文档视界 最新最全的文档下载
当前位置:文档视界 › 天线选型

天线选型

天线选型
天线选型

短波无线电通信天线选型

短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。下面简单介绍短波天线如何选型和几种常用的天线性能。

一、衡量天线性能因素: 天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。

1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。

2.极性:极性定义了天线最大辐射方向电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。

3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。

4.阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。当驻波比(VSWR)1:1时没有反射波,电压反射比为1。当VSWR大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。VSWR为1.5:1时,损失4%功率,信号降低0.18dB。

二、几种常用的短波天线

1.八木天线(YagiAntenna)八木天线在短波通信中通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上具有很强的方向性。在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。

2.对数周期天线(LogPeriodicAntenna)对数周期天线价格昂贵,但可以使用在多种频率和仰角上。对数周期天线适合于中、短波通信,利用天波信号,效率高,接近于发射期望值。与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。

3.长线天线(Long-WireAntennas)长线天线优点是结构简单,价格低,增益适中。与八木天线和对极周期天线比,长线天线长度方向性和增益低。但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。通过比较信号波长,计算出线的长度,非常适合于远距离通信。当线长4倍波长在仰角为25度时与双极天线比增益高3dB,当线长8倍于波长时,增益高6dB,仰角下降到18度,图1为长线天线增益示图。

4.车载移动天线(MobileAntennas)移动天线一般工作在2.0~25MHz频段上,为垂直极性天线,性能与机械特性有关,天线长度较短,在低仰角工作时,发射效率适中。在通常情况下,车载天线仰角应大于45度,因为天线长度较短,是低效天线。在汽车上,机械特性限制了天线的选择,但天线可以放置为倒"L"型,这样增加了天线的垂直辐射面,可以提高发射效率,倒"L"天线适宜用于中短波通信。

三、常用短波天线性能

方向性天线、简单的双极天线适用于短距离通信,但短波远距离通信信号微弱,甚至被各种噪音淹没时,天线就需要选择比双极天线增益更高的天线。理想方向性天线在工作方向上具有很高增益而无用方向上增益为0。

1.固定站间远/近距离通讯由于固定站间通讯方向是固定不变的,所以一般采用高增益,方向性强的短波天线。通信距离在1000-3000公里,可使用高增益,低仰角对数周期天线(LP),但天线价格昂贵。在实践中100W短波自适应电台配这种天线,可基本实现北京至昆明,乌鲁木齐甚至拉萨全天候通信。如果通信质量要求不是太高也可使用价格相对便宜的天线如八木天线,长线天线,但长线天线需用天调。距离在600Km以内时采用水平双极天线可取得较好效果,但水平双极天线占地较大,中心站电台较多不适合布天线阵。

2.固定站与移动站间通讯由于移动站在运动中,通讯方向不固定,所以中心站的天线应选用全向天线,例如,多膜短波宽带天线或配有天线调谐器的鞭状天线。多膜天线虽然价格较贵,但是一个天线竿上可以绕三副天线(俩副高仰角天线,一副低仰角天线)远、近距离通信均可兼顾。中心站也可用鞭状天线,鞭状天线的仰角低,近距(20--100公里)通信困难,远距离(500--3000公里)只要频率合适,通信效果较好。移动站天线由于安装面的限制,多采用鞭状天线,国内有时用栅网、双环、三环天线。远距离通信时,鞭状天线竖直,近距离通信则可以放置为倒"L"型,这样使用增加了天线的垂直辐射面,可以提高发射效率。只要天线的发射角、电台的工作频率合适,可以克服短波盲区(30--80公里)的通信困难。

3.干扰环境下的天线选型电台干扰是指工作在当前工作频率附近的无线电台的干扰,其中包括敌方有意识的电子干扰。由于短波通信的频带非常窄,而且现在短波用户越来越多,因此电台干扰就成为影响短波通信顺畅的主要干扰源。特别对于军用通信系统,这种情况尤其严重。电台的干扰与其他自然条件引起的干扰有很大的不同,它带有很大的随机性和不可预测性。在敌方有意识的电子干扰情况下,采用高增益、方向性强的对数周期天线可取得一定的效果。当然,克服干扰主要提高短波电台性能(发射功率、接收灵敏度等等)或者采用频率自适应、短波宽带跳频技术。如果需要数传,调制解调器性能也非常关键,带有交织功能的串行体制短波高速调制解调器具有良好的抗干扰性能。

4.根据用户不同增益、仰角的要求选用天线。

RFID方案选型须循三大原则

RFID方案选型须循三大原则 作者:谭浩 2004-12-24 射频识别技术(RFID)可以说是近几年来在计算机领域出现的少有的若干革命性技术之一,它的应用包罗万象,被认为是近几年全球最热门的明星产业之一,有关专家预计2010年全球RFID市场将达到3000亿美元。通过射频信号用户可以自动识别目标对象,无需可见光源;它具有穿透性,可以透过外部材料直接读取数据,保护外部包装,节省开箱时间;而且利用这项技术能够同时处理多个射频标签,适用于批量识别场合;并且可以对RFID标签所附着的物体进行追踪定位,提供位置信息。因此,RFID技术在供应链管理上具有许多先天优势,成为许多供应链管理解决方案当中的一大亮点,那么RFID在供应链管理中具体是怎么应用的,用户选型应该注意些什么呢? RFID为什么在这么短的时间内成为人们关注的“焦点”和追逐的“明星”呢?它究竟有什么样的魔法,能在供应链管理领域如此“兴风作浪”? RFID为何成为“香饽饽”? 去年年初,全球的零售业巨头沃尔玛要求其供货商在2005年年初,为所有的商品提供RFID标签。那么什么是RFID,为什么会得到沃尔玛的青睐呢? 随着计算机技术的迅速发展,电子信息技术越来越快地普及到各行各业的应用中去,物流行业也不例外。传统的物流信息采集工作方式是通过工作人员将票物进行核对,然后将票上的数据输入到计算机中。这一过程费时费力,并且可能由于各种人为过失造成各种各样错误数据的存在,影响所采集信息的可靠性。而自动识别输入技术,使得物资编码和物资信息自动化传输得到了长足的发展。自动识别技术利用计算机进行自动识别,增加了输入的灵活性与准确性,使人们摆脱繁杂的统计识别工作,并且大大提高了物流信息采集的工作效率。 RFID技术是近年来兴起的一项新兴的自动识别技术。RFID利用射频方式进行非接触双向通信,从而实现对物体的识别,并将采集到的相关信息数据通过无线技术远程进行传输。相较目前广泛采用的条型码技

