文档视界 最新最全的文档下载
当前位置:文档视界 › 锂纽扣电池可靠性预测和地的应用寿命估算

锂纽扣电池可靠性预测和地的应用寿命估算

锂纽扣电池可靠性预测和地的应用寿命估算
锂纽扣电池可靠性预测和地的应用寿命估算

锂纽扣电池可靠性预测和应用寿命估算

工业设备尤其是便携式设备均离不开嵌入的锂纽扣电池--系统的“源动力”。据此,锂纽扣电池的制造厂商及产品又是层出无穷、品种繁多,从而导致使许多最终用户在对其锂纽扣电池的使用寿命和选用上不是茫茫然就是束手无策。为此,如何解决这致关系统可靠安全的重要问题及如何寻找出新方案、新产品等新途径就成为其重中之重。目前国际上有不少著名制造厂商, 能提供有备用锂纽扣电池的非易失存储器(NVM—Non volatile MEMORY)或实时时钟(RTC)的应用产品,以确保当系统(微控制器、嵌入式等系统)掉电时保存数据或信息。这些产品的典型规格是在没有系统电源的条件下提供10年的使用寿命。因为最终应用是不确定的,所以对使用寿命的预测还是比较保守的。最终用户针对锂纽扣电池的具体应用, 应评估(电池结构/特征、电池测试/筛选、容量等)或预期出使用寿命,特别是对那些工作环境超出了典型范围或所需应用时间超过10年的用户来说。必须了解这电池可靠性模型,这将有助于用户单独选购电池控制器, 从而又将电池控制器与电池组装在一起构成性能价格比较高的锂纽扣电池,也就解决了不必购买包含电池控制器和电池在内的高成本模块问题。本文论述了备用锂纽扣电池应用寿命估算及寿命对IC集成电路(指SRAM--静态随机存取存储器或RTC)影响的有关问题。这儿指IC均属于是由系统电源供电或锂备用电池供电。为此,首先要说明为何选用备用电池?为何选用备用电池众所周知,系统断电时,有多种保存数据的方案,当对读写速度或周期数要求比较严格时,有备用电池的SRAM是一种较为可靠的替代方案。闪存或EEPROM同样提供NV(非易失)数据存储,但在简易性和速度指标上存在不足。而有备用电池的SRAM,其主要缺陷是电池是一个消耗品,产品选择必须慎重考虑电池容量并确定其产品最终的使用寿命。对于没有系统电源供电同时要保持信息或计时功能,并需要提供一定的电能才能维持晶振工作,则用电池提供电流是非常适合的.IC集成电路所需电流如果IC(SRAM或RTC)将由电池供电,则需要在IC工作时的电流、使用寿命与电池容量之间加以匹配。购买电池和IC时,其数据手册将提供与IC负载相对应的有关估算电池寿命的信息,如果购买集IC和电池于一体的模块,则最终用户应依靠模块厂商对模块产品的适当筛选来保证系统使用寿命的要求。半导体制造厂商为其所有电池供电产品制订了测试条件,以保证在电池容量的允许范围内为最终器件提供10年的使用时间。而Dallas Semiconductor公司对这种应用的IC进行优化设计并利用先进的处理工艺满足低电流的需求。对于其它供货商提供的高密度SRAM需作特殊的筛选才能满足模块使用寿命的要求。图1来自于由锂纽扣电池供货商-松下公司提供的电池容量报告,图中四条线代表最常用的电池尺寸(BRl225、BRl632、BR2330和BR3032)。电池供应商提供的额定电池容量(单位为mAH-毫安时)与电池尺寸相对应。电池结构/特征在其需要有备用电池的模块内选用一次性锂钮扣电池,这些电池的额定电压为3V,对系统典型工作电压为2.7V来说,则该锂钮扣电池作为备用电源非常合适。电池电压在放电状态下保持稳定平坦(见图2所示),电池放电接近终止时仍能提供与新电池几乎相同的电压。平坦的放电曲线对于备用电池而言是极为理想的特性,但它为估算电池的剩余电量增添了难度。一次性锂钮扣电池具有较好的可预测性,它的开路电压或内部阻抗等关键参数的离散性极小,极小的离散性使电池厂商筛选电池时很容易设置电池检测的条件,从而便于剔除有缺陷的电池,同时也有助于电池用户鉴别有故障的IC /电池系统。例如,电池电压离散性或电压与电池负载的对应关系是已知的,则电池加载后的电池电压可用以指示其电池的负载情况。如果电池负载与IC所需要的电流一致,则负载电压的离散性极小。根据从外部测得的负载电压可以检测异常IC或电池,从而排除潜在的可靠性风险。电池测试/筛选电池制造商经过100%的测试使产品性能极其一致,但是,任何用户为其系统选用电池时还需对电池作进一步测试,以确保最终产品选用工作正常的电池。经过适当的筛选可以检测出三种类型的缺陷:首先是那些被电池制造商的测试系统所遗漏的电池,这类电池最易检测;第二类缺陷是低水平的内部泄漏,这些电池可能经过一段时间后才能显现出它的内部故障,对于这类电池的检测不仅要了解其合适的测试电平,还要预先了解其测试结果的离散性;第三类缺陷是电池用户在处理或系统制造过程中产生的,由于电池容量是有限的,如果有意想不

