文档视界 最新最全的文档下载
当前位置:文档视界 › 特性阻抗教程

特性阻抗教程

第第Impedance_control

第第17Impedance_control

PCB阻抗值因素与计算方法

PCB阻抗设计及计算简介

特性阻抗的定义 ?何谓特性阻抗(Characteristic Impedance ,Z0) ?电子设备传输信号线中,其高频信号在传输线中传播时所遇到的阻力称之为特性阻抗;包括阻抗、容抗、感抗等,已不再只是简单直流电的“欧姆电阻”。 ?阻抗在显示电子电路,元件和元件材料的特色上是最重要的参数.阻抗(Z)一般定义为:一装置或电路在提供某特定频率的交流电(AC)时所遭遇的总阻力. ?简单的说,在具有电阻、电感和电容的电路里,对交流电所起的阻碍作用叫做阻抗。

设计阻抗的目的 ?随着信号传送速度迅猛的提高和高频电路的广泛应用,对印刷电路板也提出了更高的要求。印刷电路板提供的电路性能必须能够使信号在传输过程中不发生反射现象,信号保持完整,降低传输损耗,起到匹配阻抗的作用,这样才能得到完整、可靠、精确、无干扰、噪音的传输信号。?阻抗匹配在高频设计中是很重要的,阻抗匹配与否关系到信号的质量优劣。而阻抗匹配的目的主要在于传输线上所有高频的微波信号皆能到达负载点,不会有信号反射回源点。

?因此,在有高频信号传输的PCB板中,特性阻抗的控制是尤为重要的。 ?当选定板材类型和完成高频线路或高速数字线路的PCB 设计之后,则特性阻抗值已确定,但是真正要做到预计的特性阻抗或实际控制在预计的特性阻抗值的围,只有通过PCB生产加工过程的管理与控制才能达到。

?从PCB制造的角度来讲,影响阻抗和关键因素主要有: –线宽(w) –线距(s)、 –线厚(t)、 –介质厚度(h) –介质常数(Dk) εr相对电容率(原俗称Dk介质常数),白容生对此有研究和专门诠释。 注:其实阻焊也对阻抗有影响,只是由于阻焊层贴在介质上,导致介电常数增大,将此归于介电常数的影响,阻抗值会相 应减少4%

生物阻抗特性及测量的国内外现状

姓名:袁亚南学号:0743032052 班级:07303042 生物阻抗特性及测量的国内外现状 生物阻抗: 人类很早就了解到生物的电阻特性,也给出了生物体产生电阻的原因:它是当细胞内外液中电解质离子在电场中移动时,黏滞介质和狭小管道对离子运动的阻碍作用所致。进一步的研究表明,当低频电流通过时,生物结构具有更为复杂的电阻性质,可分解为不随时间变化的分量和随时间变化的分量。前者就是普通的直流电阻成分,在一定限度内阻值保持不变,电流与电压呈线性关系,起变阻器作用;后者随外加电压时间的延长,电流和电压的变化呈非线性变化,即具有交流电阻抗特性(或成分),起滤波器的作用。目前,这两种作用是解释神经和肌肉等组织兴奋和冲动的基础。 在描述物质的电阻特性时,有两个重要的概念:一是电阻率;二是电导率。它们之间互为倒数,都是表示物质导电性能的物理量。表5.1中列出了一些生物组织的电阻率和电导率。可以看出,人体内各种组织的电阻率极不相同,血清电阻率最低,肌肉次之,肝、脑等组织的电阻率稍高,脂肪和骨骸的电阻率最高,肿瘤组织与正常组织亦有差别,在身体内这些组织交叉组合形成了非均质导体。 生物膜具有电容特性,有关研究表明,生物膜不但具有静态电容性质,而且还具有极化电容性质,即当外加交流电时,生物膜的电容率不仅变化,

膜的电容值也要发生变化。 有关细胞的许多电特性研究表明,一般活细胞表面带有负电荷,细胞内部电场为零,内部为等势区,只是在细胞膜上存在电场,因此细胞膜可以看作是一个电容器。 1925-1927年,H ·弗里克用阻抗法测出狗的红电球细胞单位面积的电容值为0.81μF ·cm -2,根据实验结果,弗里克提出了他的假设,认为多数类型细胞膜为一球形膜,膜是由双分子层脂类分子组成,其相对电容率为εr =3。根据球形电容器公式可知,膜单位面积的电容公式为 d C r m εε0= 通过上式可得细胞膜的厚度为d ≈3nm 。而现代测量手段(如X 射线和电镜等)测出的各种细胞膜厚度为7~10.5nm ,结果不相吻合,这说明弗里克假设的细胞膜结构存在缺陷。 更新的研究表明,细胞膜的结构除双分子层脂膜外,在其两侧各覆盖一层蛋白质层,形成蛋白质-脂类物-蛋白质的三重结构,如图5.2所示,它的相对电容率为εr ≈10。如果将此值代入式(5.4),得到的细胞膜厚度为d ≈10nm ,与现代技术所测结果吻合得极好,说明了膜电容存在的真实性。 对于细胞膜和细胞质而言,细胞膜既存在电容,又存在电阻;而细胞质 只存在电阻。表5.2列出了一些细胞的电学参量。 在现代生物学中,对于生物器官、组织及细胞 电阻抗的研究有着非常重要的理论价值。例如,由 细胞膜电容值的测定,人们认识了膜的双分子层结 构;从肌肉细胞膜的高电容(1.5μF ·cm -2)特性导 出了肌肉细胞膜的折叠性质;通过测定神经细胞受 刺激后阻抗下降、电导率增加规律,为人类对神经 兴奋、传导和自发过程的认识提供了理论基础。另外,通过生物电阻抗的测定,在医学上可以诊断机体的健康状况。 ②r m 为单位面积膜电阻(ω·cm 2),r i 为单位面积细胞质电阻(ω·cm 2);③ω

