文档视界 最新最全的文档下载
当前位置:文档视界 › 公理化和形式化

公理化和形式化

公理化和形式化
公理化和形式化

公理化和形式化axiomatization and formalization

研究演绎科学理论和构造演绎系统的两种方法。它们被广泛应用于现代逻辑和数学研究中。

公理化

把一个科学理论公理化,就是用公理方法研究它,建立一个公理系统。每一科学理论都是由一系列的概念和命题组成的体系,公理化的实现就是:①从它的诸多概念中挑选出一组初始概念,即不加定义的概念,该理论中的其余概念,都由初始概念通过定义引入,即都用初始概念定义,称为导出概念;②从它的一系列命题中挑选出一组公理,即不加证明的命题,而其余的命题,都应用逻辑规则从公理推演出来,称为定理。应用逻辑规则从公理推演定理的过程称为一个证明,每一定理都是经由证明而予以肯定的。由初始概念、导出概念、公理以及定理构成的演绎体系,称为公理系统。其中,初始概念和公理是公理系统的出发点。

公理方法经历了从古代的实质公理学到现代的形式公理学的发展过程。

公理系统相应地区分为古典公理系统、现代公理系统或称形式公理系统。最有代表性的古典公理系统是古希腊数学家欧几里得在《几何原本》一书中建立的。第一个现代公理系统是D.希尔伯特于1899年提出的。他在《几何基础》一书中,不仅建立了欧几里得几何的形式公理系统,而且也解决了公理方法的一些逻辑理论问题。

古典公理系统的对象域即公理系统所研究的对象,是先于公理而给定的,概念是对象的反映,公理则反映对这些对象的认识,表达这类对象的重要性质和关系。古典公理系统的初始概念和公理都有直观的具体内容,而系统的公理和定理是关于这对象域的真命题。从认识的发展来看,现代形式公理系统虽然一般也是从某种直观理论得到的,并且通常有预先想到的解释。但是,系统自身并不给初始概念予直观的具体内容,它们的意义完全由公理规定,对初始概念和公理可以给予不同的解释,可以刻划多个不同的对象域,即有多个不同的对象域都可以使得一个公理系统的公理和定理为真,它们在不同的解释下成为不同对象域的真命题。

公理系统要满足某些一般要求,包括系统的一致性、完全性和范畴性,以及公理的独立性。其中一致性是最重要的,其他几个性质则不是每个公理系统都能满足的,或可以不必一定要求的。

形式化

公理系统的进一步形式化不仅可以有不同的解释,而且需要应用专门设计的人工符号语言,使一个理论更为精确化和严格化,也就是运用人工的表意符号语言陈述所要形式化的理论。这种人工语言称为形式语言。把一个理论形式化就是把理论中的概念转换为形式语言中的符号,命题转换为符号公式,定理的推演转换成符号公式的变形,并把一个证明转换成符号公式的有穷序列。形式语言的符号和它们所表示的概念之间的对应是确定的,符号公式的结构反映它们的意见。把一个理论形式化后,就可以暂时完全撇开原来理论中的概念、命题的意义,而只从语言符号、公式结构(符号组合的形状)方面研究。意义是抽象的,往往不容易精确理解和掌握。而符号和公式是有穷的具体的对象,能够对其作更精确、更严格的研究,从而通过对具体对象的研究把握抽象的东西。

形式系统

把一个理论形式化的结果是建立形式系统。形式系统是形式化了的公理系统,它包括以下3个部分:①形式语言。规定一个形式语言,首先要列出各种初始符号,它们是形式语言的字母,其中一部分是初始概念,包括逻辑概念;然后再列出一组形成规则,形成规则规定怎样由初始符号组合起来的符号序列是系统中的合式公式,只有合式公式才是有意义的命题,而不合式的符号序列则是无意义的。②形式系统的公理。公理是挑选出来作为出发点的一组合式公式,它们经解释后可以是真的命题。③一组变形规则,也称为推导规则。变形规则规

定怎样从一个或几个合式公式经过符号变换而推导出另一合式公式。形式系统的证明是合式公式的有穷序列,其中每一公式或是一公理,或者是从在前的公式根据变形规则推导出来的。一个证明也称作它的最后一个公式的证明,一个合式公式也是系统中的定理,当且仅当存在它的一个证明。

严格的形式化和形式系统的概念,与精确的机械的程序概念和能行可判定概念分不开。所谓机械的程序,每一步都是由事先给定的规则明确规定了的,规则规定了第一步如何做,在完成某一步之后下一步如何做,并且在有穷步后能够结束。所谓能行可判定,是指对一类问题有一机械的程序,对任给该类中的问题,能在有穷步内确定它是否有某个性质,或者任给一对象能在有穷步确定它是否属于该类。

对于形式系统的一个最重要的要求,就是有机械的程序并可能行地判定:①任给一符号是不是系统中的初始符号;②任给一符号的有穷序列是不是系统中的合式公式;③任给一合式公式是不是公理;④任给一合式公式是不是从给定的合式公式根据变形规则得到的;⑤任给一合式公式的有穷序列是不是一个证明。根据这些要求,虽然一般地说,在形式系统中给定一公式时,并没有一个机械程序找出它的证明,但只要任给一有穷的公式序列,就能机械地判明它是否确实是本系统中的一个正确的证明。这样就可以对于一个形式化的公理系统的许多逻辑性质进行科学的研究。

明确的形式化和形式系统的概念是希尔伯特在20世纪20年代初提出的。形式化的明确提出和形式系统的建立,在公理学发展史上有着十分重大的意义。它标志着以形式系统为研究对象的元逻辑或元数学的诞生,对现代逻辑科学的发展起了重大的作用。