到的负载在短时间内加到电池上,将会缩短电池使用寿命。应该说一个周密的筛选程序的关键是在制造工序中对电特性进行100%的测试。由于电特性是可预知的,加载前和加载后测试电池电压能够判断电池是否存在异常。此种筛选还可以识别那些非典型负载.除了电特性筛选,对电池进行视觉抽检有助于识别制造流程的变化,这些变化往往会导致漏电阻降低。关于电池可靠性模型与电池寿命计算可靠性模型电池是由一定数量并能够完全反应的活性成分组成的“平衡结构”,参加电反应的关键成份是金属锂、阴极和电解液。电池厂商的目标是在电池内容人尽可能多的能量,由于电池内部体积有限,当电池成份严格按照正确的比例配置时可以达到电池的最大能量密度。任何成份的损耗都可能影响其它成份的电反应。而”电池可靠性模型”主要考虑电池平衡结构,以探寻导致关键成份产生损耗的因素。电池寿命计算由于电池是系统中的消耗品,当把负载加到电池上时对电池寿命的制约是显而易见的。基于一定负载的电池寿命很容易计算,即用电池容量(单位为毫安时)除以所需负载电流(单位为毫安) 从而可得到电池使用寿命(小时)。确定电池寿命还需考虑电池负载的供电占空比。对于设计合理的系统来说,当系统电源供电时电池是处于电隔离状态,以防止电池漏电。对于长期由主电源供电,只是短期内依靠电池备份的系统而言,降低电池供电占空比可有效延长电池寿命。因为这些电池用于电流非常小,甚至是零电流的应用,用户还必须考虑其它可能会造成活性成份损耗的机制,如电解液通过卷筒式封装泄漏,这种机制表现出温度加速特性,活化能量近似为1.0eV(electron volt-电子伏特)。而室温下电池的电能损耗速率低于0.5%/每年,这时可以不考虑这种活性成份损耗机制。但随着温度升高使电解液有明显损耗时就必须考虑。由于活性成份的平衡性,不必考虑电解液损耗是由电反应造成还是由于温度升高导致泄漏造成。当电池没有足够的电解液继续反应时,电池也就不再提供电流。所以,在预测电池使用寿命时,推荐使用有综合考虑所需电能和温度因素的并联模型(见图3所示)。有些模型分别衡量电气或温度损耗支路,如果不考虑电解液泄漏对电池寿命的影响,当系统工作在室温以上的温度范围时,将会过高估计电池的使用寿命。估算电池寿命从概念上与计算两个并联等效电阻相同,用户可以控制IC消耗的功率是来自电池还是来自系统电源,所以,电流损耗支路包含了一个开关(如图3所示)。当IC由系统电源供电时(即Vcc=ON时,开关断开),电流损耗对电池寿命的影响可以忽略。 IC/电池系统制造商能够对其组成的元件在选择和制作筛选上能进行控制,适当的进行控制,有利于延长系统使用寿命.而最终用户则根据实际条件对如何有效利用电池能量进行控制.最终用户可以控制模型中的电气和温度损耗两个支路,而负载对电池能量的消耗则由电池的供电占空比来控制。系统电源供电时,器件的内部电池隔离电路能够阻断电池供电回路,禁止从电池吸收电流,可靠性模型中的电气负载支路只有在系统工作在备用电池状态时才起作用。系统环境温度影响温度加速支路,即电池自放电速率随着温度的升高而升高,见图4所示,使电池寿命缩短.为此,采用适当的制冷措施有助于降低电池温度,延长电池寿命。寿命计算举例系统系统工作在室温,100%由备用电池供电,室温下电解液的挥发非常少,可以忽略,电池使用时间由IC的电流确定。1、关于电损耗支路*电池容量(BRl632)=120mAh*IC吸收电流=1.2μA*占空比=100%*电池寿命=(0.12Ah)/1.2× A)=100000小时=11.4年2、关于电解液挥发支路*+25℃电池的寿命=230年*计算:(230×11.4)/(230+11.4)=10.9年情况系统工作于+60℃,50%的时间由备用电池供电,分别考虑电能消耗或电解液挥发因素时,电池寿命大约为20年,两种因素共同作用下电池寿命大约为10年。1、关于电消耗支路*电池容量(BRl632)=120mAh*IC吸收电流=1.2μA*电池寿命=(0.12Ah ×x50%)/(1.2× )=200,000小时=22.8年2、关于电解液挥发支路*电池于+60℃的寿命=19.1年*计算:(19.1×2 2.8)(19.1+22.8)=10.4年锂纽扣电池选用上的新方案与新途径集成电池控制器与锂纽扣电池组装应用如果系统包括由备用电池供电的SRAM或RTC时,选用适当的电池控制器非常重要,这些控制器在系统电源失效时能够自动切换到电池供电,它们还提供反向充电保护功能,符合(美国)保险商实验所或其它测试机构的要求。当不少厂商,如Dallas Semiconductor公司能提供独立的电池控制器,允许系统设计人员根据电池容量或布板要求选择。独立的电池控制器在适合特定应用的同时也会额外增加系统成本。最终用户不仅需要选择和采购适当的电池,而且制造流程也需要适应特定的电池。受电池容量的制约,制造过程中必须保证没有任何负载施加到电池上。这就要求采用绝缘的或非导电的工具搬运电池,然而,设计中的多数其它元件由于对ESD敏感,必须采用导电的工具搬运。构成锂电池的材料限制了其温度承受能力,回流焊会导

致电池损坏,这就需要考虑电池的安装方式,是利用机械托架装在PCB板上还是直接焊接在PCB板上?机械托架可以通过自动设备和回流焊安装在PCB板上,当高温处理完成后再装载电池。采用机械托架可以避免温度过高对电池的影响,但最终系统必须依靠机械接触使电池固定到位。如果将电池焊接在PCB板上,则需购买带有接头的电池,并在回流焊完成后再手工焊装。值得注意的是,利用电池控制器和单独的电池时还需考虑制造过程的清洁问题,即使是一点离子污染物的痕迹也能产生电量泄漏通路,作用在电池上的负载等同于IC负载,将会大大缩短电池寿命。电池模块产品采用包含了电池控制器和电池的模块产品能够避免以上讨论的问题,模块制造商具有符合要求的工艺,在安装电池时不会对其造成损伤,模块结构也有利于隔离电池与最终用户的应用环境,避免离子污染问题,有效延长电池寿命。此外,Dallas Semicondu ctor公司的模块具有“休眠模式’,在系统首次上电之前隔离电池。这一特点允许模块装配并完全测试后再将负载断开,使这些产品能够在不从电池吸取任何电流的条件下长期保存。值得注意的是,电池模块产品比集成电池控制器与锂纽扣电池应用的组装应用价格要高.结束语应该说Dallas Semiconductor公司设计和制造的电池备用产品能够为最终用户提供符合规定的电池寿命,电池寿命是在“最坏条件”下计算的,并假设器件100%的依靠电池供电、通过对电池损耗机制的理解。最终用户根据供电占空比和电池温度可以合理、精确地预测系统寿命。如果用户决定选择Dallas Semiconductor公司的电池控制器并自己为系统选配电池,需慎重考虑电池特性,适当的挑选IC并对电池进行测试以保证电池容量能够满足系统使用寿命的要求。