天线的分类与选择

第二讲天线的分类与选择 移动通信天线的技术发展很快,最初中国主要使用普通的定向和全向型移动天线,后来普遍使用机械天线,现在一些省市的移动网已经开始使用电调天线和双极化移动天线。由于目前移动通信系统中使用的各种天线的使用频率,增益和前后比等指标差别不大,都符合网络指标要求,我们将重点从移动天线下倾角度改变对天线方向图及无线网络的影响方面,对上述几种天线进行分析比较。 2.1 全向天线 全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性,在垂直方向图上表现为有一定宽度的波束,一般情况下波瓣宽度越小,增益越大。全向天线在移动通信系统中一般应用与郊县大区制的站型,覆盖范围大。 2.2 定向天线 定向天线,在在水平方向图上表现为一定角度范围辐射,也就是平常所说的有方向性,在垂直方向图上表现为有一定宽度的波束,同全向天线一样,波瓣宽度越小,增益越大。定向天线在移动通信系统中一般应用于城区小区制的站型,覆盖范围小,用户密度大,频率利用率高。 根据组网的要求建立不同类型的基站,而不同类型的基站可根据需要选择不同类型的天线。选择的依据就是上述技术参数。比如全向站就是采用了各个水平方向增益基本相同的全向型天线,而定向站就是采用了水平方向增益有明显变化的定向型天线。一般在市区选择水平波束宽度B为65°的天线,在郊区可选择水平波束宽度B为65°、90°或120°的天线(按照站型配置和当地地理环境而定),而在乡村选择能够实现大范围覆盖的全向天线则是最为经济的。 2.3 机械天线 所谓机械天线,即指使用机械调整下倾角度的移动天线。 机械天线与地面垂直安装好以后,如果因网络优化的要求,需要调整天线背面支架的位置改变天线的倾角来实现。在调整过程中,虽然天线主瓣方向的覆盖距离明显变化,但天线垂直分量和水平分量的幅值不变,所以天线方向图容易变形。 实践证明:机械天线的最佳下倾角度为1°-5°;当下倾角度在5°-10°变化时,其天线方向图稍有变形但变化不大;当下倾角度在10°-15°变化时,其天线方向图变化较大;当机械天线下倾15°后,天线方向图形状改变很大,从没有下倾时的鸭梨形变为纺锤形,这时虽然主瓣方向覆盖距离明显缩短,但是整个天线方向图不是都在本基站扇区内,在相邻基站扇区内也会收到该基站的信号,从而造成严重的系统内干扰。 另外,在日常维护中,如果要调整机械天线下倾角度,整个系统要关机,不能在调整天线倾角的同时进行监测;机械天线调整天线下倾角度非常麻烦,一般需要维护人员爬到天线安放处进行调整;机械天线的下倾角度是通过计算机模拟分析软件计算的理论值,同实际最佳下倾角度有一定的偏差;机械天线调整倾角的步进度数为1°,三阶互调指标为-120dBc。

基站天线选型

基站天线选型 一.天线概念 在无线通信系统中,天线是收发信机与外界传播介质之间的接口。同一副天线既可以辐射又可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。 在选择基站天线时,需要考虑其电气和机械性能。电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。 基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。 按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。上述两种极化方式都为线极化方式。圆极化和椭圆极化天线一般不采用。 按外形来区分主要有:鞭状天线、平板天线、帽形天线等。 在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic)天线。各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。 另外全向天线并不是没有方向性,它只是在水平方向为全向,但在垂直方向是有方向性的。它与各向同性天线是两个不同的概念。 半波振子是基站主用天线的基本单元,半波振子的优点是能量转换效率高。1.天线增益 天线作为一种无源器件,其增益的概念与一般功率放大器增益的概念不同。功率放大器具有能量放大作用,但天线本身并没有增加所辐射信号的能量,它只是通过天线振子的组合并改变其馈电方式把能量集中到某一方向。增益是天线的重要指

标之一,它表示天线在某一方向能量集中的能力。表示天线增益的单位通常有两个:dBi、dBd。两者之间的关系为:dBi=dBd+2.17 dBi定义为实际的方向性天线(包括全向天线)相对于各向同性天线能量集中的相对能力,“i”即表示各向同性——Isotropic。 dBd定义为实际的方向性天线(包括全向天线)相对于半波振子天线能量集中的相对能力,“d”即表示偶极子——Dipole。 两种增益单位的关系见图1: 图1 dBi与dBd的关系 天线增益不但与振子单元数量有关,还与水平半功率角和垂直半功率角有关。 2.天线方向图 天线辐射的电磁场在固定距离上随角坐标分布的图形,称为方向图。用辐射场强表示的称为场强方向图,用功率密度表示的称之功率方向图,用相位表示的称为相位方向图。 天线方向图是空间立体图形,但是通常用两个互相垂直的主平面內的方向图来表示,称为平面方向图。一般叫作垂直方向图和水平方向图。就水平方向图而言,有全向天线与定向天线之分。而定向天线的水平方向图的形状也有很多种,如心型、8字形等。 天线具有方向性本质上是通过振子的排列以及各振子馈电相位的变化来获得的,在原理上与光的干涉效应十分相似。因此会在某些方向上能量得到增强,而某

