1是固定的;M2由精密丝杆控制,可沿臂轴前、后移动,移动的距离由刻度转盘(由粗读和细读2组刻度盘组合而成)读出。在两臂轴线相交处,有一与两轴成45°角的平行平面玻璃板G1,它的第二个平面上镀有半透(半反射)的银膜,以便将入射光分成振幅接近相等的反射光⑴和透射光⑵,故G1又称为分光板。G2也是平行平面玻璃板,与G1平行放置,厚度和折射率均与G1相同。由于它补偿了光线⑴和⑵因穿越G1次数不同而产生的光程差,故称为补偿板。

透过G1向着M1前进,这两束光分别在M2、M1上反射后逆着各自的入射方向返回,最后都达到E处。因为这两束光是相干光,因而在E处的观察者就能够看到干涉条纹。

由M1反射回来的光波在分光板G1的第二面上反射时,如同平面镜反射一样,使M1在M2附近形成M1的虚像M1′,因而光在迈克尔逊干涉仪中自M2和M1的反射相当于自M2和M1′的反射。由此可见,在迈克尔逊干涉仪中所产生的干涉与空气薄膜所产生的干涉是等效的。

当M2和M1′平行时(此时M1和M2严格互相垂直),将观察到环形的等倾干涉条纹。一般情况下,M1和M2形成一空气劈尖,因此将观察到近似平行的干涉条纹(等厚干涉条纹)。

最后,将干涉条纹进行数据处理,最后得到我们想要的数据结果。

2.紫外/可见分光光度计定量分析法的依据是什么?

比耳(Beer)确定了吸光度与溶液浓度及液层厚度之间的关系,建立了光吸收的基本定律。1. 朗伯定律

当溶液浓度一定时,入射光强度与透射光强度之比的对数,即透光率倒数的对数与液层厚度成正比。人们定义:溶液对单色光的吸收程度为吸光度。公式表示为A=Lg(I0/It)

2.比耳定律

当一束单色光通过液层厚度一定的均匀溶液时,溶液中的吸光物质的浓度增大dC,则透射光强度将减弱 dI,-dI 与入射光光强度I 与dc 的积成正比。∴?dI ∝I·dc -dI/I=k3·dc A=Lg(I0/It)=K4 ·C 这是吸光度与浓度的定量关系,是紫外—可见分光光度分析的定量依据,称Beer定律,

k4——与入射光波长、溶液性质、液层厚度及温度有关,故当上述条件一定时,吸光度与溶液浓度成正比.

3.朗伯--比耳定律

若同时考虑液层厚度和溶液浓度对吸光度的影响,即把朗伯定律和比耳定律合并起来得:A = k b C

K——与入射光波长、溶液性质及温度有关的常数

当一束波长为λ的单色光通过均匀溶液时,其吸光度与溶液浓度和光线通过的液层厚度的乘积成正比。即为朗伯——比耳定律。其中 K 的取值与C、b 的单位不同而不同。若C 以g/L 表示,b 以cm 表示。则K以a 表示,,称吸光系数,单位L/g.cm ∴A = a b C

3.红外光谱分析重固体试样的常用制样方法有哪些?

1)压片法

将1~2mg试样与200mg纯KBr研细均匀,置于模具中,用(5~10)x107Pa压力在油压机上压成透明薄片,即可用语测定。试样和KBr都应经干燥处理,研磨到粒度小于2微米,以免散射光影响。

2)石蜡糊法将干燥处理后的试样研细,与液体石蜡或全氟代烃混合,调成糊状,夹在盐片中测定。

3)薄膜法主要用于高分子化合物的测定。可将它们直接加热熔融制或压制成膜。也可将试样溶解在低沸点的易挥发溶剂中,涂在盐片上,待溶剂挥发后成膜测定。

4.双光束分光光度计与单光束分光光度计相比有哪些优点?

双光束分光光度计比单光束分光光度计结构复杂,可实现吸收光谱的自动扫描,扩大波长的应用范围,消除光源强度波动所带来的影响。具有较高的测量精密度和准确度,而且测量

方便快捷,特别适合进行结构分析。

红外光谱(FTIR)实验报告

红外光谱仪调查及实验报告 第一部分红外光谱仪调查 1.1 简介 傅里叶红外光谱仪: 全名为傅里叶变换红外光谱仪(Fourier Transform Infrared Spectrometer,FTIR Spectrometer),是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪,主要由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。傅里叶红外光谱仪不同于色散型红外分光的原理,可以对样品进行定性和定量分析,广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。 滤光片型近红外光谱仪器: 滤光片型近红外光谱仪器以滤光片作为分光系统,即采用滤光片作为单色光器件。滤光片型近红外光谱仪器可分为固定式滤光片和可调式滤光片两种形式,其中固定滤光片型的仪器时近红外光谱仪最早的设计形式。仪器工作时,由光源发出的光通过滤光片后得到一宽带的单色光,与样品作用后到达检测器。 色散型近红外光谱仪器: 色散型近红外光谱仪器的分光元件可以是棱镜或光栅。为获得较高分辨率,现代色散型仪器中多采用全息光栅作为分光元件,扫描型仪器通过光栅的转动,使单色光按照波长的高低依次通过样品,进入检测器检测。根据样品的物态特性,可以选择不同的测样器件进行投射或反射分析。 傅里叶变换型近红外光谱仪器: 傅里叶变换近红外分光光度计简称为傅里叶变换光谱仪,它利用干涉图与光谱图之间的对应关系,通过测量干涉图并对干涉图进行傅里叶积分变换的方法来测定和研究近红外光谱。其基本组成包括五部分:①分析光发生系统,由光源、分束器、样品等组成,用以产生负载了样品信息的分析光;②以传统的麦克尔逊干涉仪为代表的干涉仪,以及以后的各类改进型干涉仪,其作用是使光源发出的光分为两束后,造成一定的光程差,用以产生空间(时间)域中表达的分析光,即干涉光;③检测器,用以检测干涉光;④采

