文档视界 最新最全的文档下载
当前位置:文档视界 › 蠕变模型

蠕变模型

蠕变模型
蠕变模型

Coupled Creep and Drucker-Prager Plasticity Geomaterials may creep under certain conditions.When the loading rate is of the same order of magnitude as the creep time scale, the plasticity and creep equations must be solved using a coupled solution procedure.

ABAQUS has a creep model that can be used to augment the Drucker-Prager plasticity for such problems.

Basic Assumptions

ABAQUS always uses the coupled solution procedure when both Drucker-Prager plasticity and creep are active.

Using the Drucker-Prager creep model implies that the Drucker-Prager plasticity model uses isotropic linear elasticity, a hyperbolic plastic flow potential, and the linear Drucker-Prager yield surface with a circular yield surface in the deviatoric plane (K = 1).

The creep laws for the Drucker-Prager creep models are written in terms of an equivalent creep stress, , which is a measure of the creep ―intensity‖ of the state of stress at a material point.

The definition of depends upon the type of hardening (compression, tension, or shear) used with the linear Drucker-Prager plasticity model, but in all cases ()βσσ,,p q cr cr =:

()()()

ββσtan 3/11tan --=p q cr (compression) ()()()

ββtan 3/11tan +-=

p q (tension) ()βtan p q -=(shear)

The equivalent creep stress defines surfaces that are parallel to the yield surface in the meridional plane.

Points on the same surface have the same creep ―intensity.‖

There is a cone in the meridional plane in which no creep deformation will occur.

Creep Laws

The default creep laws provided are simple and are intended to model thesecondary creep of the material.

Time Hardening Creep Law Use this creep law when the stress in the material remains essentially constant:

()m n cr cr

t A σε=?

Strain Hardening Creep Law Use this creep law when the stress in the material varies during the analysis:

()()[]111+???

? ??+=m m cr n cr cr

m A εσε Singh-Mitchell Creep Law

Use this creep law when an exponential relationship between stress and creep strain rate is needed:

()m cr

t t Ae cr /1??? ???=σαε

Creep Flow Potential

The Drucker-Prager creep model uses a hyperbolic creep flow potential that ensures the creep (deformation) flow direction is always defined uniquely: ()ψ-+ψ=tan tan 220p q G cr σε

The initial yield stress,

σ, is defined on the ?DRUCKER PRAGER HARDENING

option.

Usage

The *DRUCKER PRAGER CREEP option must be used in conjunction with the

*DRUCKER PRAGER and DRUCKER PRAGER HARDENING options.

The *DRUCKER PRAGER CREEP option must be used with the linear

Drucker-Prager model with a von Mises (circular) section in the deviatoric stress plane (K=1 ; i.e., no third stress invariant effects are taken into account) and can be combined only with linear elasticity.

The material parameters in the default creep laws— A,n ,m ,t1 , and — can be defined as functions of temperature and/or field variables on the *DRUCKER PRAGER CREEP option.

–To avoid numerical problems with round-off, the values of should be larger than 27

10-.

The time in these creep laws is the total analysis time, so the duration of steps where creep is not considered (such as STATIC steps) should be relatively short.

More complex creep laws are defined with user subroutine CREEP.

The eccentricity of the creep potential, , is by default 0.1. Use the ECCENTRICITY parameter on the DRUCKER PRAGER option to

specify a different value.

–Using values much smaller than 0.1 can create convergence problems.

The creep flow potential uses the same dilation angle,ψ, as the Drucker-Prager plasticity model.

–Therefore, it is possible for the creep equations to be unsymmetric whenψ

β. In this case the *STEP, UNSYMM=YES option should be

used.

Coupled Creep and Cap Plasticity Geomaterials can creep under certain conditions. When the loading rate is of the same order of magnitude as the creep time scale, the plasticity and creep equations must be solved using a coupled solution procedure.

ABAQUS has a creep model that can be used to augment the Cap plasticity for such problems.

Basic Assumptions

Cap plasticity with creep always uses the coupled solution procedure.

The Cap creep model can be used if the Cap plasticity model uses isotropic linear elasticity, a circular yield surface in the deviatoric plane (K=1), and no transition zone between the shear failure region and the cap region (α= 0).

The creep model has two creep mechanisms:

–Cohesive creep, which is active in both the shear failure region and the cap region.

–Consolidation creep, which is active only in cap region.

Cohesion Creep

The cohesion creep mechanism is written in terms of an equivalent creep stress,cr

σ, which is a measure of the creep ―intensity‖ of the state of stress at a material point. The cohesive creep properties must be measured in uniaxial compression. The format

of cr σis

()

??? ??--=ββσtan 311tan p q cr

The equivalent creep stress defines surfaces that are parallel to the shear failure surface in the meridional plane (see Figure 3–2).

There is a cone in the meridional plane where no creep deformation occurs. ABAQUS also requires that cr σ

be positive.

Consolidation Creep

The consolidation creep mechanism is dependent on the hydrostatic pressure above a threshold value of a p , with a smooth transition to the areas in which the mechanism is

not active.

Therefore, equivalent creep surfaces are constant hydrostatic pressure surfaces (vertical lines in the q p - plane).

The consolidation creep laws are expressed in terms of an equivalent consolidation creep pressure stress,

a cr p p p -=.

Creep Laws

The default creep laws available for the Cap creep models are the same as those

available for the Drucker-Prager creep model: time and strain hardening laws and a Singh-Mitchell creep law.

– See Coupled Creep and Drucker-Prager Plasticity (p. L3.64) for details.

Creep Flow Potentials

The cohesion creep mechanism uses a hyperbolic creep potential in the meridional plane.

This creep flow potential, which is continuous and smooth, ensures that the flow direction is always defined uniquely. The cohesion creep potential is the von Mises circle in the deviatoric stress plane.

The consolidation mechanism uses an elliptical flow potential that is similar to the Cap plasticity flow potential in the q

p plane. The consolidation creep potential is the von Mises circle in the deviatoric stress plane.

Usage

The ?CAP CREEP option must be used in conjunction with the ?CAP PLASTICITY and ?CAP HARDENING options.

The ?CAP CREEP option must be used with a cap plasticity model that has no third stress invariant effects ( K=1) and has no transition surface ( 0

α). In addition, it

=

can be combined only with linear elasticity.

The material parameters in the default creep laws— A, n, m, t1, and — can be defined as functions of temperature and/or field variables on the ?CAP CREEP option.

–To avoid numerical problems with round-off, the values of A should be larger than27

10-.

Use the MECHANISM parameter on the CAP CREEP option to specify which behavior, CONSOLIDATION or COHESION, is being defined.

ABAQUS requires that cohesion creep properties be measured in a uniaxial compression test.

