文档视界 最新最全的文档下载
当前位置:文档视界 › 蓝宝石单晶简介

蓝宝石单晶简介

蓝宝石单晶简介
蓝宝石单晶简介

蓝宝石单晶简介和应用 >> 蓝宝石单晶简介和应

蓝宝石( -Al2O3)又称白宝石,是世界上硬度仅次于金刚石的晶体材料。其结构中的氧原子以接近HCP (hexagonal closed packed)的方式排列,其中氧原子间的八面体配位约有2/3的空隙是由铝原子所填充,由此使它具有强度、硬度高(莫氏硬度9),耐高温(熔点达2050℃)、耐磨擦、耐腐蚀能力强,化学性质稳定,一般不溶于水,不受酸腐蚀,只有在高温下(3000C以上)才能为氢氟酸(HF)、磷酸(H2PO4)以及熔化的苛性钾(KOH)所侵蚀;且具有同氮化镓等半导体材料结合匹配性好、光透性能、电绝缘性能优良等一系列特性。

蓝宝石单晶作为一种优良透波材料,在紫外、可见光、红外波段、微波都具有良好的透过率,可以满足多模式复合制导(电视、红外成像、雷达等)的要求,在军事工业等领域被用作窗口材料及整流罩部件,在光电通讯领域作为重要的窗口材料使用。

大尺寸蓝宝石单晶,其内部缺陷很少,没有晶界、孔隙等散射源,强度的损失很小,透波率很高,是目前透波部件的首选材料;此外,由于蓝宝石电绝缘、透明、易

导热、硬度高,因此可以用来作为集成电路的衬底材料,可广泛用于发光二极管(LED)及微电子电路,从而替代高价的氮化硅衬底,制作超高速集成电路;可以做成光学传感器以及其它一些光学通信和光波导器件。如高温高压或真空容器的观察窗、液晶显示投影仪的散热板、有害气体检测仪和火灾监测仪的窗口、光纤通讯接头盒等。

LED蓝宝石衬底

LED蓝宝石衬底 蓝宝石详细介绍 蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。目前超高亮度白/蓝光LED的品质取决于氮化镓磊晶(GaN)的材料品质,而氮化镓磊晶品质则与所使用的蓝宝石基板表面加工品质息息相关,蓝宝石(单晶Al2O3 )C 面与Ⅲ-Ⅴ和Ⅱ-Ⅵ族沉积薄膜之间的晶格常数失配率小,同时符合GaN 磊晶制程中耐高温的要求,使得蓝宝石晶片成为制作白/蓝/绿光LED的关键材料. 下图则分别为蓝宝石的切面图;晶体结构图上视图;晶体结构侧视图; Al2O3分之结构图;蓝宝石结晶面示意图 蓝宝石结晶面示意图 最常用来做GaN磊晶的是C面(0001)这个不具极性的面,所以GaN的极性将由制程决定 (a)图从C轴俯看(b) 图从C轴侧看

蓝宝石晶体的生长方法 蓝宝石晶体的生长方法常用的有两种: 1:柴氏拉晶法(Czochralski method),简称CZ法.先将原料加热至熔点后熔化形成熔汤,再利用一单晶晶种接触到熔汤表面,在晶种与熔汤的固液界面上因温度差而形成过冷。于是熔汤开始在晶种表面凝固并生长和晶种相同晶体结构的单晶。晶种同时以极缓慢的速度往上拉升,并伴随以一定的转速旋转,随着晶种的向上拉升,熔汤逐渐凝固于晶种的液固界面上,进而形成一轴对称的单晶晶锭. 2:凯氏长晶法(Kyropoulos method),简称KY法,大陆称之为泡生法.其原理与柴氏拉晶法(Czochralskimethod)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(SeedCrystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇. 蓝宝石晶体的应用: 广大外延片厂家使用的蓝宝石基片分为三种: 1:C-Plane蓝宝石基板 这是广大厂家普遍使用的供GaN生长的蓝宝石基板面.这主要是因为蓝宝石晶体沿C 轴生长的工艺成熟、成本相对较低、物化性能稳定,在C面进行磊晶的技术成熟稳定. 2:R-Plane或M-Plane蓝宝石基板 主要用来生长非极性/半极性面GaN外延薄膜,以提高发光效率.通常在蓝宝石基板上制备的GaN外延膜是沿c轴生长的,而c轴是GaN的极性轴,导致GaN基器件有源层量子阱中出现很强的内建电场,发光效率会因此降低,发展非极性面GaN外延,克服这一物理现象,使发光效率提高。 3:图案化蓝宝石基板(Pattern Sapphire Substrate简称PSS) 以成长(Growth)或蚀刻(Etching)的方式,在蓝宝石基板上设计制作出纳米级特定规则的微结构图案藉以控制LED之输出光形式,并可同时减少生长在蓝宝石基板上GaN之间的差排缺陷,改善磊晶质量,并提升LED内部量子效率、增加光萃取效率。

晶体生长方法

晶体生长方法 一、提拉法 晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 二、热交换法

热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。 三、坩埚下降法 坩埚下降法又称为布里奇曼-斯托克巴格法,是从熔体中生长晶体的一种方法。通常坩埚在结晶炉中下降,通过温度梯度较大的区域时,熔体在坩埚中,自下而上结晶为整块晶体。这个过程也可用结晶炉沿着坩埚上升方式完成。与提拉法比较该方法可采用全封闭或半封闭的坩埚,成分容易控制;由于该法生长的晶体留在坩埚中,因而适于生长大块晶体,也可以一炉同时生长几块晶体。另外由于工艺条件

