文档视界 最新最全的文档下载
当前位置:文档视界 › PON技术的发展及演进

PON技术的发展及演进

PON技术的发展及演进
PON技术的发展及演进

PON技术的发展及演进

无源光网络(PON)是使用点到多点树形光纤分配网络进行信息传输的技术。点到多点的物理拓扑结构特别适用于有线接入网的场景。PON系统一般由位于局端的OLT设备,位于用户侧的ONU设备和连接两者的无源光分配网构成。

PON系统中由于多个O NU设备共享同一光纤媒质与OLT通信,因此主要需要解决不同ONU间的媒质共享问题。解决光纤中媒质共享的主要方式包括时分复用/多址技术、波分复用技术和正交频分复用(OFDM)技术。因此主要的PON技术也可分为TDM-PON、WDM-PON和OFDM-PON三大类。目前技术比较成熟应用比较广泛的EPON、GPON等主要是采用TDM-PON技术。

1.PON技术的发展

1.1 早期的窄带PON及BPON

最早的PON系统主要是用于解决多个的窄带接入网(数字用户环路)远端设备的互联,传送n×64 kbit/s的语音时隙。但由于价格和业务保护方面均无法与环形拓扑的数字用户环路设备抗衡,因此成为失败的技术。

20世纪90年代,随着ATM/B-ISDN的兴起,宽带第一次成为电信技术发展的重要方向,而带宽潜力巨大的光纤技术也成为信息传输技术的宠儿。因此,在1995年全球7个重要的运营商成立了全业务接入网组织(FSAN),致力于光纤接入网的标准和应用的推进工作。在FSAN和ITU-T的共同努力下,第一个关于PON系统的国际标准《基于无源光网络(PON)的宽带光接入系统》(ITU-T G.983.1 )于1998年发布,该标准一般也被称为BPON标准。

BPON在当时的技术环境下采用了以ATM为内核的设计思路,且限于当时器件水平和价格的因素,PON设备的成本还比较高、光纤接入网的外部配套条件也不成熟,因此BPON 仅在北美地区的电信运营商中有一定规模的部署,并未在全球获得广泛的应用。

1.2 EPON和GPON

随着ATM技术的衰落和互联网IP技术的迅速兴起,继BPON之后,业界希望开发一种新型的PON系统,取代过时的BPON技术。在这个背景下,IEEE和ITU-T相继在2000年和2001年启动了EPON和GPON的标准化工作,并分别于2004年发布了完成的标准,

为今天EPON和GPON在现网中的大量应用奠定了基础。

EPON标准由IEEE的EFM(Ethernet in the First Mile)工作组完成,并在2004年9月被IEEE批准为IEEE 802.3ah标准。EPON标准的很多内容继承了以太网的设计思想,重用了吉比特以太网的速率和物理层编码等内容,并对MAC层协议和以太网帧前导码序列进行了修改,以适应PON的点到多点的网络拓扑结构。

GPON标准由ITU-T 第15研究组进行标准化工作,GPON相关的标准包括G.984.1~G.984.6六个标准,分别涵盖了GPON系统的架构、物理媒质相关层、传输汇聚层、ONU控制管理协议以及对增强的波长使用和距离扩展的规定。GPON标准的设计比较全面地考虑了运营商的业务和运行维护需求,标准体系完备全面,但是内容也相对复杂。

EPON系统采用单纤双向传输,上行标称波长为1 310 nm,下行标称波长为1 490 nm。按照最大传输距离的不同,标准中将EPON接口光收发指标分为10 km(PX10)和20 km(PX20)两类规范,实际网络中为了获得较大的光功率预算多采用PX20类型接口,可实现20 km传输距离和1∶32分路比。EPON系统的每个PON口的实际有效带宽为800~950 Mbit/s。