PCB阻抗计算方法

阻抗计算说明 Rev0.0 heroedit@https://www.docsj.com/doc/064085913.html, z给初学者的 一直有很多人问我阻抗怎么计算的. 人家问多了,我想给大家整理个材料,于己于人都是个方便.如果大家还有什么问题或者文档有什么错误,欢迎讨论与指教! 在计算阻抗之前,我想很有必要理解这儿阻抗的意义 z传输线阻抗的由来以及意义 传输线阻抗是从电报方程推导出来(具体可以查询微波理论) 如下图,其为平行双导线的分布参数等效电路: 从此图可以推导出电报方程 取传输线上的电压电流的正弦形式 得 推出通解

定义出特性阻抗 无耗线下r=0, g=0得 注意,此特性阻抗和波阻抗的概念上的差异(具体查看平面波的波阻抗定义) ε μ=EH Z 特性阻抗与波阻抗之间关系可从 此关系式推出. Ok,理解特性阻抗理论上是怎么回事情,看看实际上的意义,当电压电流在传输线传播的时候,如果特性阻抗不一致所求出的电报方程的解不一致,就造成所谓的反射现象等等.在信号完整性领域里,比如反射,串扰,电源平面切割等问题都可以归类为阻抗不连续问题,因此匹配的重要性在此展现出来. z 叠层(stackup)的定义 我们来看如下一种stackup,主板常用的8层板(4层power/ground 以及4层走线层,sggssggs,分别定义为L1, L2…L8)因此要计算的阻抗为 L1,L4,L5,L8 下面熟悉下在叠层里面的一些基本概念,和厂家打交道经常会使用的 Oz 的概念 Oz 本来是重量的单位Oz(盎司 )=28.3 g(克) 在叠层里面是这么定义的,在一平方英尺的面积上铺一盎司的铜的厚度为1Oz, 对

特征阻抗

一、50ohm特征阻抗 终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。 终端电阻示图 B.终端电阻的作用: 1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。 2、减少噪声,降低辐射,防止过冲。在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。 C.终端电阻取决于电缆的特性阻抗。 D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容. E.有高频电路经验的人都知道阻抗匹配的重要性。在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。 高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。 同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er 决定:

另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则 图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。 图1 同轴传送线路的终端电阻构成 只有当同轴电缆的特性阻抗Zo和终端阻抗FT的值相等时,即ZIN=Zo=RT称为阻抗匹配。 Zo≠RT时随着频率f,ZIN变化。作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。 图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.

传输线特性阻抗基知识

什么叫传输线的特性阻抗?传输线特性阻抗基知识 传输线的基本特性是特性阻抗和信号的传输延迟, 在这里,我们主要讨论特性阻 抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传 输线的分布参数通常用单位长度的电感 L 和单位长度的电容C 以及单位长度上 的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。 分布的电容、电感和电阻是传输线本身固有的参数, 给定某一种传输线,这些参 数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输 线的一系列重要特性。 一个传输线的微分线段可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就 是微分线段的特性阻抗。 卄联原抗为: Z F = ------- --------- - =— i(G + joe) 传输线可等效为: IR IL U_ IR IR IL iR IL 半耻用比巧: 乙、iR + jE)

Z E,¥=Z Z Z O Zc + Zr 叭鬲■独返 呼4阳粽 內为1是懒井14*F J9(可 产5 =卩5=爲 G + j 肚 |G + Jex 皆赖宰址骼窩时<f^lOOKHZ). 3=2n監掘借損女.3. uefg±. R、G可黑略.L 中单懂怅度线的固打电臥住为肛拉忙度蜒的H有电皐此的 当墓車迥惟艸rf^lKHZh 肛2卫片櫃水.可以耐.此时 Z0就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路下图为典型的单端(通常称为非平衡式)传输线电路。 心J 4 电路窗化 m —

特性阻抗计算公式推导过程

特性阻抗计算公式推导过程 王国海 以下内容供参考。 1.传输线模型 2 符号说明 R L G C 分布式电阻电感电导电容 3 计算过程 (1) u(△z)-u=-R*?z*i-L*△z*?i ?t i(△z)- i=-G*△z*u(△z)?c?△z??u (2) ?t (1)(2) 两边同除以△z,得到电报公式

?u ?z +Ri+L ?i ?t =0 (3) ?i ?z +Gu+C ?u ?t =0 (4) u(z,t)=U(z)e jωt (5) i(z,t)=I(z)e jωt (6) 由(5)(6) 计算得道下列公式 ?u(z,t)?z =dU(z)dz e jωt (7) ?u(z,t)?t =U(z) e jωt jω (8) ?i(z,t)?z =dI(z)dz e jωt (9) ?i(z,t)?t =I(z) e jωt jω (10) 将(7)(8) (9) (10) 代入公式(3) dU(z)dz e jωt +Ri+L I(z) e jωt jω=0,i 用公式(6)代入, dU(z)dz e jωt +R I(z)e jωt +L I(z) e jωt jω=0 化简得到: dU(z)dz =-(R+ jωL)I(z) (11) 同理7)(8) (9) (10)代入(4)可得 dI(z)dz =-(G+ jωC)U(z) (12) 由(11)(12) 得到 dU(z)dI(z)=(R+ jωL)I(z) (G+ jωC)U(z) (13) 交叉相乘, (G + jωC)U(z) dU(z)= (R + jωL)I(z)dI(z) 两边积分, ∫(G + jωC)U(z) dU(z)=∫(R + jωL)I(z)dI(z) 12(G + jωC)U(z)2=12(R + jωL)I(z)2 U(z)2I(z)2=(R+ jωL)(G+ jωC) 两边开根号 Z=U/I=√(R+ jωL)(G+ jωC) 假定R=0,G=0 (无损)得到特性阻抗近似公式 Z=√L C

