文档视界 最新最全的文档下载
当前位置:文档视界 › 排队论模型及实例

排队论模型及实例

排队论模型及实例

排队论模型是用来模拟和研究特定场景下客户服务时间的工具。它可

以用来分析系统效率,估算客户服务时间,确定服务可被提供的时间量,

以及改善服务系统的性能。排队论模型由不同的参数组成,包括服务水平、服务时间、排队时间和系统的平均人数等。

实例:

假设一家小吃店每天提供三个收银台服务,每小时的服务水平为 1.2,服务时间为3分钟,排队等候的平均时间为6分钟,这个时段的客户人数

为15人,那么可以用排队论模型来模拟这家小吃店的情况,估算客户在

这家小吃店排队等候的服务时间。

排队论

11.排队论 11.1基本概念 排队现象是指到达服务机构的顾客数量超过服务机构提供服务的容量,也就是说顾客不能够立即得到服务而产生的等待现象。顾客可以是人,也可以是物,比如说,在银行营业部办理存取款的储户,在汽车修理厂等待修理的车辆,在流水线上等待下一到工序加工的半成品,机场厂上空等待降落的飞机,以及等待服务器处理的网页等,都被认为是顾客。服务机构可以是个人,像理发员和美容师,也可以是若干人,像医院的手术小组。服务机构也还可以是包装糖果的机器,机场的跑道,十字路口的红绿灯,以及提供网页查询的服务器等等。 11因为顾客到达,服务时间具有不确定性,排队系统又称随机服务系统,它的基本结构如图1.所示: 商业服务理发店,银行柜台,机场办理登机手续的柜台,快餐店的点餐柜台 运输行业城市道路的红绿灯,等待降落或起飞的飞机,出租车 制造业待修理的机器,待加工的材料,生产流水线 社会服务法庭,医疗机构 为了描述一个排队系统,我们需要说明输入(到达)和输出(服务)过程,及其他基本特征。表2. 11列举了一些排队系统的到达和服务过程。 表11.2: 排队系统举例 )1(到达过程 通常,我们假设顾客的相继到达间隔时间是相互独立并且都具有相同概率分布。在许多实际 (Poisson流,或指数分布。顾客源可能是有限的,也可情况中,顾客的相继到达间隔是服从泊松) 能是无限的。顾客到来方式可能是一个接一个的,也可能是批量的。比如,到达机场海关的旅行团就是成批顾客。 一般来说,我们假设到达过程不受排队系统中顾客数量的影响。以银行为例,无论银行内有3位顾客还是300位顾客,顾客来到银行的到达过程是不会受到影响的。但是在两种情况下到达过程与排队系统中的顾客数量相关。第一种情况发生在顾客源是有限的系统,比如某工厂共有五台机床,若在维修部中已有两台机床,接下来到达维修部的最大量是三台。另一种情况是当顾客到达排队系统时,如果服务机构的设施都被占用,顾客可能耐心等待,也可能选择离开。比如,当一家航空公司的电话订票中心出现排队时,如果顾客等待时间太长,他就可能挂断电话。顾客就会选择另外一家航空公司。

M M C ∞排队系统模型及其应用实例分析

M M C ∞排队系统模型及其应用实例分析 摘要:文章阐述了M/M/C/∞排队系统的理论基础,包括排队论的概念,排队系统的基本组成部分以及排队系统的模型。在理论分析的基础上,文章以建行某储蓄所M/M/C/∞排队系统为例,对该系统进行分析并提出了最优解决方案。 关键词:排队论;银行储蓄所;M/M/C/∞模型;最优解 1M/M/C/∞排队系统 1.1排队论的概念及排队系统的组成 上世纪20年代,丹麦数学家、电气工程师爱尔朗(A. K. Erlang)在用概率论方法研究电话通话问题时,开创了这门应用数学学科。排队论主要研究各种系统的排队队长,排队的等待时间及所提供的服务等各种参数,以便求得更好的服务。研究排队问题实质上就是研究如何平衡等待时间与服务台空闲时间。目前,排队论已经广泛应用于通信工程、交通运输、生产与库存管理、计算机系统设计、计算机通信网络、军事作战、柔性制造系统和系统可靠性等众多领域。 任意一个排队系统都是由三个基本部分构成,即输入过程、排队规则和服务机构。①输入过程是描述顾客来源以及顾客按什么规律达到排队系统。②排队规则描述的顾客到达服务系统时顾客是否愿意排队,以及在排队等待情形下的服务顺序。③服务机构描述服务台数目及服务规律。服务机构可分为单服务台和多服务台;接受服务的顾客是成批还是单个的;服务时间服从何种分布。 1.2M/M/C/∞排队模型 ①排队系统模型的表示。目前排队模型的分类采用1953年由D. G. Kendall 提出的分类方法。他用3个字母组成的符号A/B/C表示排队系统。为了表示其它特征有时也用4~5个字母来表示如A/B/C/D/E。其中:A 顾客到达间隔时间的概率分布;B 服务时间的概率分布;C 服务台数目;D 系统容量限制(默认为∞);E 顾客源数目(默认为∞);概率分布的符号表示:M:泊松分布或负指数分布,D:定长分布,Ek:k阶爱尔朗分布,C:一般随机分布。 ②排队系统的衡量指标。—所有服务设施空闲的概率;—系统中的顾客总数;—队列中的顾客总数;—顾客在系统中的停留时间;—顾客在队列中的等待时间。 ③M/M/C/∞排队模型。排队系统模型大体上可以分为简单排队系统,特殊排队系统,休假排队系统及可修排队系统。纵观所有排队系统的模型,无非是系统的三个组成部分分别为不同情况时,进行的排列组合,并由此导致排队系统的数量指标的计算公式不一致。无论是何种排队系统,其研究实质都是如何平衡等待时间