公理化和形式化

公理化和形式化axiomatization and formalization 研究演绎科学理论和构造演绎系统的两种方法。它们被广泛应用于现代逻辑和数学研究中。 公理化 把一个科学理论公理化,就是用公理方法研究它,建立一个公理系统。每一科学理论都是由一系列的概念和命题组成的体系,公理化的实现就是:①从它的诸多概念中挑选出一组初始概念,即不加定义的概念,该理论中的其余概念,都由初始概念通过定义引入,即都用初始概念定义,称为导出概念;②从它的一系列命题中挑选出一组公理,即不加证明的命题,而其余的命题,都应用逻辑规则从公理推演出来,称为定理。应用逻辑规则从公理推演定理的过程称为一个证明,每一定理都是经由证明而予以肯定的。由初始概念、导出概念、公理以及定理构成的演绎体系,称为公理系统。其中,初始概念和公理是公理系统的出发点。 公理方法经历了从古代的实质公理学到现代的形式公理学的发展过程。 公理系统相应地区分为古典公理系统、现代公理系统或称形式公理系统。最有代表性的古典公理系统是古希腊数学家欧几里得在《几何原本》一书中建立的。第一个现代公理系统是D.希尔伯特于1899年提出的。他在《几何基础》一书中,不仅建立了欧几里得几何的形式公理系统,而且也解决了公理方法的一些逻辑理论问题。 古典公理系统的对象域即公理系统所研究的对象,是先于公理而给定的,概念是对象的反映,公理则反映对这些对象的认识,表达这类对象的重要性质和关系。古典公理系统的初始概念和公理都有直观的具体内容,而系统的公理和定理是关于这对象域的真命题。从认识的发展来看,现代形式公理系统虽然一般也是从某种直观理论得到的,并且通常有预先想到的解释。但是,系统自身并不给初始概念予直观的具体内容,它们的意义完全由公理规定,对初始概念和公理可以给予不同的解释,可以刻划多个不同的对象域,即有多个不同的对象域都可以使得一个公理系统的公理和定理为真,它们在不同的解释下成为不同对象域的真命题。 公理系统要满足某些一般要求,包括系统的一致性、完全性和范畴性,以及公理的独立性。其中一致性是最重要的,其他几个性质则不是每个公理系统都能满足的,或可以不必一定要求的。 形式化 公理系统的进一步形式化不仅可以有不同的解释,而且需要应用专门设计的人工符号语言,使一个理论更为精确化和严格化,也就是运用人工的表意符号语言陈述所要形式化的理论。这种人工语言称为形式语言。把一个理论形式化就是把理论中的概念转换为形式语言中的符号,命题转换为符号公式,定理的推演转换成符号公式的变形,并把一个证明转换成符号公式的有穷序列。形式语言的符号和它们所表示的概念之间的对应是确定的,符号公式的结构反映它们的意见。把一个理论形式化后,就可以暂时完全撇开原来理论中的概念、命题的意义,而只从语言符号、公式结构(符号组合的形状)方面研究。意义是抽象的,往往不容易精确理解和掌握。而符号和公式是有穷的具体的对象,能够对其作更精确、更严格的研究,从而通过对具体对象的研究把握抽象的东西。 形式系统 把一个理论形式化的结果是建立形式系统。形式系统是形式化了的公理系统,它包括以下3个部分:①形式语言。规定一个形式语言,首先要列出各种初始符号,它们是形式语言的字母,其中一部分是初始概念,包括逻辑概念;然后再列出一组形成规则,形成规则规定怎样由初始符号组合起来的符号序列是系统中的合式公式,只有合式公式才是有意义的命题,而不合式的符号序列则是无意义的。②形式系统的公理。公理是挑选出来作为出发点的一组合式公式,它们经解释后可以是真的命题。③一组变形规则,也称为推导规则。变形规则规

数学的公理化

数学的公理化 十九世纪末到二十世纪初,数学已发展成为一门庞大的学科,经典的数学部门已经建立起完整的体系:数论、代数学、几何学、数学分析。数学家开始探访一些基础的问题,例如什么是数?什么是曲线?什么是积分?什么是函数?……另外,怎样处理这些概念和体系也是问题。 经典的方法一共有两类。一类是老的公理化的方法,不过非欧几何学的发展,各种几何学的发展暴露出它的许多毛病;另一类是构造方法或生成方法,这个办法往往有局限性,许多问题的解决不能靠构造。尤其是涉及无穷的许多问题往往靠逻辑、靠反证法、甚至靠直观。但是,哪些靠得住,哪些靠不住,不加分析也是无法断定的。 对于基础概念的分析研究产生了一系列新领域—抽象代数学、拓扑学、泛函分析、测度论、积分论。而在方法上的完善,则是新公理化方法的建立,这是希尔伯特在1899年首先在《几何学基础》中做出的。 十九世纪八十年代,非欧几何学得到了普遍承认之后,开始了对于几何学基础的探讨。当时已经非常清楚,欧几里得体系的毛病很多:首先,欧几里得几何学原始定义中的点、线、面等不是定义;其次,欧几里得几何学运用许多直观的概念,如“介于……之间”等没有严格的定义;另外,对于公

理系统的独立性、无矛盾性、完备性没有证明。 在十九世纪八十年代,德国数学家巴士提出一套公理系统,提出次序公理等重要概念,不过他的体系中有的公理不必要,有些必要的公理又没有,因此他公理系统不够完美。而且他也没有系统的公理化思想,他的目的是在其他方面——想通过理想元素的引进,把度量几何包括在射影几何之中。 十九世纪八十年代末期起,皮亚诺和他的学生们也进行了一系列的研究。皮亚诺的公理系统有局限性;他的学生皮埃利的“作为演绎系统的几何学”,由于基本概念太少而把必要的定义和公理弄得极为复杂,以致整个系统的逻辑关系极为混乱。 希尔伯特的《几何学基础》的出版,标志着数学公理化新时期的到来。希尔伯特的公理系统是其后一切公理化的楷模。希尔伯特的公理化思想极深刻地影响其后数学基础的发展,他这部著作重版多次,已经成为一本广为流传的经典文献了。 希尔伯特的公理系统与欧几里得及其后任何公理系统的不同之处,在于他没有原始的定义,定义通过公理反映出来。这种思想他在1891年就有所透露。他说:“我们可以用桌子、椅子、啤酒杯来代替点、线、面”。当然,他的意思不是说几何学研究桌、椅、啤酒怀,而是在几何学中,点、线、