GPON同样采用单纤双向传输,上行标称波长为1 310 nm,下行标称波长为1 490 nm。GPON采用GEM封装方式进行多种业务适配,利用GEM封装方式可以直接承载以太网业务、ATM业务或TDM业务。与EPON的类以太网的变长帧传输方式不同,GPON 采用125 μs固定帧长,这对于精确的传送时钟信号有所帮助。GPON信道编码采用NRZ 码,下行速率为2.488 Gbit/s,上行速率为1.244 Gbit/s,除去系统开销后每个PON口的实际有效带宽约为下行2.45 Gbit/s,上行1.1 Gbit/s。目前主流的GPON系统采用B+类光器件,可实现20 km传输距离下的1∶64分路比,以及支持60 km的最大逻辑距离。

当前EPON和GPON分别可以提供大约1G和2.4G的下行带宽,在FTTH场景下,如果不考虑并发,最大分路比下(32和64)的每个用户可以保证获得大约30 Mbit/s的下行带宽。但在中国现网条件下,运营商大量采用FTTB的方式进行组网,即每个ONU下还连接16~32个用户,最终可能会达到每PON口连接1 000个(32×32)左右的用户。这样每个用户可获得的带宽将无法满足现网提速的需求。

1.3 10G-EPON和XG-PON

从2005年开始,IEEE和ITU相继开展了对下一代PON系统的标准化研究。根据FSAN 对几大运营商的关于下一代PON的意见的征求,绝大多数运营商指出应在现有的EPON和GPON的技术基础上提升速率,也有个别运营商希望可以发展像WDM-PON一类的新技术。

IEEE于2006年立项开始制定10 Gbit/s速率的EPON系统的标准IEEE 802.3av。该标准针对10 Gbit/s速率的需求制定了新的EPON物理层规范,并对MAC层规范进行了更新。在该标准中,10G EPON分为2个类型。其一是非对称方式,即下行速率为10 Gbit/s,但上行速率与EPON相同仍然为1 Gbit/s。其二是对称方式,即上下行速率均为10 Gbit/s。

相比来说,由于PON系统的上行传输技术难度较大,因此1G上行10G下行方式的10G EPON系统较为容易实现,目前芯片厂家已经可以提供原型系统。但由于该类系统上下行带宽比达到1∶10,因此能否与实际的用户业务需求的带宽模型相匹配目前存在疑问。

ITU于2008年启动了下一代GPON标准的研究,目前称为XG-PON标准。XG-PON 标准ITU-T G.987系列已陆续发布。XG-PON目前规定的物理层速率为非对称方式,即下行速率为10 Gbit/s,上行速率为2.5 Gbit/s。

10G-EPON和XG-PON系统使用同样的波长规划,有利于两者共用部分光器件,扩大产业规模,降低器件成本。两者均规定上行选择1 260~1 280 nm的波长范围,下行选择1 575~1 580 nm的波长范围。下行方向与现有的1 490 nm的EPON或GPOM 系统可以采用WDM方式进行波长隔离。上行方向,由于EPON ONU使用的激光器谱宽较宽(1 310+50 nm),与1 260~1 280 nm波长重叠。因此,EPON与10G-EPON的ONU共存在同一ODN时需采用TDMA方式,两者不能同时发射。GPON与XG-PON的ONU可以采用波长隔离,两者互不影响。

在功率预算方面,10G EPON增加了PR/PRX30的功率预算档次,将光链路预算提升到29 dB。10G GPON正在研究如何支持31~32 dB的光链路预算能力。

1.4 NG-PON2

NG-PON2是现有的GPON/XG-PON的演进系统。由于TDM-PON发展到单波长10 Gbit/s速率后,再进一步提升单波长速率面临技术和成本的双重挑战,于是在PON系统中引入WDM技术成为必然的选择。由于10G-EPON和XG-PON目前在现网中的应用也很少,因此NG-PON2的主要目标是瞄准2015年以后的应用窗口。

NG-PON2系统定位于全业务的光纤接入网,除了通过速率的提升支持更高速率的家庭和商业客户,NG-PON2还需要具有良好的同步性能支持移动回传等业务。目前正在讨论中的NG-PON2的标准草案中提出了以下基本特性。

a)下行速率至少为40 Gbit/s,上行速率至少为10 Gbit/s。

b)最大传输距离和最大差分距离为40 km。

c)最大支持1∶256分路比。

d)至少包含4个TWDM通道。

e)使用无色ONU。

NG-PON2在物理层采用的主要原理是TDM和WDM结合的方式,使用多个XG-PON 在波长上进行堆叠,可以最大限度地重用GPON/XG-PON的技术,以及与现有的采用功率分配分光器的ODN具有比较好的兼容性。NG-PON2系统的基本架构如图1所示。