阻抗特性

https://www.docsj.com/doc/064085913.html,微机继电保护仪 阻抗特性 本测试模块主要是针对距离保护的动作特性,搜索其阻抗动作边界。可以搜索出圆特性、多边形特性、弧形以及直线等各种特性的阻抗动作边界。本测试模块提供了“单向搜索”和“双向搜索”两种不同的搜索方式。如下图所示: ●可搜索圆、多变形,及其它阻抗特性图 ●依提示设定定参数,由软件能画出大概的图形,方便与搜索的图形对照 第一节界面说明 测试项目 每次试验只能选择“阻抗边界搜索”、“Z(I)特性曲线”或“Z(V)特性曲线”中的一个项目进行试验。 ●故障类型提供了各种故障类型,用于测试各种类型距离保护。对接地型距离继电器应选择单相接地故障,对相间型距离保护,应选择相间故障。 ●计算模型有“电流不变”和“电压不变”两种计算模型。选择“电流不变”时,在下面的方框内可以设置短路电流,软件根据短路电流和短路阻抗计算出相应的短路电压;选择“电压不变”时,在下面的方框内可以设置短路电压,软件根据短路电压和短路阻抗计算出相应的短路电流。 ●搜索方式有“单相搜索”和“双向搜索”两种方法。详细介绍请参考“差动保护”章节的相关说明。“分辨率”只对双向搜索方式有效,它决定了双向搜索方式的测试精度。 ●故障触发方式在“时间控制”触发方式下,软件按“故障前延时”—“最

https://www.docsj.com/doc/064085913.html,微机继电保护仪 大故障时间”—“测试间断时间”这样的顺序循环测试,详细说明请参考“线路保护”章节的有关说明。 ●最小动作确认时间在“最大故障时间”内,保护多段可能动作。如果保护动作的时间小于“最小动作确认时间”,则尽管是保护的动作信号,软件也不予认可,因可能是其他段抢动。这个时间专门用来在“双向搜索”方式下,躲开某段阻抗动作。例如,要搜索Ⅱ段阻抗边界,“双向搜索”方式下扫描点肯定会进入Ⅰ段阻抗范围,而Ⅰ段的动作时间较Ⅱ段要短,从而造成Ⅰ段保护抢动。 ●故障方向依据保护定值菜单进行设置,适用于方向性阻抗保护。 ●零序补偿系数若做接地距离继电器的试验,要注意正确设置零序补偿系数,请参考“线路保护”章节的有关说明。 ●自动设定搜索线参数在“整定参数”页中有这个按钮,点击此按钮后,软件会根据所设定的整定阻抗自动计算出搜索线的长度以及搜索中心。可以在“搜索阻抗边界”页面中查看。 搜索阻抗边界 选择“搜索阻抗边界”测试项目时,需设置 放射状扫描线,如右图所示。扫描线的设置参照 以下方法: ●扫描中心扫描中心应尽可能设置在保护的 理论阻抗特性图的中心位置附近。扫描中心可以 直接输入数据,也可以用鼠标直接点击选择扫描 中心。修改扫描中心后,坐标系的坐标轴将自动 调整,以保证扫描圆始终在图形中心位置,即扫 描中心在图形中心。 ●扫描半径扫描半径应大于保护阻抗整定值 的一半,以保证扫描圆覆盖保护的各个动作边界。搜索时是从非动作区(扫描线外侧点)开始扫描。试验期间,如果发现在扫描某条搜索线的外侧起点时,保护 就动作了,则说明这条扫描线没有跨过实际的阻抗 边界,即整个搜索线都在动作区内,不符合“每条 搜索线都应一部分在动作区内,另一部分在动作区 外”的原则。这时,请适当增大“扫描半径”。 ●扫描步长只对“单向搜索”方式有效,直接影 响“单向搜索”方式时的测试精度。

TCSC的基频阻抗特性分析与仿真

TCSC的基频阻抗特性分析与仿真 0.引言 串联补偿在电力系统中的应用历史非常悠久,最早可以追溯到1928年前后,纽约电网33kv系统曾采用串联电容补偿来实现潮流均衡;1950年,在瑞典的一个23OkV电网中首次应用串联补偿装置来提高输电系统的传输能力。此后,串联电容补偿成为远距离输电中增大传输容量和提高稳定性的重要手段而得到大力的发展和广泛的应用。 采用串联补偿可以改变传输线的等效阻抗或在线路中串入补偿电压,方便地调节系统的有功无功潮流,从而有效地控制电力系统的电压水平和功率平衡。因此,在线路上采用串联补偿能更好地实现潮流控制,提高系统的电压稳定性、暂态稳定性和振荡稳定性,抑制次同步谐振。 在考虑远距离、大容量输电经济性的时候,采取串联电容补偿策略往往是必然选择。而TCSC常被用于抑制由串补电容引起的系统次同步振荡,它所产生的无功功率,随着线路负荷增加而增加且可以在负荷变化的全范围内进行调节;线路传输相同的功率,串联补偿较并联补偿而言,所需的无功功率增量要小;就抑制次同步振荡而言,TCSC具有较大优势。输电线路接入串联电容补偿可以抵消部分线路电感,等效缩短线路电气距离,相当于为负载提供一个电压特性“很硬”的电压源。 1.TCSC的结构 晶闸管控制串联电容器基本的、概念性的TCSC模块由一个容抗固定的电容器与一个晶闸管控制的电抗器并联而成。。TCSC补偿方案的基本思路是通过改变晶闸管的触发角来调节并联支路的等效电感,进而达到控制TCSC等效阻抗的目的。