The time in these creep laws is the total analysis time, so the duration of steps where creep is not considered (such as STATIC steps) should be relatively short.

More complex creep laws are defined with user subroutine CREEP.

The use of a creep potential for the cohesion mechanism different from the equivalent creep surface implies that the material stiffness matrix is not symmetric and the unsymmetric matrix storage and solution scheme (UNSYMM=YES) should be used.

岩石材料的蠕变实验及本构模型研究

岩石材料的蠕变实验及本构模型研究 流变学作为力学的一个分支,主要研究材料在应力、应变、温度、辐射等条件下与时间因素有关的变形规律,所涉及的内容包括蠕变、应力松弛和弹性后效等。蠕变是影响岩体稳定性的一个重要因素。 软弱岩石在受到较低水平的应力作用时,就会产生明显的蠕变现象,如软岩巷道中的底鼓,即使是很坚硬的岩体,在高应力作用下同样会产生蠕变,从而影响到工程的功能和使用。因此,需要对岩石材料的蠕变行为进行深入研究,力求从本质上揭示其蠕变行为的特征。 本文通过实验研究和理论分析,得到了盐岩的基本力学参数,并研究了盐岩在不同应力条件下的力学特性和蠕变行为。以经典蠕变模型为基础,结合分数阶微积分理论,构建了一个新的蠕变模型,并利用盐岩、泥岩和煤岩的蠕变实验数据对其进行了验证。 (1)对盐岩材料进行了多组单轴和三轴压缩实验,并在每组实验中选取三个试样重复进行实验,以此来降低实验的随机性和试样个体的差异性。结果三个试样的测试结果比较接近,此批试样的个体差异性较小。 此外,常规压缩实验的结果还表明随着围压的增大,抗压强度和最大应变会随之增大。(2)在单轴蠕变实验中,选取了四个轴压水平来进行实验,分析了不同轴压对蠕变的影响。 当轴压水平越大时,加速蠕变阶段就会越早地出现,并且稳定蠕变应变率也会越大。与单轴蠕变相比,当材料受到一个较小的围压作用时,其蠕变行为也会发生巨大的变化,例如蠕变应变率大幅下降、蠕变时间大幅增长、加速蠕变阶段缺失等。

(3)通过分析不同应力条件下的蠕变应变率可以发现,稳定蠕变应变率与轴压大小呈线性关系,加速蠕变应变率与轴压大小也呈现出正相关性。此外,蠕变等时曲线表明随着时间的延长,轴压大小对蠕变的影响会越来越明显。 相反,围压会明显地降低蠕变应变率并抑制蠕变行为的发展。(4)结合分数阶微积分理论构建了一个新的非线性蠕变模型,并利用广义塑性力学理论和张量分析理论对新模型在三轴应力状态下的蠕变方程进行了推导。 以盐岩实验数据为基础,对蠕变模型的参数进行了辨识,并验证了模型的准确性。此外,利用泥岩和煤岩的蠕变实验数据对模型的适用性进行了验证,结果表明新模型可以应用于模拟多种岩石材料的蠕变全过程,具有较为广泛的适用性。

复杂加载条件下压力容器典型用钢疲劳蠕变寿命预测方法

第45卷第2期2009年2月 机械工程学报 JOURNAL OF MECHANICAL ENGINEERING Vol.45N o.2 Feb. 2009 DOI:10.3901/JME.2009.02.081 复杂加载条件下压力容器典型用钢 疲劳蠕变寿命预测方法* 陈学东范志超江慧丰董杰 (合肥通用机械研究院国家压力容器与管道安全工程技术研究中心合肥 230031) 摘要:针对多轴应力状态,探讨压力容器典型用钢16MnR缺口试样的高温疲劳与循环蠕变交互作用行为,在延性耗竭理论和损伤力学基础上,建立一种半寿命平均位移速率寿命预测模型,采用该方法对不同缺口半径试样的高温疲劳寿命进行了较好的预测。针对多级加载条件,研究316L钢的循环变形行为,探讨疲劳蠕变与动态应变时效之间的耦合作用,在延性耗竭理论基础上,建立非线性损伤演化模型,考虑多级加载时的载荷历程效应,提出一种新的损伤累积准则,采用该方法对二级加载条件下的疲劳蠕变寿命进行了较好的预测。 关键词:多轴多级疲劳蠕变损伤寿命预测 中图分类号:O346.2 TG142.33 Creep-fatigue Life Prediction Methods of Pressure Vessel Typical Steels under Complicated Loading Conditions CHEN Xuedong FAN Zhichao JIANG Huifeng DONG Jie (National Engineering Technology Research Center on PVP Safety, Hefei General Machinery Research Institute, Hefei 230031) Abstract:With emphasis on complicated loading conditions, i.e. multi-axial loading condition and multi-step loading condition, creep-fatigue behavior and life prediction methods are investigated for typical steels of pressure vessels. As to multi-axial loading condition, the interaction behavior between high temperature fatigue and cyclic creep is discussed for 16MnR notched specimens and a mean displacement rate life prediction method is proposed on the basis of ductility exhaustion theory and damage mechanics. By this method, high temperature fatigue lives are well predicted for specimens with different notch radiuses. As to multi-step loading condition, cyclic deformation behavior is investigated for 316L steel and creep-fatigue interaction coupled with dynamic strain aging effect is also discussed. Based on the ductility exhaustion theory, a nonlinear damage evolution model is developed. Moreover, a new damage cumulated rule is proposed with the load history effect taken into account. By using this model, 2-step creep-fatigue lives are well predicted. Key words:Multi-axis Multi-step Creep-fatigue Damage Life prediction 0 前言 高温环境下长期服役的压力容器在设计和安全评定时除了要考虑疲劳损伤、蠕变损伤及疲劳蠕变交互作用损伤外,还要考虑多轴载荷、多级载荷 * “十一五”国家科技支撑计划专题(2006BAK02B02-02)和安徽省优秀青年基金(08040106827)资助项目。20081118收到初稿,20081225收到修改稿等复杂条件对承压设备寿命的影响。 本课题组在“十五”科技攻关期间,主要针对压力容器典型材料开展了高温疲劳及疲劳蠕变交互作用行为研究[1-3],分别从能量、韧性、延性角度提出了几种高温疲劳蠕变寿命预测和损伤评估方法[4]。但前期研究并没有考虑复杂应力状态和复杂加载历史对疲劳及疲劳蠕变行为的影响,而实际承压设备的缺口或应力集中部位始终是整个结构的薄