增益天线种类详解

电源招聘专家 增益天线种类详解 着无线产品价格的逐渐走低,许多人都在企业或家里构筑了无线网络,大大方便了日常应用。不过,家里面积大了,企业间的距离远了,无线网络不稳定、数据传输受阻等技术开始出现。怎样才能解决这些棘手的技术呢? 更换网络设备花销过大,不符合经济节约的消费理念,而更换、加装增益天线却是极为经济切增强无线网络传输能力、稳定性的方法。 了解增益天线 作为增益天线的基本属性,增益是指定方向上的最大辐射强度和天线最大辐射强度的比值,即天线功率放大倍数。在一般情况下,增益的强弱将干扰到天线辐射或接收无线信号的能力。也就是说,在同等条件下,增益越高,无线信号传播距离就越远。增益的单位为dBi,室内天线大多为4dBi~5dBi,室外天线大多为8.5dBi~14dBi。 通常情况下,由于增益的大小和无线带宽成反比,即增益越大,其带宽就越窄;增益越小,带宽则较大。因此,较大增益的天线主要在远距离传输,而小增益天线则更适合于无线信号大覆盖范围的应用环境。 目前在无线网络应用中,天线分为点对点应用、点对多点应用两种,用户可根据不同的应用范围选购不同类型的无线天线,使无线信号能够顺利地被各个无线设备接收和发送。 天线种类扫描 在上文中,我们说明了增益天线的定义和作用。其实,增益天线仅是一个统称而已,我们可以笼统地将它看做是无线天线。在这个天线家族中,还有许多不为人所知的新面孔。在此,我们让大家“见识”一下它们的实力。 1.种类全接触 无线天线可分为全向天线、定向天线、扇形天线、平板天线等类型。 其中全向天线适在各无线接点距离较近、需要覆盖较多数量无线设备及客户端的场合,但这些设备的增益大多较小,信号传递距离较短。 定向天线包括八木定向天线、角型定向天线、抛物面定向天线等品种,适在各无线接点位置距离很远,并且无线接入点集中、数量较少且位置固定的环境。这种天线具有信号传递距离长、能量汇聚能力强的特点。 扇形天线可以多角度的覆盖,如果无线接入点集中在该天线的覆盖范围内,可考虑选购此类天线,它具有能量定向和汇聚功能。 平板天线的角度范围可分为30度和15度,比扇形天线的信号覆盖范围小,但它的能量汇聚能力更强,可用在无线接入点相对较远、更为集中的环境。 2.主流天线详解 在诸多不同类型的天线中,使用全向天线和定向天线的企业和个人非常多,它们也是笔者要重点推荐大家使用的天线。 ●全向天线 所谓全向天线,是指在水平面上辐射和接收无最大方向的天线。由于辐射和接收无方向性,所以此类天线安装起来比较方便,不需要考虑传输点的天线安装角度技术。 不过全向天线没有最大方向,它的天线增益相对较低,这就导致无线信号的传输距离较短。因此,这类天线一般比较适合在传输距离规则不太高的点对多点通信环境使用。例如,在对等网络和无线漫游网络的中心无线AP上使用此类天线,通过中心无线AP,可以均匀地将

天线选型

短波无线电通信天线选型 短波通信是指波长100-10米(频率为3-30MHz)的电磁波进行的无线电通信。短波通信传输信道具有变参特性,电离层易受环境影响,处于不断变化当中,因此,其通信质量,不如其它通信方式如卫星、微波、光纤好。短波通信系统的效果好坏,主要取决于所使用电台性能的好坏和天线的带宽、增益、驻波比、方向性等因素。近年来短波电台随着新技术提高发展很快,实现了数字化、固态化、小型化,但天线技术的发展却较为滞后。由于短波比超短波、卫星、微波的波长长,所以,短波天线体积较大。在短波通信中,选用一个性能良好的天线对于改善通信效果极为重要。下面简单介绍短波天线如何选型和几种常用的天线性能。 一、衡量天线性能因素: 天线是无线通信系统最基本部件,决定了通信系统的特性。不同的天线有不同的辐射类型、极性、增益以及阻抗。 1.辐射类型:决定了辐射能量的分配,是天线所有特性中最重要的因素,它包括全向型和方向型。 2.极性:极性定义了天线最大辐射方向电气矢量的方向。垂直或单极性天线(鞭天线)具有垂直极性,水平天线具有水平极性。 3.增益:天线的增益是天线的基本属性,可以衡量天线的优劣。增益是指定方向上的最大辐射强度与天线最大辐射强度的比值,通常使用半波双极天线作为参考天线,其它类型天线最大方向上的辐射强度可以与参考天线进行比较,得出天线增益。一般高增益天线的带宽较窄。 4.阻抗和驻波比(VSWR):天线系统的输入阻抗直接影响天线发射效率。当驻波比(VSWR)1:1时没有反射波,电压反射比为1。当VSWR大于1时,反射功率也随之增加。发射天线给出的驻波比值是最大允许值。例如:VSWR为2:1时意味着,反射功率消耗总发射功率的11%,信号损失0.5dB。VSWR为1.5:1时,损失4%功率,信号降低0.18dB。 二、几种常用的短波天线 1.八木天线(YagiAntenna)八木天线在短波通信中通常用于大于6MHz以上频段,八木天线在理想情况下增益可达到19dB,八木天线应用于窄带和高增益短波通信,可架设安装在铁塔上具有很强的方向性。在一个铁塔上可同时架设几个八木天线,八木天线的主要优点是价格便宜。 2.对数周期天线(LogPeriodicAntenna)对数周期天线价格昂贵,但可以使用在多种频率和仰角上。对数周期天线适合于中、短波通信,利用天波信号,效率高,接近于发射期望值。与其它高增益天线相比,对数周期天线方向性更强,对无用方向信号的衰减更大。 3.长线天线(Long-WireAntennas)长线天线优点是结构简单,价格低,增益适中。与八木天线和对极周期天线比,长线天线长度方向性和增益低。但其优势在于,由于其增益与线长度有关,用户可以找到最佳接收线的长度和角度。通过比较信号波长,计算出线的长度,非常适合于远距离通信。当线长4倍波长在仰角为25度时与双极天线比增益高3dB,当线长8倍于波长时,增益高6dB,仰角下降到18度,图1为长线天线增益示图。

