文档视界 最新最全的文档下载
当前位置:文档视界 › 机房散热量计算

机房散热量计算

机房散热量计算
机房散热量计算

所有的电子设备在工作过程中都要产生热量,这些热量必须排出到设备外部,否则热量的积累将会导致故障。选择适合的通风或冷却系统,首先需要知道设备的产热量和散热空间。

热是一种能量,其度量单位是焦耳,BTU(British thermal unit,英制单位)和卡。通用的计量标准是BTU/小时或焦耳/秒(焦耳/秒等同于瓦特),在实际应用中这两个单位会需要换算,计算公式如下:

3.41 BTU/小时 = 1 瓦特

在计算机或其他处理信息的仪器中真正用于处理数据的电源能量是很少的,可以忽略不记。因此,交流电源的能量几乎全转化成热量了,也就是说,从设备的电源消耗就可推算出热量的产生量。

制冷量取决于全部系统

一个系统总的发热量是由所有产热设备相加得出。产生的热量通常用表示为 BTU/小时,也可以用其他单位表示,这个数据可以从设备的手册中得到。将每个设备的发热量相加就得出整个系统总的值。UPS作为一个特殊的例子在下面详细介绍。

很多IT设备的交流功率消耗(瓦特)可以在APC的UPS选择方案中找到,或者从设备的产品数据中也可查到。若设备的耗电量由VA或电压-电流值的形式来表示,那么设备的伏安数也可以代替瓦来衡量热量的输出。要是设备的功耗用安或安培表示,则用电流值乘以交流供电电压得出伏安值。由于有功率因数存在,用伏安值来估算设备的发热量,其准确程度是比不上用瓦特来表示的,依据不同的设备会有0到35%的误差。但是,这些估算方法都可以给出一个比较保守的,不会低估的设备发热量。

对于UPS散热量的确定

由于UPS将功率从输入端送到输出端,因此在计算UPS的散热量时与其他IT设备时是有区别的。UPS工作在不同的模式下,其产生的热量也是不同的。在UPS的绝大多数运行时间内,是工作在普通状态下的,即把AC电源提供给被保护设备,这时UPS运行效率可以达到80%到98% 。因此,UPS的无用功(或称功率损失)会在2%到20%之间,这部分交流输入功率会转化成热量。

不同类型的UPS产生的无用功是由其设计电路结构决定的,可由下表估算出:

UPS热量的产出由此公式计算得出:

产热量(BTU/小时) = 负载功率(瓦特)x 无用功比例(由表1查出)x 3.41 (BTU转换常数)

注意:当UPS工作在电池放电模式或正在给电池充电时,它的产热量会增加,但这是很正常的。UPS输出的这些能量并不需要特别注意,无须计算在通风冷却系统的设计容量中。

综述

一个电子系统总的热量输出是其中每个设备热量输出的总和。热量的输出(BTU/小时)是设备自身的一个指标;但在技术手册中不一定能查到,也可以用设备的电源功率消耗来估算。UPS的产热量可由技术手册中查到,或通过负载量和产生无用功比例计算得出。在设计通风冷却系统时,应将容量考虑的大一些,以适应将来设备的增加而带来的额外热量。

工艺设备的散热量计算公式

工艺设备的散热量计算公式为:

Q=1000n1n2n3n4SN/η(W)

Q---------工艺设备散热总量

n1---------电机空量利用系数(安装系数),即最大实耗功率与安装功率之比,它反映了客定功率N的利用程度,一般为0.7~0.9 ;

n2---------同时使用系数,即房间内电动机同时使用的安装功率与总安装功率之比,根据工艺过程的设备使用情况而定,一般为0.5~0.8;

n3---------负荷系数,每小时的平均实耗功率与设计最大实耗功率之比,它反映了平均负荷达到一个新的水平最大负荷的程度,一般可取0.5左右;

n4---------考虑排风带走热量的系数,一般可取0.5;

S---------蓄热系数,即电机散热的最大瞬时负荷与每小时实耗功率之比,三班班工作制取0.95,二班工作制取0.9,一班工作制取0.80;

N---------电动机的额定功率(安装功率);

η---------电动机效率(一般取85);

那么,现在我想请问:

如果有一个洁净无排风洁净室,二班工作制,室内有两台工艺设备,同时工作,每台设备的安装功率(N)都是6KW,n1(0.7~0.9)我们取0.8,n2(0.5~0.8)我们取1(因为是同时工作),n3我们取0.5, n4我们取1(因为是无排风),S我们取0.9。那么这个洁净室工艺设备的总散热量应为:Q=1000n1n2n3n4SN/ηQ=1000×0.8×1×0.5×1×0.9×(6×2)/85

Q=360×12/85

Q=50.82 (W)

(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,

供参考,感谢您的配合和支持)

暖气散热量计算方法

文档收集于互联网,已重新整理排版.word 版本可编辑,有帮助欢迎下载支持.
首先,我们要了解,暖气片的购买单位是组,它是由多少片暖气片组成的,大多数暖气片厂 家都可以定制。其次了解暖气片的高度,市面上常见的一般有 670mm、1500mm、1800mm 三种,不同高度的暖气片散热量也不一样,高度越高散热量越大。 暖气片片数需要根据房间面积来计算的。首先选择一款性价比最高的暖气片,记住它每片的 散热量,用这个【散热量】除以 100 就得到【每平米需要的片数】,然后用【房间面积】 除以【每平米需要的片数】,就得到这个房间需要的【总片数】。举个例子:小编客厅面积 为 20 平米,选中鲁本斯塞尚大水道 1800 高的暖气片,每片的散热量是 260W,算法是: 用散热量 260W 除以 100 等于 2.6(每平米需要的片数),(房间面积)20 除以 2.6 等于 7.7,所以 20 平房间需要 8 片一组的暖气片。 最后,建议房屋密封性不好的买家在此算法的基础上多买一到两片,这样能达到更好的采暖 效果。
1)影响散热量的因素可以归结为两个方面:一是散热器本身的特点,如它的材料、形状、壁厚、焊接质量 和表面处理等;二是它的使用条件,也就是外界条件,如流过散热器的热媒种类、温度、流量,进出水的 方式,房间里的空气温度和流速,四周墙面的颜色和温度,散热器的安装方式,组装片数等。因此,不仅 不同的散热器散热性能不同,而且同一片或同一组散热器在不同外界条件下的散热性能也不相同。 散热器的散热量可用下式表示: Qs=KsFs(tp-tn)
式中 Qs——散热器的散热量(W); Ks——散热器的传热系数[W/(m2?℃)]; Fs——散热器的散热面积(m2); tp——散热器内热媒的平均温度(℃); tn——散热器所在室内的空气温度(℃)。 由式中可见,温差 tp-tn 越大,散热量也越大。如果它们成直线关系变化,则 Ks 就应该是常数。但是,事 实上散热量的增大倍数要高于温差的增长倍数。 Ks 值并不能直接测得,即便有了 Qs、tp、tn 的数值之后,Ks 还和散热器的面积 Fs 有关。准确测量 Fs 是 十分困难的,而 Fs 的取值又影响到 Ks 值的大小。同一组散热器,采用的 Fs 越大,Ks 就越小;Fs 越小, Ks 就越大。由于 Ks 值不能单独用来评价散热器的优劣,可见公式 Qs=KsFs(tp-tn)用来表达散热器的热工 特性也不完全适宜。 国际标准规定,在评价散热器时,只给出散热量,而不再给出 Ks 值。 (2)由于采暖系统的热媒和管道布置方式的不同,散热器的计算选择也不相同,我们通过例题来进行分析。 【例】单管系统温降计算及散热器选择: 已知:供水温度为 95℃,回水温度为 70℃,各层热负荷如图 18 59 所示,房间设计温度为 18℃,计算 选择各层散热器。 图 18 59 【解】(1)计算立管的总热负荷
Q=6550kcal/h (2)计算立管的用水量 G=655095-70kg/h=262kg/h (3)计算立管上各段的温度 t1=95℃ t2=(95-1500262)℃=(95-5 73)℃=89 27℃
1 文档来源为:从网络收集整理.word 版本可编辑.