紫外光谱分析实验数据处理部分

【实验数据处理部分】 一.由实验测得的数据可以得到以下几个谱图: 1.苯蒸气的紫外吸收光谱: 左图中,苯的K吸 收带大约在214nm处, B吸收带在256nm左右。 并且,苯蒸气的精细结 构(主要指苯分子的振 动能级)清晰可见。 另外,由于滴加到 比色皿中的苯过多导致 浓度偏大,A值偏大。 (超过了1.0)。 2.不同取代基对苯的紫外吸收带的影响: (1)、苯甲酸与苯乙烯: 左图中,①②标示的 是苯蒸气的K带和B带; ③表示的是苯甲酸的K 吸收带;而④⑤表示的是 苯乙烯的E2带和K带。 (其中为了使谱图便于 比对,将苯蒸气的吸光度 值成比例地缩小了一定 的数值。) 读图可知: 与苯比较,羧基(吸 电子基)取代的苯环,其K 吸收带发生了红移,B吸 收带也有一定程度的红 移,但强度变弱了; 而对于苯乙烯,由于乙烯基双键的存在,增大了苯环的共轭体系,使得价电子跃迁所需要的能量变低,因而发生了很大程度的红移,E2带和K带分别红移至210nm和245nm处。 (2)、苯酚和苯胺:

图中,①②标示的是 苯蒸气的K带和B带; ③④表示的是苯酚的K 吸收带和B吸收带;而 ⑤⑥⑦则表示苯胺的E2 带、K带和B带。 读图可知: 苯酚的E2吸收带与 K吸收带合并了,原因是 酚羟基的助色作用使得 吸收带发生红移,同样 地,与苯相比,苯酚的B 吸收带也发生了红移; 苯胺的氮原子上含 有孤对电子,也和酚羟基一样具有助色效应,因此苯胺的各个吸收带也发生了一定程度的红移(相比较于苯而言)。 二、溶液性质对取代苯紫外吸收的影响: 1.苯酚与其碱性溶液: 图中:①②③分别标 示的是苯酚在碱性溶液 中的E2吸收带、K吸收 带和B吸收带的大致位 置;而④⑤则分别标示苯 酚在中性溶液中的K吸 收带和B吸收带的位置。 读图可知: 由于碱性溶液中的 酚羟基以氧负离子形式 存在,使得酚羟基的助色 作用大大增强,因而苯环 的吸收带均发生较大的 红移。 例如:原本在苯酚的 紫外吸收图谱中未能读出的E1、E2吸收带,此时可以大致从图中读出;另外,碱性溶液中,苯酚的K带红移至245nm左右,B带红移至290nm左右。 苯酚在碱性溶液中的变化见下图:

荧光光谱分析仪工作原理

X 荧光光谱分析仪工作原理 用x 射线照射试样时,试样可以被激发出各种波长得荧光x 射线,需要把混合得x 射线 按波长(或能量)分开,分别测量不同波长(或能虽:)得X 射线得强度,以进行左性与定疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一泄波长,同时又有一立能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图. 用X 射线照射试样时,试样可以被激发出各种波长得荧光X 射线,需要把混合得X 射 线按波长(或能疑)分开,分别测量不同波长(或能量)得X 射线得强度,以进行定性与左疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一左波长,同时又有一左能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图。 (a )波长色散谱仪 (b )能虽色散谱仪 波长色散型和能量色散型谱仪原理图 现将两种类型X 射线光谱仪得主要部件及工作原理叙述如下: X 射线管 酥高分析器 分光晶体 计算机 再陋电源

丝电源 灯丝 电了悚 X则线 BeiV 輪窗型X射线管结构示意图 两种类型得X射线荧光光谱仪都需要用X射线管作为激发光源?上图就是X射线管得结构示意图。灯丝与靶极密封在抽成貞?空得金属罩内,灯丝与靶极之间加高压(一般为4OKV), 灯丝发射得电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生得一次X射线, 作为激发X射线荧光得辐射源.只有当一次X射线得波长稍短于受激元素吸收限Imi n时,才能有效得激发出X射线荧光?笥?SPAN Ian g =EN-U S >lmin得一次X射线其能量不足以使受激元素激发。 X射线管得靶材与管工作电压决立了能有效激发受激元素得那部分一次X射线得强度。管 工作电压升高,短波长一次X射线比例增加,故产生得荧光X射线得强度也增强。但并不就是说管工作电压越髙越好,因为入射X射线得荧光激发效率与苴波长有关,越靠近被测元素吸收限波长,激发效率越髙。A X射线管产生得X射线透过彼窗入射到样品上, 激发岀样品元素得特征X射线,正常工作时,X射线管所消耗功率得0、2%左右转变为X 射线辐射,其余均变为热能使X射线管升温,因此必须不断得通冷却水冷却靶电极。 2、分光系统 第?准讥器 平面晶体反射X线示意图 分光系统得主要部件就是晶体分光器,它得作用就是通过晶体衍射现彖把不同波长得X射线分开.根据布拉格衍射左律2d S in 0 =n X ,当波长为X得X射线以0角射到晶体,如果晶面间距为d,则在出射角为0得方向,可以观测到波长为X =2dsi n 0得一级衍射及波长为X/2, X /3 ------ ―等髙级衍射。改变()角,可以观测到另外波长得X