锂纽扣电池可靠性预测和应用寿命估算

锂纽扣电池可靠性预测和应用寿命估算 工业设备尤其是便携式设备均离不开嵌入的锂纽扣电池--系统的“源动力”。据此,锂纽扣电池的制造厂商及产品又是层出无穷、品种繁多,从而导致使许多最终用户在对其锂纽扣电池的使用寿命和选用上不是茫茫然就是束手无策。为此,如何解决这致关系统可靠安全的重要问题及如何寻找出新方案、新产品等新途径就成为其重中之重。目前国际上有不少著名制造厂商, 能提供有备用锂纽扣电池的非易失存储器(NVM—Non volatile MEMORY)或实时时钟(RTC)的应用产品,以确保当系统(微控制器、嵌入式等系统)掉电时保存数据或信息。这些产品的典型规格是在没有系统电源的条件下提供10年的使用寿命。因为最终应用是不确定的,所以对使用寿命的预测还是比较保守的。最终用户针对锂纽扣电池的具体应用, 应评估(电池结构/特征、电池测试/筛选、容量等)或预期出使用寿命,特别是对那些工作环境超出了典型范围或所需应用时间超过10年的用户来说。必须了解这电池可靠性模型,这将有助于用户单独选购电池控制器, 从而又将电池控制器与电池组装在一起构成性能价格比较高的锂纽扣电池,也就解决了不必购买包含电池控制器和电池在内的高成本模块问题。本文论述了备用锂纽扣电池应用寿命估算及寿命对IC集成电路(指SRAM--静态随机存取存储器或RTC)影响的有关问题。这儿指IC均属于是由系统电源供电或锂备用电池供电。为此,首先要说明为何选用备用电池?为何选用备用电池众所周知,系统断电时,有多种保存数据的方案,当对读写速度或周期数要求比较严格时,有备用电池的SRAM是一种较为可靠的替代方案。闪存或EEPROM同样提供NV(非易失)数据存储,但在简易性和速度指标上存在不足。而有备用电池的SRAM, 其主要缺陷是电池是一个消耗品,产品选择必须慎重考虑电池容量并确定其产品最终的使用寿命。对于没有系统电源供电同时要保持信息或计时功能,并需要提供一定的电能才能维持晶振工作,则用电池提供电流是非常适合的.IC集成电路所需电流如果IC(SRAM或RTC)将由电池供电,则需要在IC工作时的电流、使用寿命与电池容量之间加以匹配。购买电池和IC时,其数据手册将提供与IC负载相对应的有关估算电池寿命的信息,如果购买集IC和电池于一体的模块,则最终用户应依靠模块厂商对模块产品的适当筛选来保证系统使用寿命的要求。半导体制造厂商为其所有电池供电产品制订了测试条件,以保证在电池容量的允许范围内为最终器件提供10年的使用时间。而Dallas Semiconductor公司对这种应用的IC进行优化设计并利用先进的处理工艺满足低电流的需求。对于其它供货商提供的高密度SRAM需作特殊的筛选才能满足模块使用寿命的要求。图1来自于由锂纽扣电池供货商-松下公司提供的电池容量报告,图中四条线代表最常用的电池尺寸(BRl225、BRl632、BR2330和BR3032)。电池供应商提供的额定电池容量(单位为mAH-毫安时)与电池尺寸相对应。电池结构/特征在其需要有备用电池的模块内选用一次性锂钮扣电池,这些电池的额定电压为3V,对系统典型工作电压为2.7V来说,则该锂钮扣电池作为备用电源非常合适。电池电压在放电状态下保持稳定平坦(见图2所示),电池放电接近终止时仍能提供与新电池几乎相同的电压。平坦的放电曲线对于备用电池而言是极为理想的特性,但它为估算电池的剩余电量增添了难度。一次性锂钮扣电池具有较好的可预测性,它的开路电压或内部阻抗等关键参数的离散性极小,极小的离散性使电池厂商筛选电池时很容易设置电池检测的条件,从而便于剔除有缺陷的电池,同时也有助于电池用户鉴别有故障的IC/电池系统。例如,电池电压离散性或电压与电池负载的对应关系是已知的,则电池加载后的电池电压可用以指示其电池的负载情况。如果电池负载与IC所需要的电流一致,则负载电压的离散性极小。根据从外部测得的负载电压可以检测异常IC或电池,从而排除潜在的可靠性风险。电池测试/筛选电池制造商经过100%的测试使产品性能极其一致,但是,任何用户为其系统选用电池时还需对电池作进一步测试,以确保最终产品选用工作正常的电池。经过适当的筛选可以检测出三种类型的缺陷:首先是那些被电池制造商的测试系统所遗漏的电池,这类电池最易检测;第二类缺陷是低水平的内部泄漏,这些电池可能经过一段时间后才能显现出它的内部故障,对于这类电池的检测不仅要了解其合适的测试电平,还要预先了解其测试结果的离散性;第三类缺陷是电池用户在处理或系统制造过程中产生的,由于电池容量是有限的,如果有意想不

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力电池包和系统测试规程 范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008 电工电子产品环境试验第2部分:试验方法试验Db 交变湿热(12h+12h循环)(IEC 60068-2-30:2005,IDT) GB/T 2423.43-2008 电工电子产品环境试验第2部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006 电工电子产品环境试验第2部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001 电动汽车安全要求第1部分:车载储能装置(ISO/DIS 6469-1:2000,EQV)GB/T 18384.3-2001 电动汽车安全要求第3部分:人员触电防护(ISO/DIS 6469-3:2000,EQV)GB/T 19596-2004 电动汽车术语(ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 1: General,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 3: Mechanical loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条件和试验第4部分:气候负荷(Road vehicles - Environmental conditions and testing for electrical and electronic equipment Part 4: Climatic loads,MOD) 术语和定义 1.1 蓄电池电子部件 采集或者同时监测蓄电池单体或模块的电和热数据的电子装置,必要时可以包括用于蓄电池单体均衡的电子部件。 注:蓄电池电子部件可以包括单体控制器。单体电池间的均衡可以由蓄电池电子部件控制,或者通过蓄电池控制单元控制。 1.2 蓄电池控制单元 battery control unit (BCU) 控制、管理、检测或计算电池系统的电和热相关的参数,并提供电池系统和其他车辆控制器通讯的电子装置。 1.3 1 / 20

动力电池剩余寿命预测

动力电池剩余寿命预测 锂离子动力电池的内部机理十分复杂,导致其性能衰退的原因众多,而且多种因素相互耦合,最终形成了极具挑战性的工程问题。动力电池的性能衰退问题贯穿于使用和维护的全过程,随着动力电池充放电循环次数的增加,动力电池内部往往会发生一些不可逆转的化学反应,导致内阻增大,最大可用容量、能量以及峰值功率能力衰减,从而大大地削减了电动汽车的续驶里程,甚至带来了一些安全隐患。可靠的RUL预测可以充分解决用户对剩余续驶里程不明的焦虑以及对安全问题的担忧,保障动力电池组安全高效运行,还能在很大程度上确保电动汽车在运行过程中的安全性和可靠性,降低故障率和运行成本,提升用户体验,避免事故发生。因此,动力电池RUL预测是动力电池管理的核心内容之一。本章首先将介绍动力电池RUL 预测的相关概念,再对当前主流的RUL预测方法进行总结与分类,最后从原理和实践层面详细介绍两种具有代表性的动力电池RUL预测方法,指导动力电池系统RUL的精确预测。

6.1 剩余寿命预测的概述 6.1.1 问题描述 动力电池的RUL是指在一定的充放电制度下,动力电池的最大可用容量衰减退化到某一规定的失效阈值所需要经历的循环周期数量。RUL预测是一个基于动力电池历史数据运用一定的数学手段对其残值寿命进行预测计算的过程。随着动力电池在各领域上的广泛应用,动力电池RUL预测技术得到了广泛的关注和研究。 目前,数据驱动是动力电池RUL预测的主要手段,其核心在于对容量衰减轨迹和历史数据的挖掘、提炼和推广。应用数据驱动的手段进行动力电池的RUL预测,首先需要获取动力电池老化实验的容量数据或容量衰减轨迹,从中挖掘和提炼动力电池寿命衰减的内在规律,进而对容量数据进行推广和延伸,最终实现动力电池未来寿命轨迹的预测。一般来说,基于数据驱动的动力电池RUL预测方法具有过程简单、计算量少且无须考虑动力电池复杂机理等优势,能够有效减轻BMS的运行负担,适用于实车的运行环境。 6.1.2 方法分类