肋片散热数值计算

肋片散热数值计算2016年12月

目录 一、题目------------------------------------------3 二、数值计算--------------------------------------4 (1)网格划分-----------------------------------4 (2)节点方程-----------------------------------5 (3)计算方式-----------------------------------6 (4)计算结果-----------------------------------6 (5)温度分布云图-------------------------------7 (6)误差分析-----------------------------------10 三、结论------------------------------------------10 四、程序------------------------------------------11 五、参考文献--------------------------------------15

一、题目 肋片优化问题 考虑三种不同形状的肋片,如图所示。材料均为硬铝,热导率为,肋根半厚度为4mm,肋高为25mm。对于梯形肋和圆弧边肋,最右端的平面部分半厚度为1mm,且圆弧在最右端的切线为水平线。肋根温度即227℃,肋外流体温度即27℃,表面对流换热系数为。试编程求解每种肋片的温度分布及散热量,并讨论肋片形状对散热量、材料需求量的优劣。 散热量17115 W 15605 W 14726 W

发热量计算公式

发热量计算公式 以煤工业分析结果,创立计算煤炭低位发热量新公式的原理与方法,不再详述。仅就实际应用的计算公式介绍如下: 1.计算烟煤低位发热量新公式 以焦耳表示的计算方式: Qnet.ad=35859.9-73.7Vad-395.7Aad-702.0Mad+173.6CRC 焦/克 或用卡制表示的计算式: Qnet.ad=8575.63-17.63Vad-94.64Aad-167.89Mad+41.52CRC卡/克Qnet.ad——分析基低位发热量; Vad——分析基挥发分(%); Aad——分析基灰分(%); Mad——分析基水分(%); CRC——焦渣特征。 2.计算无烟煤低位发热量新公式 以焦耳表示的计算方式: Qnet.ad=34813.7-24.7Vad-382.2Aad-563.0Mad焦/克 或者以卡制表示的计算式: Qnet.ad=8325.46-5.92Vad-91.41Aad-134.63Mad卡/克

如果有条件能测定H值,或者从固定用煤矿区取得矿区以往H值的 平均值,用下式计算的无烟煤低位发热量结果精度更高。 以焦耳表示的计算式: Qnet.ad=32346.8-161.5Vad-345.8Aad-360.3Mad+1042.3Had 焦/克 或者用卡制表示的计算式: Qnet.ad=7735.52-38.63Vad-82.70Aad-86.16Mad+249.27Had 卡/克 3.计算褐煤低位发热量新公式 以焦耳表示的计算式: Qnet.ad=31732.9-70.5Vad-321.6Aad-388.4Mad焦/克 或者用卡制表示的计算式: Qnet.ad=7588.69-16.85Vad-76.91Aad-92.88Mad卡/克 4.在水泥生产使用中,计算标准煤耗时,按上述公式计算的分析基低 位发热量(Qnet.ad)用下式换算成应用煤低位发热量(Qnet.ar)后,再 计算标准煤耗。 应用煤低位发热量计算公式 100-Mad100-Mar Qnet.ar=Qnet.ad×──────-23(Mar-Mad×─────) 焦/克 100-Mad100-Mad 煤经挥发分测定后遗留在坩埚内固体残渣的特征。 焦渣特征(CRC)煤炭热分解以后剩余物质的形状。根据不同形状分为8

热负荷及散热量计算

热负荷及散热量计算 所谓热负荷是指维持室内一定热湿环境所需要的在单位时间向室内补充的热量。所谓得热量是指进入建筑物的总量,它们以导热、对流、辐射、空气间热交换等方式进入建筑。 系统热负荷应根据房间得、失热量的平衡进行计算,即 房间热负荷=房间失热量总和-房间得热量总和 房间的失热量包括: 1)围护结构传热量Q1; 2)加热油门、窗缝隙渗入室内的冷空气的耗热量Q2; 3)加热油门、孔洞和其他相邻房间侵入的冷空气的耗热量Q3; 4)加热由外部运入的冷物料和运输工具的耗热量Q4; 5)水分蒸发的耗热量Q5; 6)加热由于通风进入室内冷空气的耗热量Q6; 7)通过其他途径散失的热量Q7; 房间的得热量包括: 1)太阳辐射进入房间的热量Q8; 2)非供暖系统的管道和其他热表面的散热量Q9; 3)热物料的散热量Q10; 4)生产车间最小负荷班的工艺设备散热量Q11; 5)通过其他途径获得的散热量Q12; 1.1围护结构的基本耗热量 式中 'q —围护结构的基本耗热量,W ; K —围护结构的传热系数,w/(㎡.℃); F —围护结构的面积,㎡; w t '—供暖室外计算温度,℃; n t —冬季室内计算温度,℃; a —围护结构的温差修正系数。 整个建筑物的基本耗热量等于各个部分围护结构的基本耗热量的总和: 1.2围护结构的附加耗热量 在实际中,气象条件和建筑物的结构特点都会影响基本耗热量使其发生变化,此时需要对基本耗热量加以修正,这些修正耗热量称为围护结构附加耗热量。附加耗热量主要有朝向修正,风力附加和高度附加耗热量。 朝向修正耗热量是太阳辐射对建筑围护耗热量的修正。 表1-1朝向修正率 《暖通规范》规定:民用建筑和工业辅助建筑(除楼梯间外) 的高度附加率,当房高超过四米时,每增加一米,为附加围护基本耗热量和其他修正量总和的2%,但总附加率不超过总附加率的15%。 所以,建筑物的总耗热量等于围护结构基本耗热量和朝向修正,风力附加和高度附加耗热