2.4 GHz天线的选择和选择标准

Options and Selection Criteria for 2.4 GHz Antennas 2.4 GHz is a sweet spot for modern-day RF design can be demonstrated by mentioning a few well-known names: Bluetooth, ZigBee, Wi-Fi and WLAN. One can also toss cellular applications into the mix. Clearly, this unlicensed band allows a variety of handheld, mobile, and fixed base station designs that communicate either point-to-point, or are routed through a cellular or mesh network. Popularity, however, brings technical issues. Even with channel s egmentation, one standard’s signal can step on another and clog up throughput. Fortunately, frequency allocations, algorithms, time-slicing, and back-off timers, among other techniques, help let everyone share the band and play nicely together. Even so, achieving optimum performance and meeting reliability goals calls for superior antenna design and close attention to the associated components that keep everything resonant. What is more, whether balanced or single ended, the transmit gain and receive sensitivity depend on the physical nature of the antenna and its radiation pattern. This article takes a look at 2.4 GHz antennas and the coupling networks that make them work. It examines commercially available single-chip antennas that are designed to work in the 2.4 GHz ISM band. It discusses antenna types, RF distribution patterns, and range and design issues associated with using a single-chip antenna, as opposed to a connector- mounted external antenna or PCB antenna. All parts, datasheets, development kits and training modules referenced here are available on Digi-Key’s website. The signal path Key in making your antenna perform as desired is the signal path to the antenna. While most RF chips have good output stages, matching, filtering, and splitting still may be needed, especially if a single antenna is used for more than one communications standard. As such, the typical RF output stages must still connect to either a single ended, balanced, or diplexed matching network (Figure 1).

天线的基础知识

天线的基础知识(2009-05-17 22:14:38) 1 天线工作原理及作用是什么? 天线作为无线通信不可缺少的一部分,其基本功能是辐射和接收无线电波。发射时,把高频电流转换为电磁波;接收时,把电滋波转换为高频电流。 2 天线有多少种类? 天线品种繁多,主要有下列几种分类方式: 按用途可分为基地台天线(base station antenna)和移动台天线(mobile portable antennas),还有就是手持对讲机用的天线(handhold transceiver antennas)。基地电台俗称棒子天线;车载天线俗称苗子;手台天线由于绝大部分是橡胶外皮的因此俗称橡胶天线或橡胶棒儿。 按工作频段可划分为超长波、长波、中波、短波、超短波和微波。 按其方向可划分为全向和定向天线。 3 如何选择天线? 天线作为通信系统的重要组成部分,其性能的好坏直接影响通信系统的指标,用户在选择天线时必须首先注重其性能。具体说有两个方面,第一选择天线类型;第二选择天线的电气性能。选择天线类型的意义是:所选天线的方向图是否符合系统设计中电波覆盖的要求;选择天线电气性能的要求是:选择天线的频率带宽、增益、额定功率等电气指标是否符合系统设计要求。因此,用户在选择天线时最好向厂家联系咨询或在往上对比分析其技术指标。 4 什么是天线的增益? 增益是天线的主要指标之一,它是方向系数与效率的乘积,是天线辐射或接收电波大小的表现。增益大小的选择取决于系统设计对电波覆盖区域的要求,简单地说,在同等条件下,增益越高,电波传播的距离越远,一般基地台天线采用高增益天线,移动台天线采用低增益天线。 5 什么是电压驻波比? 天线输入阻抗和馈线的特性阻抗不一致时,产生的反射波和入射波在馈线上叠加形成的磁波,其相邻电压的最大值和最小值之比是电压驻波比,它是检验馈线传输效率的依据,电压驻波比小于1.5,在工作频点的电压驻波比小于1.2,电压驻波比过大,将缩短通信距离,而且反射功率将返回发射机功放部分,容易烧坏功放管,影响通

各种天线参数和分类

汽车天线 汽车天线又叫车载天线,一般汽车上的天线用于车上的收音机和电台,可分汽车内置天线和外置天线。但根据不同用途的汽车也有安装其他的天线。如公交车有DVB-T天线,车载TV天线。物流及出租车还装有GSM天线、GPS卫星天线。收音机和电台天线主要就是AM/FM天线、软PCB数字天线、AM/FM/TV天线等。根据不同的功能和用途,所用的天线的频率也不同。 目录 名词释义: 又叫车载天线,是指设计安装在车辆上的移动通讯天线。最常见就是吸盘天线。由于吸盘天线安装摆放容易,所以在一些简易设台场合常常用吸盘天线代替基地天线。 结构分类: 车载天线结构上有缩短型、四分之一波长、中部加感型、八分之五波长、双二分之一波长等形式的天线,理论上它们的效率依次增加,同样工作频段的天线的长度也依次增加。 缩短型: 由于车辆本身有限高,加上过长的天线在车辆高速行进时形成的风阻,过桥洞、进入地下车库都是问题,所以车载天线并不是越长越好,一般要求轿车天线不超过70厘米,面包车类要求天线更短。缩短型天线体积小巧,虽然增益不高,但适合使用于需要隐蔽天线的场合。 八分之五波长和中部加感型