无水乙醇红外光谱分析实验报告

竭诚为您提供优质文档/双击可除无水乙醇红外光谱分析实验报告 篇一:红外光谱分析实验报告 一、【实验题目】 红外光谱分析实验 二、【实验目的】 1.了解傅立叶变换红外光谱仪的基本构造及工作原理 2.掌握红外光谱分析的基础实验技术 3.学会用傅立叶变换红外光谱仪进行样品测试 4.掌握几种常用的红外光谱解析方法 三、【实验要求】 利用所学过的红外光谱知识对碳酸钙、聚乙烯醇、丙三醇、乙醇的定性分析制定出合理的样品制备方法;并对其谱图给出基本的解析。 四、【实验原理】 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.78~300μm。通常又把这个波段分成三个区域,即近红外区:波长在0.78~2.5μm(波数在12820~

4000cm-1),又称泛频区;中红外区:波长在2.5~25μm(波数在4000~400cm-1),又称基频区;远红外区:波长在25~300μm(波数在400~33cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数(wavenumber)σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 作为红外光谱的特点,首先是应用面广,提供信息多且具有特征性,故把红外光谱通称为"分子指纹"。它最广泛的应用还在于对物质的化学组成进行分析。用红外光谱法可以根据光谱中吸收峰的位置和形状来推断未知物的结构,依照特征吸收峰的强度来测定混合物中各组分的含量。其次,它不受样品相态的限制,无论是固态、液态以及气态都能直接测定,甚至对一些表面涂层和不溶、不熔融的弹性体(如橡胶)也可直接获得其光谱。它也不受熔点、沸点和蒸气压的限制,样品用量少且可回收,是属于非破坏分析。而作为红外光谱的测定工具-红外光谱仪,与其他近代分析仪器(如核磁共振波谱仪、质谱仪 等)比较,构造简单,操作方便,价格便宜。因此,它已成为现代结构化学、分析化学最常用和不可缺少的工具。根据红外光谱与分子结构的关系,谱图中每一个特征吸收谱带都对应于某化合物的质点或基团振动的形式。因此,特征吸收

各种仪器分析的基本原理及谱图表示方法!!!紫外吸收光谱UV分析

各种仪器分析的基本原理及谱图表示方法!!! 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁谱图的表示方法:吸收光能量或微分能量随磁场强度变化提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e 分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e 的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关反气相色谱法IGC 分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数裂解气相色谱法PGC 分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型凝胶色谱法GPC 分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:高聚物的平均分子量及其分布热重法TG 分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析DTA 分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化 谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析DSC 分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化 谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息静态热―力分析TMA 分析原理:样品在恒力作用下产生的形变随温度或时间变化谱图的表示方法:样品形变值随温度或时间变化曲线提供的信息:热转变温度和力学状态

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

红外光谱分析实验报告

仪器分析实验 实验名称:红外光谱分析实验 学院:化学工程学院专业:化学工程与工艺班级: 姓名:学号: 指导教师: 日期:

一、 实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在0.75~1000μm 。通常又把这个波段分成三个区域,即近红外区:波长在0.75~2.5μm (波数在13300~4000cm -1),又称泛频区;中红外区:波长在 2.5~50μm (波数在4000~200cm -1),又称振动区;远红外区:波长在50~1000μm (波数在200~10cm -1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: )(10)(4 1 cm cm λσ=- 三、仪器和试剂 1、仪器: 美国尼高立IR-6700 2、试剂: 溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 计算机检测器样品室干涉仪光源?→??→??→??→? 四、实验步骤 1、打开红外光谱仪并稳定大概5分钟,同时进入对应的计算机工作站。 2、波数检验:将聚乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm -1进行 波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配,分析得到最吻合的图谱,即可判断物质结构。 3、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg 苯甲酸,加入在红外灯下烘干的100-200mg 溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm ),使之混合均匀。取出约80mg 混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm -1进行波数扫描,得到吸收光谱。然后将所得的谱图与计算机上的标准谱图进行匹配。 4、结束实验,关闭工作站和红外光谱仪。