锂电池来料检验的标准新.docx

序号更改前章节 / 条款内容更改后章节 / 条款内容更改后版本提出人批准人生效日期1全页次全版更新A1熊佳敏蔡大军2016-6-17 2检验项目更新A2

1、目的 使锂电池在我司入料及制程中相关检验人员有所依据,确保锂电池满足质量要求。 2、适用范围 适用于联维亚所有锂电池的来料检验。 3、职责 品保单位:依据本检验规范进行入料检验,判定检验结果。 4、引用标准 引用GB/T31241-2014便携式电子产品用锂电池安全要求,GB/T18287-2013移动电话用锂电池总规范。 抽样检验依GB/T 2828-2003标准,按一般检验Ⅱ级水平,Cri:代表致命缺陷,AQL =0;Maj :代表主要缺陷,AQL =;Min :代表次要缺陷,AQL =;常规充放电测试按特殊检验S-3级水平进行检验。 5、缺陷定义 致命缺陷:产品存在对使用者的人身及财产安全构成威胁的缺陷。 主要缺陷:功能缺陷影响正常使用,性能参数超出规格标准,导致客户拒绝购买的严重外观缺陷;包装存在可 能影响到产品形象的缺陷。 次要缺陷:不影响产品使用,最终客户有可能愿意让步接受的缺陷。 6、工作工序 检验条件 荧光灯强度:400— 800Lux( 60W—100W)或自然光; 检查距离: 30-35cm; 目视 +放大镜、数显卡尺、样品、承认检验条件检验时间:10s± 5s; 书、万用表、电池综合测试仪检验角度:水平方位45°± 15°; 检验人员裸视或矫正视力以上,不能有色盲、色弱者。 检验项目 检验项目抽样判 内容检验工具抽样数 定 1. 工艺检查:电池工艺与承认书及样品核对一致,每批来料抽检3-5PCS/ 目视 / 样Maj 外观解剖观察内部结构,不允许轻易更改工艺(保护板安装位置,绝批 品 / 剪钳 缘胶纸材质、颜色,线头绝缘方式等)。

产品可靠性试验报告模板

产品可靠性试验报告一、试验样品描述 二、试验阶段 三、试验结论

四、试验项目

High Temperature Storage Test (高温贮存) 实验标准: 产品可靠性试验报告 测试产品状态 ■小批□中批□量产 开始时间/Start Time 结束时间/Close Time 试验项目名称/Test Item Name High Temperature Storage Test (高温贮存) 产品名称Name 料号/P/N (材料类填写供应商) 试验样品/数量 试验负责人 (5Pcs ) 实验测试结果 ■通过□不通过□条件通过 试验目的 验证产品在高温环境存储后其常温工作的电气性能的可靠性 试验条件 Test Condition 不通电,以正常位置放入试验箱内,升温速率为1℃/min,使产品温度达到70℃,温度稳定后持续8小时,完成测试后在正常环境下放置2小时后进行产品检查 试验条件图 Test Condition 仪器/设备 高温烤箱、万用表、测试工装 合格判据 试验后样品外观、机械性能、电气性能、等各项性能正常 包装压力测试 OK 包装振动测试 OK 包装跌落测试 OK Group 7 酒精测试 OK RCA 纸带耐磨测试 附着力测试 OK 百格测试 OK 材料防火测试

备注说明 注意:测试不通过或条件通过时需要备注说明现象或原因、所有工作状态机器需要连接信号线、功能测试涵盖遥控距离和按键功能 Low Temperature Storage Test(低温贮存) 实验标准: 产品可靠性试验报告 测试产品状态■小批□中批□量产 开始时间/Start Time 结束时间/Close Time试验项目名称/Test Item Name Low Temperature Storage Test (低温贮存) 机型名称Name料号/P/N(材料类填写供应商)试验样品/数量试验负责人实验测试结果■通过□不通过□条件通过 试验目的验证产品低温环境存储后其常温工作的电气性能的可靠性 试验条件Test Condition 不通电,以正常位置放入试验箱内,降温速率为1℃/min,使试验箱温度达到-30℃,温度稳定后持续8小时,完成测试后在正常环境下放置2小时,后进行产品检查. 试验条件图Test Condition

锂电池测试报告

---- 第 1 页 ---- 二次电池测试结果 打印时间:2012,11,21--08:04 工作通道:002_1 启动时间:2012,11,20--20:14:56 安全保护:1.00V--15.00V, ±1610mA 限制条件 工作过程 1: 恒流充电1400mA4.20V160Min. 50mA 2: 静置10Min. 3: 恒流放电1000mA 2.40V 4: 静置10Min. 5: 恒流充电1200mA4.20V220Min. 3.90V 20mA 6: 停止 □1 : 1 恒流充电(1--141): 513.5 mAh [2157.5 mJ] 1) 0.0 Min 3.937 V 61.8 mA 0.2 W 0.0 mAh 141) 138.7 Min 4.201 V 50.0 mA 0.2 W 513.5 mAh □1 : 2 静置(142--152): 0.0 mAh [0.0 mJ] 142) 0.0 Min 4.190 V 0.0 mA 0.0 W 0.0 mAh 152) 10.0 Min 4.179 V 0.0 mA 0.0 W 0.0 mAh □1 : 3 恒流放电(153--289): 2225.8 mAh [7547.3 mJ] 153) 0.0 Min 3.968 V -1000.0 mA -4.0 W 0.0 mAh 289) 133.6 Min 2.398 V -1000.0 mA -2.4 W 2225.8 mAh □2 : 4 静置(290--306): 0.0 mAh [0.0 mJ] 290) 0.0 Min 2.741 V 0.0 mA 0.0 W 0.0 mAh 306) 10.0 Min 3.403 V 0.0 mA 0.0 W 0.0 mAh □2 : 5 恒流充电(307--343): 689.2 mAh [2633.7 mJ] 307) 0.0 Min 3.625 V 1200.3 mA 4.4 W 0.0 mAh 343) 34.5 Min 3.900 V 1200.3 mA 4.7 W 689.2 mAh