排队论模型及其应用

排队论模型及其应用 摘要:排队论是研究系统随机服务系统和随机聚散现象匸作过程中的的数学理论和方法,乂叫随机服务的系统理论,而且为运筹学的一个分支。乂主要称为服务系统,是排队系统模型的基本组成部分。而且在日常生活中,排队论主要解决存在大量无形和有形的排队或是一些的拥挤现象。比如:学校超市的排队现象或岀行车辆等现象,。排队论的这个基本的思想是在1910年丹麦电话工程师埃尔朗在解决自动电话设计问题时开始逐渐形成的。后来,他在热力学统计的平衡理论的启发下,成功地建立了电话的统讣平衡模型,并山此得到了一组呈现递推状态方程,从而也导出著名的埃尔朗电话损失率公式。 关键词:出行车辆;停放;排队论;随机运筹学 引言:排队论既被广泛的应用于服务排队中,乂被广泛的应用于交通物流领域。在服务的排队中到达的时间和服务的时间都存在模糊性,例如青岛农业大学歌斐木的人平均付款的每小时100人,收款员一小时服务30人,因此,对于模糊排队论的研究更具有一些现实的意义。然而有基于扩展原理乂对模糊排队进行了一定的分析。然而在交通领域,可以非常好的模拟一些交通、货运、物流等现象。对于一个货运站建立排队模型,要想研究货物的一个到达形成的是一个复合泊松过程,每辆货车的数量为陷而且不允许货物的超载,也不允许不满载就发车,必须刚刚好,这个还是一个具有一般分布装车时间的一个基本的物流模型。 一.排队模型 排队论是运筹学的一个分支,乂称随机服务系统理论或等待线理论,是研究要求获得某种服务的对象所产生的随机性聚散现象的理论。它起源于A.K.Er-lang的著名论文《概率与电话通话理论》。 一般排队系统有三个基本部分组成⑴: (1)输入过程: 输入过程是对顾客到达系统的一种描述。顾客是有限的还是无限的、顾客相继到达的间隔时间是确定型的也可能是随机型的、顾客到达是相互独立的还是有关联的、输入过程可能是平稳的还是不平稳的。 (2)排队规则: 排队规则是服务窗对顾客允许排队及对排队测序和方式的一种约定。排队 规则可以分为3种制式: a损失制系统一…顾客到达服务系统时,如果系统中的所有服务窗均被占用,则顾客即时离去,不参与排队,因为这种服务机制会失掉许多顾客,故称损失制系统; b等待制系统-顾客到达服务系统时,虽然发现服务窗均忙着,但系统设有场地供顾客排队等候之用,于是到达系统的顾客按先后顺序进行排队等候服务。通常的

排队论及其应用

排队系统的符号表述 描述符号:①/②/③/④/⑤/⑥ 各符号的意义: ①——表示顾客相继到达间隔时间分布,常用以下符号: M——表示到达的过程为泊松过程或负指数分布; D——表示定长输入; EK——表示K阶爱尔朗分布; G——表示一般相互独立的随机分布。 ②——表示效劳时间分布,所用符号与表示顾客到达间隔时间分布一样。 ③——表示效劳台(员)个数:“1〞表示单个效劳台,“s〞(s>1)表示多个效劳台。 ④——表示系统中顾客容量限额,或称等待空间容量。如系统有K个等待位子,那么,0