LED与蓝宝石衬底

LED与蓝宝石衬底 LED(Light-Emitting Diode,缩写LED)是发光二极管的简称。发光二极管的发光效率是白炽灯的10倍,其寿命可达10以上,具有节能和体积小的特点,产品主要用于液晶电视机、汽车、照明、交通信号、景观及显示牌。 2009年下半年开始,LED市场出现大飞跃,作为高成长性的新兴产业,预计到2015年,LED产业规模将突破5000亿元,其中普通照明行业1600亿元,大尺寸液晶电视背光行业1200亿元,汽车照明行业200亿元、普通照明行业1600亿元,景观、显示等行业1000亿元。 LED产业链条大致可以分为三个部分,分别是上游基片生长、外延片制造,中游的芯片封装和下游的应用产品。在整个产业链中,最核心的部分在基片生长和外延片制造环节,二者技术含量比较高,占全行业近70%的产值和利润。 LED的核心部分是外延片。蓝绿光LED是在蓝宝石基片上生长GaN(氮化镓)形成PN结,见图1。 图1 LED外延片结构

(2)几种LED衬底: 当前用于GaN基LED的衬底材料比较多,但是能用于商品化的衬底目前只有两种,即蓝宝石和碳化硅衬底。 蓝宝石(Al2O3) 通常,GaN基材料和器件的外延层主要生长在蓝宝石衬底上。蓝宝石衬底有许多的优点:首先,蓝宝石(Al2O3)衬底的生产技术成熟、价格适中,化学稳定性好、不吸收可见光、器件质量较好;其次,蓝宝石的稳定性很好,能够运用在高温生长过程中;最后,蓝宝石的机械强度高,易于处理和清洗。因此,大多数工艺一般都以蓝宝石作为衬底。但蓝宝石导热性差的缺点,在大功率器件中显得突出。 碳化硅衬底 除了Al2O3衬底外,目前用于氮化镓生长衬底就是SiC,它在市场上的占有率位居第2,目前还未有第三种衬底用于氮化镓LED的商业化生产。采用SiC材料作为衬底制作的器件的导电和导热性能都非常好,有利于做成面积较大的大功率器件。但不足方面也很突出,如价格太高、晶体质量难以达到Al2O3和Si那么好、机械加工性能比较差。相对于蓝宝石衬底而言,碳化硅制造成本较高。 硅衬底 在硅衬底上制备发光二极管是LED领域梦寐以求的事情,但目前在Si 衬底上很难得到无龟裂及器件级质量的GaN材料。硅衬底对光的吸收严重,LED节能灯出光效率低。

蓝宝石生长方法

一、蓝宝石生长 1.1 蓝宝石生长方法 1.1.1 焰熔法Verneuil (flame fusion) 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil) 和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末 与重铬酸钾而制成了当时轰动一时的“ 日内瓦红宝石”。后 来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil) 改进并发展这一技术使之能进行商业化生产。因此,这种方 法又被称为维尔纳叶法。 1)基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在 通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在种 晶上固结逐渐生长形成晶体。 2)合成装置与条件、过程 焰熔法的粗略的说是利用氢及氧气在燃烧过程中产生 高温,使一种疏松的原料粉末通过氢氧焰撒下焰融,并落在 一个冷却的结晶杆上结成单晶。下图是焰熔生长原料及设备 简图。这个方法可以简述如下。图中锤打机构的小锤7按一 定频率敲打料筒,产生振动,使料筒中疏松的粉料不断通过 筛网6,同时,由进气口送进的氧气,也帮助往下送粉料。 氢经入口流进,在喷口和氧气一起混合燃烧。粉料在经过高温火焰被熔融而落在一个温度较低的结晶杆2上结成晶体了。炉体4设有观察窗。可由望远镜8观看结晶状况。为保持晶体的结晶层在炉内先后维持同一水平,在生长较长晶体的结晶过程中,同时设置下降机构1,把结晶杆2缓缓下移。 焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉中进行的。 A.供料系统 原料:成分因合成品的不同而变化。原料的粉末经过充分拌匀,放入料筒。如果合成红宝石,则需要Al2O 粉末和少量的 Cr2O3参杂,Cr2O3用作致色剂,添加量为 1-3%。三氧化 3 二铝可由铝铵矾加热获得。料筒:圆筒,用来装原料,底部有筛孔。料筒中部贯通有

单晶材料生长方法

单晶薄膜制备方法 薄膜材料相对于块体材料来说,可以应用较小的原料而达到相应的性能要求;而且薄膜材料还具有许多优异的性能,使薄膜材料能够满足现在大型集成电路以及各种功能器件的要求,使器件向小型化、轻便化方向发展。单晶薄膜由于膜层内部缺陷少、而且具有一定尺度的膜层具有一定的量子限域效应,电子在其内部运动时会有许多独特的状态和方式,从而产生更优的性能,具有极其重要的应用价值和应用前景。鉴于单晶薄膜的种种优势,人们对其的研究也进行了许多年,各种单晶薄膜的制备技术被相继开发出来,当前生长和制备单晶薄膜的主要方法有:分子束外延(MBE)、金属有机物化学气相沉积(MOCVD)、脉冲激光沉积(PLD)、电子束沉积(EBD)和原子束沉积法(ABD)等。 一、分子束外延(MBE) 分子束外延是一种在超高真空条件下,将原料通过热蒸发等方式气化升华,并运动致衬底表面沉积形成薄膜的的方法。配合仪器自带的原位分析仪器(如RHEED等)可以精确控制膜层的成分和相结构。分子束外延存在生长膜层速度太慢的缺点,每秒钟大约生长一个原子层厚度,但可以精确控制膜层厚度。David 等【1】运用等离子体增强的分子束外延(PEMBE)方法直接在SiC衬底上制备了具有纤锌矿结构的、膜层质量较好的GaN单晶薄膜。由于GaN与SiC存在较大的晶格失配,以往的研究往往是预先在SiC表面制备AlN缓冲层,来减小晶格失配,得到单晶GaN膜层。生长过程中引入等离子体大大降低了由于晶格失配而极易出现的堆垛缺陷浓度,使得膜层质量有较大改善。Yefan Chen等【2】同样运用PEMBE在蓝宝石衬底上制备了单晶ZnO膜层,RHEED模式照片显示ZnO在蓝宝石衬底表面的外延生长是逐渐由二维生长转变为三维岛状模式生长的;且XRD分析表明ZnO沿(0001)方向择优生长;PL谱分析显示ZnO膜层内部的污染和本征缺陷浓度较低,晶体质量较好。 二、金属有机物化学气相沉积(MOCVD) 金属有机物化学气相沉积(MOCVD)主要用于Ⅱ—Ⅵ族和Ⅲ—Ⅴ族化合物半导体薄膜的制备,它是运用载气将金属有机化合物气体输运至衬底处,金属有机化合物在输运过程中发生热分解反应,在衬底表面发生反应并沉积形成薄膜的技术。该法具有沉积温度低、对衬底取向要求低、沉积过程中不存在刻蚀反应、可