现代公理化方法的奠基人——希尔伯特

现代公理化方法的奠基人——希尔伯特 1900年8月6日,第二届国际数学家代表大会在法国巴黎召开。一位38岁的德国数学家神采奕奕地走上了讲台,他向与会者,也向国际数学界提出了横跨数学领域的尚待解决的23个数学问题,预示了20世纪数学的发展进程,他就是20世纪世界最伟大的数学家之一——希尔伯特。 希尔伯特于1862年1月23日生于哥尼斯堡,1943年2月14日在哥廷根逝世。他于1880年入哥尼斯堡大学,1885年获博士学位。希尔伯特的数学贡献是巨大的,他典型的研究方式就是直攻数学中的重大问题,开拓新的研究领域,并从中寻找普遍性的方法。1899年希尔伯特在汲取前人工作的基础上,完成了他著名的《几何基础》一书,第一次给出了完备的欧几里德几何公理体系——希尔伯特公理体体系,从而彻底结束了两千多年来,人们对欧几里德《几何原本》的补充、整理工作。在《几何基础》中,希尔伯特仍使用欧几里德的传统语言和叙述方法,首先补充了欧氏体系中缺少的公理,建立起欧几里德几何的完备公理集,从这个公理集可以无缺陷地推出欧氏几何中的所有定理,并精确地提出了公理系统的相容性、独立性和完备性,因而希尔伯特被誉为现代公理化方法的奠基人。 希尔伯特的数学贡献也是多方面的,他所研究的领域遍及代数学,几何学、分析学、数学基础及物理学许多方面,并取得了举世公认的伟大成就。他眼光深邃,精力充沛,富于创造、献身科学事业的信念使他深深地埋头科学研究,以致几乎考察了数学领域的每一个王国,超凡的才、学、识使他能以卓越的远见和洞察力提出了新世纪数学所面临的难题,从而推动了半个多世纪以来众多数学分支的发展。据统计,从1936——1974年,被誉为数学界诺贝尔奖的菲尔兹国际数学奖的20名获奖者中,至少有12人的工作与希尔伯特的问题有关。 希尔伯特的成功固然有其特定的社会因素,但也是与他本人的勤奋努力、顽强拼搏分不开的,在他的回忆录中,他承认自己小时候并非天才,而是一个愚钝的孩子,他的亲友也没人提到过希尔伯特的能力曾受到人们的注意,但他顽强的精神,却给周围人留下极深刻的印象:不论面对多么繁重的计算,他都具有计算到底的毅力,有一股不达目的绝不罢休的劲头。

数学公理化方法

数学公理化方法 在一个数学理论系统中,从尽可能少的原始概念和一组不加证明的公理出发,用纯逻辑推理的法则,把该系统建立成一个演绎系统的方法,就是公理化方法。它是随着数学和逻辑学的发展而产生的。 公元前6世纪前后,希腊数学家泰勒斯(Thales)开始了几何命题的证明,开辟了几何学作为证明的演绎科学的方向。毕达哥拉斯学派的欧多克斯于公元前4世纪在处理不可通约量时,建立了一公理为依据的演绎方法。爱奥尼亚学派的芝诺(Zeno)在论辩术中运用了归谬法。伯拉图阐明了许多逻辑原则。亚里士多德在其著作《分析篇》中,对公理方法作了系统总结,指出了演绎证明的逻辑结构和要求,从而奠定了公理化方法的基础。 公元前3、4世纪之交,希腊数学家欧几里德在总结前人积累的几何知识基础上,把形式逻辑的公理演绎方法应用于几何学,运用他所抽象出的一系列基本概念和公理,完成了传世之作《几何原本》,标志着数学领域中公理化方法的诞生。由于《几何原本》在第五公设的陈述和内容上复杂而累赘,引起人们对这一公设本身必要性的怀疑。在此后的2000多年间,人们试图给出一个第五公设的证明,但所有的尝试都失败了。19世纪,俄国年轻的数学家罗巴切夫斯基吸取前人失败的教训,从反面提出问题,给出了一个新的公理体系,创立了非欧几何学。这是公理化方法的进一步发展。 1899年,德国数学家希尔伯特在前人工作的基础上,著《几何基础》一书,解决了欧氏几何的欠缺,完善了几何公理化方法,创造了全新的形式公理化方法。为了避免在数学中出现悖论,希尔伯特认为要设法绝对的证明数学的无矛盾性,致使他从事“证明论的研究”,于是希尔伯特又把公理化方法推向一个新阶段,即纯形式化发展阶段,这就产生了纯形式公理化方法。 几何学的公理化,成为其它学科及分支的楷模。相继出现了各种理论的公理化系统,如理论力学公理化,相对论公理化,数理逻辑公理化,概率论公理化等。同时,纯形式公理化方法推动了数学基础的研究,并为机算机的广泛应用开阔了前景。

几何学公理化

几何学公理化 除了极少数的著作之外,没有人知道那些伟大的古希腊先哲们究竟在思考什么。关于这些先驱的生平,人们只能从《欧德斯摩摘要》一书中了解极为粗略的情况。然而正是在这些吉光片羽的文字中,保留了古希腊关于数学的最光辉的思想。 从泰勒斯(Thales)到欧几里得的三百多年历史中,数学稳步而又迅速地发展着。泰勒斯开始了命题的证明,毕达哥拉斯学派进一步将数学从具体中抽象出来,并把算术和几何紧密地联系在一起。公元前387年左右,柏拉图(Plato,公元前426-347)在雅典创建了哲学学园,主张通过几何学习培养逻辑思维能力。他的学生亚里士多德(Aristotel,公元前384-322)则是形式逻辑的奠基者。这个学派的另一个重要人物欧多克索斯(Eudoxus,公元前460-357)创立了比例论。他用公理化的方法建立理论,使得比例的适用范围从毕达哥拉斯学派的可通约量扩大至不可通约量。 到了公元前4世纪时,古希腊无论是在几何学还是逻辑学上都日臻成熟,公理化思想也是由来已久,一个严密而又完整的几何体系已是呼之欲出。这个重任就落在了欧几里得的肩上。 1.欧几里得的贡献 欧几里得(Euclid,约公元前300年左右),古希腊著名的数学家。他的《几何原本》直到现在,依然是几何学入门的最佳读本。两千年来,这部巨著令许多数学家的努力与文字黯然失色。《原本》一书中的数学思想与方法,深刻地影响了整整两千多年的数学与自然科学的发展历程。 欧几里得的最大贡献并不是发现了多少深奥的定理,而是对过去所有数学知识的总结。他的《几何原本》不仅奠定了西方几何学的基础,并且提供了一整套的公理化方法的范例。在他之前,也曾有人设想过如此计划。但正如《欧德斯摩摘要》一书中所说的,“把几何学原理联系到一起,把欧多克索斯的许多定理有次序地安排起来,把铁塔斯的许多定理加以完善化,并对前任未经严谨证明的许多东西给以无可争辩地阐明”的,乃是欧几里得。 《几何原本》共有十三卷(也有十五卷的版本,最后二卷为后人增补)。在第一卷中,欧氏列出了23个“定义”,接着是5条“公设”和5条“公理”(现代数学并不区分公设和公理,都以公理称之),然后循序渐进地用推理、证明、演绎的方法推导出了全书所有的命题。这就是《原本》一书为何直到现代依然被认为是研究几何学的入门书的最主要的原因:得益于其严密的逻辑与演绎。 然而,正是在看似严密的逻辑推理之下的欧氏几何公理体系中,却存在着非常严重的漏洞。虽然在漫长的历史长河中,不断地有人诟病于它,但它的影响却是一直到两千年之后才反映出来,也由此铸成了一场几何学的革命。 2.第五公设的尴尬