【CN110188920A】一种锂电池剩余寿命预测方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910341857.2 (22)申请日 2019.04.26 (71)申请人 华中科技大学 地址 430074 湖北省武汉市洪山区珞喻路 1037号 (72)发明人 袁烨 马贵君 程骋 张永  周倍同  (74)专利代理机构 华中科技大学专利中心 42201 代理人 曹葆青 李智 (51)Int.Cl. G06Q 10/04(2012.01) G01R 31/367(2019.01) G01R 31/392(2019.01) G06N 3/04(2006.01) G06N 3/08(2006.01) (54)发明名称一种锂电池剩余寿命预测方法(57)摘要本发明公开了一种锂电池剩余寿命预测方法,包括:采集锂电池多个充放电循环的电容量,并进行归一化;对归一化后的多个电容量进行窗口划分,得到训练数据集;将所述训练数据集输入包括卷积神经网络和长短记忆循环神经网络的退化状态模型进行训练;将所述训练数据集最后一个窗口数据输入到训练好的退化状态模型中进行滑动预测,直至预测的电容量达到容量退化阈值点;根据预测的容量值对应的滑动循环次数预测待测锂电池的剩余寿命。本发明融合卷积神经网络的特征提取能力和长短记忆循环神经网络的时间序列预测能力,有效的对锂电池的退化特征进行提取和预测,提高了预测精度。且使用假最邻近法自动对退化指标进行窗口大小的确定, 提高了计算效率。权利要求书2页 说明书8页 附图3页CN 110188920 A 2019.08.30 C N 110188920 A

电池可靠性试验标准1

体系文件第三阶页次:1/6深圳联维亚电子科技有限公司文件编号:版本:A 主题:电池可靠性试验标准 电池可靠性试验标准 编制部门:品保部分发号码: 发布日期:年月日文件管制:一般 起草者:高全明陈玉山日期: 2010 年09月20日 审查:日期:年月日 核准:日期:年月日

主题:电池可靠性试验标准

主题:电池可靠性试验标准 1.目的 根据相关国家、国际、行业标准,模拟各种高于客观实际的环境条件,对产品、部件进行全面的可靠性测试,以确保产品整个生命期间的实用性。 2.范围 本标准规定了适用于各类移动电话、数码产品电池的试验规范、技术要求、标志、包装、运输及储存。 3.定义: 3.1本规范采用GB/T2900.11规定的术语和下列定义。 3.2 蜂窝电话用锂离子电池ithium-ion battery for cellular phone指由一只或多只锂离子单体蓄电池及附件组合而成的,于蜂窝电话的电池。 3.3 充电限制电压limited charge voltage 按生产厂规定,电池有恒流充电转入恒压充电时的电压值 3.4 额定容量 生产厂标明的电池容量,指电池在环境温度为20?C+5?C条件下,以5H率放电至终止电 表示,单位为Ah(安培小时)或mAh(毫安小时)压时所应提供的电量,用C 5 3.5 标称电压 nominal voltage用以表示电池电压的近似值。 3.6 终止电压 cut-off voltage 规定放电终止时电池的负载电压,其值为n X 3 V (锂离子单体电池的串联只数用“n”表示,下同)。 4.参考标准 4.1中华人民共和国通信行业标准GB/T18287-2000《蜂窝电话用锂离子电池总规范》 4.2中华人民共和国国标GB/T 15844.2-1995《移动通信调频无线电话机环境要求和试验方法》 4.3《行业标准》 5.实验室环境要求 5.1环境温度: +15℃~ +35℃ 5.2相对湿度: 30%~60% 5.3大气压力: 86kPa~106kPa 6. 测试标准 6.1在环境温度20℃+5℃的条件下,以0.2C A充电,当电池端电压达到充电限制电压后, 5

锂离子电池性能测试

华南师范大学实验报告 学生姓名:蓝中舜学号:20120010027 专业:新能源材料与器件勷勤创新班年级、班级:12新能源 课程名称:化学电源实验 实验项目:锂离子电池性能测试 实验类型:验证设计综合实验时间:2014年5月5日-17日 实验指导老师:马国正组员:黄日权郭金海 一、实验目的 1.熟悉、掌握锂离子电池的结构及充放电原理。 2.熟悉、掌握锂离子正极材料的制备过程及工艺。 3.熟悉、掌握锂离子电池的封装工艺及模拟电池测试方法。 二、实验原理 锂离子电池是指正负极为Li+嵌入化合物的二次电池。正极通常采用锂过渡金属氧化物 Li x CoO2,Li x NiO2或Li x Mn2O4,负极采用锂-碳层间化合物Li x C6。电解质为溶有锂盐LiPF6,LiAsF6,LiClO4等的有机溶液。溶剂主要有碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)和氯碳酸酯(CIMC)等。在充放电过程中,Li+在两极间往返嵌入和脱出,被形象的称之为“摇椅电池”。 锂离子电池充放电原理和结构示意图如下。 锂离子电池的化学表达式为: -)Cn|LiPF6-EC+DMC|LiM x O y(+ 其电池反应为: LiM x O y+nC Li1-x M x O y+Li x C n 本实验以高温固相法制备的尖晶石型LiMn2O4为正极材料,纯锂片为负极,制备扣式锂离子模拟电池,并对制备的扣式半电池进行充放电测试。 三、仪器与试剂 电化学工作站,蓝点测试系统、手套箱、电子天平、真空干燥箱、切片机、对辊机、鼓风干燥机 LiMn2O4、乙炔黑、PVDF、无水乙醇、电解液(1M LiPF6溶与体积比EC:DEC:EMC=1:1:1

锂电池梯次利用

锂电池梯次利用 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

背景 近年来,受益于政策、补贴,我国新能源汽车呈现快速增长,进而导致动力锂电池的需求量和报废量不断增长。统计数据显示,2015年中国锂电池总产量47.13Gwh,其中,动力电池产量16.9Gwh,占比36.07%;消费锂电池产量23.69Gwh,占比50.26%;储能锂电池产量1.73Gwh,占比3.67%。《报告》测算,到2020年动力锂电池的需求量将达到 125Gwh,报废量将达32.2Gwh,约50万吨;到2023年,报废量将达到101Gwh,约116万吨。 当前,电池金属材料资源的供需不平衡正逐渐显现。随着新能源车下游需求逐步明确,国内动力电池厂商2016-2017年纷纷扩大产能,尤其是三元电池的扩张,进一步提升了对钴的需求因此从废旧电池中回收再利用钴也越来越具有经济性。对企业而言,动力电池回收蕴藏着巨大的商机,经过回收处理,可以为电池生产商节约原材料成本。此外,动力电池回收还与政府建设低碳经济和环境友好型社会密切相关。 电动汽车的动力电池性能会随着充电次数的增加而衰减,当电池容量衰减至额定容量的80%以下时,动力电池就不适于应用在电动汽车上,这意味着其在电动汽车上的使用寿命终止。如果直接将电池淘汰,必将造成资源的严重浪费,同时也会导致环境污染。 国标GB/T34013-2017《电动汽车用动力蓄电池产品规格尺寸》明确规定了电动汽车用动力蓄电池的单体、模块和标准箱尺寸规格要求。这一标准可有效解决此前存在于动力电池梯次利用中,动力电池由于尺寸不一难以匹配储能电站或家用储能设备结构的难题,也降低了动力电池的梯次回收利用的门槛。 国标GB/T34014-2017《汽车动力蓄电池编码规则》规定了动力电池编码基本原则、编码对象、代码结构和数据载体。该标准发布,可在动力电池生产管理、维护和溯源、电动汽车关键参数监控,特别是在动力电池回收利用环节,凭借可追溯性和唯一性,更加准确地确定动力电池回收的责任主体。 国标GB/T34015-2017《车用动力电池回收利用余能检测》。则规范了动力电池外观检查、极性检测、电压判别、充放电电流判别、余能测试等检测流程,为车用动力电池的余能检测提供评价依据,有助于提高废旧动力蓄电池余能检测的安全性和科学性。 随着新能源汽车保有量的增长,动力锂电池的梯次利用和回收成为一个必须面对的问题。在动力锂电池梯次利用和回收尚未发展成熟的情况下,运营模式就显得尤为重要,这关乎成本和盈利等企业切身利益。目前国内已有企业在动力锂电池的梯次利用和回收方面展开布局,运营模式也各有不同。 动力电池梯次利用的意义在于从电池原材料—电池—电池系统—汽车应用—二次利用—资源回收—电池原材料的电池全生命周期使用角度考虑,可以降低电池成本,避免环境污染。