OLT采用多波长光模块配置4个或更多的上下行波长,ONU侧采用波长可调光收发器技术实现ONU的无色化。OLT与ONU之间通过一个正在标准化中的波长选择与分配协议控制ONU在分配的波长上工作。

2 PON系统的演进

2.1 GPON系统到NG-PON2的演进

GPON系统演进到NG-PON2有3种可选的路径,分别为次序演进、跳跃演进和灵活演进。

a)次序演进方式(见图2)。现有的GPON系统需要首先演进到XG-PON系统,在同一ODN中保持GPON与XG-PON共存一段时期。当需要向NG-PON2演进时,由于只有XG-PON系统可以演进到NG-PON2,可以与NG-PON2在同一ODN共存,因此需要确保此时GPON系统已经从ODN中移除。

b)跳跃演进方式(见图3)。从GPON直接演进到NG-PON2。根据业务和网络的发展进程,该方式跳过XG-PON阶段,直接从GPON升级为NG-PON2,因此要求在ODN 中GPON与NG-PON2 2个系统共存。

c)灵活演进方式(见图4)。灵活演进方式既支持从XG-PON演进到NG-PON2,也支持从GPON直接演进到NG-PON2,最后允许GPON、XG-PON、NG-PON2 3种系统在同一个ODN上共存的演进方式。这种方式下,由于3种系统都需要占用光纤中的频谱资源,因此对频谱的规划难度最大。目前NG-PON2物理层规范考虑到了灵活演进方式的需求,对NG-PON2所使用的频谱基本确定为使用C-(1 530~1 540 nm)波段和L+(1 595~1 625 nm)波段,具体的波段边界数值还有待进一步讨论。

2.2 EPON系统到NG-PON2的演进

EPON系统如何较平滑地演进到NG-PON2系统目前还没有更多的研究。从ODN共存的角度看,由于目前NG-PON2选择的C-和L+波段与EPON/10G-EPON所使用波段也不相同,可以参考GPON/XG-PON的方式通过波分复用共存在同一个ODN中。

3. 结束语

综上所述,NG-PON2成为近期PON系统和技术的研究重点,由于需求、器件、成本的原因,NG-PON2短期内可能还难以实用化。但NG-PON2是PON技术的集大成者,是PON演进过程中的重要里程碑。因此,应该在现有GPON、EPON的规划和设计中考虑长期演进的因素,减少未来网络演进的风险。

PON系统简介

PON系统简介交流材料
汇报人: 徐继晖
湖北邮电规划设计有限公司 2007年12月



1
PON 技术原理 2 3 4 EPON关键技术 EPON系统网元 商用EPON设备简介
2

PON技术的含义
PON技术是一种宽带接入网技术
PON ODN Splitter
Passive Optical Network 无源光网络 Optical Distribution Network 光配线网 光分路器
无源光网络 (PON) 无源光网络 (PON) 指光配线网 (ODN) 不含有任何电子器件及电子电源,全部由光分路 指光配线网 (ODN) 不含有任何电子器件及电子电源,全部由光分路 器 (Splitter) 等无源器件组成,不需要贵重的有源电子设备。 器 (Splitter) 等无源器件组成,不需要贵重的有源电子设备。 是一种点到多点的光纤接入技术。 是一种点到多点的光纤接入技术。 本质特征 本质特征 光配线网 (ODN) 全部由无源光器件组成。 光配线网 (ODN) 全部由无源光器件组成。 3