九年级数学公理与定理

2.3公理和定理 一、教学目标: 1、了解公理、定理的含义,初步体会公理化思想,并了解本教科书所使用的定理。 2、通过介绍欧几里得的原本,使学生感受公理化方法对数学发展和促进人类文明进步的价值。 二、教学重点、难点: 公理和定理的区别和联系 三、教法:引导发现法 四、教具准备:投影仪 五、教学过程: 一.创设情景 想一想 如何通过推理的方法证实一个命题是真命题呢? 在数学发展史上,数学家们也遇到过类似的问题。 公元前3世纪,古希腊数学家欧几里得将前人积累下来的几何学成果整理在系统的逻辑体系之中。他挑选了一部分不定义的数学名词(称为原名)和一部分公认的真命题(称为公理)作为证实其他命题的起始依据,定义出其他有关的概念,并运用推理的方法,证实了数百个有关的命题,使几何学成为一门具有公理化体系的科学。 二.回顾总结 通过长期实践总结出来,并且被人们公认的真命题叫做公理。例如,欧几里得将“两点确定一条直线”,“直角都相等”等五条基本几何事实作为公理。通过推理得到证实的真命题叫做定理。 本教科书选用如下命题作为公理:

此外,等式的有关性质和不等式的有关性质都可以看作公理。例如“在等式或不等式中,一个量可以用它的等量来代替”,简称为“等量代换”。 三.应用举例 由上面给出的公理,可以证明如下命题的正确性:等角的补角相等。 已知:∠1=∠2,∠1+∠3=180,∠2+∠4=180。 求证:∠3=∠4 证明:∵∠1+∠3=180,∠2+∠4=180(已知), ∴∠3=180-∠1,∠4=180-∠2 (等式的性质) ∵∠1=∠2 (已知), ∴∠3=∠4 (等式的性质)。 这样,我们便可以把上面这个经过证实的命题称作定理了。已经证明的定理可以作为以后推理的依据。 证明一个命题的正确性,要按照“已知”、“求证”、“证明”的顺序和格式写出。其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程。四、巩固练习: 课本随堂练习2、习题1、2

公理化设计理论Word版

公理化设计理论 公理化设计方法是指存在着能够指导设计过程的基本公理,以及由公理指导的设计方法。它是美国麻省理工学院(MIT) Nam P Suh教授于1990在《The Principles of Design》一书中正式提出的。公理化设计理论是设计领域内的科学准则,通过指导设计者在设计过程中做出正确的决策,为创新设计或改善已有的设计提供良好的思维方法。 一、公理化设计的四个“域” 域是不同设计活动的界限线。公理化设计将设计过程分为四个域,即用户域(Customer domain)、功能域(Functional domain)、结构域(Physical domain)、工艺域(Process domain)。域的结构及域间的关系如图1所示。相邻的两个域中,左边的域是“要达到的什么目标(what)”,而右边的域是“选择什么方法来实现左边域的要求(how)”。四个域中的元素分别为:顾客需求项(customer needs),表示顾客使用产品的目的;功能需求项(functional requirements),表示在功能层次上对产品设计目标的说明;设计参数(design parameters),表示实现功能的载体;过程变量(process variables)表示制造过程所涉及的主要因素。 图 1域的结构及域间关系 在公理化设计中,功能域和结构域之间是直接的“之”字映射关

系,如图2所示,即把某个功能与某个(些)结构直接对应起来,这种直接映射只是表明了

“载体具有的功能”的关系,而没有说明“功能被载体实现”的原因。 图 2功能域向结构域映射原理 二、公理化设计理论的基本公理 公理化设计是一种结构性设计方法,其目的是通过建立评估潜在的设计活动的准则,并提供实现这些准则的手段来改进设计行为。这些准则便是:独立性公理和信息最小公理。 1.独立性公理 独立性公理是指保持FRs的独立性,同时指明了FRs与DPs之间应有的关系。这就是说,设计方案必须满足每一个相互独立的功能需求,而不影响其他的功能需求,即DPs不能与其他的FRs存在牵连关系。 公理化设计中,设计域间的映射过程可以用数学方程来描述,即在层次结构的某一层上,设计目标域与设计方案域中的特性矢量间有一定的数学关系,如功能域中的功能需求与物理域中的设计参数之间

第一讲逻辑与公理化系统

第一讲数理逻辑与公理化系统 逻辑是人通过概念、判断、推理、论证来理解和区分客观事物的思维过程,逻辑思维,人们在认识过程中借助于概念、判断、推理等思维形式能动地反映客观现实的理性认识过程,又称理论思维。它是作为对认识着的思维及其结构以及起作用的规律的分析而产生和发展起来的。只有经过逻辑思维,人们才能达到对具体对象本质规定的把握,进而认识客观对象。它是人的认识的高级阶段,即理性认识阶段。 概念是反映事物内的本质属性及其分子的的思维形式,是抽象的、普遍的想法、观念或充当指明实体、事件或关系的范畴或类的实体。其特征是概念的内涵(内容)和外延(包含在概念中的事物); 判断的特征是对事物有所断定且有真假; 演绎推理的特征是如果前提真,则结论真;(数学的逻辑推理通常是演绎推理) 定义是揭示概念内涵的逻辑方式,是用简洁的语词揭示概念反映的对象特有属性和本质属性。定义的基本方法是“种差”加最邻近的“属”概念。 定义的规则:一是定义概念与被定义概念的外延相同;二是定义不能用否定形式;三是定义不能用比喻;四是不能循环定义。 划分是明确概念全部外延的逻辑方法,是将“属”概念按一定标准分为若干种概念。划分的逻辑规则:一是子项外延之和等于母项的外延;二是一个划分过程只能有一个标准;三是划分出的子项必须全部列出;四是划分必须按属种关系分层逐级进行,不可以越级。 数学中的逻辑除了上述特点之外,更重要的是定量的刻画客观事物,在这一过程中,集合是一个基本的概念,它通过集合中的一些关系将事物量化。 将具有某种确定的特性的事物的全体称为一个集合。 在数学中,在逻辑量化过程中,会用到量词。 量词是命题中表示数量的词,分为全称量词和存在量词。全称量词断定所有的个体都具有相关谓词所表示的性质或关系,相当于自然语言中的“一切”、“所有”、“凡”等;存在量词断定存在(即至少有一个,但不一定是每一个)个体具有相关谓词所表示的性质或关系,相当于自然语言中的“有的”、“有”、“至少有一个”、“找得到一个”等。 符号表示为?(任一)表示全称量词,?(存在)表示存在量词,在数学中主要有以下几种形式: x F ?表示任一x具有性质F; ,x ) ( x?表示存在x具有性质F(满足条件F); F ,x ( ) y x? ?表示任一x和任一y具有关系G(满足条件G); G ( , ) ,y x x,具有关系G(满足条件G); y x? ?表示对任一x,存在y,使得y G , ) ( ,y x x,具有关系G(满足条件G); y x? G ?表示存在x,对任一y,使得y ( ) , ,y x