机房散热量计算

所有的电子设备在工作过程中都要产生热量,这些热量必须排出到设备外部,否则热量的积累将会导致故障。选择适合的通风或冷却系统,首先需要知道设备的产热量和散热空间。 热是一种能量,其度量单位是焦耳,BTU(British thermal unit,英制单位)和卡。通用的计量标准是BTU/小时或焦耳/秒(焦耳/秒等同于瓦特),在实际应用中这两个单位会需要换算,计算公式如下: 3.41 BTU/小时 = 1 瓦特 在计算机或其他处理信息的仪器中真正用于处理数据的电源能量是很少的,可以忽略不记。因此,交流电源的能量几乎全转化成热量了,也就是说,从设备的电源消耗就可推算出热量的产生量。 制冷量取决于全部系统 一个系统总的发热量是由所有产热设备相加得出。产生的热量通常用表示为 BTU/小时,也可以用其他单位表示,这个数据可以从设备的手册中得到。将每个设备的发热量相加就得出整个系统总的值。UPS作为一个特殊的例子在下面详细介绍。 很多IT设备的交流功率消耗(瓦特)可以在APC的UPS选择方案中找到,或者从设备的产品数据中也可查到。若设备的耗电量由VA或电压-电流值的形式来表示,那么设备的伏安数也可以代替瓦来衡量热量的输出。要是设备的功耗用安或安培表示,则用电流值乘以交流供电电压得出伏安值。由于有功率因数存在,用伏安值来估算设备的发热量,其准确程度是比不上用瓦特来表示的,依据不同的设备会有0到35%的误差。但是,这些估算方法都可以给出一个比较保守的,不会低估的设备发热量。 对于UPS散热量的确定

由于UPS将功率从输入端送到输出端,因此在计算UPS的散热量时与其他IT设备时是有区别的。UPS工作在不同的模式下,其产生的热量也是不同的。在UPS的绝大多数运行时间内,是工作在普通状态下的,即把AC电源提供给被保护设备,这时UPS运行效率可以达到80%到98% 。因此,UPS的无用功(或称功率损失)会在2%到20%之间,这部分交流输入功率会转化成热量。 不同类型的UPS产生的无用功是由其设计电路结构决定的,可由下表估算出: UPS热量的产出由此公式计算得出: 产热量(BTU/小时) = 负载功率(瓦特)x 无用功比例(由表1查出)x 3.41 (BTU转换常数) 注意:当UPS工作在电池放电模式或正在给电池充电时,它的产热量会增加,但这是很正常的。UPS输出的这些能量并不需要特别注意,无须计算在通风冷却系统的设计容量中。 综述 一个电子系统总的热量输出是其中每个设备热量输出的总和。热量的输出(BTU/小时)是设备自身的一个指标;但在技术手册中不一定能查到,也可以用设备的电源功率消耗来估算。UPS的产热量可由技术手册中查到,或通过负载量和产生无用功比例计算得出。在设计通风冷却系统时,应将容量考虑的大一些,以适应将来设备的增加而带来的额外热量。 工艺设备的散热量计算公式 工艺设备的散热量计算公式为:

车用散热器散热面积的计算

车用散热器散热面积的计算 一、散热量的确定 1.用户已给散热量的按已给散热量计算. 2.对车用柴油机可按下式进行估算:Q=()P s式中P s表示发动机功率. 燃烧室为预燃室和涡流室的发动机取较大值P s 直接喷射式的发动机取较小值P s 增压的直喷柴油机可取P s 二、计算平均温度差Δt m 1.散热器的进水温度t s1 闭式冷却系可取t s1=95-100℃(节温器全开温度) 2.散热器出水温度t s2 t s2=t s1-Δt sΔt s是冷却水在散热器中的最大温降,对强制冷却 系可取Δt s=6-12℃ 3.进入散热器的空气温度t k1一般取t k1=40-45℃ 4.流出散热器的空气温度t k2 t k2= t k1+Δt kΔt k是空气流过散热器时的温升,可按下式计算: Δt k=Q/(3600×A Z×C P×V K×ρk) 式中A Z表示散热器芯部的正迎风面积; C P表示空气的定压比热容C P=kgf℃V K表示散热器前的空气流速,车用发动机可取V K=12-15m/s ρk表示空气密度,设定在一个大气压气温50℃下查表得ρk=1.09kg/m3

5.平均温差修正系数φ 汽车发动机的冷却形式,属于两种流体互不混合的交叉流式换热形式.与热力学的简单顺流与逆流的换热形式不同,所以要以修正系数φ对平均温度差结果进行计算修正.而φ值的大小取决于两个无量纲的参数P及R. P=(出气温度-进气温度)/(进水温度-进气温度) R=(进水温度-出水温度)/( 出气温度-进气温度) 查上表可得φ值 6.平均温差Δt m 根据传热学原理,平均温差Δt m可按下式计算: Δt m=φ{(Δt max-Δt min)/ ㏑(Δt max/Δt min)} Δt max= t s1- t k1Δt min= t s2- t k2