电动工具锂离子电池的几个安全测试方法(正式)

编订:__________________ 单位:__________________ 时间:__________________ 电动工具锂离子电池的几个安全测试方法(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-7963-68 电动工具锂离子电池的几个安全测 试方法(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 现在电动工具的市场正慢慢变得庞大,电动工具用的环保型锂电池各国也在致力开发。这类环保的锂离子电池具有比功率大、自放电小,比能量高、充电效率高、无环境污染、工作温度宽等特点,比起因污染问题逐渐退出市场的镍镉电池,逐渐占领了主导的地位。 这类电池可通过过充、短路、针刺、挤压、重物撞击等安全测试,电池不起火,不爆炸。可以再电动工具中得到使用。 锂离子电池的安全测试 锂离子电池在电动工具中使用时都采用保护板对电池进行安全保护,但在实际使用时保护板不可能达到100%的可靠性。且还有可能碰到充电器故障或其他

种种意外。这就要求锂离子电池必须具有良好的滥用及意外情况的承受能力。我们在电动工具用磷酸亚铁锂锂离子电池开发过程中需对电池进行过充、短路、针刺、挤压、重物等项目的测试。 挤压测试:BE-6045 将充满电的电池放在一个平面上,由油压缸施与13+1KN的挤压力,由直径为32mm的钢棒平面挤压电池,一旦挤压压力到达最大停止挤压,电池不起火,不爆炸即可。 重物撞击测试:BE-5066 电池充满电后,放置在一个平面上,将直径15.8mm的钢柱垂直置于电池中心,将重量9.1kg的重物从610mm的高度自由落到电池上方的钢柱上。电池不起火、不爆炸即可。 过充测试: 将电池用1C充满电,按照3C过充10V进行过充试验,当电池过充时电压上升到一定电压时稳定一段时间,接近一定时间时电池电压快速上升,当上升至

电动汽车用锂离子动力蓄电池包和系统测试规程

电动汽车用锂离子动力蓄电池包和系统测 试规程 电动汽车用锂离子动力电池包和系统测试规程 1范围 本标准规定了电动汽车用锂离子动力电池包和系统基本性能、可靠性和安全性的测试方法。 本标准适用于高功率驱动用电动汽车锂离子动力电池包和电池系统。 2规范性引用文件(其中的一部分) 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 2423.4-2008电工电子产品环境试验第2部分:试验方法试验Db交变湿热(12h+ 12h循环)(IEC 60068-2- 30:2005,IDT )

GB/T 2423.43-2008电工电子产品环境试验第2 部分:试验方法振动、冲击和类似动力学试验样品的安装(IEC 60068-2-47:2005,IDT) GB/T 2423.56-2006电工电子产品环境试验第2 部分:试验方法试验Fh:宽带随机振动(数字控制)和导则(IEC 60068-2-64:1993,IDT) GB/T 18384.1-2001电动汽车安全要求第1部分: 车载储能装置(ISO/DIS 6469-1:2000,EQV ) GB/T 18384.3-2001电动汽车安全要求第3部分: 人员触电防护(ISO/DIS 6469-3:2000,EQV ) GB/T 19596-2004 电动汽车术语 (ISO 8713:2002,NEQ) GB/T xxxx.1- xxxx 道路车辆电气及电子设备的环境条件和试验第1部分:一般规定(Road vehicles - En vir onmen tal con diti ons and testi ng for electrical and electronic equipment Part 1: Gen eral,MOD) GB/T xxxx.3- xxxx 道路车辆电气及电子设备的环境条件和试验第3部分:机械负荷(Road vehicles - En vir onmen tal con diti ons and testi ng for electrical and electronic equipment Part 3: Mecha ni cal loads,MOD) GB/T xxxx.4- xxxx 道路车辆电气及电子设备的环境条

电子产品可靠性测试报告.docx

XXXX股份有限公司检测中心 检测报告 报告编号:2019-5-25 样品名称电子产品可靠性测试样品编号2019-5-25 委托单位XXXX 实业有限公司型号/规格RC661-Z2委托单位 XXXXXX检测类别委托试验地址 样品来源 收样日期2019年4月15日 委托方送样 方式 2019 年4月15日~ 样品数量120检测日期 2019年5月15日 1.高低温工作试验10.外箱跌落试验18.标签酒精测试 2.高温高湿工作试验11.外箱振动试验19.盐雾测试 3.外箱温湿度交变储存试验 12.稳定性测试20.外箱抗压测试 4.外箱高温高湿储存试验13.铅笔硬度测试21.ESD 测试 检测项目 5.冷热冲击试验14.底噪测试22.电源通断测试 6.裸机跌落试验15.防水测试23.裸机振动试验 7.裸机微跌试验16.大头针缝隙安全测试 https://www.docsj.com/doc/117851305.html,B 线摇摆测试 8.彩盒包装跌落试验17.标签橡皮测试25.125℃高温存放 9.快递盒包装跌落试验 样品说明委托方提供120 个样品用于本次试验,其中: 裸机 40台, PCBA 20 块,带包装 3 箱( 60台)。

参考标准: 检测依据 YD/T 1539-2006《移动通信手持机可靠性技术要求和测试方法》 检测结论样品按照要求完成了测试,测试结果见报告正文 备注--- 编制:审核:批准: 批准人职务: 年月日年月日年月日 第1页共 9页

XXXX股份有限公司检测中心 检测报告 报告编号:2019-5-25 试验情况综述 序号项目 1高低温1 标准要求 温度45℃ 试验情况 工作 试验 2高温 高湿 工作 试验3外箱 温湿度 交变 储存 试验 持续时间 6 小时 2温度45℃~ -10 ℃ 降温时间 2 小时 3温度-10 ℃ 持续时间 6 小时 4温度-10 ℃~ 45℃ 升温时间 1 小时 每循环时间15小时 循环次数4 样品状态在线测试 温度40℃ 相对湿度90﹪ 持续时间96h 样品状态在线测试 1温度70℃ 湿度40﹪ 持续时间12 小时 2温度70℃~ -20 ℃ 降温时间 2 小时 3温度-20 ℃ 4持续时间12 小时 温度-20 ℃~ 湿度40 ﹪ 升温时间 1 小时 每循环时间27 小时 循环次数4 样品状态包装、不