国内生产蓝宝石衬底的有哪几家

国内生产蓝宝石衬底的有哪几家? 如题,最近对上上游的材料供应商感兴趣,请问国内有哪几家? 过去,晶粒厂多半向俄罗斯、日本、美国采购蓝宝石基板,不过包括越峰、鑫晶钻以及太阳能厂中美晶、合晶,都注意到这块市场。太阳能厂中美晶、合晶从去年起,也开始跨足蓝宝石基板切割、甚至长晶,都在显示出LED上下游产值已愈滚愈大。中美晶表示,中美晶之前是向其它业者买进晶棒,切割、研磨、抛光等制程后,才出货给晶粒厂切割成晶粒。但从今年3月起,中美晶打算直接自行长晶,2英寸晶棒仍然向日本、美国采购,但3英寸、4英寸晶棒将自行发展,原因在于“外购晶棒,切割后出售给晶粒厂”的模式获利有限。 西方的蓝宝石生产商停止向台湾的GaN LED生产商供应产品,他们宁愿在电子基材市场的交易中获取利润。市场分析机构Yole Développement在今年的产业报告中强调,“巨大的压力”迫使2英寸蓝宝石晶片的价格降至17美元,这样芯片制造商就能将每个裸片价格压到2-3美分。据该篇报告的作者Philippe Roussel表示,尽管美国Rubicon置身其中,现在台湾LED制造业仍是亚洲和俄国蓝宝石供应商的温床。 尽管全球的实验室中有其他多种技术在开发当中,2英寸蓝宝石晶片在LED制造业中仍然保持主导地位,而台湾是主要的市场。图片来源。其他的供应商则关注全球的其他市场,包括一般售价25美元的2英寸蓝宝石衬底,以及正要推出的4英寸衬底,售价在170-180美元之间。巨大的价格差异把全球领先的LED制造商(大部分在台湾之外)推至浪尖,酌情开始生产4英寸蓝宝石。据悉,Osram和Showa Denko已经开始将部分生产转至更大尺寸的衬底上了。但Roussel认为此举要谨慎。 Roussel在“Sapphire market 2008”报告中指出,去年面向LED产业的蓝宝石衬底产值超过1亿美元,年复合增长率是15%,蓝宝石衬底市场近期有些动荡,但销售额有望稳健成长。而针对RF应用的蓝宝石上硅(SoS)业务将于2011年超过1亿美元。由于Peregrine半导体公司力挽颓势,GaAs RF市场将不会立即受威胁。然而他也指出其中的症结:这个处境很尴尬,客户也不喜欢由一家公司掌控所有的专利。现在Peregrine公司正通过授权日本的Oki 来分散客户的风险,另外还将一些生产外包给代工厂。Peregrine的重组无疑给Rubicon的Q4收入有所影响。 结合LED和SoS两大市场,到2012年蓝宝石业务总计4亿美元。其中,亚洲的蓝宝石生产商所占市场份额67%,由俄国Monocrystal和法国Saint-Gobain为代表的欧洲厂商占了20%的总销售额,剩余的就是Rubicon执掌的北美市场。 俄国晶体专家、合成蓝宝石和其他先进电子材料市场的领军者Monocrystal公司表示,它的超大面积晶片将通过制造低本高效的LED芯片,从而加快步入固态照明领域。今年八月,该公司就已经开始为LED制造商批量生产这种8英寸的c面蓝宝石衬底。通过采用适合大面积蓝宝石生长的先进技术,Monocrystal能快速地提高新一代蓝宝石晶体的产量。已知在2005年该公司的大面积蓝宝石晶体的产量超过了65kg。 蓝宝石衬底制造商Rubicon宣布在上个月底获得一笔6英寸蓝宝石订单,目前只用于研究;但在18个月内,这家台湾LCD制造商进军LED制造业,期待在6英寸蓝宝石上获取更大突破,提高市场竞争力。Rubicon的CEO Raja Parvez说,“我们每隔四周到六周就要拜访客户,我们看到了这个领域内有更大的进步。我预测将会12-18个月内就能看到批量生产。”

蓝宝石晶体生长技术回顾

蓝宝石晶体生长技术回顾 (2011-07-12 15:21:18) 转载 分类:蓝宝石晶体 标签: 蓝宝石 晶体生长 技术 历史 杂文 杂谈 引言 不少群众提出意见,博主说了这多不行的,能不能告诉广大投身蓝宝石长晶事业的什么设备行?说实话,这真的是为难我了!怎么讲?举个例子吧,Ky技术设备在Mono手里还真的是Ky,但到了你手里可能就是YY了。 可能你觉得受打击了,可是没有办法啊,事实如此啊,实话听 起来往往比较刺耳!本博主前面发表的《从缺陷的角度谈谈蓝宝石生长方向的选择》博文,迄今为止只有寥寥无几群众真正看出精髓所在..................................不服气群众可以留言谈谈自己了解了什么? 古人云“博古通今”、“温故知新”,我觉得很有道理,技术之道也是如此。如果没有对以往技术的熟练掌握、熟知精髓所在,没有

对以往技术的总结提炼,你就不可能对一个新技术真正的掌握。任何新技术新设备到你手里,充其量你只是一个熟练操作工而已。 还觉得不信的话,我就在这篇博文里用大家认为最古老的火焰法宝石生长的经验理论总结来给大家进行目前流行的衬底级蓝宝石晶体生长进行理论指导。 蓝宝石晶体生长技术简介