橡胶寿命预测研究方法

橡胶寿命预测研究方法 曲明哲 (沈阳产品质量监督检验院,辽宁沈阳110022) 橡胶原产于橡胶树,古时候人们就从橡胶树上取得胶乳,制成各种简易的生活用具,如盛水器等;随着科学技术的发展,出现了合成橡胶,于是橡胶就分成两类,产于橡胶树的叫天然胶,工业合成的叫合成胶,而合成胶由于合成原料的不同,又分为氯丁橡胶、硅橡胶 等许多种。由于橡胶制品弹性好, 强度高,易加工等特点,橡胶制品已广泛应用于各个领域,比如民用、工业、工程、军工等。应用在这些 领域中的橡胶制品起着密封、 减震等重要作用,我国早在上世纪九十年代就开始对橡胶密封制品生产企业进行生产许可证制度,严格要求企业持续、稳定生产质量合格产品,以保证人们生命、财产的安 全。然而, 作为一种高分子材料,橡胶制品特别易老化,而且老化后的橡胶将极大的损失其作为优点的弹性、强度等性能。因此了解橡胶的老化机理,确定橡胶制品的大概使用年限和储存时间,对于保障人们生命、财产安全有着重要的意义。 1橡胶老化的原因: 第一、 橡胶老化的内因。橡胶材料本身结构上的弱点,如化学组成(高分子链的组成元素)、分子链结构(分子链的长度、构象及有机基团在链上的分布)、物理结构(结晶性、玻璃化温度及卷曲程度);加工后橡胶中产生的新弱点(高分子链断裂及氧化等);添加剂如抗氧剂、增塑剂、交联剂及有机溶剂等对材料的影响。第二、橡胶老化的外因:气候环境(氧气和臭氧的作用,气温和相对湿度的影响)和 成型加工条件(模压、挤出等)[1] 。 科学家通过对橡胶自然老化的研究发现,氧气的作用是橡胶老 化的主要因素[2] 。但是橡胶自然老化的周期过长,即使有研究结果,对橡胶制品的实际使用也没有意义,因此,通过加速老化的方法对 橡胶老化性能进行研究[3-6] ,为橡胶的寿命预测提供了理论基础和理论数据。 2橡胶寿命预测方法2.1时间———温度叠加的寿命预测模型[1]时间———温度叠加的寿命预测模型的原理是时温等效原理,即高聚物的同一力学松弛现象可以在较高的温度、较短的时间(或较 高的作用频率)观察到,也可以在较低的温度下、 较长时间内观察到。因此,升高温度与延长观察时间对分子运动是等效的,对高聚物的粘弹行为也是等效的。由此理论最终得到的数学计算公式如下: (1 )式中αT -平移因子;Ea-Arrhenius 活化能;R-气体常数;Tr-参考温度;T-试验温度 通过这个公式,我们可以设计两个以上的温度点的实验,就可以计算出平移因子αT ,从而计算任意温度下橡胶的使用寿命。 2.2扩散限制氧化模型 [1] 扩散限制氧化模型是通过试验确定橡胶中氧气的浓度与橡胶模量的关系,再通过测定橡胶中氧气的浓度预测橡胶的寿命。这种 方法的数学模型比较复杂,需要通过复杂的公式推导及有限元分析,同时需要有超敏感的测试设备。因此,在日常的检验中,操作性比较差。 2.3线性关系法 [7] Dakin 认为电器绝缘有机材料的寿命和温度之间是线性关系,符合下面的公式:(2)式中:t-时间;T-温度;B=U/R ;U-活化能;R-常数 通过这个公式我们可以先确定一个性能值,然后通过实验来确定达到这一性能值时的温度、 时间,然后用物理化学的方法测出活化能。 2.4动力学曲线直线化法 [4,8-9] 动力学曲线直线化法是将动力学公式通过坐标变化,将曲线化成直线的方法。因此动力学公式的选择至关重要,目前被公认为比较准确的数学公式[10]如下: (3) 式中:B ,α-与温度无关的常数;K-速率常数;t-时间 2.5变量折合法 [11-12] 变量折合法是一种数学作图法,通过任意两个时间点、温度点的数据,可以计算出公式2中的b 值,然后再将通过公式将高温的数据转化成常温的数据,从而得出寿命时间。前苏联以将此方法标准化作为检验橡胶寿命和性能变化的方法。 2.6数学模型法 数学模型法就是利用不同的理论建立不同的数学模型,然后用实验数据来计算寿命的方法,目前大多数的数学模型法还不成熟,没有应用于实际工作中。近年来,由于计算机的迅猛发展,基于BP 人工神经网络橡胶老化预报、寿命预测的技术逐渐兴起[13] 。 3对于寿命预测方法的讨论目前,每种寿命预测方法都有其局限性,实验容易操作的方法,准确度差些,准确度好的实验又难操作,因此在实际的科研工作中,选择合适的方法是很重要的。现在的寿命预测方法,有两个比较重要的理想性假设,一是,橡胶制品发生的老化主要以热氧老化为主,其它的因素忽略不计,二是,橡胶制品所处的环境是理想的,温度、湿度等外界因素是恒定的。所以,现在的寿命预测方法大多数是针对橡胶制品的储存寿命预测,而不是使用寿命的预测。不同的橡胶制品的使用环境不同,如果对使用寿命进行预测,就必须进行使用环境的模拟实验,这无疑是一个浩大的工程。因此,目前为止,国内还没见到橡胶制品相关的使用环境模拟的数据报道。 国标《GB/T20028-2005硫化橡胶或热塑性橡胶应用阿累尼鸟斯图推算寿命和最高使用温度》,给出了在进行寿命预测工作时的指导,标准中明确规定了临界值应选择原始值的50%,这与许多科 研工作中选择临界值为原始值的25%是不同的。 因为橡胶寿命预测在实际工作中影响因素过多,所以该国标没有过多的对实验过程进行规定,只是一个指导性的标准,因为它的理论基础仍然是阿累尼乌斯方程,所以它也是一个理想化的标准,如果用来计算使用寿命,必须考虑到使用的橡胶制品使用的环境,对结果加以修正。 4橡胶寿命预测的发展方向 对于橡胶寿命预测,发展的方向将会以使用寿命为主,了解橡胶的实际的使用寿命,可以最大限度的发挥橡胶制品的作用,起到节能环保的作用,同时也能在橡胶制品完全丧失功能前停止使用, 防患于未然,保障人们生命财产的安全。计算机行业的软、硬件的高速发展, 给橡胶寿命预测提供了很好的模拟平台,如果开发出合适的软件,就可以模拟加速老化的过程、模拟实际使用环境等现实中需要耗费大量的人力、物力、财力才能达到的环境,这样极大的节约了科研成本, 也提高了结果的准确性。参考文献[1]胡文军等.橡胶的热氧加速老化试验及寿命预测方法[J].橡胶工 业, 2004年第51卷.[2]Wise J ,Gillen K T .An ultrasensitive technique for testing Arrhe -nius extrapolation assumption for thermally aged elas -tomers EJ3.Polymer Degradation and Stability , 1995,49:403-418.[3]李咏今.现行橡胶及其制品贮存期快速测定方法的可靠性研究[J].橡胶工业,l994,41(5):289-296.[4]茆诗松, 王玲玲.加速寿命试验[M].北京:科学出版社,2000.[5]Yournans R .A .et al ,Ind .Eng .Chem ,1995,40(7):487.[6]Cloutier J .R , Rubber Age ,1964,95(2):245.[7]张凯等.橡胶材料加速老化试验及寿命预测方法[J].化学推进剂与高分子材料,2004年第二卷第六期.[8]周大纲等.塑料老化与防老化技术[M].北京:中国轻工业出版社,1989. [9]李旭祥, 王宏明.高分子材料老化预测新方法[J].老化与应用,1994摘 要:本文简要介绍了橡胶老化的原因,详细介绍了橡胶寿命预测的方法,并对于橡胶寿命预测方法进行了讨论,并介绍了现 行国标GB/T20028-2005对橡胶寿命预测的规定和指导性意见, 最后对于橡胶寿命预测的发展方向进行了展望。关键词:橡胶老化;寿命;预测Ea 11=exp[()]R áTr T a -f ()exp()P B Kt á áá11lgt-lgt (b T T =-f ()exp()P B Kt á4 - -