锂电池生产中各种不良原因及分析报告

各种不良原因的造成以及原因分析20130830 一、短路: 1、隔膜刺穿: 1)极片边尾有毛刺,卷绕后刺穿隔膜短路(分切刀口有毛刺、装配有误); 2)极耳铆接孔不平刺穿隔膜(铆接机模具不平); 3)极耳包胶时未包住极耳铆接孔和极片头部(裁大片时裁刀口有毛刺); 4)卷绕时卷针划破隔膜(卷针两侧有毛刺); 5)圧芯时气压压力太大、太快压破隔膜(气压压力太大,极片边角有锐角刺穿隔膜纸)。 2、全盖帽时极耳靠在壳闭上短路: 1)高温极耳胶未包好; 2)壳壁胶纸未贴到位; 3)极耳过长弯曲时接触盖帽或壳壁。 3、化成时过充短路: 1)化成时,正负极不明确反充而短路; 2)过压时短路; 3)上柜时未装好或部电液少,充电时温度过高而短路。 4、人为将正负极短路: 1)分容上柜时正负极直接接触; 2)清洗时短路。 二、高阻: 1、焊接不好:极耳与极片的焊接;极耳与盖有虚焊。 2、电液偏少:注液量不准确偏少;封口时挤压力度过大,挤出电液。 3、装配结构不良:极片之间接触不紧密;各接触点面积太小。 4、材质问题:极耳及外壳的导电性能;电液的导电率;石墨与碳粉的导电率。 三、发鼓: 1、电池有水分:制造流程时间长;空气潮湿;极片未烘干;填充量过大,入壳后直接发鼓;极片反弹超厚,入壳后发鼓。 2、短路:过充或短路。 3、高温时发鼓;超过50°C温度发鼓。 四、低容量:

1、敷料不均匀,偏轻或配比不合理。 2、生产时断片、掉料。 3、电液量少。 4、压片过薄。 五、极片掉料: 1、烘烤温度过高,粘接剂失效。 2、拉浆温度过高。 3、各种材料因素:如P01、PVDF、SBR、CMC等性能问题。 4、敷料不均匀。 六、极片脆: 1、面密度大,压片太薄。 2、烘烤温度过高。 3、材料的颗粒度,振头密度等。 各工位段不良原因的造成及违规操作 一、配料: 不良原因:1)各种添加剂与P01的配比; 2)浆料中的气泡;导致拉浆时不良率增加,以及 3)浆料中的颗粒;正负极活性物质的容量发挥和 4)浆料的粘度。极片掉料。 不良操作: 1)加入添加剂时少加或多加; 2)浆料搅拌时间不准确; 3)浆料中添加剂或多或少。 二、拉浆: 不良原因:1)敷料不均; 2)掉料或湿片;不良率增多,和电池性能不好。 3)断带。 不良操作: 1)刀口调试不标准或刀口垫干料,或走速太快;

可靠性测试产品高加速寿命试验方法指南

术语和定义 HALT(High Accelerated Life Test):高加速寿命试验,即试验中对试验对象施加的环境应力比试验对象整个生命周期内,包括运输、存储及运行环境内,可能受到的环境应力大得多,以此来加速暴露试验样品的缺陷和薄弱环节,而后对暴露的缺陷和故障从设计、工艺和用料等诸方面进行分析和改进,从而达到快速提升可靠性的目的。 运行限或操作限(Operation Limit):指产品某应力水平上失效(样品不工作或其工作指标超限),但当应力值略有降低或回复初始值时,试样又恢复正常工作,则样品能够恢复正常的最高应力水平值称为运行限。 破坏限(Destruct Limit):在某应力水平上升到某值时,样品失效,即使当应力回落到低于运行限时,试样仍然不能恢复正常工作,这时的应力水平值称为破坏限。 裕度(Margin):产品运行环境应力的设计限与运行限或破坏限的差值。产品的裕度越大,则其可靠性越高。 夹具(Fixture):在HALT试验的振动项目中固定试样的器具。振动试验必须使用夹具,使振台振动能量有效地传递给试样。 加速度传感器(Accelerometer):在某方向测量试样振动加速度大小的传感器。在HALT试验的振动项目中使用加速度传感器可以监视试验箱振动能量通过夹具有效传递给试样的效率。 振动功率谱密度(Vibrating Power Spectral Density):也称为加速谱密度,衡量振动在每个频率点的加速度大小,单位为(g2/Hz)。 Grms(Gs in a root mean square):振动中衡量振动强度大小的物理单位,与加速度单位相同,物理含义为对振动功率谱密度在频率上积分后的平方根。 热电偶(Thermocouple):利用“不同导体结合在一起产生与温度成比例的电压”这一物理规律制作的温度传感器。在HALT试验的热应力测试项目中,利用热电偶监视产品各点的温度分布。 功能测试(Functional Test):对试样的测试,用以判断试样能否在测试环境下完成规定的功能,性能是否下降。一般是通过测量试样的关键参数是否达到指标或利用诊断模式测试试样的内部性能。 摘要:本文围绕产品HALT试验,详细介绍HALT试验基本要求、总体过程及试验过程。 关键词:HALT试验、基本要求、试验过程 1、HALT试验基本要求 1.1对试验设备的要求 1.1.1对试验箱的要求 做HALT试验的设备必须能够提供振动应力和热应力,并满足下列指标: 振动应力:必须能够提供6个自由度的随机振动;振动能量带宽为2Hz~10000Hz;振台在无负载情况下至少能产生65Grms的振动输出。 热应力:目标是为产品创造快速温度变化的环境,要求至少45℃/min的温变率;温度许可范围至少为-90℃~+170℃。

系统测试报告(详细模板)

xxxxxxxxxxxxxxx 系统测试报告 xxxxxxxxxxx公司 20xx年xx月

版本修订记录

xxxxxx测试报告 目录 1引言 (1) 1.1编写目的 (1) 1.2项目背景 (1) 1.3术语解释 (1) 1.4参考资料 (1) 2测试概要 (2) 2.1系统简介 (2) 2.2测试计划描述 (2) 2.3测试环境 (2) 3测试结果及分析 (3) 3.1测试执行情况 (3) 3.2功能测试报告 (3) 3.2.1系统管理模块测试报告单 (3) 3.2.2功能插件模块测试报告单 (4) 3.2.3网站管理模块测试报告单 (4) 3.2.4内容管理模块测试报告单 (4) 3.2.5辅助工具模块测试报告单 (4) 3.3系统性能测试报告 (4) 3.4不间断运行测试报告 (5) 3.5易用性测试报告 (5) 3.6安全性测试报告 (6) 3.7可靠性测试报告 (6) 3.8可维护性测试报告 (7) 4测试结论与建议 (9) 4.1测试人员对需求的理解 (9) 4.2测试准备和测试执行过程 (9) 4.3测试结果分析 (9) 4.4建议 (9)