实验一 紫外吸收光谱定性分析的应用

实验一紫外吸收光谱定性分析的应用 一、实验目的 1、掌握紫外吸收光谱的测绘方法。 2、学会利用吸收光谱进行未知物鉴定的方法。 3、学会杂质检出的方法。 二、基本原理 紫外吸收光谱为有机化合物的定性分析提供了有用的信息。其方法是将未知试样和标准品以相同浓度配制在相同的溶剂中,在分别测绘吸收光谱,比较二者是否一致也可将未知试样的吸收光谱与标准图谱,如萨特勒紫外吸收光谱图相比较,如果吸收光谱完全相同,则一般可以认为两者是同一种化合物。但是,有机化合物在紫外区的吸收峰较少,有时会出现不 同的结构,只要具有相同的生色团,它们的最大吸收波长 max λ相同,然而其摩尔吸光系数ε 或比吸光系数E % 1 1cm 值是有差别的。因此需利用 max λ和 max λ处的ε或E%1 1cm 等数据作进一 步比较。 在没有紫外吸收光谱峰的物质中检查含高吸光系数的杂质是紫外吸收光谱的重要用途之一。如乙醇中杂质苯的检查,只需测定256 nm处有无苯的吸收峰即可。因为在这一波段,主成分乙醇无吸收峰。 在测绘比较用的紫外吸收光谱图时,应首先对仪器的波长准确性进行检查和校正。还必须采用相同的溶剂,以排除溶剂的极性对吸收光谱的影响。同时还应注意PH值、温度等因素的影响。在实际应用时,应注意溶剂的纯度。 三、仪器与试剂 1、仪器 T6型(或其他型号)紫外可见分光光度计 1㎝石英比色皿 2、试剂 苯的乙醇溶液

1,4对苯二酚水溶液 苯甲酸的乙醇溶液 四、实验步骤 1、已知芳香族化合物标准光谱的绘制 在一定的实验条件下,以相应的溶剂作参比,用1㎝石英比色皿,在一定的波长范围内扫描(或测绘)各已知标准物质的吸收光谱作为标准光谱。 如苯甲酸的乙醇溶液的和1,4对苯二酚水溶液的标准溶液的标准光谱的绘制。 各已知芳香族化合物的标准光谱也可通过查阅有关手册得到,但应注意实验条件的一致。 2、未知芳香族化合物的鉴定 (1)称取0.100 g未知芳香族化合物,用去离子水溶解后转让100 ml容量瓶中,稀释至刻度,摇匀。实验前,稀释100倍使用。 (2)用1㎝石英比色皿,以去离子水作参比,在200-600波长范围内扫描测定未知芳香族化合物吸收光谱(如使用无扫描功能的紫外可见分光光度计测定时应首先每间隔 20 nm测量一次吸光度,然后每间隔10 nm 、5 nm 、2 nm、1 nm、0.5 nm 测量 一次吸光度。总之,越靠近吸收峰,波长间隔应越小,以得到较准确的吸收曲线)。 3、乙醇中杂质苯的检出 用1㎝石英比色皿,以乙醇作参比,在220-280 nm波长范围内扫描测定乙醇试样的吸收光谱(吸收曲线)。 五、实验结果 1、通过将未知芳香族化合物吸收光谱与已知芳香族化合物标准光谱进行比对,指出未知芳 香族化合物可能为哪种物质。 2、将乙醇试样的吸收光谱与溶解在乙醇中苯的吸收光谱进行比较,指出乙醇试样中是否有 苯存在。 六、思考题 1、配制试样溶液浓度的大小,对吸光度测量值有何影响?在实验中应如何调整? 2、对已经初步确认的化合物纯品,再设计一个实验方案,对未知物作进一步鉴定。

固体红外光谱实验报告

KBr压片法测定固体样品的红外光谱 一、实验目的 1、掌握红外光谱分析法的基本原理。 2、掌握Nicolet5700智能傅立叶红外光谱仪的操作方法。 3、掌握用KBr压片法制备固体样品进行红外光谱测定的技术和方法。 4、了解基本且常用的KBr压片制样技术在红外光谱测定中的应用。 5、通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、仪器及试剂 1 仪器:美国热电公司Nicolet5700智能傅立叶红外光谱仪;HY-12型手动液压式红外压片机及配套压片模具;磁性样品架;红外灯干燥器;玛瑙研钵。 2 试剂:苯甲酸样品(AR);KBr(光谱纯);无水丙酮;无水乙醇。 三、实验原理 红外吸收光谱法是通过研究物质结构与红外吸收光谱间的关系,来对物质进行分析的,红外光谱可以用吸收峰谱带的位置和峰的强度加以表征。测定未知物结构是红外光谱定性分析的一个重要用途。根据实验所测绘的红外光谱图的吸收峰位置、强度和形状,利用基团振动频率与分子结构的关系,来确定吸收带的归属,确认分子中所含的基团或键,并推断分子的结构,鉴定的步骤如下: (1)对样品做初步了解,如样品的纯度、外观、来源及元素分析结果,及物理性质(分子量、沸点、熔点)。 (2)确定未知物不饱和度,以推测化合物可能的结构; (3)图谱解析 ①首先在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动; ②再根据“指纹区”(1300~400cm-1)的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。

图1 仪器的基本结构 四、实验步骤 1. 红外光谱仪的准备 (1)打开红外光谱仪电源开关,待仪器稳定30 分钟以上,方可测定; (2)打开电脑,选择win98系统,打开OMNIC E.S.P软件;在Collect菜单下的Experiment Set-up 中设置实验参数; (3)实验参数设置:分辨率 4 cm-1,扫描次数32,扫描范围4000-400 cm-1;纵坐标为Transmittance 2.固体样品的制备 (1)取干燥的苯甲酸试样约1mg于干净的玛瑙研钵中,在红外灯下研磨成细粉,再加入约150mg干燥且已研磨成细粉的KBr一起研磨至二者完全混合均匀,混合物粒度约为2μm以下(样品与KBr的比例为1:100~1:200)。 (2)取适量的混合样品于干净的压片模具中,堆积均匀,用手压式压片机用力加压约30s,制成透明试样薄片。 3.样品的红外光谱测定 (3)小心取出试样薄片,装在磁性样品架上,放入Nicolet5700智能傅立叶红外光谱仪的样品室中,在选择的仪器程序下进行测定,通常先测KBr的空白