《公理化体系》

公理化方法 公理化方法公理化思想任何真正的科学都始于原理,以它们为基础,并由之而导出一切结果来随着假设演绎模型法的进一步发展,经济学日益走向公理化方法。公理化是一种数学方法。最早出现在二千多年前的欧几里德几何学中,当时认为“公理’(如两点之问可连一直线)是一种不需要证明的自明之理,而其他所谓“定理” (如三对应边相等的陌个三角形垒等)则是需要由公理出发来证明的,18世纪德国哲学家康德认为,欧几里德几何的公理是人们生来就有的先验知识,19世纪末,德国数学家希尔伯特(David Hilbert)在他的几何基础研究中系统地挺出r数学的公理化方法。 简介 恩格斯曾说过:数学上的所谓公理,是数学需要用作自己出发点的少数思想上的规定。 公理化方法能系统的总结数学知识、清楚地揭示数学的理论基础,有利于比较各个数学分支的本质异同,促进新数学理论的建立和发展。 现代科学发展的基本特点之一,就是科学理论的数学化,而公理化是科学理论成熟和数学化的一个主要特征。 公理化方法不仅在现代数学和数理逻辑中广泛应用,而且已经远远超出数学的范围,渗透到其它自然科学领域甚至某些社会

科学部门,并在其中起着重要作用. 历史发展 产生 公理化方法发展的第一阶段是由亚里士多德的完全三段论到欧几里得《几何原本》的问世.大约在公元前3世纪,希腊哲学家和逻辑学家亚里斯多德总结了几何学与逻辑学的丰富资料,系统地研究了三段论,以数学及其它演绎的学科为例,把完全三段论作为公理,由此推导出其它所有三段论法,从而使整个三段论体系成为一个公理系统.因此,亚里斯多德在历史上提出了第一个成文的公理系统. 亚里斯多德的思想方法深深地影响了当时的希腊数学家欧几里得.欧几里得把形式逻辑的公理演绎方法应用于几何学,从而完成了数学史上的重要著作《几何原本》.他从古代的量地术和关于几何形体的原始直观中,用抽象分析方法提炼出一系列基本概念和公理.他总结概括出10个基本命题,其中有5个公设和5条公理,然后由此出发,运用演绎方法将当时所知的全部几何学知识推演出来,整理成为演绎体系.《几何原本》一书把亚里斯多德初步总结出来的公理化方法应用于数学,整理、总结和发展了希腊古典时期的大量数学知识,在数学发展史上树立了一座不朽的丰碑. 公理学研究的对象、性质和关系称为“论域”,这些对象、性

数学中的公理化方法(下)

數學中的公理化方法(下) 吳開朗 四、數學公理系統的美學標準 美國數學家F.S.梅里特在其所著《工程中的現代數學方法》一書中曾經說過:“每一模型都是由一組公理定義的,···公理自身必須無矛盾且相互獨立”[11]。所謂一組公理,即是一個公理系統。關於公理系統的無矛盾性,是指借助於演算不可能在一個公理系統中推出兩個相互否定的命題。關於公理系統的獨立性,是指在該系統中任何一條公理都不可能作為其餘各公理的邏輯推論。如果一個公理系統具備無矛盾性(即相容性)和獨立性,那麼,這個公理系統(或者說這個理論體系)就是優美的。因此,相容性和獨立性也就是公理系統的美學標準。 獨聯體維林金等編著的《中學數學現代基礎》一書中曾指出:“可以由給定的公理系統導出的全部不同的命題,一般說來有無窮多個。因此,為了證明給定的公理系統的相容性,要想由這一公理系統作出全部可能的推論,並且指出其中沒有相互矛盾的命題,這是不可能的。為了解決這個難題,曾經創造一種特殊的方法,它的名稱叫做模型法”。[12]所謂模型法,即是欲證明某一新數學理論的無矛盾性(一致性),或者欲證明某一新數學理論 與某一已知的(舊)數學理論的相容性(相對一致性),可以設法為它在古典數學中構造一個模型,並且進而證明這個新數學理論的公理系統在該模型中都能夠得以實現,這樣,即可以把這個新理論的相容性,化歸為新理論與建造它的模型(新理論的模型)時所需要的古典數學理論的相容性(相對一致性)。因此,這種模型法,又可稱之為化歸法。例如,我們利用龐卡萊(Poincar′e)模型和球面模型,可以把非歐幾何的相容性,化歸為歐氏幾何的相容性,再利用算術模型,又可進一步把歐氏幾何的相容性,化歸為算術理論的相容性。[13]然而,對於一個新理論而言,並不需要如此逐步化歸,一般地說,只要是在古典數學中,能夠為其構造一個數學模型已足,因為古典數學已經過億萬群眾長期的科學實踐檢驗。 維林金在《中學數學現代基礎》一書中指出:“利用模型法也可以解決所給公理系統的獨立性問題。如果理論T中的公理A,由其它公理既不能證明,也不能否定,則稱公理A是與其它公理相獨立的。要證明所給公理A的獨立性,應該建立一個新的公理系統,在其中將公理A換成它的否定,而T中其它公理則保持不變。如果所給的公理系統以 1