散热器的散热量计算

冀州市冀暖北方暖气片厂 本标准参照采用国际标准ISO3147—1975(E)《热交换器—供水或蒸汽主环路的热平衡实验原理和试验方法》、ISO3148—1975《用空气冷却闭式小室确定辐射散热器、对流散热器和类似设备散热量的试验方法》、ISO3149—1975《用液体冷却闭式小室确定辐射散热器、对流散热器和类似设备散热量的试验方法》、ISO3150—1975(E)《辐射散热器、对流散热器和类似设备—散热量计算和结果的表达式》。 1、主题内容与适用范围本标准规定了在闭式小室内测试采暖散热器(简称散热器,暖气片)单位时间散热量(简称散热量)的原理、装置、方法、要求和数据的整理。本标准适用于以热水或蒸汽为热媒的采暖散热器。 2、术语 2.1辐射散热器在采暖散热器中,部分靠辐射放热的称辐射散热器。 2.2对流散热器在采暖散热器中,几乎完全靠自然对流放热的称对流散热器。 3、测试原理 3.1散热器的散热量散热器的散热量应由下式求得:Q=Gp(h1—h2) 式中:Q——散热器的散热量,W;Gp——热媒的平均流量,Kg/s;h1——散热器进口处热媒的焓,J/Kg;h2——散热器出口处热媒的焓,J/Kg。注:h1、h2 的数值系根据被测散热器进出口热媒的温度和压力,由中国建筑工业出版社1987年第一版《供暖通风设计手册》中查得。 3.2热媒参数的测量3.2.1热媒为热水时,当热水温度低于大气压力下水的沸点温度时,应测量散热器进口和出口处的水温,或测量其中一处水温及散热器进出口的热水温差;当热水温度高于大气压力下水的沸点温度时,则应测量散热器进口和出口处的水温和压力,或测量其中一处水温及散热器进出口的热水温差和压力差。3.2.2热媒为蒸汽时,应测量散热器进出口处蒸汽的压力和温度,散热器进口处的蒸汽应有2~5℃的过热度,测试时被测散热器流出的应仅为凝结水,凝结水温度与散热器进口处蒸汽压力下饱和温度之差不得超过1℃。3.2.3热媒温度系指散热器进出口处的温度。如不可能在该处测量时,则测温点与散热器进(出)口之间的距离不得大于0.3m。应对这段管道严格保温,并在计算散热量时减去这部分散热量。保温层应延伸到测温点之外0.3m以上。3.2.4热媒参数测量的准确度应符合以下要求:流量:±0.5% 温度:±0.1℃压力(绝对):±1%压差:当压差大于1KPa时±5% 当压差小于1KPa时±0.05%KPa 4、测试装置和要求 4.1测试装置测试装置应包括:a、安装被测散热器的闭式小室;b、小室六个壁面外的循环空气或水夹层;c、冷却夹层内循环空气或水的设备d、供给被测散热器能量的热媒循环系统。此系统应符合本标准的要求;e、检测和控制的仪表及设备。 4.2闭式小室的要求4.2.1小室内部的净尺寸应为:地面:(4±0.2m)×(4±0.2m) 高度:2.8±0.2m 4.2.2小室在任何情况下应为气密的。4.2.3小室的内表面应涂不含金属涂料的油漆。4.2.4小室采用空气冷却时,其构造应符合下列要求:4.2.4.1小室周围应设夹层,夹层内应维持稳定的温度环境。4.2.4.2小室的四壁、门、窗(若采用)、屋顶和地面的热阻偏差应在20%以内。4.2.4.3小室门应直接对着夹层外门。夹层外门必须气密,并宜具有和夹层墙相同的热阻。4.2.4.4夹层外围护层的墙、屋顶和地面总热阻应大于或等于1.73m3.K/W。4.2.4.5夹层内由可控温的送回风系统形成的循环空气,使小室的六个面得到均匀冷却。夹层的宽度宜为0.5m(不得小于0.3m);夹层内冷却空气的平均速度宜为0.1~0.5m/s。4.2.5采用水冷却时,小室的构造应符合下列要求:4.2. 5.1冷却水的循环方式应使小室表面温度均匀。4.2.5.2安装被测散热器的墙壁内表面,应在整个宽度离地面1.25m的高度内贴以保温板,保温板的厚度宜为6mm,其热阻应为0.05±0.05m2.K/W。板的外表面若刷油漆,应采用不含金属涂料的油漆。4.2.5.3冷却水的总流量应不小于6000Kg/h,每面墙的水流量应可分别控制。 5、闭式小室内各参数的测试及准确度 5.1小室内的空气温度小室内的空气温度应采用屏蔽的敏感元件在下列各点进行测量。5.1.1在内部空间的中心垂直轴线上a.基准点离地面0.75m高,准确到±0.1℃;b.离地面0.05、0.50、1.50m;距屋顶0.05m的四点,准确到±0.2℃。 5.1.2在每条距两面相邻墙1.0m处的垂直线上,离地面0.75、1.50m高的两点(共八点),准确到±0.2℃。} 5.2小室内表面温度小室的内表面温度应在下列各点进行测量:a.六个内表面的中心点,准确到±0.2℃;b.安装被测散热器的墙壁内表面的垂直中心线上,距地面0.30m的点,准确到±0.2℃。 5.3其他参数的测量除5.1和5.2所规定的各点外,还应测量下列参数;a.小室内空气的相对湿度;b.采用空气冷却时夹层内的空气温度,准确到±0.5℃; c.采用水冷却时,冷却系统入口处的水温准确到±0.2℃; d.大气压力,准确到±0.1KPa。

人体散热量计算

2007.04.25 网络日记空调房间人体的散热及散湿量计算 文章引用自: [引用] 2007-04-25 | 发表者: 五洲韩威 空调房间人体的散热及散湿量计算 人体的散热量可分为显热和潜热。显热是由人的体温与周围空气温度之间的温差而产生的;潜热是体表排汗或肺呼吸而带入空气的热量。 精密空调 第一章机房专用精密空调特点 能够充分满足机房环境条件要求的机房专用精密空调机(也称恒温恒湿空调)是在近30年中逐渐发展起来的一个新机种。早期的机房使用舒适性空调机时,常常出现由于环境温湿度参数控制不当而造成机房设备运行不稳定,数据传输受干扰,出现静电等问题。 精密空调机,通常具有如下一些性能特点: 1.1 大风量、小焓差