仪器分析实验5-紫外可见光谱分析

实验五色氨酸、苯丙氨酸和酪氨酸的紫外吸收光谱分析 一、实验目的 1. 掌握紫外-可见分光光度计的工作原理和基本操作。 2. 掌握紫外-可见吸收光谱的绘制(包括导数光谱)以及定量测定方法。 3. 掌握。 4. 了解氨基酸类物质的紫外吸收光谱特点。 二、实验原理 1. 紫外-可见吸收光谱法测定蛋白质含量的基本原理 紫外-可见吸收光谱法是根据溶液中物质的分子或离子对紫外和可见光谱区辐射能的吸收来研究物质的组成和结构的方法,也称作紫外和可见吸收广度法,它包括比色分析法和紫外-可见分光光度法。 紫外-可见分光光度法属于吸收光谱法,分子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。电子由于受到光、热、电等的激发,从一个能级转移到另一个能级,称为跃迁。当这些电子吸收了外来辐射的能量,就从一个能量较低的能级跃迁到另一个能量较高的能级。 图1 电子跃迁示意图 物质对不同波长的光线具有不同的吸收能力,如果改变通过某一吸收物质的入射光的波长,并纪录该物质在每一波长处的吸光度(A),然后以波长为横坐标,以吸光度为纵坐标作图,这样得到的谱图为该物质的吸收光谱或吸收曲线。 当一定波长的光通过某物质的溶液时,入射光强度I。与透过光强度I之比的对数与该物质的浓度c及样品池厚度b成正比。其数学表达式为: 此式为Lambert-Beer定律,是分光光度法定量分析的基础,其中A为吸光度。 由于不同物质具有不同的分子结构,对不同波长的光会产生选择性吸收,具有不同的吸收光谱,因而,我们可以利用紫外-可见吸收光谱法对物质结构进 行鉴定和进行定量分析、根据被测量物质分子对紫外-可见波段范围

红外光谱分析技术及其应用

红外光谱分析技术及其应用(作者: _________ 单位:___________ 邮编: ___________ ) 作者:范雪芳徐淼侯晓涛王帅李洪宇张丽华 【摘要】红外光谱(IR)分析技术是一门发展迅猛的高新技术,与传统分析技术相比,红外光谱分析技术具有分析速度快,样品用量少,无破坏无污染等特点。红外光谱测定的是物质中分子的吸收光谱,不同的物质会有其特征指纹的特性,利用红外指纹图谱技术对中成药进行质量鉴定与分析,借助计算机和模式识别等技术,以综合的、宏观的、非线性的分析理念和质量控制模式来评价中药的真伪优劣 【关键词】红外光谱;红外指纹图谱技术 【Abstract ] Infrared spectrum (IR) is a fast developing newly tech no logy. Comparedwith traditi onal an alysis tech no logy, IR possesses characters of fast analysis, little sample, no breach and no pollution. IR measures the absorption spectrum of molecule, and different substances have different fingerprint patter ns. Thus, IR tech no logy can be applied to detect and an alyze the quality of traditi onal Chin ese drug. Using the computer, pattern recognition and so on, we can estimate if

光谱仪的工作原理

光谱仪的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

光谱仪的工作原理元素的原子在激发光源的作用下发射谱线,谱线经光栅分光后形成光谱,每种元素都有自己的特征谱线,谱线的强度可以代表试样中元素的含量,用光电检测器将谱线的辐射能转换成电能。检测输出的信号,经加工处理,在读出装置上显示出来。然后根据相应的标准物质制作的分析曲线,得出分析试样中待测元素的含量。 表面轮廓仪介绍 表面轮廓仪 - 简介 表面轮廓仪LK-200M型表面轮廓仪采用广精精密最新的基于windows版本的测量软件,具有强大卓越的数据处理分析功能。测量时,零件装夹位置即使任意放置,也能得到满意的测量结果;即使需要测量长度为220mm的工件,测量软件也能保证其1μm的采样步长。 LK-200H型表面轮廓仪采用耐用可靠的16位A/D功能板,其极高的分辨率量程比(1/65536),用户即使需要大量程测量,仍能保持极高的测量精度。 LK-200M型表面轮廓仪采用工控计算机处理测量数据及仪器控制操作。其高质量、高可靠性及突出的防尘、防振、防油、防静电能力使广精精密用户将使用维护成本降至最低。 表面轮廓仪 - 原理 表面轮廓仪LK-200M型表面轮廓仪采用直角坐标法,传感器移动式。直线运动导轨采用高精度气浮导轨,作为测量基准; 电器部分由高级计算机组成;测量软件采用基于中文版Windows操作系统平台的系统测量软件,完成数据采集、处理及测量数据管理等工作。 表面轮廓仪 - 功能 角度处理:两直线夹角、直线与Y轴夹角、直线与X轴夹角 点线处理:两直线交点、交点到直线距离、交点到交点距离、交点到圆心距离、交点到点距离 圆处理:圆心距离、圆心到直线的距离、交点到圆心的距离、直线到切点的距离线处理:直线度、凸度、LG凸度、对数曲线 表面轮廓仪 - 技术规格 表面轮廓仪测量长度:≤200mm