图1 TCSC主要由四个元器件组成:电力电容器C,旁路电感L,两个反相并联大功率晶闸管SCR。实际装置中还包括保护用的金属氧化物压敏限压器MOV,旁路断路器等金属氧化物可变电阻器(MOV),本质上为一个非线性电阻器, 跨接在串联电容器上,用以防止电容器上发生高的过电压。MOV不但能限制电容器上的电压,而且能使电容器保持接入状态,即使在故障情况下也是如此,从而有助于提高系统的暂态稳定性。跨接在电容器上的还有一个断路器CB,用以控制电容器是否接入线路。 2.TCSC的运行原理 TCSC通过对触发脉冲的控制,改变晶闸管的触发角a,即可改变由其控制的电感支路中电流的大小,因而可以连续改变总的等效电抗,也即使线路的串补程度连续的变化。对TCSC功能的理解可以通过分析一个由固定电容器(C)和可变电抗器(L)相并联的电路的行为来获得,如图所示 图2 该LC并联电路的等效阻抗Ze。可以表达为:

元件阻抗特性测定实验报告

竭诚为您提供优质文档/双击可除元件阻抗特性测定实验报告 篇一:电路基础实验实验十一_R、L、c元件阻抗特性的测定 实验十一R、L、c元件阻抗特性的 测定 实验成员:班级:整理人员: 实验十一R、L、c元件阻抗特性的测定 一、实验目的 1.验证电阻,感抗、容抗与频率的关系,测定R~f,xL~f 与xc~f特性曲线。2.加深理解R、L、c元件端电压与电流间的相位关系。 二、原理说明 1.在正弦交变信号作用下,电阻元件R两端电压与流过的电流有关系式 u?RI 在信号源频率f较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值信号源频率无关,其阻抗频率特性

R~f如图9-1。 如果不计线圈本身的电阻RL,又在低频时略去电容的影响,可将电感元件视为电感,有关系式 ? ? ?? u L ? jxI感抗x L L ?2?fL 感抗随信号源频率而变,阻抗频率特性xL~f如图9-1。 在低频时略去附加电感的影响,将电容元件视为纯电容,有关系式 u ? c ?? jx c

I容抗 ? xc? 12?fc 容抗随信号源频率而变,阻抗频率特性xc~f如图 9-1. c f 图9-1 图9-2 2.单一参数R、L、c阻抗频率特性的测试电路如图9-2所示。 途中R、L、c为被测元件,r为电流取样电阻。改变信号源频率,测量R、 L、c元件两端电压uR、uL、uc,流过被测元件的电流则可由r两端电压除以r得到。 3.元件的阻抗角(即相位差φ)随输入信号的频率变化而改变同样可用实验方法测得阻抗角的频率特性曲线φ ~f。 用双踪示波器测量阻抗角(相位差)的方法。 将欲测量相位差的两个信号分别接到双踪示波器YA和Yb两个输入端。调节示波器有关旋钮,使示波器屏幕上出现

电缆的特性阻抗

电缆的阻抗 术语 音频:人耳可以听到的低频信号。范围在20-20kHz。 视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。 射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。 电缆的阻抗 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。 传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。 特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式: 其中 R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆 G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆 j=只是个符号,指明本项有一个+90'的相位角(虚数) π=3.1416

传输线特性阻抗基知识

什么叫传输线的特性阻抗? 传输线特性阻抗基知识 传输线的基本特性是特性阻抗和信号的传输延迟,在这里,我们主要讨论特性阻抗。传输线是一个分布参数系统,它的每一段都具有分布电容、电感和电阻。传输线的分布参数通常用单位长度的电感L和单位长度的电容C以及单位长度上的电阻、电导来表示,它们主要由传输线的几何结构和绝缘介质的特性所决定的。分布的电容、电感和电阻是传输线本身固有的参数,给定某一种传输线,这些参数的值也就确定了,这些参数反映着传输线的内在因素,它们的存在决定着传输线的一系列重要特性。 一个传输线的微分线段可以用等效电路描述如下: 传输线的等效电路是由无数个微分线段的等效电路串联而成,如下图所示: 从传输线的等效电路可知,每一小段线的阻抗都是相等的。传输线的特性阻抗就是微分线段的特性阻抗。 传输线可等效为:

Z0 就是传输线的特性阻抗。 Z0描述了传输线的特性阻抗,但这是在无损耗条件下描述的,电阻上热损耗和介质损耗都被忽略了的,也就是直流电压变化和漏电引起的电压波形畸变都未考虑在内。实际应用中,必须具体分析。 传输线分类 当今的快速切换速度或高速时钟速率的PCB 迹线必须被视为传输线。传输线可分为单端(非平衡式)传输线和差分(平衡式)传输线,而单端应用较多。 单端传输线路 下图为典型的单端(通常称为非平衡式)传输线电路。