体检排队模型

摘要 本文在研究体检排队问题的同时,采用了M/M/1/S排队论和抽象的迪克斯特拉(Dijkstra)算法,分别对科室抽血、内科、外科等等进行了有效地估计。通过顾客的到达时间、离开时间、停留时间、等待时间反映了在研究体检所用时间最短的相对优化的时间模型 问题1:为某个新来的客人安排他的体检顺序,使其完成需要的全部检查的时间尽量少(在各个体检项目处都可能有人排队等待),通过对数据的处理,对于抽血A、内科B、外科B、B超D、五官科E、胸透F、身高G和体重H八个科室排出耗费时间相对最短的路径的算法。 问题2:通过表格一的数据和上述的算法思想,在有效的假设中,用MATLAB软件得出了八个科室的有效地相对最佳路径AFHGBCED。推导所消耗的时间最短。 问题3: 关键词:M/M/1/S排队论(Dijkstra)算法 1. 问题重述 医院就医排队是大家都非常熟悉的现象,我们现通过考虑某医院眼科病床的合理安排的数学建模问题,提出安排策略,尽量减少病人排队等待时间。 该医院门诊每天开放,每天来的体检人数都是同分布的,体检项目包括抽血、内科、外科、B超、五官科、胸透、身高和体重等八个项目 当前医院没有完备的系统来确定来的人群的径向流量,提高设备利用率、降低客人的等待时间,医院要求完备的方案来对体检的人进行有效地指导就医。 问题1:为某个新来的客人安排他的体检顺序,使其完成需要的全部检查的时间尽量少(在各个体检项目处都可能有人排队等待),求出时间最短的路径问题2:通过数据来验证问题1的模型的优劣。 问题3: 2.1 模型假设 1) 各个体检项目之间相互独立,互不影响。 2) 病人排队体检和体检完毕到下一个科室之间没有时间延迟。 3) 入院体检的顾客单个到达,相继到达时间间隔服从参数为λ的负指数分布。 4) 各个科室可以抽象一个点。 5)每个服务台的服务时间相互独立,且服从参数为μ的负指数分布。 6)在团体病人来体检时,假设每个科室的服务设施是空缺的。 2.2 符号说明 1:抽血A1、内科B1、外科C3、B超D4、五官科E5、胸透F6、身高G7、体重H8 2:λ(i)和lamuda(i) 表示单位时间平均到达的顾客数, 称为平均到达率 3:μ(i)和mu(i) 位时间能被服务完成的顾客数,称为平均服务率 4:t(i):在ABCDEFGH各个科室检查的时间 5:β(i):表示在ABCDEFGH各个科室的受检比率

排队论模型

排队论模型 随机服务系统理论是研究山顾客、服务机构及其排队现象所构成的一种排队系统的理论,乂称排队论。排队现象是一种经常遇见的非常熟悉的现象,例如:顾客到自选商场购物、乘客乘电梯上班、汽车通过收费站等。随机服务系统模型已广泛应用于各种管理系统,如生产管理、库存管理、商业服务、交通运输、银行业务、医疗服务、计算机设讣与性能估价,等等。随机服务系统模拟,如存储系统模拟类似,就是利用计算机对一个客观复杂的随机服务系统的结构和行为进行动态模拟,以获得系统或过程的反映其本质特征的数量指标结果,进而预测、分析或估价该系统的行为效果,为决策者提供决策依据。 排队论模型及其在医院管理中的作用 每当某项服务的现有需求超过提供该项服务的现有能力时,排队就会发生。排队论就是对排队进行数学研究的理论。在医院系统内,“三长一短”的现象是司空见惯的。山于病人到达时间的随机性或诊治病人所需时间的随机性,排队儿乎是不可避免的。但如何合理安排医护人员及医疗设备,使病人排队等待的时间尽可能减少,是本文所要介绍的。 一.医院系统的排队过程模型 医院是一个复杂的系统,病人在医院中的排队过程也是很复朵的。如图1中每一个箭头所指的方框都是一个服务机构,都可构成一个排队系统,可见图2。 图1医院系统的多级排队过程模型 二、排队系统的组成和特征 一般的排队系统都有三个基本组成部分: 1.输入过程其特征有:顾客源(病人源)的组成是有限的或无限的;顾客单个到来或成批到来;到达的间隔时间是确定的或随机的;顾客的到来是相互独立或有关联的;顾客相继到达的间隔时间分布和所含参数(如期望值、方差等)都与时间无关或有关。 2.排队规则其特征是对排队等候顾客进行服务的次序有下列规则:先到先服务,后到先服务,有优先权的服务(如医院对于病情严重的患者给予优先治疗, 在此不做一般性的讨论),随机服务等;还有具体排队(如在候诊室)和抽象排队(如预约排队)。排队的列数还分单列和多列。 3.服务机构其特征有:一个或多个服务员;服务时间也分确定的和随机的; 服务时间的分布与时间有关或无关。 三、排队模型的分类方法

排队论之简单排队系统

5.2.4 无限源的简单排队系统 所谓无限源的简单排队系统是指顾客的来源是无限的,输入过程是简单流,服务时间是负指数分布的排队系统。本节我们讨论一些典型的简单排队系统。 1.//1/M M ∞排队系统 //1/M M ∞排队系统是单服务台等待制排队模型,可描述为:假设顾客以Poisson 过程(具有速率λ)到达单服务员服务台,即相继到达时间间隔为独立的指数型随机变量,具有均值1λ,若服务员空闲,则直接接受服务,否则,顾客排队等待,服务完毕则该顾客离开系统,下一个排队中的顾客(若有)接受服务。相继服务时间假定是独立的指数型随机变量,具有均值μ。两个M 指的是相继到达的间隔时间和服务时间服从负指数分布,1指的是系统中只有一个服务台,∞指的是容量为无穷大,而且到达过程与服务过程是彼此独立的。 为分析之,我们首先确定极限概率0,1,2,n p n •••=,,为此,假定有无穷多房间,标号为 0,1,2,•••,并假设我们指导某人进入房间n (当有n 个顾客在系统中),则其状态转移框图如图5.8所示。 图5.8 //1/M M ∞排队系统状态转移速率框图 由此,我们有 状态 离开速率=进入速率 0 01p p λμ= ,1n n ≥ ()11n n n p p p λμλμ-++=+ 解方程组,容易得到 00,1,2,i i p p i λμ•••⎛⎫ == ⎪⎝⎭ , 再根据 001 1()1n n n n p p p λμ λμ ∞ ∞ === == -∑∑ 得到: 01p λμ =- ,