红外光谱实验报告

红外光谱实验报告 一、实验原理: 1、红外光谱法特点: 由于许多化合物在红外区域产生特征光谱,因此红外光谱法广 泛应用于这些物质的定性和定量分析,特别是对聚合物的定性 分析,用其他化学和物理方法较为困难,而红外光谱法简便易 行,特别适用于聚合物分析。 2、红外光谱的产生和表示 红外光谱定义:分子吸收红外光引起的振动能级跃迁和转动能级跃 迁而产生的吸收信号。 分子发生振动能级跃迁需要的能量对应光波的红外区域分类为: i.近红外区:10000-4000cm-1 ⅱ.中红外区:4000-400cm-1——最为常用,大多数化合物的化键振 动能级的跃迁发生在这一区域。 ⅲ.远红外区:400-10cm-1 产生红外吸收光谱的必要条件: 1)分子振动:只有在振动过程中产生偶极矩变化时才能吸收红外辐射。 ⅰ.双原子分子的振动:(一种振动方式)理想状态模型——把两个 原子看做由弹簧连接的两个质点,用此来 描述即伸缩振动;

图1 双原子分子的振动模型 ⅱ.多原子分子的振动:(简正振动,依据键长和键角变化分两大类) 伸缩振动:对称伸缩振动 反对称伸缩振动 弯曲振动:面内弯曲:剪切式振动 (变形振动)平面摇摆振动 面外弯曲振动:扭曲振动 非平面摇摆振动 ※同一种键型,不对称伸缩振动频率大于对称伸缩振动频率,伸缩振动频率大于弯曲振动频率。 ※当振动频率和入射光的频率一致时,入射光就被吸收,因而同一基团基本上总是相对稳定地在某一特定范围内出现吸收峰。ⅲ.分子振动频率: 基频吸收(强吸收峰):基态到第一激发态所产生分子振动 的振动频率。 倍频吸收(弱吸收峰):基态到第二激发态,比基频高一倍 处弱吸收,振动频率约为基频两倍。 组频吸收(复合频吸收):多分子振动间相互作用,2个或2

紫外吸收光谱实验报告

利用紫外吸收光谱检查物质纯度 紫外-可见分光光度法测定水中苯酚含量 一、实验目的 1.学会使用Cary50型紫外-可见分光光度计 2.掌握紫外-可见分光光度计的定量分析方法 二、原理简介 紫外-可见吸收光谱是由分子外层电子能级跃迁产生,同时伴随着分子的振动能级和转动能级的跃迁,因此吸收光谱具有带宽。紫外-可见吸收光谱的定量分析采用朗伯-比尔定律,被测物质的紫外吸收的峰强与其浓度成正比,即: 其中A是吸光度,I、分别为透过样品后光的强度和测试光的强度,为摩尔吸光系数,b为样品厚度。 由于苯酚在酸、碱溶液中吸收波长不一致(见下式),实验选择在碱性中测试,选择测试的波长为288nm左右,取紫外-可见光谱仪波长扫描后的最大吸收波长。 Cary50是瓦里安公司的单光束紫外-可见分光光度计。仪器原理是光源发出光谱,经单色器分光,然后单色光通过样品池,达到检测器,把光信号转变成电信号,再经过信号放大、模/数转换,数据传输给计算机,由计算机软件处理。 三、仪器与溶液准备 1、Cary50型紫外-可见分光光度计 2、1cm石英比色皿一套

3、25 ml容量瓶5只,100 ml容量瓶1只,10ml移液管二支 配置250 mg/L苯酚的标准溶液:准确称取0.0250 g苯酚于250 mL烧杯中,加入去离子水20 mL使之溶解,加入0.1M NaOH 2mL,混合均匀,移入100 mL容量瓶,用去离子水稀释至刻度,摇匀。 取5只25 mL容量瓶,分别加入1.00、2.00、3.00、4.00、5.00 mL苯酚标准溶液,用去离子水稀释至刻度摇匀,作为标准溶液系列。 将溶剂,标准溶液,待测水样依此装入石英比色皿。按测试程序的提示,依次放入样品室中进行测试。 四、测试过程 1、确认样品室内无样品 2、开电脑进入Window 系统 3、点击进入Cary50 主菜单 4、双击Cary-WinUV图标 5、在Win-UV 主显示窗口下,双击所选图标“SCAN”以扫描测定吸收曲线:取上述标准系列任一溶液装进1cm石英比色皿至4/5,以装有蒸馏水的1cm石英比色皿作为空白参比,设定在220-350 nm波长范围内扫描,获得波长-吸收曲线,读取最大吸收的波长数据。 6、在Win-UV 主显示窗口下,双击图标“Concentration”进入定量分析主菜单 7、设定测试分析步骤: (l)单击Setup功能键,进入参数设置页面。在Wavelength处填入由步骤5获取的波长数据。 (2)按Cary Control 、Standards、Options、Samples、Reports、Auto store顺序,分别设置好菜单中每页的参数。按OK回到“Concentration”界面主菜单。 (3)单击View莱单,选择需要显示的内容。 例如基本选项Toolbar,buttons,Graphics,Report。 (4)单击Zero,提示“Load blank press OK to read” (放空白按OK读),放入空白蒸馏水到样品室内,按OK测试,测完取出样品。 (5)单击Start, 出现标准/样品选择页。选Selected for Analysis(选择分析的标准和样品)。此框的内容为准备分析的标准和样品。 (6)按OK进行分析测试。 依Presentstdl的提示:放入标准1然后按OK键进行读数。放标准2按OK进行读数。直到全部标准读完。 (7)出现“Present Samplel Press OK to read”提示框,根据提示,放入样品1按OK开始读样品,直到样品测完。