PON的技术种类
点对多点光纤接入技术 点对多点光纤接入技术— —PON PON技术发展 技术发展
相同的拓扑——无源P2MP
APON z ITU-T标准化 标准已经成熟; z ATM技术; z目前提供的接入速率 相对较低,业务提供 能力有限,没有得到 市场认可。
EPON z IEEE EFM工作组 标准化,编号 802.3ah; z 以太网封装; z 标准完善; z 产品开始在市场上 迅速应用。
GPON z FSAN提出,ITU-T 标准化; z ATM、GEM封装; z 标准较完善; z 支持厂家较少。
协议不同
各种 各种PON PON技术的主要差异在于采用了不同的二层技术 技术的主要差异在于采用了不同的二层技术 4

下一代PON技术的发展

下一代PON技术的发展 烽火通信股份有限公司安俊峰 PON技术凭借其点到多点的网络架构及无源ODN的特征,已成为FTTx 领域最受运营商青睐的解决方案。随着PON的规模应用和全业务运营的快速发展,运营商对PON系统在带宽需求、业务支撑能力、接入节点设备和配套设备性能等方面都提出了更高的期望。PON系统面向未来的演进方向和演进方式成为业界瞩目的焦点。 1、标准演进路线 (1)基本原则 从网络运营的角度来看,“超宽带,可共存”应是PON演进的基本原则。 第一,以增加营业收入为目的从而拓展新业务是所有运营商的战略目标,此举势必引发带宽消耗的强劲增长(如每通道大约20Mbps带宽的高清电视〈HDTV〉)。在可见的未来,新的商业模式(例如在线体感游戏、远程医疗、4D电视等等)将进一步推动带宽需求的增长。 第二,PON系统整体投资巨大,回报周期长,且ODN投资和终端投资是整个网络投资中的关键部分(在Greenfield的FTTH建设中,ODN的投资占总投资的70%,终端投资占总投资的25%)。因此,尽可能保护ODN的投资、最大化用户终端价值,对加速运营商赢利来说意义非凡。 (2)演进路线 在完成GPON的标准化工作之后,FSAN/ITU-T以“低成本、高容量、广覆盖、全业务、高互通”为第一步演进目标,迅速推进下一代PON技术标准的研究和制定。同时,FSAN/ITU-T也提出,更长期演进时,在不考虑与旧有系统共存的前提下,以全新场景为牵引,可考虑选择除TDM PON以外的可用技术。 因此,依据现实需求与技术成熟度的判断,FSAN定义 NG-PON的演进规划分为两个阶段:NG-PON1和NG-PON2。NG-PON1属于PON的中期演进,着

PON技术现状和定位

PON技术现状和定位 移目前移动通信和固网宽带是我国各电信运营商最重要的两大基础业务,在电信网络IP化、宽带化和技术融合的大背景下,移动宽带服务驱动移动通信网络迅猛发展,对移动回传承载网络提出了更高的要求。在对网络灵活性需求不断增加的同时,业务接入带宽的需求更是迅猛增加,以WCMDA网络为例,移动回传网络的实际接入带宽已从2G时代的2 Mbit/s,经过3G发展初期的15 Mbit/s,提高到3G成熟期HSPA+业务的28 Mbit/s,未来LTE的基站物理接口将会达到GE,实际业务带宽有可能达到300 Mbit/s以上。 当前,各运营商在积极探寻适合自身未来移动回传网络发展的基于分组或传输的主流技术,如分组传送网(PTN)、IP化无线接入网(IP RAN)、光传送网(OTN)及融合技术P/E-OTN等,与此同时,也在积极尝试利用现有传输和接入资源传送移动回传业务,特别是利用现有PON的空闲端口,以期充分利用现有资源,提高现有网络的利用率,降低网络建设和维护成本,PON因此成为大家所关心的热点之一。 1 PON技术现状与发展 1.1 PON技术现状 传统的PON系统下行数据流采用广播技术、上行数据流采用TDMA技术,以解决多用户每个方向信号的复用问题。传统PON技术采用WDM技术,在光纤上实现单纤双向传输,解决2个方向信号的复用传输。PON一般由光线路终端(OLT)、分光器(ODU)、用户终端(ONU)3个部分构成。目前在现网中广泛应用的PON技术包括EPON和GPON 2种主流技术,EPON上下行带宽均为1.25 Gbit/s,GPON下行带宽为2.5 Gbit/s,上行带宽为1.25 Gbit/s。 目前在实际的FTTx应用场景中,大多数EPON/GPON只配置了以太接口,可选配置POTS和2M接口。但从技术标准要求上,EPON/GPON均可实现IP业务和TDM业务等多业务接入,并可实现QoS分类。 EPON/GPON均可传递时钟同步信号,可通过OLT的STM-1接口或GE接口,从外部线路中提取频率同步信号,此时OLT需要支持同步以太网;也可以在OLT设备上从外部BITS输入时钟信号,作为该PON的公共时钟源,ONU与该时钟源保持频率同步。