()(1),1n n p n λλ μ μ =- ≥ 令/ρλμ=,则ρ称为系统的交通强度(traffic intensity )。值得注意的是这里要求 1ρ<,因为若1ρ>,则0n p =,且系统中的人数随着时间的推移逐渐增多直至无穷,因 此对大多数单服务排队系统,我们都假定1ρ<。 于是,在统计平衡的条件下(1ρ<),平均队长为 ,1,1j j L jp λρ ρμλ ρ ∞ == = = <--∑ (5-52) 由于a λλ=,根据式(5-2)、(5-3)以及上式,可得: 平均逗留时间为: 1 ,1L W ρλ μλ = = <- (5-53) 平均等待时间为: 1 [],1()(1) Q W W E S W λρ ρμ μμλμρ=-=- = =<-- (5-54) 平均等待队长为: 22 ,1()1Q Q L W λρλρμμλρ ===<-- (5-55) 另外,根据队长分布易知,01ρρ=-也是系统空闲的概率,而ρ正是系统繁忙的概率。显然,ρ越大,系统越繁忙。 队长()N t 由0变成1的时刻忙期即开始,此后()N t 第一次又变回0时忙期就结束。由简单流与负指数分布的性质,显见忙期的长度与忙期的起点无关。可以证明,闲期的期 望值为1λ,令忙期平均长度为b , 则在统计平衡下,有:平均忙期:平均闲期=(1)ρρ-: ,因此平均忙期长度为: 1 11b ρμλρ⎧<⎪ -=⎨⎪∞≥⎩ ,, (5-56) 一个忙期中所服务的平均顾客数为

排队论

排队论 一、引言: 日常生活中存在大量有形和无形的排队或拥挤现象,如旅客购票排队,食堂买饭排队,列车调用,计算机进程调用,市内电话占线等现象。凡是具有公共服务性质的事业和工作,凡是出现拥挤现象的领域,都是排队论的用武之地。 排队论是研究服务系统中排队现象随机规律的学科,广泛应用于计算机网络、生产、运输、库存等各项资源共享的随机服务系统,其目的是正确设计和有效运行各个服务系统,使之发挥最佳效益。排队论研究的内容有3个方面:统计推断,根据资料建立模型;系统的性态,即和排队有关的数量指标的概率规律性;系统的优化问题。 二、排队论的起源与历史: 排队论起源于20世纪初的电话通话。 1909年丹麦电话工程师 A.K.埃尔朗:话务理论,导出著名的埃尔朗电话损失率公式,自20世纪初以来,电话系统的设计一直在应用这个公式。 20世纪30年代苏联数学家А.Я.欣钦把处于统计平衡的电话呼叫流称为最简单流,瑞典数学家巴尔姆又引入有限后效流等概念和定义。 20世纪50年代初美国数学家关于生灭过程的研究,英国数学家D.G.肯德尔提出嵌入马尔可夫链理论,以及对排队队型的分类方法, L.塔卡奇等人又将组合方法引进排队论,使它更能适应各种类型的排队问题。 20世纪70年代以来人们开始研究排队网络和复杂排队问题的渐近解等,成为研究现代排队论的新趋势。 三、排队论的定义: 排队论(queuing theory), 或称随机服务系统理论, 是通过对服务对象到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、忙期长短等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象,使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优。

数学建模-食堂排队问题

数学建模论文 ——食堂排队问题 指导老师:*** 小组成员: 姓名学号 李晟源200807010409 自己闲来无事做的,仅供参考!

[摘要] 通过应用排队论,为食堂窗口服务工作构建相应的定量模型,为节约学生排队就餐时间,提高食堂服务质量,效率,以及平衡学生排队时间与食堂收益之间的关系,优化食堂资源配置提供一种较有效的管理决策手段。 [关键词] 排队论;M/M/s模型;灵敏度;等待损失 1.引言 在学校里,常常可以看到这样的情况:下课后,许多同学正想跑到食堂买饭,小小的买饭窗口前没过几分钟便排成了长长的队伍,本来空荡荡的食堂立即变得拥挤不堪。饥肠辘辘的学生门见到这种长蛇阵,怎能不怨声载道。增加窗口数量,减少排队等待时间,是学生们十分关心的问题。然而就食堂的角度来说,虽说增加窗口数量可以减少排队等待时间,提高学生对该食堂的满意度,从而赢得更多的学生到该食堂就餐,但是同时也会增加食堂的运营成本,因此如何在这两者之间权衡,找到最佳的窗口数量,对学生和食堂双方来说都是很重要的。 排队论是通过研究各种服务系统的排队现象,解决服务系统最优设计和最优化控制的一门科学。本文将根据食堂排队状况建立数学模型,运用排队论的观点进行分析,通过比较各方面因素的关系,为其拥挤状况找到一个较合理的解决方案。 2.多服务台排队系统的数学模型 2.1排队论及M/M/s模型。排队论是研究排队系统(又称为随即服务系统)的数学理论和方法,是运筹学的一个重要分支。在日常生活中,人们会遇到各种各样的排队问题。排队问题的表现形式往往是拥挤现象。 排队系统的一般形式符号为:X/Y/Z/A/B/C。 其中:X表示顾客相继到达时间间隔的分布;Y表示服务时间的分布;Z表示服务台的个数;A表示系统的容量,即可容纳的最多顾客数;B表示顾客源的数目;C 表示服务规则。 排队论的基本问题是研究一些数量指标在瞬时或平稳状态下的概率分布及其数字特征,了解系统运行的基本特征;系统数量指标的统计推断和系统的优化问题等。 当系统运行一定时间达到平稳后,对任一状态n来说,单位时间内进入该状态的平均次数和单位时间内离开该状态的平均次数应相等,即系统在统计平衡下“流入=流出”。 据此,可得任一状态下的平衡方程如下:

(完整版)排队论模型

排队论模型 排队论也称随机服务系统理论。它涉及的是建立一些数学模型,藉以对随机发生的需求提供服务的系统预测其行为。现实世界中排队的现象比比皆是,如到商店购货、轮船进港、病人就诊、机器等待修理等等。排队的内容虽然不同,但有如下共同特征: ?有请求服务的人或物,如候诊的病人、请求着陆的飞机等,我们将此称为“顾客”。 ?有为顾客提供服务的人或物,如医生、飞机跑道等,我们称此为“服务员”。 由顾客和服务员就组成服务系统。 ?顾客随机地一个一个(或者一批一批)来到服务系统,每位顾客需要服务的时间不一定是确定的,服务过程的这种随机性造成某个阶段顾客排长队,而某些时候服务员又空闲无事。 排队论主要是对服务系统建立数学模型,研究诸如单位时间内服务系统能够服务的顾客的平均数、顾客平均的排队时间、排队顾客的平均数等数量规律。 一、排队论的一些基本概念 为了叙述一个给定的排队系统,必须规定系统的下列组成部分: ?输入过程 即顾客来到服务台的概率分布。排队问题首先要根据原始资料,由顾客到达的规律、作出经验分布,然后按照统计学的方法(如卡方检验法)确定服从哪种理论分布,并估计它的参数值。我们主要讨论顾客来到服务台的概率分布服从泊松分布,且顾客的达到是相互独立的、平稳的输入过程。所谓“平稳”是指分布的期望值和方差参数都不受时间的影响。 ?排队规则 即顾客排队和等待的规则,排队规则一般有即时制和等待制两种。所谓即时制就是服务台被占用时顾客便随即离去;等待制就是服务台被占用时,顾客便排队等候服务。等待制服务的次序规则有先到先服务、随机服务、有优先权的先服务等,我们主要讨论先到先服务的系统。 ?服务机构 服务机构可以是没有服务员的,也可以是一个或多个服务员的;可以对单独顾客进行服务,也可以对成批顾客进行服务。和输入过程一样,多数的服务时间都是随机的,且我们总是假定服务时间的分布是平稳的。若以ξ n 表示服务员为 第n个顾客提供服务所需的时间,则服务时间所构成的序列{ξ n },n=1,2,… 所服从的概率分布表达了排队系统的服务机制,一般假定,相继的服务时间ξ 1 , ξ 2,……是独立同分布的,并且任意两个顾客到来的时间间隔序列{T n }也是独立 的。 如果按服务系统的以上三个特征的各种可能情形来对服务系统进行分类,那么分类就太多了。因此,现在已被广泛采用的是按顾客相继到达时间间隔的分布、服务时间的分布和服务台的个数进行分类。 研究排队问题的目的,是研究排队系统的运行效率,估计服务质量,确定系统参数的最优值,以决定系统的结构是否合理,设计改进措施等。所以,必须确

排队论在实际当中的应用

第一章排队论问题的基本理论知识 排队是日常生活中经常遇到的现象,本章将介绍排队论的一些基本知识和常见的排队论的模型,使我们对排队论有一个基本的认识。 1.1 预备知识 下图是排队过程的一般模型:各个顾客由顾客源(总体)出发,到达服务机构(服 务台、服务员)前排队等候接受服务,服务完成后离开。我们说的排队系统就是图中 虚线所包括的部分 顾客到达 顾客源 排队规则 排队系统示意图 一般的排队系统都有三个基本组成部分:输入过程;排队规则;服务机构。 1•输入过程 输入过程考察的是顾客到达服务系统的规律。可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。对于随机型的情形,要知道单位时间内的顾客到达数或到达的间隔时间的概率分布。 2.排队规则 排队规则分为等待制、损失制和混合制三种。当顾客到达时,所有服务机构都被占用,贝U顾客排队等候,即为等待制。在等待制中,为顾客进行服务的次序可以是先到先服务,或后到先服务,或是随机服务和有优先权服务。如果顾客来到后看到服务机构没有空闲立即离去,则为损失制。有些系统因留给顾客排队等待的空间有限,因此超过所能容纳人数的顾客必须离开系统,这种排队规则就是混合制。 3.服务机构 可以是一个或多个服务台。服务时间一般也分成确定型和随机型两种。但大多数情形服务时间是随机型的。对于随机型的服务时间,需要知道它的概率分布。