一般的警用车辆建议安装高增天线,尤其是在活动区域范围比较大的车辆,350MHZ高增益天线多分为八分之五波长加感的形式,在距天线顶部二分之一波长距离处有一个加感线圈。400MHZ频段双二分之一波长天线具有较高的增益,它的外观特征是天线的振子上有两个加感线圈。八分之五波长和中部加感型也有较高的增益,且价格比较便宜,因此得到广泛的使用。在作为临时固定台天线使用的场合可以考虑选用增益高的吸盘天线,天线的长度不必有过多限制。由于吸盘天线是根据汽车使用环境而设计所以在作为固定使用时在其下吸一块半径大于1米的金属板(如铁皮)会有更好的使用效果。由于进口原装的车载天线价格非常昂贵且优势不突出,所以一般都选用国产车载天线。在天线选型阶段主要参考天线的外型和增益。建议选用大厂家的名牌产品,他们提供的参数真实性比较高,制造工艺也有保证。如果是批量采购完全可以到专业天线制造厂家按使用频段定制,以取得最佳的使用效果。 汽车天线(8张) 频率分类: GSM天线 1. 工作频率:900MHZ/1800MHZ 900MHZ增益:3dBi 1800MHZ 增益:3dBi 2. VSWR:GSM〈1.8 DCS 〈1.8 3.线长:RG174线,3米/5米 4.安装方式:磁铁吸附 5.适用接头:SMA/SMB/GT5/BNC/MCX/MMCX 6.工作温度:-20℃~+85℃ 7.贮藏温度:-40℃~+90℃ TV天线 1.电源电压DC 10.5∽16.5V 2.电源60∽100MA 3.工作频率48∽860MHZ 4.增益15±3DB 5.噪声系数≤7DB 6.输出阻抗 75Ω 7.输出驻波≤3 8.环境温度 -20℃∽+70℃

基站天线的选型原则

基站天线的选型原则 一、生产厂家的选择 二、关于三阶互调指标5基站天线的选型原则(建议) 三、基站天线选型原则建议 一、生产厂家的选择 首先要考察厂家的生产能力、研发队伍、仪器设备、检测手段、售后服务、质量保证体系。对具体的基站天线产品还应考察下列各项: 1、为提高网络性能和降低成本,在城区使用的基站天线应具有极化分集代替空间分集的能力。 2、对天线罩因雨雪、裹冰造成的表面分布电容影响,应有一定的防范能力。 3、为保证天线的最大增益,天线应当采用低耗馈电网络技术。 4、全向天线高增益天线在确保电性能前提下,天线尺寸应尽量短。 5、为确保产品的一致性及坚固性。生产厂家应有模具化生产能力。 6、生产厂家应对天线的驻波比及三阶互调指标100%检测,对抽检(例10%)产品应进行包括增益和方向图在内的全指标测试。 7、要有完善的密封工艺并采用优质密封胶,确保天线的防水性和寿命。 8、定型产品要按信息产业部的标准进行环境试验:高温、低温、振动、冲击、运输。 9、具有采用机械下倾、电下倾、电调下倾三种调整方式相结合,解决大机械倾角下波形畸变的能力。 10、在考虑产品的适用性后,还要考察所需基站天线的性能价格比和厂家的供货期。

二、关于三阶互调指标5基站天线的选型原则(建议) 互调的定义 ?互调是指非线性射频线路中,两个或多个频率混合后所产生的噪音信号。 ?互调产生的本来并不存在“错误”信号,此信号会被系统误认为是真实的信号。 ?互调可由有源元件(无线电设备、二极管)或无源元件(电缆、接头、天线、滤波器)引起。 具有两个载波信号的互调失真频率实例 频率A及B上的载波,产生如下互调信号: 1阶:A,B 2阶:(A+B),(A-B) 3阶:(2A±B),(2B ±A) 4阶:(3A±B),(3B ±A),(2A±2B) 5阶:(4A±B),(4B ±A),(3A±2B),(3B ±2A) 互调失真如何影响系统的性能? ?较高功率的发射信号通常会混合产生互调信号,最后进入接收波段。 ?而基站天线接收的信号通常功率较低。 ?如果互调信号与实际的接收信号具有相近或较高的功率,系统会误把互调信号视为真实信号。 GSM系统实例: 三阶互调失真信号(A=935MHz,B=960MHz) 2A-B=1870-960=910MHz 2B-A=1920-935=985MHz A及B代表GSM发射频率2A-B进入GSM接收波段,带来问题。 五阶互调失真信号(A=935MHz,B=954MHz在中国移动GSM的下行频段内)3A-2B=2805-1908=897MHz(在中国移动GSM上行频段内) 互调失真如何影响系统的性能? ?在系统将互调信号视为真实的接收信号的情况下,将带来如下问题:

天线的分类及应用

天线的分类及应用 只要使用到无线电波,就有可能需要用到天线以协助电波的发射与接收;天线依工作频段,由低到高可区分为超长波、长波、中波、短波、超短波和微波,应用层面遍及国防、民生工业,依据不同波长、天线大小长短因此有很大差异,例如使用100MHz 左右的天线,与使用2.4GHz 频段的WLAN。若按其方向可大略区分为全向性(Omni-directional)天线和指向性(directional)天线。 全向性天线的名称说明了电磁场的辐射能量在每个方位都会一致,目前最普遍的全向性天线当属偶极(DIPole)天线,绝大部分的基地台(ACCess Point),都是内建偶极天线,其水平辐射范围是360度的波束,由于水平每个方向的能量都均等,由天线上方往下看形成类似甜甜圈的波束形状,若压缩其垂直辐射范围,传输距离将随着波束的集中而延伸,波束形状则会趋近于薄饼。下图是由天线上方与侧面描绘波束的图形,如果偶极天线的增益越大,表示波束垂直的半功率波束宽度(HPBW)越小,能传输的距离也越大。因为全向性天线可以涵盖所有水平方向,因此通常安装于开阔、开放环境的中央位置;若是应用于户外,全向式天线必须安装在大楼顶端或高处,并且位于讯号涵盖区的中央位置,以便与其他指向性天线装置通讯,构成单点对多点(Point-to-Multipoint)的星状拓朴。 指向性天线只能用于一定的方位,但相对地传输距离会比较远,指向性天线有各种不同的款式与形状,例如:Patch 天线、Panel 天线和八木(Yagi)天线,经常用于无线区域网路中短距离的桥接(Bridge);举例来说跨马路的两栋大楼,或者空间宽广的厂房、仓库都是理想的应用环境。 此外还有专门用于长距离通讯的高方向性天线,有极窄的波束宽度与很高的增益值,也可称为高增益指向性天线;例如:碟形(dish)天线和格状(grid)天线,通常用于点对点的通讯连接,传输距离可以高达25英哩;因为波束非常地窄,天线彼此之间必须很精准的瞄准,而且天线之间的直视(Light of Sight)必须没有任何阻碍物。