焰熔法(flame fusion technique)&维尔纳叶法(Verneuil technique) 1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳叶法。 弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)这几个哥们实际上就是做假珠宝的,一群有创新精神的专业人士。 博主对两类造假者比较佩服,一类是以人造珠宝以假乱真的,一类是造假文物的。首先、他们具有很高的专业素养;其次、他们也无关民生大计;还有利于社会财富的再分配。 至于火焰法简单的描述我就不啰嗦了,我讲讲一些你所不知道的火焰法长宝石的一些前人总结;这些总结和经验对今天的任何一种新方法长蓝宝石单晶都是有借鉴意义的。 100多年来火焰法工作者在气泡、微散射,晶体应力和晶体生长方向的关系,晶体生长方向与缺陷、成品率之间的关系做了大量的数据总结,可以讲在各个宝石生长方法中研究数据是最完备的。在这篇博文里我只讲讲个人认为对其他方法有借鉴意义的一些总结。

单晶制备方法综述

单晶材料的制备方法综述 前言:单晶(single crystal),即结晶体内部的微粒在三维空间呈有规律地、周期性地排列,或者说晶体的整体在三维方向上由同一空间格子构成,整个晶体中质点在空间的排列为长程有序。单晶整个晶格是连续的,具有重要的工业应用。因此对于单晶材料的的制备方法的研究已成为材料研究的主要方向之一。本文主要对单晶材料制备的几种常见的方法进行介绍和总结。 单晶材料的制备也称为晶体的生长,是将物质的非晶态、多晶态或能够形成该物质的反应物通过一定的化学的手段转变为单晶的过程。单晶的制备方法通常可以分为熔体生长、溶液生长和相生长等[1]。 一、从熔体中生长单晶体 从熔体中生长晶体的方法是最早的研究方法,也是广泛应用的合成方法。从熔体中生长单晶体的最大优点是生长速率大多快于在溶液中的生长速率。二者速率的差异在10-1000倍。从熔体中生长晶体的方法主要有焰熔法、提拉法、冷坩埚法和区域熔炼法。 1、焰熔法[2] 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(V erneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳也法。 1.1 基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在籽晶上固结逐渐生长形成晶体。 1.2 合成装置和过程: 维尔纳叶法合成装置

振动器使粉料以一定的速率自上而下通过氢氧焰产生的高温区,粉体熔化后落在籽晶上形成液层,籽晶向下移动而使液层结晶。此方法主要用于制备宝石等晶体。 2、提拉法[2] 提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。 2.1、提拉法的基本原理 提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。 2.2、合成装置和过程 提拉法装置 首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。 在提拉法制备单晶时,还有几种重要的技术:(1)、晶体直径的自动控制技术:上称重和下称重;(2)、液封提拉技术,用于制备易挥发的物质;(3)、导模技术。

蓝宝石衬底

蓝宝石衬底 展开 对于制作LED芯片来说,衬底材料的选用是首要考虑的问题。应该采用哪 种合适的衬底,需要根据设备和LED器件的要求进行选择。目前市面上一般有三种材料可作为衬底: 〃蓝宝石(Al2O3)、硅(Si)、碳化硅(Sic) 蓝宝石衬底 通常,GaN基材料和器件的外延层主要生长在蓝宝石衬底上。蓝宝石衬底有许多的优点:首先,蓝宝石衬底的生产技术成熟、器件质量较好;其次,蓝宝石的稳定性很好,能够运用在高温生长过程中;最后,蓝宝石的机械强度高,易于处理和清洗。因此,大多数工艺一般都以蓝宝石作为衬底。 使用蓝宝石作为衬底也存在一些问题,例如晶格失配和热应力失配,这会在外延层中产生大量缺陷,同时给后续的器件加工工艺造成困难。蓝宝石是一种绝缘体,常温下的电阻率大于1011Ω〃cm,在这种情况下无法制作垂直结构的器件;通常只在外延层上表面制作n型和p型电极(如图1所示)。在上表面制作两个电极,造成了有效发光面积减少,同时增加了器件制造中的光刻和刻蚀工艺过程,结果使材料利用率降低、成本增加。由于P型GaN掺杂困难,当前普遍采用在p型GaN上制备金属透明电极的方法,使电流扩散,以达到均匀发光的目的。但是金属透明电极一般要吸收约30%~40%的光,同时GaN基材料的化学性能稳定、机械强度较高,不容易对其进行刻蚀,因此在刻蚀过程中需要较好的设备,这将会增加生产成本。 蓝宝石的硬度非常高,在自然材料中其硬度仅次于金刚石,但是在LED器件的制作过程中却需要对它进行减薄和切割(从400μm减到100μm左右)。添置完成减薄和切割工艺的设备又要增加一笔较大的投资。 蓝宝石的导热性能不是很好(在100℃约为25W/(m〃K))。因此在使用LED器件时,会传导出大量的热量;特别是对面积较大的大功率器件,导热性能是一个非常重要的考虑因素。为了克服以上困难,很多人试图将GaN光电器件直接生长在硅衬底上,从而改善导热和导电性能。 硅衬底 目前有部分LED芯片采用硅衬底。硅衬底的芯片电极可采用两种接触方式,分别是L接触(Laterial-contact ,水平接触)和 V接触(Vertical-contact,垂直接触),以下简称为L型电极和V型电极。通过这两种接触方式,LED芯片内部的电流可以是横向流动的,也可以是纵向流动的。由于电流可以纵向流动,因此增大了LED的发光面积,从而提高了LED