疲劳寿命预测方法

疲劳形成寿命预测方法 10船 王茹娇 080412010035 疲劳裂纹形成寿命的概念 发生疲劳破坏时的载荷循环次数,或从开始受载到发生断裂所经过的时间称 为该材料或构件的疲劳寿命。 疲劳寿命的种类很多。从疲劳损伤的发展看,疲劳寿命可分为裂纹形成和裂 纹扩展两个阶段:结构或材料从受载开始到裂纹达到某一给定的裂纹长度a0为 止的循环次数称为裂纹形成寿命。此后扩展到临界裂纹长度acr 为止的循环次数 称为裂纹扩展寿命,从疲劳寿命预测的角度看,这一给定的裂纹长度与预测所采 用的寿命性能曲线有关。此外还有三阶段和多阶段,疲劳寿命模型等。 疲劳损伤累积理论 疲劳破坏是一个累积损伤的过程。对于等幅交变应力,可用材料的S —N 曲 线来表示在不同应力水平下达到破坏所需要的循环次数。于是,对于给定的应力 水平σ,就可以利用材或零部件的S —N 曲线,确定该零件至破坏时的循环数N , 亦即可以估算出零件的寿命,但是,在仅受一个应力循环加载的情况下,才可以 直接利用S —N 曲线估算零件的寿命。如果在多个不同应力水平下循环加载就不 能直接利用S —N 曲线来估计寿命了。对于实际零部件,所承受的是一系列循环 载荷,因此还必须借助疲劳累积损伤理论。 损伤的概念是,在疲劳载荷谱作用下材料的改变(包括疲劳裂纹大小的变化, 循环应变硬化或软化以及残余应力的变化等)或材料的损坏程度。疲劳累积损伤 理论的基本假设是:在任何循环应力幅下工作都将产生疲劳损伤,疲劳损伤的严 重程度和该应力幅下工作的循环数有关,与无循环损伤的试样在该应力幅下产生 失效的总循环数有关。而且每个应力幅下产生的损伤是永存的,并且在不同应力 幅下循环工作所产生的累积总损伤等于每一应力水平下损伤之和。当累积总损伤 达到临界值就会产生疲劳失效。目前提出多种疲劳累积损伤理论,应用比较广泛 的主要有以下3种:线性损伤累积理论,修正的线性损伤累积理论和经验损伤累 积理论。 线性损伤累积理论在循环载荷作用下,疲劳损伤是可以线性地累加的,各个 应力之间相互独立和互不相干,当累加的损伤达到某一数值时,试件或构件就发 生疲劳破坏,线性损伤累积理论中典型的是Miner 理论。 根据该理论,假设在应力i σ下材料达到破坏的循环次数为i N ,设D 为最终 断裂时的临界值。根据线性损伤理论,应力i σ每作用一次对材料的损伤为i N D /, 则经过i n 次后,对材料造成的总损伤为i i N D n /。

Kelvin公式及其应用

Kelvin公式及其应用 1. 什么是Kelvin公式? 答:由于弯曲表面上有附加压力存在,所以弯曲表面上的蒸气压也与平面上不同。开尔文公式描述了弯曲表面上的蒸气压与表面张力、曲率半径及液体自身的一些物化性质之间的定量关系。 ⑴⑵ ⑶ 公式⑴中,p0是平面上的蒸气压,p是曲面上的蒸气压。R’是曲面的曲率半径,对凸面,R’取正值,对凹面,R’ 取负值。γ , M 和ρ分别是液体的表面张力、摩尔质量和密度。 当曲面是凸面时,如小液滴,它的蒸气压比平面上大。如果与水平面或大液滴在一起时,小液滴首先消失。对具有升华性质的固体可观察到类似的情况。 当曲面是凹面时,如液体中的小蒸气泡。由于凹面的曲率半径取负值,所以半径越小,蒸气压越低。若平面上已经开始沸腾,而在液面下的小蒸气泡内的蒸气压仍未达到外压的大小,出不来。 公式⑵是两个曲率半径不同的液滴或蒸气泡的蒸气压与曲率半径的关系。对液滴,曲率半径越小,蒸气压越大;对具有凹面的蒸气泡,曲率半径越小,里面的蒸气压也越小。 公式⑶是两个半径不同的小颗粒的饱和溶液浓度与粒子半径之间的关系。因为颗粒是凸面,所以粒子半径越小,其饱和溶液的浓度越大,溶解度也越大。在一个饱和溶液中,若有大、小不同的粒子存在,对大粒子已饱和的溶液,对小粒子仍未达到饱和,所以陈放一段时间,小粒子将消失,大粒子略有增大,这就是重量分析中的陈化过程。 2.人工降雨的原理是什么? 答:人工降雨的先决条件是云层中有足够的过饱和度,一般要大于4(即水的饱和蒸气压是平面液体蒸气压的4倍以上)。即使如此,雨滴也不一定形成,因为根据开尔文公式,小液滴的蒸气压大。对大片液体而言的过饱和度为4,而对初生成的微小液滴仍未达到饱和,所以雨滴无法形成。如果这时用飞机在这样的云层中播散干冰,AgI或灰尘,提供凝聚中心,增大新形成雨滴的半径,水汽就凝聚变成雨下降。