单端传输线是连接两个设备的最为常见的方法。在上图中,一条导线连接了一个设备的源和另一个设备的负载,参考(接地)层提供了信号回路。信号跃变时,电流回路中的电流也是变化的,它将产生地线回路的电压降,构成地线回路噪声,这也成为系统中其他单端传输线接收器的噪声源,从而降低系统噪声容限。 这是一个非平衡线路的示例,信号线路和返回线路在几何尺寸上不同 高频情况下单端传输线的特性阻抗(也就是通常所说的单端阻抗)为: 其中:L为单位长度传输线的固有电感,C为单位长度传输线的固有电容。 单端传输线特性阻抗与传输线尺寸、介质层厚度、介电常数的关系如下:与迹线到参考平面的距离(介质层厚度)成正比 与迹线的线宽成反比 与迹线的高度成反比 与介电常数的平方根成反比 单端传输线特性阻抗的范围通常情况下为25Ω至120Ω,几个较常用的值是28Ω、33Ω、50Ω、52.5Ω、58Ω、65Ω、75Ω。 差分传输线路 下图为典型的差分(通常称为平衡式)传输线电路。 差分传输线适用于对噪声隔离和改善时钟频率要求较高的情况。在差分模式中,传输线路是成对布放的,两条线路上传输的信号电压、电流值相等,但相位(极性)相反。由于信号在一对迹线中进行传输,在其中一条迹线上出现的任何电子噪声与另一条迹线上出现的电子噪声完全相同(并非反向),两条线路之间生成的场将相互抵消,因此与单端非平衡式传输线相比,只产生极小的地线回路噪声,并且减少了外部噪声的问题。 这是一个平衡线路的示例-- 信号线和回路线的几何尺寸相同。平衡式传输线不会对其他线路产生噪声,同时也不易受系统其他线路产生的噪声的干扰。 差分模式传输线的特性阻抗(也就是通常所说的差分阻抗)指的是差分传输线中两条导线之间的阻抗,它与差分传输线中每条导线对地的特性阻抗是有区别的,

实验十 RLC电路的阻抗特性分析

实验十 RLC 电路的阻抗频率特性分析 一实验目的 1、掌握交流电路中电阻、电容和电感的阻抗与频率的关系。 2、加深理解三个元件的电压与电流相位关系。 3、观察RLC 串联谐振现象,了解谐振电路特性,加深其理论知识的理解。 二 实验原理 1、R 、L 、C 元件的阻抗频率特性 正弦交流信号包含最大值、频率和初相位,在正弦稳态交流电路中,通过元件的电流有效值和加于该元件两端电压有效值之间的关系U =f (I ),称为元件的交流伏安特性,每个元件不仅讨论电压、电流有效值关系,还要观察两者相位之间的关系。 线性电阻欧姆定律的相量形式为:U RI = 。说明电阻两端电压的有效值与流过电流的有效值成正比,R 大小与频率无关,相位差为0,即同相位。 (2)电容 线性电容电压电流关系的相量形式为:1U j I C ω=- 。表明电容两端电压有效值与流过电流有效值关系为1 U I C ω=,相位差为-90 ,即电流超前电压90度。 (3)电感 线性电感的电压电流关系的相量形式为:U j LI ω= 。说明电感两端电压的有效值与流过电流的有效值关系为U LI ω=,相位差为90 ,即电压超前电流90度。 正弦稳态电路中,RLC 元件的阻抗频率特性曲线如图10-1所示。 图10-1 R 、L 、C 元件的阻抗频率特性曲线

RLC串联电路中,当正弦交流信号源的频率f改变时,电路中的感抗、容抗随之而变,电路中的电流I也随频率f而变。交流电压 S U(有效值)的角频率 为ω,则电路的阻抗为 1 () Z R j L C ω ω =+-, 阻抗的模:Z= 阻抗的幅角 1 arctan L C R ω ω ? - =,即该电路总电压与电流的相位差。 图10-3(a)、(b)分别为RLC串联电路的阻抗、相位差随频率的变化曲线。 图10-3(a)z f -曲线图10-3(b)f ?-曲线 由曲线图可以看出,存在一个特殊的频率 f,特点为: (1)当 f f <时,0 ?<,电流相位超前于电压,整个电路呈电容性; (2)当 f f >时,0 ?>,电流相位滞后于电压,整个电路呈电感性; (3)当 1 L C ω ω -=时,即 ω= f=时,阻抗Z R =,此时0 ?=,表明电路中电流I和电压U同相位,整个电路呈现纯电阻性。