蓝宝石晶体生长工艺研究

蓝宝石晶体生长工艺研究 【摘要】蓝宝石晶体具有硬度大、熔点高、物理化学性质稳定的特点,是优质光功能材料和氧化物衬底材料,广泛用于电子技术,军事、通信、医学等国防民用, 科学技术等领域。自19 世纪末, 法国化学家维尔纳叶采用焰熔法获得了蓝宝石晶体后,人工生长蓝宝石工艺不断发展, 除了焰熔法外还有冷坩埚法、泡生法、温度梯度法、提拉法、热交换法、水平结晶法、弧熔法、升华法、导模法、坩埚下降法等。本文主要对应用较为广泛的焰熔法、提拉法、泡生法、热交换法、导模法、下降法、等生长工艺进行论述。 【关键词】蓝宝石晶体晶体生长工艺研究蓝宝石晶体的化学成分是氧化铝(a -AI2O3 ),熔点高达2050C,沸点3500C,硬度仅次于金刚石为莫氏硬度9,是一种重要的技术晶体。蓝宝石晶体在光学性能、机械性能和物理化学性质方面表现出了优异性能,因此被各行业广泛应用,同时随着现代科学技术的发展,对蓝宝石晶体的质量要求也不断提升,这就对蓝宝石晶体生长工艺提出了新的挑战。 焰熔法。确切来讲焰熔法是由弗雷米、弗尔、乌泽在

1885 年发明的,后来法国化学家维尔纳叶改进、发 展并投入生产使用。焰熔法是以Al2O3 粉末为原 料,置于设备上部,原料在撒落过程中通过氢及氧气 在燃烧过程中产生的高温火焰,熔化,继续下落,落 在设备下方的籽晶顶端,逐渐生长成晶体。焰熔法生 产设备主要有料筒、锤打机构、筛网、混合室、氢气 管、氧气管、炉体、结晶杆、下降机构、旋转平台等 组成。锤打机构使料筒振动,与筛网合作使粉料少 量、等量或周期性的下落;氧气与粉末一同下降、氢气与氧气混合燃烧;在炉体设有观察窗口可通过望远镜查看结晶状况,下降机构控制结晶杆的移动,旋转平台为晶体生长平台,下方置以保温炉。焰熔法具有生长速度快、设备简单、产量大的优点,但是生产出的晶体缺陷较多,适用于对蓝宝石质量要求不高的晶体生产。 提拉法。提拉法能够顺利地生长某些易挥发的化合物,应用较为广泛。提拉法工艺:将原料装入坩埚中熔化为熔体,籽晶放入坩埚上方的提拉杆籽晶夹具中,降低提拉杆使籽晶插入熔体中,在合适的温度下籽晶不会熔掉也不会长大,然后转动和提升晶体,当加热功率降低时籽晶就会生长,通过对加热功率的调节和提升杠杆的转动即可使籽晶生长成所需的晶体。

彩色宝石之蓝宝石简介

彩色宝石之蓝宝石简介 蓝宝石属于刚玉石物,是除了钻石以外地球上最硬的天然矿物,基本化学成分是氧化铝。蓝宝石属于高档宝石,是五大宝石之一,位于钻石、红宝石之后排第三,被看作诚实和德高望重的象征。它和红宝石有“姊妹宝石”之称。它的硬度是9,仅次于金刚石,因而坚硬无比。 蓝色的蓝宝石(sapphire)是因为含有微量的钛元素和铁元素。事实上,除了红色的刚玉宝石,其他所有色调的刚玉在商业上都被称作蓝宝石。所以,蓝宝石并不是仅指蓝色的刚玉宝石,它除了拥有完整的蓝色系列之外,还有着如同烟花落日般的黄色、粉红色、橙橘色及紫色等等,这些彩色系的蓝宝石被称为彩色蓝宝石。 蓝宝石优质者的产地大部分集中在亚洲、印度和巴基斯坦边境上的克什米尔和缅甸出产的蓝宝石,被公认为最美丽和最有价值的。克什米尔蓝宝石的矿区位于喜马拉雅山脉的西北端,海拔5000多米,位于雪线以上,开采条件非常艰苦,且产量一直很少,以至于许多年轻的珠宝商都没有见过这种珍贵的宝石,更不用说普通的消费者了。克什米尔蓝宝石的颜色呈矢车菊蓝宝石,也就是微带紫的靛蓝色,所以又被称作矢车菊蓝宝石。典型的矢车菊蓝宝石,除了拥有纯净且浓艳的蓝色调外,内部必须有非常细微的丝状内涵物,使得宝石带有丝绒般的光泽。该种蓝宝石即便是处于人工光源下,颜色也不会变,能拥有此种特性才是真正的矢车菊蓝宝石。 英国王室有过“不爱江山,更爱美人”的经典爱情。1936年12月,即位不足一年的英国国王爱德华八世为了和离异两次的美国平民女子辛普夫人结婚,毅然宣布退位。爱德华八世的弟弟乔治六世继位后,授予他温莎公爵的头衔。温莎公爵曾为夫人订做了一枚“猎豹”胸针,而“猎豹”蹲踞的“岩石”就是一枚重152.35克拉磨圆切割的克什米尔蓝宝石。 另外,我国山东昌乐县亦有蓝宝石出产,虽颗粒大,净度高,但颜色优美者较少,色调普通有些偏深。昌乐县的蓝宝石储量为中国之最,也是目前上已探明储量最大的蓝宝石矿区之一。在昌乐县1000多平方公里的地域内,分布着100多座古火山,蓝宝石是远古1800万年前火山喷发后留给这里人们的宝贵财富。昌乐蓝宝石在地下50—60公里的地幔中生成,它是在高温下由氧和铝缓慢结合