PON技术的发展与应用

PON技术的发展与应用 【摘要】进入到新世纪以后,我国的社会主义经济建设已经发展到了一个新的阶段,我国的信息计算机技术和通信网络技术都得到了快速的发展,PON技术又叫做无源光纤网络,其是指在光配线网中是不含有任何的电子电源和电子器件,光分路器等无源器件共同组成了ODN,并没有较为昂贵的有源电子设备。作为一种纯介质网络,每一个无源光网络都是由位于中心控制站的光线路终端和一批位于用户使用场所的光网络单元组成的,而光纤、无源耦合器和无源分光器则都是在前两者所组成的光配线网之中的。本文便对PON技术的简要介绍、PON 系统的组成模型、三网融合的概况以及PON技术在三网融合网络改造中的应用情况四个方面的内容进行了详细的分析和探讨,从而详细的论述了PON技术的发展和应用情况。 【关键词】PON技术;三网融合;应用情况 进入到二十一世纪之后,我国通信网络中通信骨干传输的速度得到了明显的加快,而通信终端设备也都更加的智能化了,而在这种背景下,广大使用者对通信网络也都提出了更高的要求,目前主流的发展趋势就是互联网、电信网和电视网三网融合的趋势。而在大容量骨干网和高速局域网传输过程中,所面临的一个重要课题就是用户接入网技术的问题,PON技术是一种纯介质网络,同时其具有运行成本低、故障定位简单以及维护方便等显著的优点,其可以最大限度的满足三网融合的要求,其也是最适合应用在三网融合中网络模式。 1、PON技术的简要介绍 在我国的通信网络中,占主导地位的仍是程序控制的通信网络以及数字网络,而电信运营商以及设备制造商对接入网络的建设工作也更加的重视和关注了。铜电缆仍是现阶段访问网络的常用设施,在本地交换机与用户之间的连接系统中,接入网所占的地位仍是非常关键的,对于电信网络来说,其投资的规模较大,并且对于现阶段的业务需求也会产生重大的影响的。在采用PON技术的过程中,基于点对点的拓扑结构,其是一种可以进行双向互动业务的光纤接入网络,其传输介质应是本地交换的光纤,是一种借助于光分配器以及光连接器等光无撅设备的纯粹被动用户网络。其所采用的资源共享和免维护组合器等策略,大大的降低了骨干光纤电缆设备成本和网络维护的费用。 2、PON系统的组成模型 通常情况下,PON系统主要是由三部分组成的,分别为中心局的光线路终端、无源光器件的光分配网和用户端的光网络单元或是用户端的光网络终端,而光网络单元和光网络终端的最大区别就是前者与用户之间是还有其他网络的,而后者则是直接位于用户端的,有点到多点的树形拓扑结构是其主要采用的型式。 3、三网融合的概况

PON技术介绍(精)