天线的种类及选型

1.天线的基本原理 天线是将传输线中的电磁能转化成自由空间的电磁波,或将空间电磁波转化成传输线中的电磁能的专用设备。在移动网络通信中从基站天线到用户手机天线,或从用户手机天线到基站天线的无线连接,它的运行质量在整个网络运行质量中所占的位置是十分明显的。因此,网络优化也就自然与天线密切相关。 在无线通信系统中,天线是收发信机与外界传播介质之间的接口。同一副天线既可以辐射又可以接收无线电波:发射时,把高频电流转换为电磁波;接收时把电磁波转换为高频电流。 在选择基站天线时,需要考虑其电气和机械性能。电气性能主要包括:工作频段、增益、极化方式、波瓣宽度、预置倾角、下倾方式、下倾角调整范围、前后抑制比、副瓣抑制、零点填充、回波损耗、功率容量、阻抗、三阶互调等。机械性能主要包括:尺寸、重量、天线输入接口、风载荷等。 基站所用天线类型按辐射方向来分主要有:全向天线、定向天线。 按极化方式来区分主要有:垂直极化天线(也叫单极化天线)、交叉极化天线(也叫双极化天线)。上述两种极化方式都为线极化方式。圆极化和椭圆极化天线一般不采用。 按外形来区分主要有:鞭状天线、平板天线、帽形天线等。 在继续论述天线相关理论之前必须首先介绍各向同性(Isotropic)天线。各向同性天线是一种理论模型,实际中并不存在,它把天线假设为一个辐射点源,能量以该点为中心以电磁场的形式向四周均匀辐射,为一球面波。 另外全向天线并不是没有方向性,它只是在水平方向为全向,但在垂直方向是有方向性的。它与各向同性天线是两个不同的概念。 半波振子是基站主用天线的基本单元,半波振子的优点是能量转换效率高。 为了便于介绍,先从天线的几个基本特性谈起。(见下图)

仪表选型原则

检测仪表(元件)及控制阀选型的一般原则 ①工艺过程的条件 工艺过程的温度、压力、流量、粘度、腐蚀性、毒性、脉动等因素是决定仪表选型的主要条件,它关系到仪表选用的合理性、仪表的使用寿命及车间的防火、防爆、保安等问题。 ②操作上的重要性 各检测点的参数在操作上的重要性是仪表的指示、记录、积算、报警、控制、遥控等功能选定依据。一般来说,对工艺过程影响不大,但需经常监视的变量,可选指示型;对需要经常了解变化趋势的重要变量,应选记录式;而一些对工艺过程影响较大的,又需随时监控的变量,应设控制;对关系到物料衡算和动力消耗而要求计量或经济核算的变量,宜设积算;一些可能影响生产或安全的变量,宜设报警。 ③经济性和统一性 仪表的选型也决定于投资的规模,应在满足工艺和自控的要求前提下,进行必要的经济核算,取得适宜的性能/价格比。 为便于仪表的维修和管理,在选型时也要注意到仪表的统一性。尽量选用同一系列、同一规格型号及同一生产厂家的产品。 ④仪表的使用和供应情况 选用的仪表应是较为成熟的产品,经现场使用证明性能可靠的;同时要注意到选用的仪表应当是货源供应充沛,不会影响工程的施工进度。

仪表选性手册 物位仪表在选型时,与压力、流量等仪表有很大不同。物位测量的现场工况千差万别,很难设计出能满足所有工况应用的物位仪表。 在非接触式物位测量仪表中,超声波物位计和雷达物位计是两大主流仪表。这两类仪表各有特点,只有充分了解仪表特点及应用条件,才能做到选型合理,充分利用仪表的测量性能。 超声波物位计 传感器发出的超声波碰到被测介质被反射,反射回波的质量反映了物位计应用效果。回波质量定义为最小回波幅度(在最恶劣条件下回波幅度)比最大噪声幅度(虚假回波、多径反射回波等的幅度)。回波质量数值越大,物位计应用效果越好。 超声波物位计工作频率及测量性能:传感器高频(40-70KHz)工作时,传感器的尺寸小,盲区小,方向性好,精度高,但其声波衰减快,传播介质(空气)波动时穿透性差,测距较小。传感器低频(10-20KHz)工作时,传感器尺寸大,盲区大,方向性不好,精度低,其优势是声波衰减慢,传播介质(空气)波动时穿透性较好,测距 稍远。 超声波的回波强度主要受以下两个因素影响: 1.传播介质越稳定越有利于传播。

基站天线选型方法

基站天线选型方法 谢瑞华 (中兴通讯上海第二研究所射频开发部) 摘要本文针对基站天线的各项性能参数,阐述了基站天线选型的基本方法和注意事项。 一、引言 近年来,在风风火火的移动通讯领域,国内国外天线品牌种类繁多使人目不暇接,而我们的客户中国移动和中国联通对天线的要求也逐渐由浅入深日趋细致,如何在满足覆盖降低成本的前提下,恰当选取天线各类参数,为客户提供良好的服务成为关键。天线的合理选型会给公司带来事半功倍的效果。以下将结合天线的各类电性能和机械性能参数,并总结曾经碰到的客户的各种天线选型要求,阐述基站天线选型的基本方法及其注意事项。 二、基站天线的选型方法 1、天线的电性能参数 天线工作频段的选取 对各类基站而言,所选天线的工作频段应包含客户要求的频段,例如,为GSM900系统(890-960MHz)配置天线,工作频段为890-960MHz、870-960MHz、807-960 MHz和890-1880 MHz的双频天线均为可选。从降低带外干扰信号的角度考虑,所选天线的带宽刚好满足频带要求即可。但考虑到今后基站的扩容需要,宽频带天线也很受客户欢迎。如可工作于GSM900和GSM1800频带的890-1880 MHz的双频天线。它的价格较普通天线贵些。