与相同制冷量的舒适性空调机相比,机房专用精密空调机的循环风量约大一倍,相应的焓差只有一半,机房专用精密空调机运行时通常不需要除湿,循环风量较大将使得机组在空气露点以上运行,不必要像舒适性空调机那样为应付湿负荷而不得不使空气冷却到露点以下,故机组可以通过提高制冷剂的蒸发温度提高机组运行的热效率,从而提高运行的经济性。根据经验,显热比为1.0的机组的单位制冷量的能耗仅是显热比为0.6的机组的60%左右。同样,机房要求温湿度指标相对稳定,较大的循环风量将有利于稳定机房的温湿度指标,显然,在制冷量一定的情况下,风量的增大将导致焓差的减少,因而通常机组只能在显热比相当高的工况下运行,这恰恰与机房的负荷特点相适应。 通常舒适性空调冷负荷中有30%是为了消除潜热负荷,有70%是为了消除显热 负荷。对机房来讲,其情况却大不相同,机房主要是设备散出的显热,室内工作人员散出的热负荷及夏季进入房间的新鲜空气的热湿负荷(仅占总负荷的5%)。并且冬 季是需要加湿而不是减湿,即使在冬季机房仍需要消除热负荷,特别是程控机房更是如此。鉴于以上特点,如将一般舒适性空调机组用于机房,则会造成能量浪费。例如一个热负荷为7056kcal/h的机房,若使用机房专用空调机组,则总耗电量为2.7kw,而舒适性空调机组则需耗电8.1kw,即多耗电两倍。同样制冷量的空调机其风量各异,舒适性空调机的风量与冷量比为1:5,而恒温恒湿机风量与冷量比为1:3.5,机房专用精密空调机具有大风量、小焓差、高显热比的特点,通常焓差为2kcal/kg左右。也就是说,机房的热负荷90%~95%是显热负荷,同样的热负荷显热比越高要求送风量越大。这就要求机房的空调系统能够提供较大的送风量,所以一般机房送风量要比通常舒适性空调房间所需的送风量大1.6~2倍。 1.2 机房的热负荷变化幅度较大 通常要在10%~20%之间变动,这是由于主机设备所处的工作状态不同,消耗的功耗不同所造成的。因此,机房精密空调系统必须能够适应这种负荷的变化,以使电子元器件工作在所要求的环境条件之中,保证电路性能的可靠性。 1.3 送回风方式多样 由于要与电子通信设备的冷却方式相适应,机房的空调系统的送风回风方式是多种多样的:有上送风、下送风,有上回风、下回风、侧回风等,生产企业一般是利用标准化手段开发一系列机型,以满足用户的不同需要。 机房专用精密空调机送风形式多为上送下回和下送上回式。机房中铺设防静电活动地板,机房专用精密空调采用下送上回式送风,使冷气直接进入活动地板下,这样使地板下形成静压箱,然后通过地板送风口,把冷气均匀地送入机房内,送入设备机柜内。为此,机房专用精密空调应有足够的风量把机房中的热量带走。采用这种送风形式可大大提高空调效率,同时还可以大幅度节省过去习惯的管道送风的工程费用,降低工程造价,使室内布局美观。这是机房理想的送风方式。当然,机房送风形式要与设备散热形式一致。 1.4 过滤

散热量计算公式

一、标准散热量 标准散热量是指供暖散热器按我国国家标准(GB/T13754-1992),在闭室小室内按规定条件所测得的散热量,单位是瓦(W)。而它所规定条件是热媒为热水,进水温度95摄氏度,出水温度是70摄氏度,平均温度为(95+70)/2=82.5摄氏度,室温18摄氏度,计算温差△T=82.5摄氏度-18摄氏度=64.5摄氏度,这是散热器的主要技术参数。散热器厂家在出厂或售货时所标的散热量一般都是指标准散热量。 那么现在我就要给大家讲解第二个问题,我想也是很多厂商和经销商存在疑问的地方。 二、工程上采用的散热量与标准散热量的区别 标准散热量是指进水温度95摄氏度,出水温度是70摄氏度,室内温度是18摄氏度,即温差△T=64.5摄氏度时的散热量。而工程选用时的散热量是按工程提供的热媒条件来计算的散热量,现在一般工程条件为供水80摄氏度,回水60摄氏度,室内温度为20摄氏度,因此散热器△T=(80摄氏度+60摄氏度)÷2-20摄氏度=50摄氏度的散热量为工程上实际散热量。因此,在对工程热工计算中必须按照工程上的散热量来进行计算。 在解释完上面的术语以后,下面我介绍一下采暖散热器的欧洲标准(EN442)。欧洲标准(EN442)是由欧洲标准化委员会/技术委员会CEN所编制.按照CEN内部条例,以下国家必须执行此标准,这些国家是:澳大利亚、比利时、丹麦、芬兰、法国、意大利、荷兰、西班牙、瑞典、英国等18个国家。而欧洲标准(EN442)的标准散热量与我国标准散热量是不同的,欧洲标准所确定的标准工况为:进水温度80摄氏度,出水温度65摄氏度,室内温度20摄氏度,

所对应的计算温差△T=50摄氏度。欧洲标准散热量是在温差△T=50摄氏度的散热量。 那么怎么计算散热器在不同温差下的散热量呢? 散热量是散热器的一项重要技术参数,每一个散热器出厂时都标有标准散热量(即△T=64.5摄氏度时的散热量)。但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度,出水温度和室内温度,来计算出温差△T,然后计算各种温差下的散热量。△T=(进水温度+出水温度)/2-室内温度。 现在我就介绍几种简单的计算方法 (一)根据散热器热工检测报告中,散热器与计算温差的关系式来计算。 Q=m×△T的N次方 例如74×60检测报告中的热工计算公式(10柱): Q=5.8259×△T1.2829 (1)当进水温度95摄氏度,出口温度70摄氏度,室内温度18摄氏度时: △T=(95摄氏度+70摄氏度)/2-18摄氏度=64.5摄氏度 Q=5.8259×64.51.2829=1221.4W(10柱) 每柱的散热量为122.1W/柱 (2)当进水温度为80摄氏度,出口温度60摄氏度,室内温度20摄氏度时: △T=(80摄氏度+60摄氏度)/2-20摄氏度=50摄氏度 Q=5.8259×501.2829=814.6W(10柱) 每柱的散热量为81.5W/柱 (3)当进水温度为70摄氏度,出口温度50摄氏度,室内温度18摄氏度时:

散热与风量的计算doc资料

散热与风量的计算

风扇总热量=空气比热X空气重量X温差,这里的温差是指,你进风的温度与最终加热片的温度的差值,照你说 的,250-80(最加热片的温度)-25(进风空气的温度)=145度,你给的倏件还一样,就是热量不知道,或者电器做的 总功不知道,电器做的总功/4.2=风扇排出的总热量知道的话就可以根空气重量=风量/60X空气密度逆推出风量 . 设:半导体发热芯片平均温度T1(工作时的温度上限,也就是说改芯片能承受的最高温度,取决你的设计要 求了),散热片平均温度T2,散热片出口处空气温度T3 简化问题,假设: 1.散热片为热的良导体,达到热平衡时间忽略,则有T1=T2; 2.只考虑热传导,对流和辐射不予考虑。 又因为半导体发出的热量最终用来加热空气,则有: 880W=40CFM*空气比热*(T3-38°C)注意单位统一,至于空气的比热用定容的吧。。。 上式可以求出(实际上也就是估算而已)出口处空气温度T3, 根据散热片的散热公式(也是估算),有: P=λ*【T2-0.5(T3+38°C)】*A