基于PON技术的宽带接入 1PON技术的概念 1.1PON技术的概念以及特点 无源光网络(PON)(PassiveOpticalNetwork,无源光网络) 技术是一种一点到多点的光纤接入技术,它由局侧的OLT(光线路终端)、用户侧的ONU(光网络单元)以及ODN(光分配网络)组成。所谓“无源”是指在ODN中不含有任何有源电子器件及电子电源,全部由光分路器(Splitter)等无源器件组成。 无源光网络(PON)是一种纯介质网络,避免了外部设备的电磁干扰和雷电影响,减少了线路和外部设备的故障率,提高了系统可靠性,同时节省了维护成本,是通信行业长期期待的技术。同有源系统比较,PON技术具有节省光缆资源、带宽资源共享,节省机房投资,设备安全性高,建网速度快,综合建网成本低等优点。 1.2PON技术的工作原理 (1)工作原理框图如图1所示,PON系统由位于中央局端的一个光线路终端(OLT)和位于客户端的一组关联光网络终端(ONT)组成,在它们之间是由光纤和无源分光器或连接器组成的光分配网络(ODN)。

(2)基于TDM/TDMA的上行/下行流量管理。在PON中,OLT与ONU之间采用的数据传输方式包括WDM/WDMA、SCM/SCMA、CDM/CDMA和TCM/TCMA,实际应用中一般采用TDM/TDMA方式,图2、3表明在PON系统中从OLT到多个ONU其下行采用TDM广播方式、上行采用TDMA(时分多址)方式的数据传输过程。 2PON技术的分类以及在FTTx中的应用 2.1FTTx技术 FTTx技术分为FTTB、FTTC、FTTZ、FTTH、FTTO、FTTF 等。其中最主要的是FTTB(光纤到大楼)、FTTC(光纤到路边)、FTTH(光纤到用户)三种形式。随着软交换与光缆技术进一步成熟,FTTH将成为我们通信接入方式的最终目标。 有源光纤接入技术如PDH、SDH、MSTP、点到点以太网系统因机房建设、有源设备建设、维护成本高等原因而渐渐被淘汰;PON技术则因为无源化带来的维护成本低,以及无机房建设产生的建设成本低,愈加受到行业欢迎。在目前众多的光纤接入技术中,PON技术比较适合FTTH的大规模发展。 2.2各种PON技术的特点 PON技术始于20世纪80年代初,目前市场上的PON产品按照其采用的技术,主要分为APON/BPON(ATMPON/宽带PON)、EPON(以太网PON)和GPON(吉比特PON)。

第三章_PON技术

第三章PON技术 第一节PON技术原理 随着以太网技术在城域网中的普及以及宽带接入技术的发展,人们提出了速率高达1Gbit/s以上的宽带PON技术,主要包括EPON和GPON技术:“E”是指Ethernet,“G”是指吉比特级。 1987年英国电信公司的研究人员最早提出了PON的概念。1995年,全业务网络联盟FSAN(Full Service Access Network)成立,旨在共同定义一个通用的 PON 标准。1998年,国际电信联盟ITU-T工作组,以155Mbps的ATM技术为基础,发布了G.983系列APON(ATMPON)标准。这种标准目前在北美、日本和欧洲应用较多,在这些地区都有APON产品的实际应用。但在中国,ATM本身的推广并不顺利,所以APON在我国几乎没有什么应用。 2000年底,一些设备制造商成立了第一英里以太网联盟(EFMA),提出基于以太网的PON概念——EPON(Ethernet Passive Optical Network)。EFMA还促成电气电子工程师协会(IEEE)在2001年成立第一英里以太网(EFM)小组,开始正式研究包括1.25Gbit/s的EPON在内的EFM相关标准。EPON标准IEEE 802.3ah在2004年6月正式颁布。 2001年底,FSAN更新网页把APON更名为BPON(Broadband PON)。实际上,在2001年1月左右EFMA提出EPON概念的同时,FSAN也已经开始了带宽在1Gbps以上的PON,也就是Gigabit PON标准的研究。FSAN/ITU推出GPON技术的最大原因是由于网络IP化进程加速和ATM技术的逐步萎缩导致之前基于ATM技术的APON/BPON技术在商用化和实用化方面严重受阻,迫切需要一种高传输速率、适宜IP业务承载同时具有综合业务接入能力的光接入技术出现。在这样的背景下,FSAN/ITU以APON 标准为基本框架,重新设计了新的物理层传输速率和TC层,推出了新的GPON技术和标准。2003年3月ITU-T颁布了描述GPON总体特性的G.984.1和ODN物理媒质相关(PMD)子层的G.984.2GPON标准,2004年3月和6月发布了规范传输汇聚(TC)层的 G.984.3和运行管理通信接口的G.984.4标准。 一、PON组成 PON,Passive Optical Network,无源光网络。 如图3-1,PON由光线路终端(OLT)、,光合/分路器(Spliter/ODN)和光网络单元(ONU)组成,采用树形拓扑结构。OLT放置在中心局端,分配和控制信道的连接,并有实时监控、管理及维护功能。ONU放置在用户侧,OLT与ONU之间通过无源光合/分路器连接。