蓝宝石单晶中的位错缺陷

化学腐蚀法研究蓝宝石单晶中的位错缺陷 吕海涛1,张维连1,左燕1,步云英2 (1.河北工业大学,天津300130;2.天津半导体技术研究所,天津300051) 摘要:采用化学腐蚀-金相显微镜法和SEM法观察了CZ法生长的直径50mm的蓝宝石单晶中的位错缺陷。发现位错分布状况为中心较低、边缘较高,密度大约为104-105cm-2。在不同温度不同的试剂以及不同的腐蚀时间进行对比结果发现,用KOH腐蚀剂在290℃下腐蚀15min时,显示的位错最为清晰、准确,效果最佳。 关键词:蓝宝石单晶:位错:化学腐蚀 中图分类号:TN304.21;077+2 文献标识码:A 文章编号:1003-353X(2004)04-0048-04 1 引言 近年来宽禁带(Eg>2.3V)半导体材料发展十分迅速,称为第三代电子材料。主要包括SiC、金刚石、GaN等。同第一、二代电子材料相比,第三代电子材料具有禁带宽度大,电子漂移饱和速度高、介电常数小、导热性能好等特点,非常适用于制作抗辐射、高频、大功率和高密度集成的电子器件。利用其特有的禁带宽度,还可以制作蓝绿光和紫外光的发光器件和光探测器件。其中GaN 是一种商业化前景最好的光电子材料,它具有某些其他材料无可比拟的优越性。因此许多大公司、实验室、高等院校和科研所都投入大量人力物力开发这种新型光电子器件,但是第三代半导体材料的晶体生长都比较困难。GaN的熔点高,很难采用常规的方法直接生长GaN体单晶。因此为了满足制作器件的需要,各种外延技术仍是获得高质量、大尺寸单晶片的主要方法。 制备外延GaN薄膜,目前主要的衬底材料有:蓝宝石、SiC、硅等衬底材料。综合多方面考虑,蓝宝石是目前最广泛使用的衬底[1]。 蓝宝石是刚玉类宝石中的一个品种。天然蓝宝石无色透明,多数是罕见的星光宝石。由于天然蓝宝石稀少,化学成分不纯和成本高,不能作为工业材料使用。人造蓝宝石具有许多热学、光学、电学和力学的优良性能,使它成为一种特殊的材料,有着重要的用途,吸引着人们在蓝宝石的研制和应用等方面作了大量的工作。 蓝宝石的主要化学成分是三氧化二铝(A12O3),晶型为a-A12O3,分子量为101.94。在20℃时的

蓝宝石单晶生长技术研发

合約編號:華機95專案字011號 中華技術學院 產學合作研究計畫 結案報告 機械工程系 合作廠商:越峯電子材料股份有限公司計畫執行時程:95年3月17日至 96年8月31日 計畫金額:1,262,000元 計畫主持人﹕黃聖芳博士

藍寶石單晶生長技術研發 越峰電子材料股份有限公司 委託主導性研究計畫 結案報告 計畫主持人:黃聖芳 中華技術學院機械系 Tel:02-27867048ext.24, 0921833132 Fax:27867253 e-mail:sfhuang@https://www.docsj.com/doc/001046439.html,.tw 台北市115南港區研究院路三段245號 計畫執行時程:95年3月17日至96年8月31日

目錄 1、研究背景2 2、藍寶石之特性5 3、藍寶石單晶生長方法介紹7 4、原料、設備與實驗方法17 5、晶體檢測程序27 6、計畫執行成果28 7、結論36

1、研究背景: 藍寶石(Sapphire)是一種氧化鋁(Al2O3)的單晶,又稱為剛玉(Corundum),由於具有優良的機械、光學、化學以及抗輻射性質,因此近年來受到工業界廣泛的應用。由於藍寶石的光學穿透範圍非常的寬,從波長190nm的近紫外光到波長5500nm的中紅外光,藍寶石都有很好的透光率,因此大量被使用作為特種光學元件的透鏡材料、高功率雷射的透鏡材料以及飛彈彈頭光罩的材料,如圖1所示。由於藍寶石具有非常高的硬度與耐磨耗性能,因此也常作為精密機械的軸承材料,如圖2所示。又因具有的良好之抗幅射性能,也使得藍寶石常被應用於航太機具或暴露於輻射環境中的光學元件材料,如圖3所示。此外,目前在製作藍白光LED時所使用的基板材料(Substrate),也是以藍寶石為主,圖4所示即為藍光發光二極體(LED)的結構示意圖。由於藍白光LED具有使用壽命長、消耗功率低,發光效率高等優勢,已成為未來照明燈具的主流,深具市場發展潛力,因而使得作為製作藍白光LED基材的藍寶石之市場需求量也大幅提升。 目前國內工業界對藍寶石的需求量很大,但幾乎全仰賴從美、日、俄等國進口,主要原因是國內缺乏生長藍寶石單晶的技術與人才。而美日等國有能力生產藍寶石單晶的廠商,所提出的技術移轉費用都非常的高,以致迄今尚無國內業者與美日等國的藍寶石單晶生產廠商進行合作。本校(中華技術學院)與俄羅斯的Vniisims公司進行技術合作,引進生長藍寶石單晶的長晶爐與長晶技術,並建置完成整套生長藍寶石的製程,並已多次成功生長出符合工業品質需求的藍寶石單晶。 越峰電子材料股份有限公司正在積極發展藍寶石單晶的長晶技術,並已從俄羅斯引進所需的長晶設備。本計畫即為本校與越峰公司共同簽定的主導性科專產學合作計畫,期望藉由本校已從俄羅斯技術移轉所得的藍寶石單晶長晶技術為基礎,繼續研究開發在藍寶石單晶的長晶製程中,各個參數對晶體品質的影響程度,進而發展出可生產品質更佳且更穩定的藍寶石單晶之製程技術,提供產業界量產之用。 本研究計畫預定完成之工作項目計有下列六項: 1、瞭解不同形態的氧化鋁原料在藍寶石單晶長晶時的合適的比例。 2、確認長晶程序中各個階段的調配與控制對藍寶石單晶品質的影響程度。 3、透過製程參數的控制,包括:加熱電壓、加熱時間、加熱溫度、下晶種方 式以及晶種拉升速率等。掌控製程參數對藍寶石單晶品質之影響程度。 4、獲悉藍寶石單晶所含的缺陷型態與數量。 5、完成硬度分析。