光谱仪的原理、功能以及分类【详尽版】

光谱仪的原理光谱仪的主要功能以及具体的分类 内容来源网络,由SIMM深圳机械展整理 更多相关展示,就在深圳机械展! 光谱仪器是进行光谱研究和物质结构分析,利用光学色散原理及现代先进电子技术设计的光电仪器,光谱仪的主要功能是什么,在它工作原理的基础上怎么对其进行分类的,本文将详细的为大家介绍。 光谱仪的主要功能 它的基本作用是测量被研究光(所研究物质反射、吸收、散射或受激发的荧光等)的光谱特性,包括波长、强度等谱线特征。因此,光谱仪器应具有以下功能: (1)分光:把被研究光按一定波长或波数的发布规律在一定空间内分开。 (2)感光:将光信号转换成易于测量的电信号,相应测量出各波长光的强度,得到光能量按波长的发布规律。 (3)绘谱线图:把分开的光波及其强度按波长或波数的发布规律记录保存或显示对应光谱图。 要具备上述功能,一般光谱仪器都可分成四部分组成:光源和照明系统,分光系统,探测接收系统和传输存储显示系统。 主要分类 根据光谱仪器的工作原理可以分成两大类:一类是基于空间色散和干涉分光的光谱仪;另一类是基于调制原理分光的新型光谱仪。本设计是一套利用光栅分光的光谱仪,其基本结构如

图。 光源和照明系统可以是研究的对象,也可以作为研究的工具照射被研究的物质。一般来说,在研究物质的发射光谱如气体火焰、交直流电弧以及电火花等激发试样时,光源就是研究的对象;而在研究吸收光谱、拉曼光谱或荧光光谱时,光源则作为照明工具(如汞灯、红外干燥灯、乌灯、氙灯、LED、激光器等等)。为了尽可能多地会聚光源照射的光强度,并传递给后面的分光系统,就需要设计照明系统。 分光系统是任何光谱仪的核心部分,它一般是由准直系统、色散系统、成像系统三部分组成,作用是将照射来的光在一定空间内按照一定波长规律分开。如图2-1所示,准直系统一般由入射狭缝和准直物镜组成,入射狭缝位于准直物镜的焦平面上。光源和照明系统发出的光通过狭缝照射到准直物镜,变成平行光束投射到色散系统上。色散系统的作用是将入射的单束复合光分解为多束单色光。多束单色光经过成像物镜按照波长的顺序成像在透镜焦平面上;这样,单束的复合光经过分光系统后变成了多束单色光的像。目前主要的色散系统主要有物质色散(如棱镜)、多缝衍射(如光栅)和多光束干涉(如干涉仪)。 探测接收系统的作用是将成像系统焦平面上接收的光谱能量转换成易于测量的电信号,并测

红外光谱实验报告

一、实验目的 1、掌握溴化钾压片法制备固体样品的方法; 2、学习并掌握美国尼高立IR-6700型红外光谱仪的使用方法; 3、初步学会对红外吸收光谱图的解析。 二、实验原理 红外光是一种波长介于可见光区和微波区之间的电磁波谱。波长在~1000μm。通常又把这个波段分成三个区域,即近红外区:波长在~μm(波数在13300~4000cm-1),又称泛频区;中红外区:波长在~50μm(波数在4000~200cm-1),又称振动区;远红外区:波长在50~1000μm(波数在200~10cm-1),又称转动区。其中中红外区是研究、应用最多的区域。 红外区的光谱除用波长λ表征外,更常用波数σ表征。波数是波长的倒数,表示单位厘米波长内所含波的数目。其关系式为: 三、仪器和试剂 1、仪器:美国尼高立IR-6700 2、试剂:溴化钾,聚乙烯,苯甲酸 3、傅立叶红外光谱仪(FTIR)的构造及工作原理 四、实验步骤

1、波数检验:将聚苯乙烯薄膜插入红外光谱仪的样品池处,从4000-650cm-1进行波数扫描,得到吸收光谱。 2、测绘苯甲酸的红外吸收光谱——溴化钾压片法 取1-2mg苯甲酸,加入在红外灯下烘干的100-200mg溴化钾粉末,在玛瑙研钵中充分磨细(颗粒约2μm),使之混合均匀。取出约80mg混合物均匀铺洒在干净的压模内,于压片机上制成直径透明薄片。将此片装于固体样品架上,样品架插入红外光谱仪的样品池处,从4000-400cm-1进行波数扫描,得到吸收光谱。 五、注意事项 1、实验室环境应该保持干燥; 2、确保样品与药品的纯度与干燥度; 3、在制备样品的时候要迅速以防止其吸收过多的水分,影响实验结果; 4、试样放入仪器的时候动作要迅速,避免当中的空气流动,影响实验的准确性。 5、溴化钾压片的过程中,粉末要在研钵中充分磨细,且于压片机上制得的透明薄片厚度要适当。 六、数据处理 该图中在波数700~800、1500~1600、2800~2975左右有峰形,证明了该物质中可能有烯烃的C-H变形振动,C-C间的伸缩振动,同时也拥有烷烃的C-H伸缩振动,推测为聚乙烯的红外谱图。 谱带位置/cm-1吸收基团的振动形式 )n—C— n≥4) (—C—(CH 2