数学公理化方法的意义和作用

数学公理化方法的意义和作用 2008-9-27 16:06:49 ——摘自《徐利治谈数学哲学》 公理化方法在近代数学的发展中起过巨大的作用,可以说,它对各门现代数学都有极其深刻的影响.即使在数学教学中,公理化方法也是一个十分重要的方法. 所谓公理化方法(或公理方法),就是从尽可能少的无定义的原始概念(基本概念)和一组不证自明的命题(基本公理)出发,利用纯逻辑推理法则,把一门数学理论构造成为演绎系统的一种方法.所谓基本概念和公理,当然必须反映数学实体对象的最单纯的本质和客观关系而并非人们自由意志的随意创造. 众所周知,Hilbert l899年出版的《几何学基础》一书是近代数学公理化的典范著作.该书在问世后的二三十年间曾引起西方数学界的一阵公理热,足见其影响之大.Hilbert的几何公理系统实际上是在前人的一一系列工作成果基础上总结出来的,书中的公理条目也曾屡经修改.直到1930年出第七版时,还作了最后修改.这说明一门学科的公理化未必是一次完成的,公理化过程是可以包含着一些发展阶段的. 谈到数学公理化的作用,至少可以举出如下四点: (1)这种方法具有分析、总结数学知识的作用.凡取得了公理化结构形式的数学,由于定理与命题均已按逻辑演绎关系串联起来,故使用起来也较方便. (2)公理化方法把一门数学的基础分析得清清楚楚,这就有利于比较各门数学的实质性异同,并能促使和推动新理论的创 (3)数学公理化方法在科学方法论上有示范作用.这种方法对现代理论力学及各门自然科学理论的表述方法都起到了积极的借鉴作用.例如,20世纪40年代波兰的Banach曾完成了理论力学的公理化,而物理学家亦把相对论表述为公理化形式…… (4)公理化方法所显示的形式的简洁性、条理性和结构的和谐性确实符合美学上的要求,因而为数学活动中贯彻审美原则提供了范例 数学公理化方法 2007-09-19 23:30 §2 数学公理化方法 公理化方法在近代数学的发展中起过巨大的作用,它对于各门现代数学都有极其深刻的影响.公理化方法是数学研究的一种基本方法,即使在数学教学中,也是一个十分重要的方法. 一、公理化方法的意义和作用 所谓公理化方法,就是由尽可能少的不加定义的原始概念(基本概念)和一组不加证明的原始命题(公理或公设)出发,运用逻辑规则推导出其余命题或定理,把一门数学建立成为演绎系统的一种方法. 公理化方法不仅在现代数学和数理逻辑中广泛应用,而且已经远远超出数学

概率论公理化的历史进程

概率论公理化的历史进程 英才学院 计算机科学与技术专业 班级:1240004班 姓名:马恒钊 学号:7120310417 引言:概率论是从赌博问题的研究中诞生的,经历了比较漫长的公理化进程,从这之后概率论才变成了一门真正的科学。因此公理化在概率论的发展史中有着重要的地位。 关键字:贝特朗悖论公理化柯尔莫戈洛夫

一、产生与挑战——贝特朗悖论 概率论在17 世纪中叶由研究赌博问题而诞生。到了19世纪, 由于获得新的研究动机以及分析方法的引入, 使得概率论获得了重要进展。可是在发展过程中, 概率论没能演绎成一门逻辑上完美的数学学科, 它的基础存在着缺陷。这是因为19世纪的分析本身就没有严格化, 以它为研究工具的概率论的严格化就可想而知了。虽然, 后来分析的基础严密了, 但概率论公理化所必须的测度论还未发明, 故不严密是难以避免的。在这种情况下, 出现了“贝特朗悖论”等问题,对概率论的基础提出了挑战。 贝特朗( Bertrand)悖论是概率论中的一个著名问题, 其问题是: 在圆内任作一弦, 求其长超过圆内接正三角形边长的概率(如图1)。此问题可以有三种不同的解答: 1) 作一条铅直的直径, 再作垂直于此直径的弦。弦长可以由它与直径的交点唯一确定。当弦交直径于1 /4点与3 /4点之间, 其长才大于内接正三角形边长(如图2)。设交点落在直径上哪一点是等可能的, 则所求概率为1 /2 2) 固定弦的一端到正三角形的一个顶点, 弦长可以由弦的另一端点的位置唯一确定。当弦的另一端点落在圆弧上AB之间时, 其长才合乎要求(如图3)。设弦的另一端落在圆周上哪一点是等可能的, 则所求概率为1/3。 3) 弦可以由中点唯一确定。当弦的中点落在半径为大圆半径一半的同心圆内时, 其长才合乎要求(如图4)。设中点位于圆内哪一点是等可能的, 则所求概 率为1/4。 此问题从三个不同的角度来考虑, 做出三种不同的答案。这严重违背了常理。这就是贝特朗悖论。

第六章、数学公理化方法

§5.3 使用RMI方法的条件 从前述各例,我们可以归纳出正确使用RMI方法的条件。 (1)映射?须是两类数学对象之间的一一对应关系; (2)所采用的映射?须是可定映的,即目标映象能通过确定的有限多个数学手续从映象关系结构系统中寻求出来; ?必须具有能行性,即通过目标映象能将目标原象的某种(3)相对的逆映射(反演)-1 需 要的性态经过有限步骤确定下来。 以上几点也从另一角度说明,RMI方法并非是处处适应的万能法则。 正确有效地应用RMI方法的关键显然在于引进合乎要求的映射,这就要求使用者在如下方面去努力:一是理解原象关系结构系统的能力;二是抽象分析的能力;三是运用数学手段的能力;四是掌握常用的方法与变换的能力;五是寻求反演公式与手段的能力。 ?的可定映射?,谁数学史的发展表明,谁能巧妙地引进非常有效且具有能行性反演-1 就对数学的发展作出贡献。反之,正因数学自身的发展(特别是它的现代发展),不断产生了一些新的重要的映射工具,也就为RMI方法的运用展示了更广阔的前景。 129 第六章数学公理化方法 数学公理化方法是一种演绎的方法,当一个理论体系达到充分发展,需要以演绎的形式来表达它的基本范畴之间,原理、原则之间的关系,形成逐渐演进和发展时,公理化方法是最为有力的手段。可以说,它对各门数学分支学科都产生着巨大的影响,即使在数学教育中,也起着重要的作用。 §6.1数学公理化方法的意义 所谓公理化方法就是从尽可能少的不加定义的原始概念和不加证明的原始命题(公理、公社)出发,按照逻辑规则推到出其他命题,建立起一个演绎系统的方法。 数学发展的历史有力地表明公理化方法在数学方法中有着重要的意义。我们可以归纳出如下几点: 1.总结性:恩格斯说:“数学上的所谓公理,是数学需要用作自己出发点的少数思想上的规定。”这种方法将数学知识的概念、命题的形式进行了分析和总结,凡是得了公理化结构形式的数学,均可在已形成的逻辑关联中去使用。这不仅使其运用很方便,同时也促进了数学理论的发展。如概率论开始形成时,实践性很强,后来公理化了,理论就大大提高了一步;法国布尔巴基学派在三大结构基础上,建立了各种各样的公理化体系,对促进数学发展起了极大地作用。 在近、现代,由于在各门数学中广泛采用公理化方法。形成了一批有影响的具有一定权威性的数学专著。如代数学中的范德瓦尔登所著