1.2 模型理论分析 1.2.1模型分类 排队模型的表示: X/Y/Z/A/B/C X—顾客相继到达的间隔时间的分布; 丫一服务时间的分布; M—负指数分布、D—确定型、Ek— k阶爱尔朗分布。 Z—服务台个数; A—系统容量限制(默认为%); B—顾客源数目(默认为%); C—服务规则(默认为先到先服务FCFS)。 1.2.2模型求解 一个实际问题作为排队问题求解时,只有顾客到达的间隔时间分布和服务时间的分布须要实测的数据来确定,其他的因素都是在问题提出时给定的。并且必须确定用以判断系统运行优劣的基本数量指标,解排队问题就是首先求出这些数量指标的概率分布或特征值。这些指标通常是: (1 )队长:系统中排队等待服务和正在服务的顾客总数,其期望值记为L S; 排队长(队列长):系统中排队等待服务的顾客数,其期望值记为L g ; [系统中顾客数]=[在队列中等待服务的顾客数田正被服务的顾客数](2)逗留时间:一个顾客在系统中停留时间,包括等待时间和服务时间,其其期望值记为Ws ; 等待时间:一个顾客在系统中排队等待时间,其期望值记为Wg ; [逗留时间]=[等待时间]+[服务时间] (3)忙期:从顾客到达空闲服务机构起到服务机构再次为空闲这段时间长度;系统状态:即指系统中的顾客数; 状态概率:用P n t表示,即在t时刻系统中有n个顾客的概率; 要解决排队问题,首先要确定排队系统的到达间隔时间分布与服务时间分布。要研究到达间隔时间分布与服务时间分布需要首先根据现有系统原始资料统计出它们的经验分布,然后与理

排队论在公共交通调度中的应用

排队论在公共交通调度中的应用随着城市化进程的不断加快,公共交通系统的重要性日益凸显。公共交通调度是保障城市交通有序运行的关键环节,而排队论作为一种重要的数学工具,为公共交通调度提供了有效的解决方案。本文将探讨排队论在公共交通调度中的应用,并分析其在提高运输效率、优化资源配置、减少拥堵等方面所取得的成效。 首先,排队论可以帮助提高公共交通系统的运输效率。在高峰时段,人们集中出行导致车站拥堵、车辆满载等问题频发。通过排队论模型可以分析乘客到达车站和乘车时间之间的关系,并据此优化发车间隔和乘客上下车时间。例如,在地铁站点设置自助售票机和自动闸机,可以减少人工售票和验票所需时间,加快乘客进出站速度;通过合理设置发车间隔和增加运力,在高峰时段保证足够多列地铁列车供人们选择。 其次,排队论可以优化资源配置,在有限资源下提供更多服务。城市中有限数量的公交车辆需要满足大量乘客的出行需求,如何合理配置车辆成为调度的关键问题。排队论可以通过模拟乘客到达和乘车的过程,预测不同时间段和不同线路的客流量。根据预测结果,可以调整车辆运行路线和数量,以满足不同线路上的需求。例如,在繁忙的商业区增加公交车数量,以应对高峰时段的客流压力;在低峰时段缩减运力,以减少资源浪费。 此外,排队论还可以减少拥堵现象。城市交通拥堵是公共交通系统面临的重要问题之一。排队论模型可以通过分析乘客到达时间、上下车时间和运输能力之间的关系,在高峰时段合理安排发车间隔和增加运力。例如,在高峰时段增加地铁列车数量,并根据实际情况调整发车间隔;在繁忙路段设置优先通行公交道,并对公交优先信号进行优化控制。 此外,排队论还可以提供决策支持工具,在应急情况下提供快速响应方案。例如,在突发事件或自然灾害发生时,排队论可以通过模拟乘客流动和车辆调度过程,分析不同应急方案的可行性和效果,为

高铁站场排队模型及其优化措施研究

高铁站场排队模型及其优化措施研究 近年来,随着高铁行业的飞速发展,高铁站场排队模型的研究愈加受到关注。 高铁站场作为高铁列车的重要调度区域,其效率的提高和瓶颈的解决,对于整个高铁系统的运行至关重要。本文将从高铁站场排队模型的基本框架、高铁站场排队模型中的影响因素、优化措施三个方面展开探讨。 I. 高铁站场排队模型的基本框架 高铁站场排队模型是一个由多个元素组成的系统。高铁车站的每一辆车都有一 个到站时间和离站时间,到站时间是车辆进入站场等待开始服务的时间,离站时间是车辆结束服务并离开站点的时间。在这个系统中,有一个服务设施,即高铁站场,它提供服务的能力是一个给定的数字。在这个系统中,还有到达车辆的流,以及流出车辆的流。 在高铁站场排队模型中,从排队论的角度,可以将其视为一个队列系统,其中 每一列都代表了一条车道。从物理角度看,车站通过不同的站台来提供服务。当一列车满足下列条件时,它将被服务:1)该车辆到站了;2)与该车辆所分配的站台相配备的工作人员已经准备好为该车辆提供服务。 II. 高铁站场排队模型中的影响因素 在高铁站场排队模型中,影响旅客服务质量和车队效率的因素有很多。例如, 旅客数量、站台数量、站台服务质量、列车类型、到站时间、离站时间等诸多因素都会对站场排队模型产生影响。其中,旅客数量是决定站场排队长度的主要因素,因此如何准确预测出旅客数量,是保证站场服务质量的关键。 此外,站台数量也是影响站场效率的重要因素。如果站台数量太少,那么当列 车到达时,很可能会导致大量旅客和列车等待。在这种情况下,难免会给旅客造成不便,并对其他列车的正常运行产生影响。因此,在高铁站场设计阶段,应该充分考虑到站台数量的影响,合理分配。