浅谈PON技术的发展前景与应用

浅谈PON技术的发展前景与应用 摘要:在PON技术还未正式商用前,各电信运营商宽带接入方式主要为LAN和DSL,DSL接入方式市场占用率较高,虽然当时可以满足人们对宽带的需求,但其对互联网电视、视频类节目等新业务的支持能力却严重受限。大带宽的接入需求将成为宽带发展的方向。 在接入网技术的选择上, 各电信运营商比较青睐于VDSL和FTTX 技术,其中VDSL是利用电话线开通高速宽带业务,由于其成本相对较底,提速存在局限性,只能作为一种过渡性方案,为用户提供差异化服务。但随着互联网电视、网络视频会议、在线大型网游和HDTV 等新业务的出现,用户对带宽需求也越来越高,与此同时,随着光缆、PON网络设备成本的下降以及PON技术的不断成熟,使得FTTX应用技术成为高速宽带接入网发展的方向。 当今接入网技术中,EPON和GPON为PON技术中的两大主流技术,这两项技术各有优劣,但基于市场需求、成本以及技术成熟度等因素EPON已广泛应用于FTTX领域。而GPON市场将成为EPON的补充市场,GPON将成为EPON的升级技术。 本文将着重阐述PON技术在当今接入市场上的优势及未来的发展前景和应用。

关健词:无源光网络,PON,DSL 一、引言 随着互联网的快速发展,推动了诸如互联网电视、网络视频会议、在线大型网游和HDTV等高带宽业务不断涌现,人们对网络的依赖和高带宽的需求将日益明显。在高速带宽需求下,传统的铜缆接入技术(如VDSL)已无法满足需求,而VDSL技术虽然可达到很高的带宽,但其开通高速宽带业务受距离的约束,离VDSL设备越近速率越高。因为成本的原因电信运营商利用前期铜缆资源采用XDSL接入技术已接入了大量用户,因此如何发挥好前期的铜缆资源,成为确定目前宽带接入最佳解决方案的前提。 采用PON技术将OLT节点逐渐下沉到业务密集区,接入层由铜缆网逐渐向光接入网(FTTX)演进是现阶段接入网发展的方向和最佳选择。 二、 PON技术的发展 1.什么是PON PON(无源光网络)是一种全新的点到多点的光纤接入技术,它由光节点OLT(光线路终端)、用户侧终端设备ONU(光网络