特征阻抗

特征阻抗,又称为特性阻抗,它是在甚高频、超高频范围的概念。那什么是特征阻抗呢?在信号的传输过程中,在信号沿到达的地方,信号线和参考平面(参考平面指的是电源平面或者是地平面)之间由于电场的建立,就会产生一个瞬间的电流,如果传输线是各向同性的,那么只要信号在传输,就会始终存在一个电流I,而如果信号的输出电平为V,则在信号传输过程中传输线就会等效成一个电阻,大小为V/I,我们把这个等效的电阻称为传输线的特征阻抗(Characteristic Impedance)Z. 那么这个定义如何去理解?首先,必须明白特征阻抗跟线的阻抗的区别,特征阻抗属于传输线的概念,指的是传输线上点的阻抗,而线的阻抗(一般称为电阻)是对与直流而言的;其次传输线又分为微带线和带状线,微带线是指只有一个参考平面的传输线,带状线是指有两个参考平面的传输线;最后特征阻抗是对交流信号而言,对直流信号来说传输线的电阻并不是Z,而是远远小于这个 值(也就是所说的直流电阻)。 特征阻抗的意义在于什么呢?信号在传输的过程中,如果传输线上的特征阻抗发生变化,信号就会在阻抗不连续的结点上产生反 射,后果就是EMI有问题,信号不完整。 特征阻抗的计算比较复杂,一般是采用专门的就算软件。业界用的比较多的Polar Si系列(一般的PCB公司采用) 1.单端特征阻抗的计算 参数说明如下(单位是mil,特殊参数取标准常数): H1:是指示顶层的厚度,也就是说第二层到第一层的距离,一般来说这个有PCB公司决定,4mil是用的比较多的。4点多mil 都是可以的。 Er1:是指板材的介质常数,对于FR-4来说,一般为4.2-4.4。 T1:是指铜薄的厚度,一般用mil来表示。定义是这样的,一OZ(盎司)的铜铺在一平方英寸所形成的铜薄厚度。它们的具体 转化如下 OZ 1/4 1/2 1 2 3 4 mil 0.36 0.7 1.4 2.8 4.2 5.6 W1和W2:是指传输线的线宽,而它为什么不一样呢?因为在PCB的制作过程中是从上到下腐蚀的,因此有梯形的感觉,一般来 说取W2=W-0.5,W1=2+0.5(W是原始传输线的宽度)。 CEr:是指绿漆的介电常数,一般来说取3.5-3.8。 C1和C2:是指绿漆的厚度,一般取1左右。 参数都明白意思了,要计算特征阻抗那就是很容易的一件事情了。 2.差分特征阻抗的计算 差分特征阻抗是指差分线的差分阻抗,计算的方法跟单端的基本上一样,只不过多了一线间距离S。 3.常用的传输线特征阻抗 差分阻抗单端阻抗 HDMI 100 ohms+/-10% 50 ohms+/-10% USB 90 ohms+/-10% 42-78 ohms+/-10% DDR NC 60 ohms+/-10%

交流阻抗实验报告

正弦交流电路中的阻抗和频率特性研究 1、实验目的 1)加深对正弦交流电路的KVL 定律认识。 2)学习正弦交流电路中阻抗的测量方法。 3)掌握L c X X 、阻抗频率特性测量方法。 2.实验原理及步骤 (1)测量阻抗 1)用“向量法”测量空心电感线圈两端的阻抗Lr Z ,如图3-1所示,r 是电感线圈的直流电阻。输入电压的频率在200~300Hz 中任选两个,分别测量计算。 测量出R U 、Lr U 的值,选取R U 作为参考相量,做出回路的向量图。相量图如图3-2所示。显然,θ满足Lr R Lr R U U U U U 2cos 2 2 2-+=θ。通过计算θ从而求出L U 、r U 的 值进而可求出电阻电感值。 2)按下图所示电路,从a ,b 端口用“向量法”测量内带电容的阻抗ab Z ,输入电压的频率在1~3kHz 中任选两个,分别测量计算。 Lr U U R U θ r U U 图3-2 电感阻抗测量电路向量图 图3-1 测量阻抗电路原

测量出R U 、Cr U 以及I 的值,选取Cr U 为参考相量,作出由回路的向量图。相量图如图3-4所示,同理,通过求出θ角可得到电容阻抗值。 (2)测量频率特性 测量L X 、C X 阻抗频率特性,做频率特性曲线。 1)点测—L X f 特性。自选电感(L :50~400mH )与电阻R 串联(R :200Ω~1k Ω)自拟表格,做—L X f 特性曲线(f 从50Hz~3kHz )。 2)点测—C X f 特性。自选电容(C :0.1~2μF )与电阻R 串联(R :200Ω~1k Ω)自拟表格,做—C X f 特性曲线(f 从50Hz~3kHz )。 (3)观察电压、电流相位关系 如图3-5、3-6所示,用示波器分别观察下面电感、电容中电压、电流相位。 图3-5 电感阻抗测量电路 I U 图3-2 电容阻抗测量电路向量图 图3-3 电容阻抗测量电路原理图 R Cr U 2+ -

RLC元件阻抗特性的研究

R、L、C元件阻抗特性的测定 一、实验目的 1、验证电阻,感抗、容抗与频率的关系,测定R~f , X L~f与X C~f特性曲线。 2、加深理解R、L、C元件端电压与电流间的相位关系。 二、原理说明 1、在正弦交变信号作用下,电阻元件R两端电压与流过的电流有关系式U=R I 在信号源频率f较低情况下,略去附加电感及分布电容的影响,电阻元件的阻值与信号源频率无关,其阻抗频率特性R~f如图16-1。 如果不计线圈本身的电阻R L,又在低频时略去电容的影响,可将电感元件视为纯电感,有关系式U L= X L j I 感抗X L=2πfL 感抗随信号源频率而变,阻抗频率特性X L~f如图16-1。 在低频时略去附加电感的影响,将电容元件视为纯电容,有关系式 U C=-j X C I 容抗X C=1/2πfc 容抗随信号源频率而变,阻抗频率特性X C~f如图16-1 2、单一参数R、L、C阻抗频率特性的测试电路如图16-2所示。 图中R、L、C为被测元件,r为电流取样电阻。改变信号源频率,测量R、L元件两端电压U R、U L、U C,流过被测元件的电流则可由r两端电压除以r得到。 (1)元件的阻抗角(即相位差φ)随输入信号的频率变化而改变,同样可用实验方法测得阻抗角的频率特性曲线φ~f。 (2)用双踪示波器测量阻抗角(相位差)的方法、 将欲测量相位差的两个信号分别接到双踪示波器Y A和Y B两个输入端。调节示波器有关旋钮,使示波器屏幕上出现两条大小适中、稳定的波形,如图16-3所示,荧光屏上得不平方向一个周期占n格,相位差m格,则实际的相位差φ(阻抗角)为φ=m×(360o / n)