有关公理化思想

公理化思想与欧几里德 所谓公理化方法(或公理方法),就是从尽可能少的无定义的原始概念(基本概念)和一组不证自明的命题(基本命题)出发,利用纯逻辑推理法则,把一门数学建立成为演绎系统的一种方法。所谓基本概念和公理,当然必须反映数学实体对象的最单纯的本质和客观关系,而并非人们自由意志的随意创造。 如所共知,希尔伯特1899年出版的《几何学基础》一书是近代数学公理化的典范著作。该书问世后的二、三十年间曾引起西方数学界的一阵公理热,足见其影响之大。希尔伯特的几何公理系统实际是在前人的一系列工作成果基础上总结出来的,书中的公理条目也曾屡经修改。直到1930年出第七版时,还作了最后修改。这说明一门学科的公理化未必是一次完成的,公理化过程可以是包含一些发展阶段的。 谈到数学公理化的作用,至少可以举出如下三点:(1)这种方法具有分析、总结数学知识的作用。凡取得了公理化结构形式的数学,由于定理与命题均已按照逻辑演绎关系串联起来,故使用起来也较方便。(2)公理化方法把一门数学的基础分析得清清楚楚,这就有利于比较各门数学的实质性异同,并能促进和推动新理论的创立。(3)数学公理化方法在科学方法论上有示范作用。这种方法对现代理论力学及各门自然科学理论的表述方法都起到了积极的借鉴作用。例如,20世纪四十年代波兰的巴拿赫(Banach)曾完成了理论力学的公理化;物理学家还把相对论表述为公理化形式,等等。 公理化方法的历史发展,大致可分成三个阶段: 一是公理方法的产生阶段,大约在公元前三世纪,希腊的哲学家和逻辑学家亚里斯多德(Aristotle)总结了古代积累起来的逻辑知识,以演绎证明的科学(主要是数学)为实例,把完全三段论作为公理,由此推导出别的所有三段论(共分了十九个格式)。因此可以认为,亚里士多德在历史上提出了第一个成文的公理系统。 亚里士多德的思想方法深深地影响了公元前三世纪的希腊数学家欧几里得,后者把形式逻辑的公理演绎方法应用于几何学,从而完成了数学史上的重要著作《几何原本》。欧几里得从古代的量地术和关于几何形体的原始直观中,用抽象分析方法提炼出一系列基本概念和公理。他总结概括出14个基本命题,其中有5个公设和9条公理。由此出发,他运用演绎方法将当时所知的几何知识全部推导出来,这便是古代数学公理方法的一个辉煌成就。 《几何原本》的问世标志了数学领域中公理方法的诞生。它的贡献不在于发现了几条新定理,而主要在于它把几何学知识按公理系统的方式妥切安排,使得反映各项几何事实的公理和定理都能用论证串联起来,组成了一个井井有条的有机整体。 二是公理方法的完善阶段,如所知,欧氏几何的公理系统是不完善的,其主要的不足之处可以概括为:(1)有些定义是不自足的,亦即往往使用一些未加定义的概念去对别的概念下定义。(2)有些定义时多余的,略去它毫不影响往后的演绎和展开。(3)有些定理的证明过程往往依赖于图形的直观。 另一方面,由于第五公设(即平行线公理)在陈述与内容上的复杂和累赘,古代学者们早就怀疑地指出,第五公设是不是多余的,它能否从其他公设、公理中逻辑地推导出来?而且进一步认为,欧几里得之所以把它作为公设,只是因为他未能给出这一命题的证明。因而,学者们纷纷致力于证明第五公设。但是所有试证第五公设的努力均归于失败,在这些失败之中唯一引出的正面结果便是一串与第五公设相等价的命题被发现。 基于两千多年来在证明第五公设的征途上屡遭失败的教训。十九世纪俄国年轻数学家JIoóausbckńň产生了与前人完全不同的信念:首先,认为第五公设不能以其他的几何公理作为定理来证明;其次,除掉第五公设成立的欧几里得几何之外,还可以有第五公设不成立的新几何系统存在。于是,他在剔除第五公设而保留几何其余公理的前提下引进了一个相反于第五公设的公理:“过平面上一已知直线外的一点至少可以引进两条直线与该已知直线平

公理法

公理法 选取少数不加定义的原始概念(基本概念)和无条件承认的规定(公理)作为出发点,再加以严格的逻辑推理,将某一数学分支建成演绎系统的方法,叫数学系统的公理化方法,简称“公理法”. 两千多年来,欧几里得的《几何原本》在传播几何知识方面做出了巨大的贡献,并一直被人们作为标准的教科书使用.《几何原本》的特点是建立了一个比较严密的几何体系,提出了几何学的“根据”和它的逻辑结构问题.但是,随着时间的推移,人们逐渐发现《几何原本》的体系还存在不少破绽和漏洞,例如使用一些未知的定义来解释另一个未知的定义,这样的定义既不能逻辑地确定几何名词和术语,也不能在逻辑推理中起作用;《几何原本》也使用了一些未曾定义的概念,如“连续”的概念就未定义而被使用.正是由于对《几何原本》在逻辑结构方面存在的破绽和漏洞的发现,推动了几何学的不断发展. 1899年,德国数学家希尔伯特在他的《几何基础》一书中,首次用公理化的方法提出了一个比较完善的几何学的公理系统,即希尔伯特公理体系,克服了《几何原本》中的一些缺点. 希尔伯特公理体系的主要思想包含: (1)把几何中的点、直线、平面等概念,作为不加定义的“原始”概念,叫基本对象. (2)给出几何元素的一些基本关系:结合关系、顺序关系、合同关系. (3)规定了五组公理,用它阐述基本对象的性质. 希尔伯特还提出建立一个公理化体系的原则,即在一个公理体系中,取哪些为公理,应包含多少公理,必须考虑以下三点: 第一,相容性,即各公理必须是互相不矛盾的,同存于一个体系中. 第二,独立性,即每条公理都是各自独立的,不能由其他公理推出. 第三,完备性,即体系中所包含的公理应足以推出本学科的任何命题. 欧几里得的几何体系实际上是公理化体系的雏形,常称之为古典公理体系. 公理化方法给几何学的研究带来了一个新的观点.在公理体系中,由于基本对象不加以定义,因此就不必考虑研究对象的直观形象,只要研究抽象的对象之间的关系、性质.凡符合公理体系的元素都可以作为这个几何体系的直观解释,或称几何学的模型.因此,几何学的研究对象更广泛,其含义也更抽象.

公理化定义(精)

在学习几何和代数时,我们已经知道公理是数学体系的基础. 数学上所说的“公理”,就是一些不加证明而公认的前提,然后以此为基础,推演出所讨论对象的进一步的内容.

1933年,前苏联数学家柯 尔莫哥洛夫给出了概率的公理 化定义. 即通过规定概率应具备的 基本性质来定义概率. 柯尔莫哥洛夫提出的公理为数很少且极为简单,但在此基础上建立起了概率论的宏伟大厦. 下面介绍用公理给出的概率定义.