数学的统计排队论

数学的统计排队论 在现实生活中,我们经常会遇到需要排队等候的情况,比如买票、 办理业务等。而数学中的统计排队论就是研究这些排队问题的一门学科。统计排队论主要涉及到排队的平均等待时间、服务设备的利用率 以及排队系统的稳定性等问题。本文将介绍统计排队论的基本理论和 应用,以及一些与排队相关的数学模型。 1. 排队系统的基本模型 在排队论中,有三个基本模型被广泛应用,它们分别是M/M/1模型、M/M/c模型和M/M/c/c模型。 M/M/1模型指的是具有泊松到达率和指数服务率的单一服务通道排 队系统。在这个模型中,到达时间和服务时间都符合泊松分布和指数 分布,即到达时间和服务时间是随机的。M/M/1模型的特点是排队系 统的平均等待时间可以通过使用里特方程(也称为相关公式)进行计算。 M/M/c模型是指具有泊松到达率和指数服务率,且有c个并行服务 通道的排队系统。这意味着在该系统中,可以同时有多个顾客被服务。M/M/c模型的特点是可以通过使用平稳分析法计算出顾客的平均等待 时间和系统设备的利用率。 M/M/c/c模型是指具有泊松到达率和指数服务率,同时还考虑了顾 客有限等待区域的排队系统。在M/M/c/c模型中,顾客在进入排队系

统之前需要在一个有限的等待区域等待。该模型的特点是可以通过使用排队论的边界理论计算出系统性能指标。 2. 统计排队论的应用 统计排队论的研究成果可以应用于各个领域,比如交通运输、通信网络、医疗服务等。以下是一些典型的应用场景: 2.1 公共交通系统 公共交通系统中的排队问题很常见,比如地铁站的进站口、公交车站的上车口等。统计排队论可以帮助交通管理者合理设置服务通道和优化乘客的等待时间,提高公共交通系统的效率。 2.2 电话交换系统 电话交换系统中的呼叫中心是一个典型的排队系统。通过使用统计排队论的模型和理论,电话交换系统的设计者可以合理设置服务通道数量和系统容量,以提供更好的服务质量和用户体验。 2.3 服务行业 在一些服务行业,比如银行、医院等,排队问题也是一个重要的考虑因素。通过应用统计排队论的模型,服务行业可以优化服务设备的利用率,减少顾客的等待时间,提高服务质量和效率。 3.其他排队相关的数学模型 除了以上介绍的基本模型之外,统计排队论还涉及到其他一些相关的数学模型。比如排队论中的博弈模型可以研究顾客的行为策略对排

排队论论文【范本模板】

摘要:本文首先对排队论中的基本建模与相关知识点进行了总结,然后对生活中排队论的运用的例子进行了讲解,接下来对无线通信中排队论的运用进行了相关的说明。最后进行了总结。 关键词:排队论,随机过程,泊松分布 一、排队论中的基本建模与相关知识点 不同的顾客与服务组成了各式各样的服务系统。顾客为了得到某种服务而到达系统、若不能立即获得服务而又允许排队等待,则加入队列排队等待接受服务,然后服务台按一定规则从队列中选择顾客进行服务,获得服务的顾客立即离开系统. 各个顾客由顾客源(总体)出发,到达服务机构(服务台、服务员)前排队等候接受服务,服务完成后离开。 排队结构指队列的数目和排列方式,排队规则和服务规则是说明顾客在排队系统中按怎样的规则、次序接受服务的。 排队过程的一般模型 实际的排队系统虽然千差万别,但是它们有以下的共同特征: (1)有请求服务的人或物—-顾客; (2)有为顾客服务的人或物,即服务员或服务台; (3)顾客到达系统的时刻是随机的,为每一位顾客提供服务的时间是随机的,因而整个排队系统的状态也是随机的。排队系统的这种随机性造成某个阶段顾客排队较长,而另外一些时候服务员(台)又空闲无事。 排队系统由三个基本部分组成:①输入过程②排队规则③服务机构。 输入过程: 这是指要求服务的顾客是按怎样的规律到达排队系统的过程。