其中:P为散热功率,λ为散热系数,A为与空气的接触面积,【T2-0.5 (T3+38°C)】为温差; 其中:λ可以通过对照试验求(好吧,还是估算)出来, 这样就能大概估算出需要的散热器面积A了。。。 P.S. 误差来源1:散热器温度和芯片温度肯定不相等,热传导需要时间,而且散热片不同位置的温度也不严格相同 ,只是处在动态平衡; 误差来源2:散热片的散热公式是凭感觉写的。。。应该没大错,但肯定很粗糙。。自己修正吧 能想到的就这么多了。。。 轴流风机风量散热器的信息讲解 2011-06-02 17:06 轴流风机风量散热器的信息讲解 风量是指风冷散热器风扇每分钟排出或纳入的空气总体积,如果按立方英尺来计算,单 位就是CFM;如果按立方米来算,就是CMM。散热器产品经常使用的风量单位是CFM(约

散热器散热量计算

散热器散热量计算 散热器散热量计算;散热量是散热器的一项重要技术参数,每一种散热器出;现介绍几种简单的计算方法:;(一)根据散热器热工检验报告中,散热量与计算温差;铜铝复合74×60的热工计算公式(十柱)是:;Q=5.8259×△T(十柱);1.标准散热热量:当进水温度95℃,出水温度70;十柱散热量:;Q=5.8259×64.5=1221.4W;每柱散热量;1224.4W÷ 散热器散热量计算 散热量是散热器的一项重要技术参数,每一种散热器出厂时都标有标准散热量(即△T=64.5℃时的散热量)。但是工程所提供的热媒条件不同,因此我们必须根据工程所提供的热媒条件,如进水温度、出水温度和室内温度,计算出温差△T,然后根据各种不同的温差来计算散热量,△T的计算公式:△T=(进水温度+出水温度)/2-室内温度。 现介绍几种简单的计算方法: (一)根据散热器热工检验报告中,散热量与计算温差的关系式来计算。在热工检验报告中给出一个计算公式Q=m×△Tn,m和n在检验报告中已定,△T可根据工程给的技术参数来计算,例:铜铝复合74×60的热工计算公式(十柱)是: Q=5.8259×△T (十柱) 1.标准散热热量:当进水温度95℃,出水温度70℃,室内温度18℃时:△T =(95℃+70℃)/2-18℃=64.5℃

十柱散热量: Q=5.8259×64.5 =1221.4W 每柱散热量 1224.4 W÷10柱=122 W/柱 2.当进水温度80℃,出水温度60℃,室内温度18℃时: △T =(80℃+60℃)/2-18℃=52℃ 十柱散热量: Q=5.8259×52 =926W 每柱散热量 926 W÷10柱=92.6W/柱 3.当进水温度70℃,出水温度50℃,室内温度18℃时: △T =(70℃+50℃)/2-18℃=42℃ 十柱散热量: Q=5.8259×42 =704.4W 每柱散热量 704.4W ÷10柱=70.4W/柱 (二)从检验报告中的散热量与计算温差的关系曲线图像中找出散热量: 我们先在横坐标上找出温差,例如64.5℃,然后从这一点垂直向上与曲线相交M点,从M点向左水平延伸与竖坐标相交的那一点,就是它的散热量(W)。 (三)利用传热系数Q=K·F·△T

散热与风量的计算

风扇总热量=空气比热X空气重量X温差,这里的温差是指,你进风的温度与最终加热片的温度的差值,照你说 的,250-80(最加热片的温度)-25(进风空气的温度)=145度,你给的倏件还一样,就是热量不知道,或者电器做的 总功不知道,电器做的总功/4.2=风扇排出的总热量知道的话就可以根空气重量=风量/60X空气密度逆推出风量 . 设:半导体发热芯片平均温度T1(工作时的温度上限,也就是说改芯片能承受的最高温度,取决你的设计要 求了),散热片平均温度T2,散热片出口处空气温度T3 简化问题,假设: 1.散热片为热的良导体,达到热平衡时间忽略,则有T1=T2; 2.只考虑热传导,对流和辐射不予考虑。 又因为半导体发出的热量最终用来加热空气,则有: 880W=40CFM*空气比热*(T3-38°C)注意单位统一,至于空气的比热用定容的吧。。。上式可以求出(实际上也就是估算而已)出口处空气温度T3, 根据散热片的散热公式(也是估算),有: P=λ*【T2-0.5(T3+38°C)】*A 其中:P为散热功率,λ为散热系数,A为与空气的接触面积,【T2-0.5(T3+38°C)】为温差; 其中:λ可以通过对照试验求(好吧,还是估算)出来, 这样就能大概估算出需要的散热器面积A了。。。 P.S. 误差来源1:散热器温度和芯片温度肯定不相等,热传导需要时间,而且散热片不同位置的温度也不严格相同 ,只是处在动态平衡; 误差来源2:散热片的散热公式是凭感觉写的。。。应该没大错,但肯定很粗糙。。自己修正吧 能想到的就这么多了。。。 轴流风机风量散热器的信息讲解2011-06-02 17:06

暖气散热量计算方法

首先,我们要了解,暖气片的购买单位是组,它是由多少片暖气片组成的,大多数暖气片厂家都可以定制。其次了解暖气片的高度,市面上常见的一般有670mm、1500mm、1800mm 三种,不同高度的暖气片散热量也不一样,高度越高散热量越大。 暖气片片数需要根据房间面积来计算的。首先选择一款性价比最高的暖气片,记住它每片的散热量,用这个【散热量】除以100就得到【每平米需要的片数】,然后用【房间面积】除以【每平米需要的片数】,就得到这个房间需要的【总片数】。举个例子:小编客厅面积为20平米,选中鲁本斯塞尚大水道1800高的暖气片,每片的散热量是260W,算法是:用散热量260W除以100等于2.6(每平米需要的片数),(房间面积)20除以2.6 等于7.7,所以20平房间需要8片一组的暖气片。 最后,建议房屋密封性不好的买家在此算法的基础上多买一到两片,这样能达到更好的采暖效果。 1)影响散热量的因素可以归结为两个方面:一是散热器本身的特点,如它的材料、形状、壁厚、焊接质量和表面处理等;二是它的使用条件,也就是外界条件,如流过散热器的热媒种类、温度、流量,进出水的方式,房间里的空气温度和流速,四周墙面的颜色和温度,散热器的安装方式,组装片数等。因此,不仅不同的散热器散热性能不同,而且同一片或同一组散热器在不同外界条件下的散热性能也不相同。 散热器的散热量可用下式表示: Qs=KsFs(tp-tn) 式中Qs——散热器的散热量(W); Ks——散热器的传热系数[W/(m2?℃)]; Fs——散热器的散热面积(m2); tp——散热器内热媒的平均温度(℃); tn——散热器所在室内的空气温度(℃)。 由式中可见,温差tp-tn越大,散热量也越大。如果它们成直线关系变化,则Ks就应该是常数。但是,事实上散热量的增大倍数要高于温差的增长倍数。 Ks值并不能直接测得,即便有了Qs、tp、tn的数值之后,Ks还和散热器的面积Fs有关。准确测量Fs是十分困难的,而Fs的取值又影响到Ks值的大小。同一组散热器,采用的Fs越大,Ks就越小;Fs越小,Ks就越大。由于Ks值不能单独用来评价散热器的优劣,可见公式Qs=KsFs(tp-tn)用来表达散热器的热工特性也不完全适宜。 国际标准规定,在评价散热器时,只给出散热量,而不再给出Ks值。 (2)由于采暖系统的热媒和管道布置方式的不同,散热器的计算选择也不相同,我们通过例题来进行分析。【例】单管系统温降计算及散热器选择: 已知:供水温度为95℃,回水温度为70℃,各层热负荷如图所示,房间设计温度为18℃,计算选择各层散热器。 图 【解】(1)计算立管的总热负荷 (2)计算立管的用水量 G=655095-70kg/h=262kg/h (3)计算立管上各段的温度 t1=95℃ t2=(95-1500262)℃=(95-℃℃