天线辐射方向图的选取 基站天线辐射方向图可分为全向辐射方向图和定向辐射方向图两大类,分别被称为全向天线和定向天线。如图一所示,图中左边所示分别为全向天线的水平截面图和立体辐射方向图;图中右边所示分别为定向天线的水平截面图和立体辐射方向图。全向天线在同一水平面内各方向的辐射强度理论上是相等的,它适用于全向小区;图中红色所示为定向天线罩中的金属反射板,它的存在使天线在水平面的辐射具备了方向性,适用于扇形小区的覆盖。 图一:基站天线及其空间辐射方向图 天线极化方式的选取 基站天线多采用线极化方式,如图二。其中单极化天线多采用垂直线极化;双极化天线多采用±45?双线极化。由于一根双极化天线是由极化彼此正交的两根天线封装在同一天线罩中组成的(图三),采

【选择攻略】2.4GHz 频段天线选择

2.4GHz 频段天线选择 天线(antenna)是一种能量变换器,它把传输线上传播的导行波,变换成在无界媒介中传播的电磁波,或者进行相反的变换。对于设计一个应用于射频系统中的小功率、短距离的2.4GHz无线收发设备,天线的设计和选择是其中的重要部分,良好的天线系统可以使通信距离达到最佳状态。2.4GHz天线的种类也很多,不同的应用需要不用的天线。 天线简介 图1 天线传输原理 为保证天线的传输效率,天线的长度大约是电磁波波长的1/4,所以信号频率越低,波长越长,天线的长度越长;信号频率越高,波长越短,天线的长度越短。则常用的2.4GHz 频段频率高,波长短,天线的长度短,可用内置天线,也可以用外置天线。天线做的更短,如1/8波长或1/16波长,也可以使用,只是效率会下降。某些设备会采用“短天线+LNA”的方式,也能达到长天线的接收效果。但是短天线要达到长天线的发射效果,就需要提升发射功率了,因此对讲机需要发射信号,都是长的外置天线,而FM收音机只收不发,有内置接收天线。例如2G(900MHz)、4G(700-2600MHz)、WIFI和蓝牙(2.4GHz)、GPS(1.5GHz),这些常用的物联网通信方式,可以做内置天线。 对于手持机、穿戴设计、智能家居等小尺寸产品,很少使用外置天线,普遍采用内置天线。集成度高,产品外观更美观,性能比外置天线略弱一点。物联网、智能硬件产品,要联网传输数据,都需要有天线。空间越小、频段越多,天线设计越复杂。外置天线一般都是标准品,买频段合适的,无需调试,即插即用。例如快递柜、售货机这些,普遍使用磁吸的外置天线,吸在铁皮外壳上即可。这些天线不能放在铁皮柜里面,金属会屏蔽天线信号,所以

无线网络设备天线种类及选配技巧

无线网络设备天线种类及选配技巧 天线是发射和接收电磁波的一个重要的无线电设备。无线电发射机(如AP)输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去;电磁波到达接收地点后,由天线接收下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机,由此完成数据的传输,如图。 可见,作为电磁波的发射和接收设备,没有天线也就没有无线电通信,凡是利用电磁波来传递信息的,都依靠天线来进行工作。 当前企业级无线产品中,天线也是不可或缺的配件。一般来讲,无线局域网产品中天线有内置和外置两种,而外置产品的天线品种繁多,主要是供不同频率、不同用途、不同场合、不同要求等情况下使用。那么,天线到底有哪些种类,各种类有什么特点,如何应用呢?下面我们具体来看看。 1、全向天线,即在水平方向图上表现为360°都均匀辐射,也就是平常所说的无方向性。一般情况下波瓣宽度越小,增益越大。全向天线在通信系统中应用距离近,覆盖范围大,价格便宜。 2、半定向天线,即只向某一个方向辐射信号,常应用于中短距离通信。常见半定向天线主要主要有平板天线、八木天线(如下图)。平板天线常用于接入点到STA的定向覆盖或者过道、走廊的无线覆盖,其覆盖范围取决于AP的功率、天线增益、天线波束宽度以及建筑材料对射频信号的衰减程度;八木天线一般用于中短距离(如3km)点对点通信,高增益的八木天线也可以用于远距离通信。

半定向天线的另外一个优点是可以安装在墙壁的高处,并向下倾斜对准需要覆盖的区域。由于信号几乎不会从半定向天线的后侧泄露出去,因此半定向天线可以提供良好的垂直覆盖。全向天线不具备这个优点,因为如果天线的一端向下倾斜,则另一端会向上翘起。 3、高度定向天线仅在点对点通信中使用,一般用于提供两栋建筑物之间的网络桥接。在所有类型的天线中,高度定向天线的波束宽度最为狭窄和集中。 高度定向天线分为抛物面天线和栅格天线两类。从外观上看,抛物面天线类似于安装在屋顶的数字卫星电视天线,栅格天线类似于烧烤使用的烤架。栅格天线需要接收的信号波长决定了天线网格的间距大小。 高度定向天线的传输距离较远,波束宽度较窄,这使得它容易受到天线风载(大风引起的天线移动或偏移称为风载)的影响。对高度定向天线而言,哪怕是轻微的移动都会使得射频波束偏离接收天线,从而导致射频通信中断。而栅格天线网格较大,抗风载能力很强,因此在强风环境中应使用栅格天线。 4、从本质上说,天线阵列是一种天线系统,它由多个天线构成。这些天线协同进行一种被称为波束成型的工作。波束成型是一种将射频能量汇聚的方法。能量如果被汇聚意味着信号强度增强,接收方信噪比增强,因此传输效果更好。 无线产品是否能否实现更远距离的信号稳定传送,除了与协议、无线模块和本身的设计有关外,天线的作用同样是不能忽视。那么不同设备、场景下面该如何选择天线呢?下面我们总结了选择天线时主要应注意的几个因素。 无线标准:无线标准是无线设备最基本的参数,相应的无线标准对应相应的无线天线的频率