(1)顾客总体数,又称顾客源、输入源。这是指顾客的来源。顾客源可以是有限的,也可以是无限的。 (2)顾客到达方式。这是描述顾客是怎样来到系统的,他们是单个到达,还是成批到达。 (3)顾客流的概率分布,或称相继顾客到达的时间间隔的分布。顾客流的概率分布一般有定长分布、二项分布、泊松流(最简单流)、爱尔朗分布等若干种。 服务规则: (1)损失制。这是指如果顾客到达排队系统时,所有服务台都已被先来的顾客占用,那么他们就自动离开系统永不再来。 (2)等待制。这是指当顾客来到系统时,所有服务台都不空,顾客加入排队行列等待服务。 ①先到先服务。 ②后到先服务。 ③随机服务。 ④优先权服务. (3)混合制。这是等待制与损失制相结合的一种服务规则,一般是指允许排队,但又不允许队列无限长下去。 ①队长有限。当排队等待服务的顾客人数超过规定数量时,后来的顾客就自动离去,另求服务,即系统的等待空间是有限的。 ②等待时间有限。即顾客在系统中的等待时间不超过某一给定的长度T,当等待时间超过T时,顾客将自动离去,并不再回来。 ③逗留时间(等待时间与服务时间之和)有限. 不难注意到,损失制和等待制可看成是混合制的特殊情形,如记s为系统中服务台的个数,则当K=s时,混合制即成为损失制;当K=∞时,混合制即成为等待制。 服务台情况: (1)服务台数量及构成形式。从数量上说,服务台有单服务台和多服务台之分。(2) 服务方式。这是指在某一时刻接受服务的顾客数,它有单个服务和成批服务两种。(3)服务时间的分布。一般来说,在多数情况下,对每一个顾客的服务时间是一随机变量,其概率分布有定长分布、负指数分布、K级爱尔良分布、一般分布(所有顾客的服务时间都是独立同分布的)等等。 排队系统的描述符号与分类 为了区别各种排队系统,根据输入过程、排队规则和服务机制的变化对排队模型进行描述或分类,可给出很多排队模型。为了方便对众多模型的描述,肯道尔(D.G.Kendall)提出了一种目前在排队论中被广泛采用的“Kendall记号”,完整的表达方式通常用到6个符号并取如下固定格式: A/B/C/D/E/F 各符号的意义为: A—表示顾客相继到达间隔时间分布,常用下列符号: M—表示到达过程为泊松过程或负指数分布; D—表示定长输入; Ek—表示k阶爱尔朗分布; G—表示一般相互独立的随机分布。 B-表示服务时间分布,所用符号与表示顾客到达间隔时间分布相同。

排队论

实用排队论 排队论又称随机服务系统,它应用于一切服务系统,包括生产管理系统、通信系统、交通系统、计算机存储系统。它通过建立一些数学模型,以对随机发生的需求提供服务的系统预测。现实生活中如排队买票、病人排队就诊、轮船进港、高速路上汽车通过收费站、机器等待修理等等。 一、排队论的基本构成 (1)输入过程 输入过程是描述顾客是按照怎样的规律到达排队系统的。包括①顾客总体:顾客的来源是有限的还是无限的。②到达的类型:顾客到达是单个到达还是成批到达。③相继顾客到达的时间间隔:通常假定是相互独立同分布,有的是等间隔到达,有的是服从负指数分布,有的是服从k 阶Erlang 分布。 (2)排队规则 排队规则指顾客按怎样的规定的次序接受服务。常见的有等待制,损失制,混合制,闭合制。当一个顾客到达时所有服务台都不空闲,则此顾客排队等待直到得到服务后离开,称为等待制。在等待制中,可以采用先到先服务,如排队买票;也有后到先服务,如天气预报;也有随机服务,如电话服务;也有有优先权的服务,如危重病人可优先看病。当一个顾客到来时,所有服务台都不空闲,则该顾客立即离开不等待,称为损失制。顾客排队等候的人数是有限长的,称为混合制度。当顾客对象和服务对象相同且固定时是闭合制。如几名维修工人固定维修某个工厂的机器就属于闭合制。 (3)服务机构 服务机构主要包括:服务台的数量;服务时间服从的分布。常见的有定长分布、负指数分布、几何分布等。 二、排队系统的数量指标 (1)队长与等待队长 队长(通常记为s L )是指系统中的平均顾客数(包括正在接受服务的顾客)。等待队长(通常记为q L )指系统中处于等待的顾客的数量。显然,队长等于等待队长加上正在服务的顾客数。 (2)等待时间 等待时间包括顾客的平均逗留时间(通常记为s W )和平均等待时间(通常记为q W )。顾客的平均逗留时间是指顾客进入系统到离开系统这段时间,包括等待时间和接受服务的时间。顾客的平均等待时间是指顾客进入系统到接受服务这段时间。 (3)忙期 从顾客到达空闲的系统,服务立即开始,直到再次变为空闲,这段时间是系统连续繁忙的时期,称之为系统的忙期。它反映了系统中服务机构工作强度,是衡量服务系统利用效率的指标,即 服务强度=忙期/服务总时间=1─闲期/服务总时间 闲期与忙期对应的系统的空闲时间,也就是系统连续保持空闲的时间长度。

相关文档