实验1紫外-可见吸收光谱实验报告

实验一:紫外-可见吸收光谱 一、实验目的 1.熟悉和掌握紫外-可见吸收光谱的使用方法 2.用紫外-可见吸收光谱测定某一位置样品浓度 3.定性判断和分析溶液中所含物质种类 二、实验原理 紫外吸收光谱的波长范围在200~400,可见光吸收光谱的波长在400~800,两者都属于电子能谱,两者都可以用朗伯比尔(Lamber-Beer’s Law)定律来描述 A=ε bc 其中A为吸光度;ε为光被吸收的比例系数;c为吸光物质的浓度,单位mol/L; b为吸收层厚度,单位cm 有机化合物的紫外-可 见吸收光谱,是其分子中 外层价电子跃迁的结果, 其中包括有形成单键的σ 电子、有形成双键的π电 子、有未成键的孤对n电 子。外层电子吸收紫外或 者可见辐射后,就从基态 向激发态(反键轨道)跃 迁。主要有四种跃迁,所 需能量ΔE大小顺序为 σ→σ*>n→σ*>π→π>n→π* 1、开机 打开紫外-可见分光光度计开关→开电脑→软件→联接→M(光谱方法)进行调节实验需要的参数:波长范围700-365nm 扫描速度高速;采样间隔:0.5nm 2、甲基紫的测定 (1)校准基线

将空白样品(水)放到比色槽中,点击“基线”键,进行基线校准 (2)标准曲线的测定 分别将5ug/ml、10ug/ml 、15ug/ml 、20ug/ml甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始”键,进行扫描,保存 (3)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 3、甲基红的测定 (1)校准基线 将空白样品(乙醇)放到比色槽中,点击“基线”键,进行基线校准 (2)测定试样 将试样甲基紫溶液移入比色皿(大约2/3处),放到比色槽中,点击“开始” 键,进行扫描,保存 四、实验结果 1.未知浓度的测定 分别测定了5μg/ml,10μg/ml,15μg/ml,20μg/ml和未知浓度的甲基紫溶液的紫外吸收光谱,紫外吸收谱图如下: 甲基紫在580nm是达到最大吸收见下表:

实验室常用光谱仪及其它们各自的原理

实验室常用光谱仪及其它们各自的原理 光谱仪,又称分光仪。以光电倍增管等光探测器在不同波长位置,测量谱线强度的装置。其构造由一个入射狭缝,一个色散系统,一个成像系统和一个或多个出射狭缝组成。以色散元件将辐射源的电磁辐射分离出所需要的波长或波长区域,并在选定的波长上(或扫描某一波段)进行强度测定。分为单色仪和多色仪两种。 下面就介绍几种实验室常用的光谱仪的工作原理,它们分别是:荧光直读光谱仪、红外光谱仪、直读光谱仪、成像光谱仪。 荧光直读光谱仪的原理: 当能量高于原子内层电子结合能的高能X射线与原子发生碰撞时,驱逐一个内层电子而出现一个空穴,使整个原子体系处于不稳定的激发态,激发态原子寿命约为(10)-12-(10)-14s,然后自发地由能量高的状态 跃迁到能量低的状态.这个过程称为发射过程.发射过程既可以是非辐射跃迁,也可以是辐射跃迁. 当较外层的电子跃迁到空穴时,所释放的能量随即在原子内部被吸收而逐出较外层的另一个次级光电子,此称为俄歇效应,亦称次级光电效应或无辐射效应,所逐出的次级光电子称为俄歇电子.它的能量是特征的,与入射辐射的能量无关.当较外层的电子跃入内层空穴所释放的能量不在原子内被吸收,而是以辐射形式放出,便产生X 射线荧光,其能量等于两能级之间的能量差.因此,X射线荧光的能量或波长是特征性的,与元素有一一对应的关系. K层电子被逐出后,其空穴可以被外层中任一电子所填充,ad4yjmk从而可产生一系列的谱线,称为K系谱线: 由L层跃迁到K层辐射的X射线叫Kα射线,由M层跃迁到K层辐射的X射线叫Kβ射线同样,L层电子被逐出可以产生L系辐射.如果入射的X 射线使某元素的K层电子激发成光电子后L层电子跃迁到K层,此时就有能量ΔE释放出来,且ΔE=EK-EL,这个能量是以X射线形式释放,产生的就是Kα 射线,同样还可以产生Kβ射线,L系射线等. 莫斯莱(H.G.Moseley) 发现,荧光X射线的波长λ与元素的原子序数Z有关,其数学关系如下: λ=K(Z-s)-2 这就是莫斯莱定律,式中K和S是常数,因此,只要测出荧光X射线的波长,就可以知道元素的种类,这就是荧光X射线定性分析的基础.此外,荧光X射线的强度与相应元素的含量有一定的关系,据此,可以进行元素定量分析. 红外光谱仪的原理: 红外光谱与分子的结构密切相关,是研究表征分子结构的一种有效手段,与其它方法相比较,红外光谱由于对样品没有任何限制,它是公认的一种重要分析工具。在分子构型和构象研究、化学化工、物理、能源、材料、天文、气象、遥感、环境、地质、生物、医学、药物、农业、食品、法庭鉴定和工业过程控制等多方面的分析测定中都有十分广泛的应用。

相关文档