什么是特征阻抗

高速设计领域一个越来越重要也是越来越为设计工程师所关注议题就是受控阻抗的电路板设计以及电路板上互联线的特征阻抗。然而,对于非电子的设计工程师来说,这也是一个最容易混淆也最不直观的问题。甚至很多的电子设计工程师对此也同样感到困惑。这篇资料将对特征阻抗作一个简要而直观的介绍,希望帮助大家了解传输线最基本的品质。什么是传输线?什么是传输线?两个具有一定长度的导体就构成传输线。其中的一个导体成为信号传播的通道,而另外的一个导体则构成信号的返回通路(在这里我们提到信号的返回通路,实际上就是大家通常理解的地,但是为了叙述的方便,暂且忘掉地这一概念。)。在一个多层的电路板设计中,每一个PCB互联线都构成传输线中的一个导体,该传输线都将临近的参考平面作为传输线的的第二个导体或者叫做信号的返回通路。什么样的PCB互联线是一个好的传输线呢?通常如果在同一个PCB互联线上特征阻抗处处保持一致,这样的传输线就成为高质量的传输线。什么样的电路板叫做受控阻抗的电路板?受控阻抗的电路板是指PCB板上所有传输线的特征阻抗符合统一的目标规范,通常是指所有传输线的特征阻抗的值在25Ω到70Ω之间。从信号的角度来考察考虑特征阻抗最行之有效的办法是考察信号沿着传输线传播时信号本身看到了什么。为简化问题的讨论起见,假定传输线为微波传输带(microstrip)类型,并且信号沿传输线传播时传输线各处的横断面保持一致。给该传输线加入幅度为1V 的阶跃信号。阶跃信号是一个1V的电池,由前端接入,分别连接在信号线和返回通路之间。在接通电池的瞬间,信号电压波形将以光速在电介质中行进,速度通常约为6英寸/ns(信号为什么行进如此快速,而不是接近电子传播的速度大约1cm/s,这是另外一个话题,这里不做进一步介绍)。当然在这里信号仍然具有常规的定义,信号定义为信号线与返回通路上的电压差,总是通过测量传输线上任何一点与之临近的信号返回通路之间的电压差值来获得。信号沿传输线方向以6英寸/ns的速度向前传输。在传输的过程中信号会遇到什么样的情况呢?在最开始的10ps时间间隔内,信号沿传输线方向行进了0.06英寸的距离。假定锁定时间在这一时刻,来考虑传输线发生的情况。在行进的这一段距离上,信号的传输为这一段传输线和相应临近的信号返回通道之间建立起了稳定的幅度为1V的常量信号。这意味着在行进的这一段传输线和对应的返回路径上已经积聚起了额外的正电荷和额外的负电荷来建立这一稳定的电压。也正是这些电荷的差异在这两个导体之间建立并维持了一个稳定的1 V 电压信号,而导体之间稳定的电压信号就为两个导体之间建立了一个电容。传输线上位于这一时刻信号波前后面的传输线段并不清楚会有信号要传播过来,因而仍然维持信号线同返回通路之间的电压为零。在接下来的10ps时间间隔内,信号又会沿传输线行进一定的距离,信号继续传播的结果是又会在另一段长度为0.06英寸的传输线段同对应的信号返回通路之间的建立起1V的信号电压。而为了做到这一点,必须为信号线注入一定量的正电荷,同时为信号的返回通路注入同等数量的负电荷。信号沿传输线每传播0.06英寸的长度,都会有更多的正电荷注入该信号线,也会有更多的负电荷注入信号返回通路。每隔10ps时间间隔,就会有另外一段传输线被充电到1 V,同时信号也会沿传输线方向继续向前传播。这些电荷从何而来?答案是来自信号源,也就是我们用来提供阶跃信号、连接在传输线前端的电池。随着信号在传输线上的传播,信号不断地为传播经过的传输线段充电,确保信号传输过程中所到之处信号线与返回路径之间建立并维持起1 V的电压。每隔10ps时间间隔,信号会在传输线上传播一定的距离,并且从电源系统中汲取一定数量的电荷δQ。电池在一段时间间隔δt内的向外提供一定数量的电荷δQ,就形成了恒定的信号电流。正的电流会从电池流入信号线,而与此同时同样大小的负电流会流经信号的返回路径。流经信号返回通路的负电流同流入信号线的正电流大小完全一致。而且,就在信号波前的位置,AC电流流经由信号线和信号返回通路构成的电容,完成了信号环路。传输线的特征阻抗从电池的角度来看,一旦设计工程师将电池的引线连入传输线的前端,就总有一个常量值的电流从电池中流出,并且保持电压信号的稳定不变。也许有人会问,是什么样的电子元器件具有这样的行为?加入恒

RLC阻抗特性测量

实验五 R 、L 、C 元件阻抗特性的研究 一、实验目的 1.验证电阻、感抗、容抗、与频率的关系,测定R~f 、L X ~f 及C X ~f 特性曲线。 2.加深理解R 、L 、C 元件端电压与电流间的相位关系。 二、原理说明 1. 在正弦交变信号作用下,R 、L 、C 电路元件在电路中的抗流作用与信号的频率有关,它们的阻抗频率特性R~f ,L X ~f ,C X ~f 曲线如图1所示。 图1 图2 2. 单一参数R 、L 、C 阻抗频率特性的测量电路如图2所示。R=1K Ω,r=200Ω,C=1uF ,L=10mH 等取自《二阶电路动态过程的研究》单元中的部分元件。 图中R 、L 、C 为被测元件,r 为电流取样电阻。改变信号源频率,测量R 、L 、C 元件两端电压R U 、L U 、C U ,流过被测元件的电流可由r 两端电压除以r 得到。 3. 元件的阻抗角(即相位差φ)随输入信号的频率 变化而改变,将各个不同频率下的相位差画在以频率f 为横坐标、阻抗角φ为纵坐标的坐标纸上,并用光滑的曲线连接这些店,即得到阻抗角的频率特性曲线。 用双踪示波器测量阻抗角的方法如图3所示。从荧光屏上数得一个周期站n 格,相位差占m 格,则实际的相位差φ(阻抗角)为 n 360m ?=φ