flac3D蠕变基础知识

flac3D蠕变基础知识 分类:岩土蠕变 | 标签:FLAC3D creep 2009-06-09 18:37 阅读(1422)评论(0) 收集了一些FLAC3D的蠕变基础知识,希望对有需要的人起到帮助作用,欢迎下载! 蠕变模型 将flac3d的蠕变分析option进行了简单的翻译,目的是为了搞清楚蠕变过程中系统时间是如何跟真实时间对应的。 1. 简介 Flac3d可以模拟材料的蠕变特性,即时间依赖性,flac3d2.1提供6种蠕变模型: 1. 经典粘弹型模型model viscous 2. model burger 3. model power 4. model wipp 5. model cvisc 6. powe蠕变模型结合M-C模型产生cpow蠕变模型(model cpow) 7. 然后WIPP蠕变模型结合D-P模型产生Pwipp蠕变模型(model pwipp); 8 model cwipp 以上模型越往下越复杂,第一个模型使用经典的maxwell蠕变公式,第二个模型使用经典的burger蠕变公式,第三个模型主要用于采矿及地下工程,第四个模型一般用于核废料地下隔离的热力学分析,第五个模型是第二个模型的M-C扩展,第六个模型是第三个模型的M-C扩展,第七个模型是第四个模型的D-P扩展,第八个模型也是第四个模型的一种变化形式,只是包含了压硬和剪缩行为。 2. flac3d解流变问题 2.1简介

流变模型和flac3d其他模型最大的不同在于模拟过程中时间概念的不同,对于蠕变,求解时间和时间步代表着真实的时间,而一般模型的静力分析中,时间步是一个人为数量,仅仅作为计算从迭代到稳态的一种手段来使用。 2.2 flac3d的蠕变时间步长 对于蠕变等时间依赖性问题,flac3d容许用户自定义一个时间步长,这个时间步长的默认值为零,那么材料对于粘弹性模型表现为线弹性,对于粘塑性模型表现为弹塑性。(命令set creep off也可以用来停止蠕变计算。)这可以用来在系统达到平衡后再开始新的蠕变计算。蠕变公式中包含时间,所以计算中时间步长对程序响应有影响。 虽然用户可以对时间步进行设置,但并不是任意的。 蠕变过程由偏应力状态控制,从数值计算的精度来讲,最大蠕变时间步长可以表示成材料粘性常数和剪切模量的比值: For the power law ----------省略。For the WIPP law -----------省略 For the cvisc model, 上面方程应该写成:tmax = min ( ηK/GK,ηM/GM) 上标K和M分别代表Kelvin和Maxwell。 蠕变压缩的时间限制包括系统体积反应,并且估计为粘性和体积模量的比值。粘性可以表示为σ和体积蠕变压缩速率的比值。 建议利用FLAC3D作蠕变分析开始时所采用的蠕变时间步,比根据上式算得的时间tmax小两到三个数量级。通过调用SET creep dt auto on ,可以利用自动时间步自动调整。作为一项规则,时间步的最大值(SET creep maxdt )不能超过tmax。 用来计算tmax的应力σ大小,可由蠕变开始之前的初始应力状态决定。同样,σ作为von Mises不变量,可以用FISH函数计算。 涉及体积变化响应的蠕变分析,其最大时间步长可以表示成材料粘性常数和体积模量的比值,这里粘性常数就是平均应力和蠕变体应变率的比值。 一般flac3d推荐使用的初始蠕变时间步长比最大时间步长(由上述公式计算得到的)约小2到3个数量级。如果使用set creep dt auto on命令,那么程序将自动调整蠕变的时间步长,同样应当记住通过命令(set creep maxdt)设置的最大蠕变时间步不能超过。 2.3自动调整蠕变时间步长 用户可以设置蠕变时间步为一个常数值,也可以使用set creep dt auto on命令自动调节。如果时间步长自动变化,那么当最大不平衡力超过某一阀值时,它就会减小;当最大不平衡力小于某一水平时它就会增大。系统将该阀值定义为最大不平衡力和平均节点力的比值。

热力学基本概念和公式

第一章热力学基本概念 一、基本概念 热机:可把热能转化为机械能的机器统称为热力发动机,简称热机。工质:实现热能与机械能相互转换的媒介物质即称为工质。 热力系统:用界面将所要研究的对象与周围环境分割开来,这种人为分割的研究对象,称为热力系统。 边界:系统与外界得分界面。 外界:边界以外的物体。 开口系统:与外界有物质交换的系统,控制体(控制容积)。 闭口系统:与外界没有物质的交换,控制质量。 绝热系统:与外界没有热量的交换。 孤立系统:与外界没有任何形式的物质和能量的交换的系统。 状态:系统中某瞬间表现的工质热力性质的总状况。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变,系统内外同时建立热和力的平衡,这时系统的状态就称为热力平衡状态。 状态参数:温度、压力、比容(密度)、内能、熵、焓。 强度性参数:与系统内物质的数量无关,没有可加性。 广延性参数:与系统同内物质的数量有关,具有可加性。 准静态过程:过程进行的非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近于平衡状态。

可逆过程:当系统进行正反两个过程后,系统与外界都能完全回复到出示状态。 膨胀功:由于系统容积发生变化(增大或者缩小)而通过系统边界向外界传递的机械功。(对外做功为正,外界对系统做功为负)。 热量:通过系统边界向外传递的热量。 热力循环:工质从某一初态开始,经历一系列中间过程,最后又回到初始状态。 二、基本公式 ??=-=0 2 1 1 2 dx x x dx 理想气体状态方程式: RT pV m = 循环热效率 1 q w net t = η 制冷系数 net w q 2 = ε 第二章 热力学第一定律 一、基本概念 热力学第一定律:能量既不能被创造,也不能被消灭,它只能从一种形式转换成另一种形式,或从一个系统转移到另一个系统,而其总量保持恒定。

开尔文应用

开尔文公式RT㏑(P r/P0)=2γM/R’ρ P0为正常蒸汽压,P r为小液滴蒸汽压,γ为表面张力,M为液体的 摩尔质量,ρ 为液体的密度,R’为曲率半径,△P= P r -P0 简化后(P r -P0) /P0=△P/P0 =2γM/RTR’ρ 此式表明液滴越小,蒸汽压越大,蒸汽不易凝结,易挥发。 1、用开尔文公式解释人工降雨:由开尔文公式知当R’很小时,P r很大, 水蒸气的压力虽然对水平液面的水来说已经过饱与,但对于高空中将要形成的小液滴尚未饱与。当向高空中打入AgI之后,凝聚水滴的初始速率半径(R’)加大,P r 降低,水蒸气易凝结在AgI表面,形成大的液滴。 人工降雨的原理:云就是由水汽凝结而成;而云的厚度以及高度通常由云中水汽含量的多寡以及凝结核的数量、云内的温度所决定。一般来说,云中的水汽胶性状态比较稳定,不易产生降水,而人工增雨就就是要破坏这种胶性稳定状态。通常的人工降雨就就是通过一定的手段在云雾厚度比较大的中低云系中播散催化剂(碘化银)从而达到降雨目的。一就是增加云中的凝结核数量,有利水汽粒子的碰并增大;二就是改变云中的温度,有利扰动并产生对流。而云中的扰动及对流的产生,将更加有利于水汽的碰并增大,当空气中的上升气流承受不住水汽粒子的飘浮时,便产生了降雨。 2、在开尔文公式解释为什么加入沸石可以止沸 液体中的蒸汽泡内壁的液面就是凹面,R’<0,由开尔文公式知,气泡中的饱与蒸汽压小于平面液体的饱与蒸汽压,气泡愈小蒸汽压越