概率的公理化定义 公理2 P (S )=1 (2) 公理3 若事件A 1, A 2 ,… 两两互不相容,则有 (3) 这里事件个数可以是有限或无限的 . ++=++)()()(2121A P A P A A P ≤公理1 0 P (A ) 1 (1) ≤≤ 设E 是随机试验,S 是它的样本空间,对于S 中的每一个事件A ,赋予一个实数,记为P (A ) ,称为事件A 的概率,如果集合函数 P ( ) 满足下述三条公理: ?

公理2 P (S )=1 (2) 公理3 若事件A 1, A 2 ,… 两两互不相容,则有 (3) 这里事件个数可以是有限或无限的. ++=)()()(2121A P A P A A P ≤≤公理 1 0 P (A ) 1 (1) ≤≤公理1说明,任一事件的概率介于0与1之间; 公理2说明,必然事件的概率为1; 公理3说明,对于任何互不相容(互斥)的事件序列,这些事件至少有一个发生的概率正好等于它们各自概率之和.

由概率的三条公理,我们可以推导出概率的若干性质. 下面我们就来给出概率的一些简单性质. 在说明这些性质时,为了便于理解,我们常常借助于文氏图.

数学思想与方法任务答案详解

数学思想与方法01任务_0001 试卷总分:100 测试时间:0 单项选择题 一、单项选择题(共10 道试题,共100 分。) 1. 古埃及数学最辉煌的成就可以说是()的发现。 A. 进位制的发明 B. 四棱锥台体积公式 C. 圆面积公式 D. 球体积公式 2. 欧几里得的《几何原本》几乎概括了古希腊当时所有理论的(),成为近代西方数学的主 要源泉。 A. 几何 B. 代数与数论 C. 数论及几何学 D. 几何与代数 3. 金字塔的四面都正确地指向东南西北,在没有罗盘的四、五千年的古代,方位能如此精确, 无疑是使用了()的方法。 A. 几何测量 B. 代数计算 C. 占卜 D. 天文测量 4. 《几何原本》中的素材并非是欧几里得所独创,大部分材料来自同他一起学习的()。 A. 爱奥尼亚学派 B. 毕达哥拉斯学派 C. 亚历山大学派 D. 柏拉图学派 5. 数学在中国萌芽以后,得到较快的发展,至少在()已经形成了一些几何与数目概念。

A. 五千年前 B. 春秋战国时期 C. 六七千年前 D. 新石器时代 6. 在丢番图时代(约250)以前的一切代数学都是用()表示的,甚至在十五世纪以前,西欧的 代数学几乎都是用()表示。 A. 符号,符号 B. 文字,文字 C. 文字,符号 D. 符号,文字 7. 古印度人对时间和空间的看法与现代天文学十分相像,他们认为一劫(“劫”指时间长度)的长 度就是(),这个数字和现代人们计算的宇宙年龄十分接近。 A. 100亿年 B. 10亿年 C. 1亿年 D. 1000亿年 8. 巴比伦人是最早将数学应用于()的。在现有的泥板中有复利问题及指数方程 A. 商业 B. 农业 C. 运输 D. 工程 9. 《九章算术》成书于(),它包括了算术、代数、几何的绝大部分初等数学知识。 A. 西汉末年 B. 汉朝

公理化方法和中学几何公理体系

公理化方法和中学几何公理体系 12数学陈婷12220620 摘要:数学公理化方法是研究数学的重要思想方法,它对于近代数学和其他自然科学的发展有过巨大作用和深远影响,它很大程度上推动了数学的发展。而数学的教育更多的是方法和思想的教育,公理化方法在教学教育上有着举足轻重的地位。本文将从几何发展简史、公理化方法的意义与作用等方面探究公理化方法对中学几何公理体系的影响。 关键词:公理化方法;几何学;发展史;中学几何;教学启示 正文: 一、几何学发展简史 几何学是一门研究『空间』与『移动』的学问.这里的『空间』指的是正统的『几何空间』, 包括各种具体或抽象的几何图形,甚至是整个宇宙空间的几何构造;而『移动』则是这些几何空间的表现,例如:平移,旋转, 对称,波动等等.因此,几何学可说是真实世界与抽象世界的舞台与演员的演出.而数学家Descartes (笛卡儿, 1596 1650)曾说:『人类心智与生俱来有完美,空间,时间和运动等观念.』不论是实际生活上为了丈量与计算的需要,或是对於宇宙空间的好奇与探索,亦或是对於『美』的追求,自从人类开始生活在地球上,几何概念的演进便未曾停歇.而几何学的发展,也使人类开始真正认识我们所生存的宇宙空间。在史学中,几何学的确立和统一经历了二千多年,数百位数学家做出了不懈的努力。 一)欧氏几何的创始 公认的几何学的确立源自公元300 多年前,希腊数学家欧几里得著作《原本》。欧几里得在《原本》中创造性地用公理法对当时所了解的数学知识作了总结。全书共有13 卷,包括5 条公理,5 条公设,119 个定义和465 条命题。这些公设和公理及基本定义成为《原本》的推理的基础。 欧几里得的《原本》是数学史上的一座里程碑,在数学中确立了推理的范式。他的思想被称作“公理化思想”。 欧几里德几何自诞生两千多年来,因其论证的严密性而被誉为完美无瑕。但到了19世纪,由于非欧几何的创立,大大提高了公理化方法,数学的严格性标准大为提高,从而欧几里德几何的逻辑缺陷逐渐暴漏出来了,具体将有以下几点: 1、在欧式几何中用了重合法来证明全等: 在重合法中,首先使用了运动的概念,这样就定性了欧氏几何属于经验综合知识,他与人的经验有关,不属于纯粹知识。因此没有逻辑根据,他在证明中,移动图形,且默认为图形的性质不变,这在物理经验中是需要非常多的约束条件的,而欧几里德只是默认,并没严格的初始约束条件,因此逻辑上的严格性有问题。 2、几何中的某些定义,不能自在自为自足,有时甚至使用未加定义的概念。而有些被定义的概念往往是多余的,含糊不清。对一些不能定义的初始条件反而定义,甚至是不严格的定义。如:点、线、面等等初始概念就不应该定义,反而不严格的定义。 3、引用从未提起过,且未被发觉的假定。 4、证明不严格,许多定理的证明都依赖于感性直观,通过对图形的直观来证明。缺乏对直观与抽象的区别,过分依赖于感性直观。许多知识都是经验中的知识。 5、在欧氏几何的五条初始公理中,第五公理(平行线公理)引来许多争议。在陈述上、内容上复杂、累赘。缺乏说服力,不自明。

相关文档
相关文档 最新文档