1引言 1.1 编写目的 本测试报告为xxxxxx软件项目的系统测试报告,目的在于对系统开发和实施后的的结果进行测试以及测试结果分析,发现系统中存在的问题,描述系统是否符合项目需求说明书中规定的功能和性能要求。 预期参考人员包括用户、测试人员、开发人员、项目管理者、其他质量管理人员和需要阅读本报告的高层领导。 1.2 项目背景 项目名称:xxxxxxx系统 开发方:xxxxxxxxxx公司 1.3 术语解释 系统测试:按照需求规格说明对系统整体功能进行的测试。 功能测试:测试软件各个功能模块是否正确,逻辑是否正确。 系统测试分析:对测试的结果进行分析,形成报告,便于交流和保存。 1.4 参考资料 1)GB/T 8566—2001 《信息技术软件生存期过程》(原计算机软件开发规范) 2)GB/T 8567—1988 《计算机软件产品开发文件编制指南》 3)GB/T 11457—1995 《软件工程术语》 4)GB/T 12504—1990 《计算机软件质量保证计划规范》 5)GB/T 12505—1990 《计算机软件配置管理计划规范》

产品可靠性试验报告

产品可靠性试验报告(初稿) 一、试验样品描述 项目描述备注产品型号 Sample type: 样品数量 Sample qty: 硬件版本 H/W version: 软件版本 S/W version: 测试申请人: Test applicant: 申请日期 Application date: 二、试验阶段 测试单位 测试阶段□样品■小批□中批□量产 三、试验结论 测试结论■通过□不通过□条件通过

四、试验项目 Summary of Contents 测试项目测试结果备注 Group 1 高温贮存OK 低温贮存OK 恒温恒湿贮存OK 高低温度/电压交变测试 交变湿热OK Group 2冷热冲击测试OK 振动测试OK 跌落测试OK 防水测试 漏电起痕测试 灼热丝测试 雷击测试 噪音测试 ROHS测试 Group 3 按键寿命测试OK 插拔寿命测试OK 接口弯折测试OK 电线摇摆测试 盐雾测试 Group 4开/关机测试OK 耐高压试验OK ESD测试

High Temperature Storage Test (高温贮存) 实验标准: 产品可靠性试验报告 测试产品状态 ■小批□中批□量产 开始时间/Start Time 结束时间/Close Time 试验项目名称/Test Item Name High Temperature Storage Test (高温贮存) 产品名称Name 料号/P/N (材料类填写供应商) 试验样品/数量 试验负责人 (5Pcs ) 实验测试结果 ■通过□不通过□条件通过 试验目的 验证产品在高温环境存储后其常温工作的电气性能的可靠性 试验条件 Test Condition 不通电,以正常位置放入试验箱内,升温速率为1℃/min ,使产品温度达到70℃,温度稳定后持续8小时,完成测试后在正常环境下放置2小时后进行产品检查 试验条件图 Test Condition 仪器/设备 高温烤箱、万用表、测试工装 合格判据 试验后样品外观、机械性能、电气性能、等各项性能正常 序列号(S/N ) 外观 结构 包装压力测试 OK 包装振动测试 OK 包装跌落测试 OK Group 7 酒精测试 OK RCA 纸带耐磨测试 附着力测试 OK 百格测试 OK 材料防火测试

锂电池来料检验标准(新)

序号更改前章节/条款内容更改后章节/条款内容更改后版本提出人批准人生效日期 1 全页次全版更新A1 熊佳敏蔡大军2016-6-17 2 6.2 检验项目更新A2

1、目的 使锂电池在我司入料及制程中相关检验人员有所依据,确保锂电池满足质量要求。 2、适用范围 适用于联维亚所有锂电池的来料检验。 3、职责 品保单位:依据本检验规范进行入料检验,判定检验结果。 4、引用标准 4.1 引用GB/T31241-2014便携式电子产品用锂电池安全要求,GB/T18287-2013移动电话用锂电池总规范。 4.2抽样检验依GB/T 2828-2003标准,按一般检验Ⅱ级水平,Cri:代表致命缺陷,AQL =0;Maj:代表主要缺陷, AQL =0.4;Min:代表次要缺陷,AQL =1.0;常规充放电测试按特殊检验S-3级水平进行检验。 5、缺陷定义 5.1致命缺陷:产品存在对使用者的人身及财产安全构成威胁的缺陷。 5.2主要缺陷:功能缺陷影响正常使用,性能参数超出规格标准,导致客户拒绝购买的严重外观缺陷;包装存在 可能影响到产品形象的缺陷。 5.3次要缺陷:不影响产品使用,最终客户有可能愿意让步接受的缺陷。 6、工作工序 6.1检验条件 检验条件荧光灯强度:400—800Lux(60W—100W)或自然光; 检查距离:30-35cm; 检验时间:10s±5s; 检验角度:水平方位45°±15°; 检验人员裸视或矫正视力1.0以上,不能有色盲、色 弱者。 目视+放大镜、数显卡尺、样品、承认 书、万用表、电池综合测试仪 6.2 检验项目 检验项目 内容检验工具抽样判 定 抽样数 外观1.工艺检查:电池工艺与承认书及样品核对一致,每批来料抽检解 剖观察内部结构,不允许轻易更改工艺(保护板安装位置,绝缘 胶纸材质、颜色,线头绝缘方式等)。 目视/样 品/剪钳 Maj 3-5PCS/ 批 2.导线:(1)无破损,漏铜,压痕,断线芯,锡头松散,氧化生 锈,浸锡不良,焊接端应绝缘好。 (2)线皮有轻微压痕但导线无损伤。 目视 Maj Min Ⅱ级正 常抽样 3.极性电路板:无连锡,锡尖,虚焊,假焊,少锡,焊接不牢,残 留锡渣、锡珠。 目视Maj Ⅱ级正 常抽样4.喷码印字:喷码内容(特别是LOGO、规格型号、正负极标示、 尺寸、电压、容量、生产日期)字体大小颜色与承认书样品核对 一致,应喷整齐,不能有歪斜,重影,模糊等,字符应清楚可辨 认。 目视Maj Ⅱ级正 常抽样 5.顶部胶带:(1)茶色高温胶应把保护板全包,不能起翘,不能 有板裸露在外,胶带不能粘附尖锐、导电性物体。 (2)褶皱在不影响厚度的情况下数量n<=3条,超出电池前沿 在不影响长度的情况下长度L<=0.5mm,允许有歪斜但必须包住有 切口的铝塑膜的情况下,气泡允许个数n<=3个且直径∮<=5mm。 目视 Maj Min Ⅱ级正 常抽样 6.侧边胶带:(1)胶纸贴附后应平整,不能起翘,胶带不能粘附 尖锐、导电性物体。 目视 Maj MinⅡ级正

相关文档