低,气泡难以形成易形成过热液体;当加入沸石后,易形成较大气泡,易接近平面的饱与蒸汽压。 3、锄头上有水,锄头下有火 旱时锄地,可切断毛细管(易形成凹液面),减少水分蒸发,增加土壤保水能力,所以说“有水”。 涝时锄地,有利于土壤通气,提高土温,水分蒸发,所以说“有火”。 正炎夏,时雨时晴,时旱时涝,旱涝不均,直接影响着农作物的正常生长。天旱不雨,烈日曝晒,气温高,土壤里的水分不断被蒸发掉,这就就是通常所说的跑墒。因此,干旱天气要多锄几遍地,割断或堵塞毛细管,尽量减少地下水分 中耕不仅可疏松表土、增加土壤通气性、提高地温,而且通过浅中耕措施还能切断底层土壤与表层的毛细管水通道,并在表层形成疏松覆盖层,能减少底层土壤水分损失。由于根系在表土层(0~5厘米内)分布量很少,表土层土壤水分对根系有效性很低,所以浅中耕增加水分损失的量主要就是无效水分,而有效水分的量得到保持,有明显的保墒效果。所以说“锄头底下有火也有水”。 4、毛细管凝结现象 在某温度下,蒸气在玻璃毛细管外未出现凝结,而在毛细管内则出现凝结现象,这可以通过开尔文公式解释。因为水能润湿玻璃,所以管内液面将呈凹液面,此时的液面曲率半径为负值,应用开尔文公式可知在相同温度下凹液面处液体的饱与蒸气压比平面液体饱与蒸气压小。即该温度下,蒸气对平面液面来说还未达到饱与,但对在毛细管内的凹液

蠕变算例

蠕变算例 1. 蠕变模型选取 ANSYS 一共提供了13个蠕变模型,本次计算选用蠕变模型为修正的时间强化模型。 2. 岩石参数选取 (1) 材料参数 通过试验测出弹性模量E 以及泊松比m 。修正的时间强化模型2341/13/(1)C C C T cr C t e C e s +-=+的参数分别为: 10.34799359C =,20.46857235C =,30.6070225C =-,47.0094616C = 3. 求解步骤 步骤一:建立计算所需要的模型 在这一步中,建立计算分析所需要的模型,包括定义单元类型,创建结点和单元。 步骤二:定义材料性质 (1)选“Main Menu>Preprocessor>Material Props>Material Models”。出现“Define Material Model Behavior”对话框,选择Material Model Number 1。 (2)在“Material Models Available”窗口,点击“Structural ->Linear->Elastic-> Isotropic”。出现一个对话框。 (3)对杨氏模量(EX )键入测得的杨氏模量。 (4)对泊松比(NUXY )键入测得的泊松比。 (5)单击OK 。 步骤三:定义creep 数据表并输入相应值 (1)在“Material Models Available ”窗口,点击Structural->Nonlinear->Inelastic->Rate Dependent->Creep->Creep only>Mises Potential>Implicit 选择所需要的蠕变模型。 (2341/13/(1)C C C T cr C t e C e s +-=+为第6个,修正的时间强化模型) (2)在对话框表格中的相应位置输入1C ,2C ,3C 以及4C 的值。 (2) 单击OK 。 (4)退出对话框。 步骤四:进入求解器 选择菜单路径Main Menu>Solution 步骤五:加载 根据所给条件,施加适当的约束和载荷。 4. 举例说明 假定块体整体尺寸为101010创,底部挖半圆形孔洞,孔洞半径为4,弹性模量取值为42.0210Mpa ′,泊松比为0.16,选用修正的强化模型进行计算。图1为该模型的网格划分图,选用185Solid 进行计算分析,图2为Y 方向位移图,图3和图4分别是第一、第三主应力图。

一生受用的数学公式(整理)

一生受用的数学公式 作者:Tangxianyang编辑 1、坐标几何 一对垂直相交于平面的轴线,可以让平面上的任意一点用一组实数来表示。轴线的交点是(0, 0),称为原点。水平与垂直方向的位置,分别用x与y代表。 一条直线可以用方程式y=mx+c来表示,m是直线的斜率(gradient)。这条直线与y 轴相交于(0,c),与x轴则相交于(–c/m, 0)。垂直线的方程式则是x=k,x为定值。 通过(x0, y0)这一点,且斜率为n的直线是y–y0=n(x–x0)。 一条直线若垂直于斜率为n的直线,则其斜率为–1/n。通过(x1, y1)与(x2, y2)两点的直线是: y=(y2–y1/x2–x1)(x–x2)+y2x1≠x2 若两直线的斜率分别为m与n,则它们的夹角θ满足于tanθ=m–n/1+mn 半径为r、圆心在(a, b)的圆,以(x–a) 2+(y–b) 2=r2表示。 三维空间里的坐标与二维空间类似,只是多加一个z轴而已,例如半径为r、中心位置在(a, b, c)的球,以(x–a) 2+(y–b) 2+(z–c) 2=r2表示。 三维空间平面的一般式为ax+by+cz=d。 2、三角学 边长为a、b、c的直角三角形,其中一个夹角为θ。它的六个三角函数分别为:正弦(sine)、余弦 (cosine)、正切(tangent)、余割(cosecant)、正割(secant)和余切(cotangent)。 sinθ=b/c cosθ=a/c tanθ=b/a cscθ=c/b secθ=c/a cotθ=a/b 若圆的半径是1,则其正弦与余弦分别为直角三角形的高与底。 a=cosθb=sinθ 依照勾股定理,我们知道a2+b2=c2。因此对于圆上的任何角度θ,我们都可得出下列的全等式: cos2θ+sin2θ=1 3、三角恒等式 根据前几页所述的定义,可得到下列恒等式(identity): tanθ=sinθ/cosθ,cotθ=cosθ/sinθ secθ=1/cosθ,cscθ=1/sinθ 分别用cos 2θ与sin 2θ来除cos 2θ+sin 2θ=1,可得: sec 2θ–tan 2θ=1及csc 2θ–cot 2θ=1 对于负角度,六个三角函数分别为: sin(–θ)=–sinθcsc(–θ)=–cscθ cos(–θ)=cosθsec(–θ)=secθ tan(–θ)=–tanθcot(–θ)=–cotθ 当两角度相加时,运用和角公式: sin(α+β)=sinαcosβ+cosαsinβ cos(α+β)=cosαcosβ–sinαsinβ tan(α+β)=tanα+tanβ/1–tanαtanβ