散热器的表面积计算

散热器的表面积计算: S = 0.86W/(△T*a)) (平方米) 式中 △T——散热器温度与周围环境温度(T a)之差(℃); a——传导系数,是由空气的物理性质及空气流速决定的。 a的值可以表示为: A = Nu*λ/L 式中λ——热电导率由空气的物理性质决定; L——散热器海拔高度(); Nu——空气流速系数。 Nu值由下式决定 Nu = 0.664* [(V/V1)^(1/2)]*[Pr^(1/3)] 式中V——动黏性系数,是空气的物理性质; V1——散热器表面的空气流速; Pr——参数(见表1)。

散热器选择的计算方法 一,各热参数定义: Rja———总热阻,℃/W; Rjc———器件的内热阻,℃/W; Rcs———器件与散热器界面间的界面热阻,℃/W; Rsa———散热器热阻,℃/W; Tj———发热源器件内结温度,℃; Tc———发热源器件表面壳温度,℃; Ts———散热器温度,℃; Ta———环境温度,℃; Pc———器件使用功率,W; ΔTsa ———散热器温升,℃; 二,散热器选择: Rsa =(Tj-Ta)/Pc - Rjc -Rcs 式中:Rsa(散热器热阻)是选择散热器的主要依据。 Tj 和Rjc 是发热源器件提供的参数, Pc 是设计要求的参数, Rcs 可从热设计专业书籍中查表,或采用Rcs=截面接触材料厚度/(接触面积X 接触材料导热系数)。 (1)计算总热阻Rja:Rja= (Tjmax-Ta)/Pc (2)计算散热器热阻Rsa 或温升ΔTsa:Rsa = Rja-Rtj-Rtc ΔTsa=Rsa×Pc (3)确定散热器 按照散热器的工作条件(自然冷却或强迫风冷),根据Rsa 或ΔTsa 和Pc 选择散热器,查所选散热器的散热曲线(Rsa 曲线或ΔTsa 线),曲线上查出的值小于计算值时,就找到了合适的热阻散热器及其对应的风速,根据风速流经散热器截面核算流量及根据散热器流阻曲线上风速对应的阻力压降,选择满足流量和压力工作点的风扇。

散热器散热量计算

客厅用散热器价格散热量计算 关于金旗舰散热器的价格 散热器的最后成交价格与所选散热器的规格型号、数量、交货方式、付款方式有关,有一点需要用户 特别注意铝散热器通常采用纯铝或6063合金来制造,这两种材质都有很好的导热性与之相比杂铝的导热性 则差数倍;(其导热系数请见【相关数据】)由于散热器成本一半以上是材料费,杂铝的价格是低廉的; 因此对特别便宜的散热器,购买时要考虑因材质造成的散热性能的损失。 关于散热器的订购 选择好散热器的型号后,根据散热计算结果确定截断长度,及表面处理方式;需要订购请提供如下内 容: (1)散热器型号及长度例如:50DQ140-200(型号50DQ140;长度200mm) (2)表面处理方式(银白色黑色其他颜色) (3)散热器上需要机加工的部位、加工数量及技术要求 关于散热器分类 为了方便用户查找选购,按照散热器的制造工艺分为型材散热器、插片散热器、组合散热器及热管散热器;其中对用量极大的型材

散热器按其形状分为单肋、双肋、异型并在网页左侧列出;以便用户快速查找。 关于散热器的选择 首先确定要散热的电子元器件,明确其工作参数,工作条件,尺寸大小,安装方式,选择散热器的底板大小比元器件安装面略大一些即可,因为安装空间的限制,散热器主要依靠与空气对流来散热,超出与元器件接触面的散热器,其散热效果随与元器件距离的增加而递减。对于单肋散热器,如果所需散热器的宽度在表中空缺,可选择两倍或三倍宽度的散热器截断即可。 关于散热器选择的计算方法 参数定义: Rt─── 总内阻,℃/W; Rtj─── 半导体器件内热阻,℃/W; Rtc─── 半导体器件与散热器界面间的界面热阻,℃/W; Rtf─── 散热器热阻,℃/W; Tj─── 半导体器件结温,℃; Tc─── 半导体器件壳温,℃; Tf─── 散热器温度,℃; Ta─── 环境温度,℃; Pc─── 半导体器件使用功率,W; ΔTfa ─── 散热器温升,℃; 散热计算公式:

煤炭发热量计算公式(精选.)

煤样中水分的测定 全水(Mt) 挥发分是反应煤化程度的一个指标,而焦渣可以判断煤炭粘接性的好坏,所以煤炭的挥发分和焦渣特征可以估计煤炭的工业分析和加工利用途径! 以收到状态单位质量的煤燃烧后产生的热量。 收到基As received basis 已收到状态的煤为基准ar 空气干燥基Air dried basis 与空气湿度达到平衡状态的煤为基准ad 分析基 干燥基Dry basis 以假想无水状态的煤为基准 d 干基 1、恒容低位发热量 煤或水煤浆(称取水煤浆干燥试样时)的收到基恒容低位发热量按下式计算Qnet,v,ar=(Qgr,v,ad-206Had)×-23Mt式中: Qnet,v,ar——煤或水煤浆的收到基恒容低位发热量,单位为焦耳每克(J/g);Qgr,v,ad——煤(或水煤浆干燥试样)的空气干燥基恒容高位发热量,单位为焦耳每克(J/g); Mt——煤的收基全水分或水煤浆的水分(Mcwm)(按GB/T211测定)的质量分数,%; Mad—煤(或水煤浆干燥试样)的空气干燥基水分(按GB/T212测定)的质量分数,%;