无线电天线的种类

无线电天线的种类 [size=4]【短波天线】工作于短波波段的发射或接收天线,统称为短波天线。短波主要是借助于电离层反射的天波传播的,是现代远距离无线电通信的重要手段之一。 【超短波天线】工作于超短波波段的发射和接收天线称为超短波天线。 【微波天线】工作于米波、分米波、厘米波、毫米波等波段的发射或接收天线,统称为微波天线。微波主要靠空间波传播,为增大通信距离,天线架设较高。 【定向天线】向某个方向传播的天线。 【不定向天线】在各个方向上均匀辐射或接收电磁波的天线,称为不定向天线,如小型通信机用的鞭状天线等。 【宽频带天线】方向性、阻抗和极化特性在一个很宽的波段内几乎保持不变的天线,称为宽频带天线。 【调谐天线】仅在一个很窄的频带内才具有预定方向性的天线,称为调谐天线或称调谐的定向天线。同相水平天线、折合天线、曲折天线等均属于调谐天线。 【垂直天线】垂直天线是指与地面垂直放置的天线。它有对称与不对称两种形式,而后者应用较广。对称垂直天线常常是中心馈电的。不对称垂直天线则在天线底端与地面之间馈电,其最大辐射方向在高度小于1/2波长的情况下,集中在地面方向,故适应于广播。不对称垂直天线又称垂直接地天线。 【倒L天线】在单根水平导线的一端连接一根垂直引下线而构成的天线。因其形状象英文字母L倒过来,故称倒L形天线。倒L天线一般用于长波通信。它的优点是结构简单、架设方便;缺点是占地面积大、耐久性差。 【T形天线】在水平导线的中央,接上一根垂直引下线,形状象英文字母T,故称T形天线。它是最常见的一种垂直接地的天线。它的水平部分辐射可忽略,产生辐射的是垂直部分。一般用于长波和中波通信。 【伞形天线】在单根垂直导线的顶部,向各个方向引下几根倾斜的导体,这样构成的天线形状象张开的雨伞,故称伞形天线。特点和用途与倒L形、T形天线相同。 【鞭状天线】鞭状天线是一种可弯曲的垂直杆状天线,其长度一般为1/4或1/2波长。大多数鞭状天线都不用地线而用地网。小型鞭状天线常利用小型电台的金属外壳作地网。鞭状天线可用于小型通信机、步谈机、汽车收音机等。 【对称天线】两部分长度相等而中心断开并接以馈电的导线,可用作发射和接收天线,这样构成的天线叫做对称天线。因为天线有时也称为振子,所以对称天线又叫对称振子,或偶极天线。总长度为半个波长的对称振子,叫做半波振子,也叫做半波偶极天线。它是最基本的单元天线,用得也最广泛,很多复杂天线是由它组成的。半波振子结构简单,馈电方便,在近距离通信中应用较多。 【笼形天线】是一种宽波段弱定向天线。适应于近距离的干线通信。 【角形天线】属于对称天线的一类,但它的两臂不排列在一条直线上,而成90°或120°角,故称角形天线。这种天线一般是水平装置的,它的方向性是不显著的。为了得到宽波段特性,角形天线的双臂也可采用笼形结构,称角笼形天线。 【折合天线】将振子弯折成相互平行的对称天线称为折合天线。折合天线是一种调谐天线,工作频率较窄。它在短波和超短波波段获得广泛应用。 【V形天线】是由彼此成一角度的两条导线组成,形状象英文字母V的一种天线。 【菱形天线】是一种宽频带天线。菱形天线一般用于大中型短波收信电台。 【盘锥形天线】是一种超短波天线。 【鱼骨形天线】鱼骨形天线又叫边射天线,是一种专用短波接收天线。与菱形天线相比较,

天线系统的定义、性能参数、天线种类及馈线系统

天线系统的定义、性能参数、天线种类及馈线系统 天线系统是由发射天线和接收天线组成的系统。前者是将导行波模式的射频电流或电磁波变换成扩散波模式的空间电磁波的传输模式转换器;后者是其逆变换的传输模式转换器。 作为导行波一扩散波模式转换用的称发射天线,作为扩散波一导行波模式转换用的称接收天线I除发射天线的功率承载能力和电压承受能力远大于接收天线外,两者均可掉换使用,且天线基本特性参数不变,称此为互易定理。天线另一重要作用是对电磁波能量的集中,即在作发射天线时向发射方向集中能量,同时减少其他方向的能量;作接收天线时,则可从接收方向的来波中截获更多能量,而对其他方向的来波则以相位抵消方式减少输入能量。此即天线的方向性。与无方向性天线相比,能量集中的增大倍数称为天线的增益。天线方向性的延伸涵义是非通信方向的负增益(衰减),可用以描述天线的另一相关性能指标,即发射天线的旁瓣(干扰)辐射抑制度或接收天线的非通信方向的来波干扰抑制度。 一、移动通信天线系统的定义 天线系统的定义与范围 在移动通信系统中,通信天线是通信设备电路信号与空间辐射电磁波的转换器。本文主要分析移动通信系统中通信天馈线系统的部分,主要包括基站/室分天线、相关的馈电电缆和其他射频器件及相关安装服务。 二、基站天线的性能参数描述 通用电气指标 1、工作频段(Frequency Range) 工作频段:无论天线还是其他通信产品,总是在一定的频率范围(频带宽度)内工作,其取决于指标的要求。通常情况下,满足指标要求的频率范围即可为天线的工作频率。 工作频段的宽度称为工作带宽,一般全向天线的工作带宽能达到中心频率的3-5%,定向天线的工作带宽能达到中心频率的5-10%。

相关文档