creep蠕变基础知识

蠕变模型 将flac3d 的蠕变分析option 进行了简单的翻译,目的是为了搞清楚蠕变过程中系统时间是如何跟真实时间对应的。 2.1 简介 Flac3d 可以模拟材料的蠕变特性,即时间依赖性,flac3d2.1提供6种蠕变模型: 1. 经典粘弹型模型 model viscous 2. model burger 3. model power 4. model wipp 5. model cvisc 6. powe 蠕变模型结合M-C 模型产生cpow 蠕变模型(model cpow ) 7. 然后WIPP 蠕变模型结合D-P 模型产生Pwipp 蠕变模型(model pwipp ); 8 model cwipp 以上模型越往下越复杂,第一个模型使用经典的maxwell 蠕变公式,第二个模型使用经典的burger 蠕变公式,第三个模型主要用于采矿及地下工程,第四个模型一般用于核废料地下隔离的热力学分析,第五个模型是第二个模型的M-C 扩展,第六个模型是第三个模型的M-C 扩展,第七个模型是第四个模型的D-P 扩展,第八个模型也是第四个模型的一种变化形式,只是包含了压硬和剪缩行为。 2.2蠕变模型描述 2.2.1只介绍经典粘弹型模型即maxwell 蠕变公式 牛顿粘性的经典概念是应变率正比于应力,对于粘性流变应力应变关系以近似于弹性变形的方式发展。粘弹型材料既有粘性又有弹性,maxwell 材料就是如此,在一维空间它可以表示为一根弹簧(弹性常数κ)连接一个粘壶(粘性常数η),它的力-位移增量关系可以写成: η κ μF F + = ? ? (2.1) 式中? μ是速度,F 是力,设力的初始值为 F ,增量值为F '经过一个t ?时间步,式(2.1)可以写成

常用单位换算公式集合大全

常用单位换算公式集合大全,果断收藏! 面积换算 1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2) 1平方米(m2)=10.764平方英尺(ft2) 1平方英寸(in2)=6.452平方厘米(cm2) 1公顷(ha)=10000平方米(m2)=2.471英亩(acre) 1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1平方英尺(ft2)=0.093平方米(m2) 1平方米(m2)=10.764平方英尺(ft2) 1平方码(yd2)=0.8361平方米(m2) 1平方英里(mile2)=2.590平方公里(km2) 1亩约等于667平方米 1平方公里(km2)=100公顷(ha)约等于1500亩 点击?工程资料免费下载 体积换算

1美吉耳(gi)=0.118升(1)1美品脱(pt)=0.473升(1) 1美夸脱(qt)=0.946升(1)1美加仑(gal)=3.785升(1) 1桶(bbl)=0.159立方米(m3)=42美加仑(gal)1英亩·英尺=1234立方米(m3) 1立方英寸(in3)=16.3871立方厘米(cm3)1英加仑(gal)=4.546升(1) 10亿立方英尺(bcf)=2831.7万立方米(m3)1万亿立方英尺(tcf)=283.17亿立方米(m3)1百万立方英尺(MMcf)=2.8317万立方米(m3)1千立方英尺(mcf)=28.317立方米(m3)1立方英尺(ft3)=0.0283立方米(m3)=28.317升(liter) 1立方米(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl) 质量、密度换算 质量换算 1长吨(long ton)=1.016吨(t)1千克(kg)=2.205磅(lb) 1磅(lb)=0.454千克(kg)[常衡] 1盎司(oz)=28.350克(g) 1短吨(sh.ton)=0.907吨(t)=2000磅(lb) 1吨(t)=1000千克(kg)=2205磅(lb)=1.102短吨(sh.ton)=0.984长吨(long ton) 密度换算 1磅/英尺3(lb/ft3)=16.02千克/米3(kg/m3) API度=141.5/15.5℃时的比重-131.5 1磅/英加仑(lb/gal)=99.776千克/米3(kg/m3)

开尔文华氏摄氏的区别及换算方法

开尔文单位 以绝对零度作为计算起点的温度。即将水三相点的温度准确定义为后所得到的温度,过去也曾称为绝 高温 对温度。开尔文温度常用符号K表示,其单位为开尔文,定义为水三相点温度的1/。开尔文温度和人们习惯使用的摄氏温度相差一个常数,即=+(是摄氏温度的符号)。例如,用摄氏温度表示的水三相点温度为℃,而用开尔文温度表示则为。开尔文温度与摄氏温度的区别只是计算温度的起点不同,即零点不同,彼此相差一个常数,可以相互换算。这两者之间的区别不能够与热力学温度和国际实用温标温度之间的区别相混淆,后两者间的区别是定义上的差别。热力学温度可以表示成开尔文温度;同样,国际实用温标温度也可以表示成开尔文温度。当然,它们也都可以表示成摄氏温度。所以1℃=,0℃=。 华氏温标 华氏度(Fahrenheit) 和摄氏度(Centigrade)都是用来计量温度的单位。包括中国在内的世界上很多国家都使用摄氏度,美国和其他一些英语国家使用华氏度而较少使用摄氏度。 它是以其发明者Gabriel D. Fahrenheit(1681-1736)命名的,其结冰点是32°F,沸点为212°F。1714年德国人法勒海特(Fahrenheit)以水银为测温介质,制成玻璃水银温度计,选取氯化铵和冰水的混合物的温度为温度计的零度,人体温度为温度计的100度,把水银温度计从0度到100度按水银的体积膨胀距离分成100份,每一份为1华氏度,记作“1℉”。 摄氏温标 它的发明者是Anders Celsius(1701-1744),其结冰点是0℃,沸点为100℃。1740年瑞典人摄氏(Celsius)提出在标准大气压()下,把冰水混合物的温度规定为0度,水的沸腾温度规定为100度。根据水这两个固定温度点来对玻璃水银温度计进行分度。两点间作100等分,每一份称为1摄氏度。记作1℃。 两者关系 摄氏温度和华氏温度的关系:T ℉= ℃+ 32 (t为摄氏温度数,T为华氏温度数) 摄氏温度和开尔文温度的关系:°K=℃+