Had——煤(或水煤浆干燥试样)的空气干燥基氢的质量分数(按GB/T476测定),%; 206——对应于空气干燥煤样(或水煤浆干燥试样)中每1%氢的气化热校正值(恒容),单位为焦耳每克(J/g); 23——对应于收到基煤或水煤浆中每1%水分的气化热校正值(恒容),单位为焦耳每克(J/g)。如果称取的是水煤浆试样,其恒容低位发热量按下式计算:Qnet,v,cwm=Qgr,v,cwm-206Hcwm-23Mcwm 式中: Qnet,V,cwm—水煤浆的恒容低位发热量,单位为焦耳第克(J/g ); Qgr,v,cwm——水煤浆的恒容高位发热量,单位为焦耳第克(J/g); Hcwm——水煤浆氢的质量分数,%; Mcwm——水煤浆水分的质量分数,% 其余符号意义同前。 2、低位发热量基的换算 煤的各种不同水分基的恒容低位发热量按下式换算: Qnet,v,M=(Qgr,v,ad-206Had)×-23M 式中: Qnet,v,M—水分为M的煤的恒容低位发热量,单位为焦耳每克(J/g);M——煤样的水分,以质量分数表示,%; 干燥基时M=0;空气干燥基时M=Mad;收到基时,M=Mt 其余符号意义同前。 最新文件仅供参考已改成word文本。方便更改

电气设备发热量的估算及计算方法

高压柜、低压柜、变压器的发热量计算方法 变压器损耗可以在生产厂家技术资料上查到(铜耗加铁耗);高压开关柜损耗按每台200W估算;高压电容器柜损耗按3W/kvar估算;低压开关柜损耗按每台300W估算;低压电容器柜损耗按4W/kvar估算。一条n芯电缆损耗功率为:Pr=(nI2r)/s,其中I为一条电缆的计算负荷电流(A),r为电缆运行时平均温度为摄氏50度时电缆芯电阻率(Ωmm2/m,铜芯为0.0193,铝芯为0.0316),S为电缆芯截面(mm2);计算多根电缆损耗功率和时,电流I要考虑同期系数。 上面公式中的"2"均为上标,平方。 一、如果变压器无资料可查,可按变压器容量的1~1.5%左右估算; 二、高、低压屏的单台损耗取值200~300W,指标稍高(尤其是高压柜); 三、除设备散热外,还应考虑通过围护结构传入的太阳辐射热。 主要电气设备发热量 电气设备发热量 继电器小型继电器0.2~1W 中型继电器1~3W励磁线圈工作时8~16W 功率继电器8~16W 灯全电压式带变压器灯的W数 带电阻器灯的W数+约10W 控制盘电磁控制盘依据继电器的台数,约300W 程序盘 主回路盘低压控制中心100~500W 高压控制中心100~500W 高压配电盘100~500W 变压器变压器输出kW(1/效率-1) (KW) 电力变换装置半导体盘输出kW(1/效率-1) (KW) 照明灯白炽灯灯W数 放电灯 1.1X灯W数 假设变压器为1000KVA,其有功输出为680KW,则其效率大致为680/850=0.8,根据上述计算损耗的公式,该变压器的损耗为680*(1/0.8-1)=170KW!!! 变压器的热损失计算公式: △Pb=Pbk+0.8Pbd △Pb-变压器的热损失(kW) Pbk-变压器的空载损耗(kW) Pbd-变压器的短路损耗(kW)

暖气散热量计算方法

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
首先,我们要了解,暖气片的购买单位是组,它是由多少片暖气片组成的,大多数暖气片厂 家都可以定制。其次了解暖气片的高度,市面上常见的一般有 670mm、1500mm、1800mm 三种,不同高度的暖气片散热量也不一样,高度越高散热量越大。 暖气片片数需要根据房间面积来计算的。首先选择一款性价比最高的暖气片,记住它每片的 散热量,用这个【散热量】除以 100 就得到【每平米需要的片数】,然后用【房间面积】 除以【每平米需要的片数】,就得到这个房间需要的【总片数】。举个例子:小编客厅面积 为 20 平米,选中鲁本斯塞尚大水道 1800 高的暖气片,每片的散热量是 260W,算法是: 用散热量 260W 除以 100 等于 2.6(每平米需要的片数),(房间面积)20 除以 2.6 等于 7.7,所以 20 平房间需要 8 片一组的暖气片。 最后,建议房屋密封性不好的买家在此算法的基础上多买一到两片,这样能达到更好的采暖 效果。
1)影响散热量的因素可以归结为两个方面:一是散热器本身的特点,如它的材料、形状、壁厚、焊接质量 和表面处理等;二是它的使用条件,也就是外界条件,如流过散热器的热媒种类、温度、流量,进出水的 方式,房间里的空气温度和流速,四周墙面的颜色和温度,散热器的安装方式,组装片数等。因此,不仅 不同的散热器散热性能不同,而且同一片或同一组散热器在不同外界条件下的散热性能也不相同。 散热器的散热量可用下式表示: Qs=KsFs(tp-tn)
式中 Qs——散热器的散热量(W); Ks——散热器的传热系数[W/(m2?℃)]; Fs——散热器的散热面积(m2); tp——散热器内热媒的平均温度(℃); tn——散热器所在室内的空气温度(℃)。 由式中可见,温差 tp-tn 越大,散热量也越大。如果它们成直线关系变化,则 Ks 就应该是常数。但是,事 实上散热量的增大倍数要高于温差的增长倍数。 Ks 值并不能直接测得,即便有了 Qs、tp、tn 的数值之后,Ks 还和散热器的面积 Fs 有关。准确测量 Fs 是 十分困难的,而 Fs 的取值又影响到 Ks 值的大小。同一组散热器,采用的 Fs 越大,Ks 就越小;Fs 越小, Ks 就越大。由于 Ks 值不能单独用来评价散热器的优劣,可见公式 Qs=KsFs(tp-tn)用来表达散热器的热工 特性也不完全适宜。 国际标准规定,在评价散热器时,只给出散热量,而不再给出 Ks 值。 (2)由于采暖系统的热媒和管道布置方式的不同,散热器的计算选择也不相同,我们通过例题来进行分析。 【例】单管系统温降计算及散热器选择: 已知:供水温度为 95℃,回水温度为 70℃,各层热负荷如图 18 59 所示,房间设计温度为 18℃,计算 选择各层散热器。 图 18 59 【解】(1)计算立管的总热负荷
Q=6550kcal/h (2)计算立管的用水量 G=655095-70kg/h=262kg/h (3)计算立管上各段的温度 t1=95℃ t2=(95-1500262)℃=(95-5 73)℃=89 27℃
1

相关文档