三、实验内容 1. 测量R 、L 、C 元件的阻抗频率特性 通过电缆线将函数信号发生器输出的正弦信号接至如图2电路,作为激励源u ,并用交流毫伏表测量,使激励电压的有效值为U=3V ,并在实验过程中保持不变。 使信号源的输出频率从200Hz 逐渐增至5KHz 左右,并使端点S 分别接通R 、L 、C 三个元件,并用交流毫伏表分别测量R U 、r U ;C U ,r U ;L U 、r U ,并通过计算得到各频率点时的R 、 L X 与C X 之值,记入附表中。 注意:在接通C 测试时,信号源的频率应控制在200~2500Hz 之间。 2. 用双踪示波器观察RL 串联和RC 串联电路在不同频率下的阻抗角的变化情况,按图3记录n 和m ,算出 ,自拟表格记录之。

实验7 RLC元件阻抗特性的测定-学生

实验七 RLC 元件阻抗特性的测定 一、实验目的 (1) 研究电阻,感抗、容抗与频率的关系,测定它们随频率变化的特性曲线; 二、实验设备 (1) (2) 交流电压 (3) 实验箱 三、预习与思考题 (1) 如何用交流毫伏表测量电阻R 、感抗XL 和容抗XC ?它们的大小和频率有何关系? 四、原理说明 (1) 单个元件阻抗与频率的关系 对于电阻元件,根据?∠=0R R R I U ,其中R I U =R R ,电阻R 与频率无关; 对于电感元件,根据 L L L j X I U = ,其中fL X I U π2L L L ==,感抗X L 与频率成正比; 对于电容元件,根据C C C j X I U -= ,其中 fC X I U π21 C C C ==,容抗X C 与频率成反比。 测量元件阻抗频率特性的电路如图7-1示,图中的r 是提供测量回路电流用的标准电阻,流过被测元件的电流(I R 、I L 、I C )则可由r 两端的电压U r除以r 阻值所得,又根据上述三个公式,用被测元件的电流除对应的元件电压,便可得到R 、X L 和X C 的数值。 图15-1 图7-1

五、实验内容 (1) 测量R 、L 、 C 实验电路如图7-1示,图中:r =200Ω,R =1k Ω,L =10mH ,C =0.1μF 。选择信号源正弦波输出作为输入电压u ,调节信号源输出电压幅值,并用交流毫伏表测量,使输入电压u的有效值U =2V 用导线分别接通R 、L 、C 三个元件,调节信号源的输出频率,从1kHz 逐渐增至20kHz (用频率计测量),用交流毫伏表分别测量U R 、U L 、U C 和U r ,将实验数据记入表7-1并通过计算得到各频率点的R 、X L 和X C 。 六、实验报告要求(请在下面的空白页中完成,上面已有的表格除外) (1) 回答预习思考题; (2) 根据表7-1验数据,定性画出R 、L 、C 串联电路的阻抗与频率关系的特性曲线,并 分析阻抗和频率的关系。

实验5 阻抗特性

实验5 R、L、C单个元件阻抗频率特性测试 一、实验目的 1、掌握交流电路中R、L、C单个元件阻抗与频率间的关系,测绘R-f、X L-f、X C-f特性曲线。 2、掌握交流电路中R、L、C元件各自的端电压与电流间的相位关系。 3、观察在正弦激励下,R、L、C三元件各自的伏安关系。 二、实验设备 1、电路分析综合实验箱 2、低频信号发生器 3、双踪示波器 三、实验内容 图5、1 测试电路如图5、1所示,R、L、C三个元件分别作为被测元件与10Ω采样电阻相串联,其中电阻R =2kΩ,电感L =2、7mH,电容C = 0、1μF,信号源输出电压的有效值为2V。 1、测绘R、L、C单个元件阻抗频率特性曲线 1)按照图5、1接好线路。注意:信号源输出电压的幅度须始终保持2V有效值,即每改变一次输出电压的频率,均须监测其幅度就是否为2V有效值。 2)改变信号源的输出频率f如表5、1所示,利用示波器的自动测量功能监测2通道信号

的电压有效值,并将测量数据填入表中相应位置。 3)计算通过被测元件的电流值I AB 以及阻抗的模Z ,并填入表5、1 中相应位置。 BC AB BC 10U I I == S AB AB 2U Z I I == 4)在图5、2上绘制R 、L 、C 单个元件阻抗频率特性曲线,要求:将三条曲线画在同一坐标轴中。 表5、1 f (K Hz) 10 20 30 40 50 U S (V ) 2 U BC (mV ) R L C I AB (mA ) R L C Z (K Ω) R L C 图5、2 2、 R 、L 、C 单个元件的相位测量

1)测试电路不变,信号源的输出电压有效值为2V ,输出频率为10kHz 。 2)在示波器上观察R 、L 、C 三个元件各自端电压与电流的相位关系,将波形存储到U 盘,课后打印并贴在图5、3上相应方框处。 3)计算R 、L 、C 三个元件各自的相位差 ,并用文字描述R 、L 、C 三个元件各自电压、 电流的相位关系。 R : 360?=?=CD AB Φ 结论: L : 360?=?=CD AB Φ 结论: C : 360?=?=C D AB Φ 结论:

相关文档