flac3D蠕变基础知识03

flac3D蠕变基础知识 蠕变模型 将flac3d的蠕变分析option进行了简单的翻译,目的是为了搞清楚蠕变过程中系统时间是如何跟真实时间对应的。 1. 简介 Flac3d可以模拟材料的蠕变特性,即时间依赖性,flac3d2.1提供6种蠕变模型: 1. 经典粘弹型模型model viscous 2. model burger 3. model power 4. model wipp 5. model cvisc 6. powe蠕变模型结合M-C模型产生cpow蠕变模型(model cpow) 7. 然后WIPP蠕变模型结合D-P模型产生Pwipp蠕变模型(model pwipp); 8 model cwipp 以上模型越往下越复杂,第一个模型使用经典的maxwell蠕变公式,第二个模型使用经典的burger蠕变公式,第三个模型主要用于采矿及地下工程,第四个模型一般用于核废料地下隔离的热力学分析,第五个模型是第二个模型的M-C扩展,第六个模型是第三个模型的M-C 扩展,第七个模型是第四个模型的D-P扩展,第八个模型也是第四个模型的一种变化形式,只是包含了压硬和剪缩行为。 2. flac3d解流变问题 2.1简介 流变模型和flac3d其他模型最大的不同在于模拟过程中时间概念的不同,对于蠕变,求解时间和时间步代表着真实的时间,而一般模型的静力分析中,时间步是一个人为数量,仅仅作为计算从迭代到稳态的一种手段来使用。 2.2 flac3d的蠕变时间步长 对于蠕变等时间依赖性问题,flac3d容许用户自定义一个时间步长,这个时间步长的默认值为零,那么材料对于粘弹性模型表现为线弹性,对于粘塑性模型表现为弹塑性。(命令set creep off也可以用来停止蠕变计算。)这可以用来在系统达到平衡后再开始新的蠕变计算。蠕变公式中包含时间,所以计算中时间步长对程序响应有影响。 虽然用户可以对时间步进行设置,但并不是任意的。 蠕变过程由偏应力状态控制,从数值计算的精度来讲,最大蠕变时间步长可以表示成材料粘性常数和剪切模量的比值: For the power law ----------省略。For the WIPP law -----------省略 For the cvisc model, 上面方程应该写成:tmax = min ( ηK/GK,ηM/GM) 上标K和M分别代表Kelvin和Maxwell。 蠕变压缩的时间限制包括系统体积反应,并且估计为粘性和体积模量的比值。粘性可以表示为σ和体积蠕变压缩速率的比值。 建议利用FLAC3D作蠕变分析开始时所采用的蠕变时间步,比根据上式算得的时间tmax 小两到三个数量级。通过调用SET creep dt auto on ,可以利用自动时间步自动调整。作为

开尔文

开尔文 开尔文(Lord Kelvin,1824~1907)英国著名物理学家、发明家,原名W.汤姆孙(William Thomson)。1824年6月26日生于爱尔兰的贝尔法斯特。他从小聪慧好学,10岁时就进格拉斯哥大学预科学习。17岁时,曾赋诗言志:“科学领路到哪里,就在哪里攀登不息”。1845年毕业于剑桥大学,在大学学习期间曾获兰格勒奖金第二名,史密斯奖金第一名。毕业后他赴巴黎跟随物理学家和化学家V.勒尼奥从事实验工作一年,1846年受聘为格拉斯哥大学自然哲学(物理学当时的别名)教授,任职达53年之久。由于装设第一条大西洋海底电缆有功,英政府于1866年封他为爵士,并于1892年晋升为开尔文勋爵,开尔文这个名字就是从此开始的。1851年被选为伦敦皇家学会会员,1890~1895年任该会会长。1877年被选为法国科学院院士。1904年任格拉斯哥大学校长,直到1907年12月17日在苏格兰的内瑟霍尔逝世为止。 开尔文研究范围广泛,在热学、电磁学、流体力学、光学、地球物理、数学、工程应用等方面都做出了贡献。他一生发表论文多达600余篇,取得70种发明专利,他在当时科学界享有极高的名望,受到英国本国和欧美各国科学家、科学团体的推崇。他在热学、电磁学及它们的工程应用方面的研究最为出色。 开尔文是热力学的主要奠基人之一,在热力学的发展中作出了一系列的重大贡献。他根据盖-吕萨克、卡诺和克拉珀龙的理论于1848年创立了热力学温标。他指出:“这个温标的特点是它完全不依赖于任何特殊物质的物理性质。”这是现代科学上的标准温标。他是热力学第二定律的两个主要奠基人之一(另一个是克劳修斯),1851年他提出热力学第二定律:“不可能从单一热源吸热使之完全变为有用功而不产生其他影响。”这是公认的热力学第二定律的标准说法。并且指出,如果此定律不成立,就必须承认可以有一种永动机,它借助于使海水或土壤冷却而无限制地得到机械功,即所谓的第二种永动机。他从热力学第二定律断言,能量耗散是普遍的趋势。1852年他与焦耳合作进一步研究气体的内能,对焦耳气体自由膨胀实验作了改进,进行气体膨胀的多孔塞实验,发现了焦耳-汤姆孙效应,即气体经多孔塞绝热膨胀后所引起的温度的变化现象。这一发现成为获得低温的主要方法之一,广泛地应用到低温技术中。1856年他从理论研究上预言了一种新的温差电效应,即当电流在温度不均匀的导体中流过时,导体除产生不可逆的焦耳热之外,还要吸收或放出一定的热量(称为汤姆孙热)。这一现象后叫汤姆孙效应。 开尔文在电磁学理论和工程应用上研究成果卓著。1848年他发明了电像法,这是计算一定形状导体电荷分布所产生的静电场问题的有效方法。他深人研究了莱顿瓶的放电振荡特性,于1853年发表了《莱顿瓶的振荡放电》的论文,推算了振荡的频率,为电磁振荡理论研究作出了开拓性的贡献。他曾用数学方法对电磁场的性质作了有益的探讨,试图用数学公式把电力和磁力统一起来。1846年便成功地完成了电力、磁力和电流的“力的活动影像法”,这已经是电磁场理论的雏形了(如果再前进一步,就会深人到电磁波问题)。他曾在日记中写道:“假使我能把物体对于电磁和电流有关的状态重新作一番更特殊的考察,我肯定会超出我现在所知道的范围,不过那当然是以后的事了。”他的伟大之处,在于能把自己的全部研究成果,毫无保留地介绍给了麦克斯韦,并鼓励麦克斯韦建立电磁现象的统一理论,为麦克斯韦最后完成电磁场理论奠定了基础。 他十分重视理论联系实际。1875年预言了城市将采用电力照明,1879年又提出了远距离输电的可能性。他的这些设想以后都得以实现。1881年他对电动机

相关文档