PON技术介绍

PON技术介绍 一、什么是pon 无源光网络(PON)技术是一种点到多点的光纤接入技术,它由局侧的OLT(光线路终端)、用户侧的ONU(光网络单元)以及ODN(光分配网络)组成。一般其下行采用TDM 广播方式、上行采用TDMA(时分多址接入)方式,而且可以灵活地组成树型、星型、总线型等拓扑结构(典型结构为树形结构)。所谓“无源”,是指ODN中不含有任何有源电子器件及电子电源,全部由光分路器(Splitter)等无源器件组成,因此其管理维护的成本较低。 EPON的标准化工作主要由IEEE的802.3ah即EFM(EthernetFortheFirst Mile,第一英里以太网)工作组来完成,其制定EPON标准的基本原则是尽量在802.3体系结构内进行EPON 的标准化工作,工作重点放在EPON的MAC协议上,最小程度地扩充以太网MAC协议。该标准目前还是草案,EFM计划在2004年正式发布EPON的相关标准。我国目前正在积极进行EPON的标准化工作,通信行业标准《接入网技术要求-基于Ethernet的无源光网络(EPON)》正在制订中。 GPON是ITU提出的G比特级的无源光网络。ITU在2003年正式通过并颁布了GPON标准系列中的三个标准:G.984.1、G.984.2和G.984.3。由于GPON标准是ITU在APON标准之后推出的,因此G.984标准系列不可避免的沿用了G.983标准的很多思路。GPON与EPON 都是千兆比特级的PON系统,与EPON力求简单的原则相比,GPON更注重多业务和QoS 保证,因此更受运营商的青睐。但由于GPON标准复杂且开发较晚,技术尚不成熟,因此目前GPON产品还未到商品化阶段。 目前IEEE提出的EPON实现方案是:在与APON类似的结构和G.983的基础上,设法保留APON的物理层PON,而以Ethernet技术代替ATM技术作为数据链路层协议,构成一个可以提供更大带宽、更低成本和更强业务能力的新的结合体EPON。而ITU提出的GPON 技术的主要目标是实现Gbit速率,并能支持多种业务,对所有业务最优化。 二、为什么选择PON技术 PON技术的引入是接入网络的又一次革命,该技术可以为用户提供30~100Mbit/s的带宽,接入距离可达10~20km。它的主要优势表现在: (1)用PON技术可以解决FTTH、FTTO等问题,为通信网络向全光网络演进提供必要条件; (2)用PON技术可以提供“全业务”接入,充分满足视频娱乐和家庭办公所需的带宽需求; (3)PON技术采用可级联的无源光分路器,不仅节约主干光缆,而且大大简化了网络结构,提高了网络健壮性; (4)用PON技术的FTTH解决方案不仅具备光纤的高可靠性,而且非常适合广播/组播、视频/音频业务的开展。 三、PON技术部署策略

PON技术的发展及演进

PON技术的发展及演进 无源光网络(PON)是使用点到多点树形光纤分配网络进行信息传输的技术。点到多点的物理拓扑结构特别适用于有线接入网的场景。PON系统一般由位于局端的OLT设备,位于用户侧的ONU设备和连接两者的无源光分配网构成。 PON系统中由于多个O NU设备共享同一光纤媒质与OLT通信,因此主要需要解决不同ONU间的媒质共享问题。解决光纤中媒质共享的主要方式包括时分复用/多址技术、波分复用技术和正交频分复用(OFDM)技术。因此主要的PON技术也可分为TDM-PON、WDM-PON和OFDM-PON三大类。目前技术比较成熟应用比较广泛的EPON、GPON等主要是采用TDM-PON技术。 1.PON技术的发展 1.1 早期的窄带PON及BPON 最早的PON系统主要是用于解决多个的窄带接入网(数字用户环路)远端设备的互联,传送n×64 kbit/s的语音时隙。但由于价格和业务保护方面均无法与环形拓扑的数字用户环路设备抗衡,因此成为失败的技术。 20世纪90年代,随着ATM/B-ISDN的兴起,宽带第一次成为电信技术发展的重要方向,而带宽潜力巨大的光纤技术也成为信息传输技术的宠儿。因此,在1995年全球7个重要的运营商成立了全业务接入网组织(FSAN),致力于光纤接入网的标准和应用的推进工作。在FSAN和ITU-T的共同努力下,第一个关于PON系统的国际标准《基于无源光网络(PON)的宽带光接入系统》(ITU-T G.983.1 )于1998年发布,该标准一般也被称为BPON标准。 BPON在当时的技术环境下采用了以ATM为内核的设计思路,且限于当时器件水平和价格的因素,PON设备的成本还比较高、光纤接入网的外部配套条件也不成熟,因此BPON 仅在北美地区的电信运营商中有一定规模的部署,并未在全球获得广泛的应用。 1.2 EPON和GPON 随着ATM技术的衰落和互联网IP技术的迅速兴起,继BPON之后,业界希望开发一种新型的PON系统,取代过时的BPON技术。在这个背景下,IEEE和ITU-T相继在2000年和2001年启动了EPON和GPON的标准化工作,并分别于2004年发布了完成的标准,

相关文档