数种蓝宝石晶体生长方法

蓝宝石晶体的生长方法 自1885年由Fremy、Feil和Wyse利用氢氧火焰熔化天然红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”,迄今人工生长蓝宝石的研究已有100多年的历史。在此期间,为了适应科学技术的发展和工业生产对于蓝宝石晶体质量、尺寸、形状的特殊要求,为了提高蓝宝石晶体的成品率、利用率以及降低成本,对蓝宝石的生长方法及其相关理论进行了大量的研究,成果显著。至今已具有较高的技术水平和较大的生产能力,为之配套服务的晶体生长设备——单晶炉也随之得到了飞速的发展。随着蓝宝石晶体应用市场的急剧膨胀,其设备和技术也在上世纪末取得了迅速的发展。晶体尺寸从2吋扩大到目前的12吋。 低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务。总体说来,蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有焰熔法、提拉法、区熔法、导模法、坩埚移动法、热交换法、温度梯度法、泡生法等。而泡生法工艺生长的蓝宝石晶体约为目前市场份额的70%。LED蓝宝石衬底晶体技术正属于一个处于正在发展的极端,由于晶体生长技术的保密性,其多数晶体生长设备都是根据客户要求按照工艺特点定做,或者采用其他晶体生长设备改造而成。下面介绍几种国际上目前主流的蓝宝石晶体生长方法。

图9 蓝宝石晶体的生长技术发展 1 凯氏长晶法(Kyropoulos method) 简称KY法,中国大陆称之为泡生法。泡生法是Kyropoulos于1926年首先提出并用于晶体的生长,此后相当长的一段时间内,该方法都是用于大尺寸卤族晶体、氢氧化物和碳酸盐等晶体的制备与研究。上世纪六七十年代,经前苏联的Musatov改进,将此方法应用于蓝宝石单晶的制备。该方法生长的单晶,外型通常为梨形,晶体直径可以生长到比坩锅内径小10~30mm的尺寸。其原理与柴氏拉晶法(Czochralski method)类似,先将原料加热至熔点后熔化形成熔汤,再以单晶之晶种(Seed Crystal,又称籽晶棒)接触到熔汤表面,在晶种与熔汤的固液界面上开始生长和晶种相同晶体结构的单晶,晶种以极缓慢的速度往上拉升,但在晶种往上拉晶一段时间以形成晶颈,待熔汤与晶种界面的凝固速率稳定后,晶种便不再拉升,也没有作旋转,仅以控制冷却速率方式来使单晶从上方逐渐往下凝固,最后凝固成一整个单晶晶碇,图10即为泡生法(Kyropoulos method)的原理示意图。泡生法是利用温度控制来生长晶体,它与柴氏拉晶法最大的差异是只拉出晶颈,晶身部分是靠着温度变化来生长,少了拉升及旋转的干扰,比较好控制制程,并在拉晶颈的同时,调整加热器功率,使熔融的原料达到最合适的

蓝宝石插件中文介绍

1.Sapphire Adjusts S_ClampChroma(色度和亮度的钳位调整) S_DuoTone(双色调渐变的色彩替换) S_Gamma(RGB反差系数调整,不错) S_Hotspots(可控高亮区域的调整,不错) S_HueSatBright(一个HSL色彩空间调色器) S_Monochrome(灰度化,不错) S_Threshold(针对各色彩通道的对比度强化) S_Tint(双色调的着色器) 2.Sapphire Blur+Sharpen S_Blur(多种方式的模糊,不错) S_BlurChannels(多种方式的通道模糊) S_BlurChroma(少见的色度模糊,不错) S_BlurMoCurves(带有变形效果的运动模糊) S_BlurMotion(区域运动模糊效果,不错) S_DefocusPrism(带有色散的虚焦模糊) S_EdgeBlur(边缘模糊,用于字幕的效果不错) S_GrainRemove(降噪,速度较快) S_RackDefocus(可调项较多的虚焦模糊) S_RackDfComp(双层的虚焦模糊合成) S_Sharpen(简单的锐化) S_SoftFocus(柔焦效果) S_ZDepthCueBlur(模拟变焦模糊,不错) 3.Sapphire Composite S_EdgeFlash(加光的层叠加效果) S_Layer(多种混合方式的层叠加效果) S_MathOps(多种数学运算方式的层混合效果) S_MatteOps(通道边缘噪声处理,多用于抠像) S_MatteOpsComp(处理通道噪声并进行层叠加) S_ZComp(Z方向的层叠加效果) 4.Sapphire Distort S_Distort(自定义镜头变形效果,不错) S_DistortBlur(带有模糊的自定义镜头变形效果) S_DistortChroma(带有色散的自定义镜头变形效果) S_DistortRGB(带RGB通道分离的自定义镜头变形效果,好) S_Shake(镜头震动效果) S_WarpBubble(噪波变形效果) S_WarpBubble2(双重的噪波变形效果) S_WarpChroma(连续的色相扭曲,可以模仿某些空间观测的色散效果,好)S_WarpDrops(自定义的水波纹效果,不错) S_WarpFishEye(鱼眼镜头效果)

蓝宝石分子晶向解析

1.晶向的本质是蓝宝石分子结构的问题: 上图为分子结构图,主要写了蓝宝石单晶六方晶系。 2. 蓝宝石晶向成像原理。 蓝宝石在这种分子结构的情况下,会有不同方向的分子层面,对X射线会有反射作用,从而产生晶向。 详细见下图:

分子层形成 了C面 分子层形成 了M面 分子层形成 了A面

分子层形成 了R面 分子层形成 了N面 3.晶向值形成的原因: X射线在经过分子层后,会产生折射和反射。在特定的某个角度入射会让反射的X光呈现平行状态(如下图),接收器接受的X射线强度比较大,该角度称为晶向值。但由于各个面的分子层间隙不同,所以产生的晶向值也不同。 标准晶向值如下: C面:20°50′ A面:18°55′ M面:34°06′ R面:26°16′ N面:21°43′

入射角,也叫做 晶向值。 分子层间隙,各 晶向分子层间 隙不同,晶向值 也不同。 4.分子晶向图 在下图中可以直观的看出蓝宝石分子晶向。 5.蓝宝石分子结构,对其物理性能的影响。 a.光学性能:C轴均有晶光性,其他轴具有负光性。(所以一般衬底行业都用C向晶片。) b.硬度:A向硬度明显高于C向,具体表现在耐磨,耐刮,硬度高。(我们磨A向砂轮需要特制的,或者明显降低研磨效率。A向晶片大多用于作为窗口材料,如手表镜片) c.切割时M面易开裂:C面为平面,最好切。A面为Z型锯齿状面,比较好切。M面为阶梯锯齿状,不好切,容易切裂。切割示意图如下:

C向切割,平面,比较好切,不容易切裂 A向切割,锯齿面,比较好切,不容易切裂

M向切割,阶梯状 锯齿面,不好切, 很容易切裂 6.晶向对其其他性能的影响。 未知,有其他的客户反馈,以OF面为底面2寸晶棒在R9点钟方向的晶棒不容易裂片,也有其他客户反馈,以OF面为底面4寸晶棒在R3点钟方向的晶棒不容易裂片。 个人觉得,因为蓝宝石的结构的对称性,R3和R9并没有太大的区别,只是分子有些不同,具体应该考虑使用的方面,通过实验确定。

蓝宝石晶体生长设备

大规格蓝宝石单晶体生长炉技术说明 一、项目市场背景 α-Al2O3单晶又称蓝宝石,俗称刚玉,是一种简单配位型氧化物晶体。蓝宝石晶体具有优异的光学性能、机械性能和化学稳定性,强度高、硬度大、耐冲刷,可在接近2000℃高温的恶劣条件下工作,因而被广泛的应用于红外军事装置、卫星空间技术、高强度激光的窗口材料。其独特的晶格结构、优异的力学性能、良好的热学性能使蓝宝石晶体成为实际应用的半导体GaN/Al2O3发光二极管(LED),大规模集成电路SOI和SOS及超导纳米结构薄膜等最为理想的衬底材料。低成本、高质量地生长大尺寸蓝宝石单晶已成为当前面临的迫切任务。 蓝宝石晶体生长方式可划分为溶液生长、熔体生长、气相生长三种,其中熔体生长方式因具有生长速率快,纯度高和晶体完整性好等特点,而成为是制备大尺寸和特定形状晶体的最常用的晶体生长方式。目前可用来以熔体生长方式人工生长蓝宝石晶体的方法主要有熔焰法、提拉法、区熔法、坩埚移动法、热交换法、温度梯度法和泡生法等。但是,上述方法都存在各自的缺点和局限性,较难满足未来蓝宝石晶体的大尺寸、高质量、低成本发展需求。例如,熔焰法、提拉法、区熔法等方法生长的晶体质量和尺寸都受到限制,难以满足光学器件的高性能要

求;热交换法、温度梯度法和泡生法等方法生长的蓝宝石晶体尺寸大,质量较好,但热交换法需要大量氦气作冷却剂,温度梯度法、泡生法生长的蓝宝石晶体坯料需要进行高温退火处理,坯料的后续处理工艺比较复杂、成本高。 二、微提拉旋转泡生法制备蓝宝石晶体工艺技术说明 微提拉旋转泡生法制备蓝宝石晶体方法在对泡生法和提拉法改进的基础上发展而来的用于生长大尺寸蓝宝石晶体的方法,主要在乌克兰顿涅茨公司生产的 Ikal-220型晶体生长炉的基础上改进和开发。晶体生长系统主要包括控制系统、真空系统、加热体、冷却系统和热防护系统等。微提拉旋转泡生法大尺寸蓝宝石晶体生长技术主要是通过调控系统内的热量输运来控制整个晶体的生长过程,因此加热体与热防护系统的设计,热交换器工作流体的选择、散热能力的设计,晶体生长速率、冷却速率的控制等工艺问题对能否生长出品质优良的蓝宝石晶体都至关重要。 微提拉旋转泡生法制备蓝宝石晶体,生长设备集水、电、气于一体,主要由能量供应与控制系统、传动系统、晶体生长室、真空系统、水冷系统及其它附属设备等组成。传动系统作为籽晶杆(热交换器)提拉和旋转运动的导向和传动机构,与立柱相连位于炉筒之上,其主要由籽晶杆(热交换器)的升降、旋转装置组成。提拉传动装置由籽晶杆(热交换器)的快速及慢速升降系统两部分组成。籽晶杆(热交换器)的慢速升降系统由稀土永磁直流力矩电机,通过谐波减速器与精密滚珠丝杠相连,经滚动直线导轨导向,托动滑块实现籽晶杆(热交换器)在拉晶过程中的慢速升降运动。籽晶杆(热交换器)的快速升降系统由快速伺服电机经由谐波减速器上的蜗杆、蜗杆副与谐波的联动实现。籽晶杆的旋转运动由稀土永磁式伺服电机通过楔形带传动实现。该传动系统具有定位精度高、承载能力大,速度稳定、可靠,无振动、无爬行等特点。采用精密加热,其具有操作方法简单,容易控制的特点。在热防护系统方面,该设计保温罩具有调节气氛,防辐射性能好,保温隔热层热导率小,材料热稳定性好,长期工作不掉渣,不起皮,具有对晶体生长环境污染小,便于清洁等优点。选用金属钼坩埚,并依据设计的晶体生长尺寸、质量来设计坩埚的内径、净深、壁厚等几何尺寸,每炉最大可制备D200mmX200mm,重量25Kg蓝宝石单晶体。Al2O3原料晶体生长原料采用纯度为5N的高纯氧化铝粉或熔焰法制备的蓝宝石碎晶。 从熔体中结晶合成宝石的基本过程是:粉末原料→加热→熔化→冷却→超过临界过冷度→结晶。 99.99%以上纯度氧化铝粉末加有机黏结剂,在压力机上形成坯体;先将该坯体预先烧成半熟状态的氧化铝块,置入炉内预烧,将炉抽真空排出杂质气体,先后启动机械泵、扩散泵,抽真空至10↑[-3]-10↑[-4]Pa,当炉温达1500-1800℃充入混合保护气体,继续升温至设定温度(2100-2250℃);(3)炉温达设定温度后,保温4-8小时,调节炉膛温度

相关文档