文档视界 最新最全的文档下载
当前位置:文档视界 › 基于深度卷积神经网络的快速图像分类算法

基于深度卷积神经网络的快速图像分类算法

基于深度卷积神经网络的快速图像分类算法
基于深度卷积神经网络的快速图像分类算法

基于深度卷积神经网络的图像分类

SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, % classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network. Key Words: Convolution neural network(CNN), image classification, Batch Normalization, Dropout

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

基于深度卷积神经网络的人脸识别研究

基于深度卷积神经网络的人脸识别研究 深度卷积神经网络主要应用包括语音识别、图像处理、自然语言处理等。本文就当前大环境下研究了卷积神经网络模型在静态环境下人脸识别领域的应用。卷积神经网络模型需要设计一个可行的网络模型,将大量的人脸训练数据集加载到网络模型中,然后进行自动训练,这样就可以得到很好的识别率。把训练好的模型保存下来,那么这个模型就是一个端到端的人脸特征提取器。该方法虽然操作简单,但是需要根据训练数据集设计合理的网络结构,而且最难的关键点是超参数的调整和优化算法的设计。因此本文结合残差网络和融合网络构建了两个与计算资源和数据资源相匹配的网络模型,并通过反复调整超参数和调试优化器使其在训练集上能够收敛,最终还取得较好的识别率。 本文的主要研宄内容和创新点如下: 1.介绍了卷积神经网络的基础理论知识。先从传统人工神经网络的模型结构、前向和反向传播算法进行了详细的分析;然后过渡到卷积神经网络的相关理论,对其重要组成部分如卷积层、激励层、池化层和全连接层进行了具体的阐述;最后对卷积神经网络训练时的一些注意事项进行了说明。 人工神经元是构成人工神经网络的基本计算单元,单个神经元的模型结构如下图所示。

其中,b X W b x w Z T+ = + =∑1 1 1 ) ( ) ( , z f x h h w = x x x x x e e e e z z f e z z f - - - + - = = + = = ) tanh( ) ( 1 1 ) ( ) (σ 卷积神经网路的基本结构

简单的池化过程: 2.对深度学习框架TensorFlow的系统架构和编程模型作了一些说明,并对人脸数据进行预处理,包括人脸检测、数据增强、图像标准化和人脸中心损失。

使用卷积神经网络的图像样式转换

《使用卷积神经网络的图像样式转换的研究》 院系信息工程学院 专业电子与通信工程 班级信研163 提交时间:2016年11月28日

使用卷积神经网络的图像样式转换的研究 湖北省武汉,430070 摘要:以不同的风格样式渲染图像的内容一直都是一个十分困难的图像处理任务。也可以说,以前主要限制因素是不知如何明确表示内容信息。在这里我们使用图像表示导出优化的能够识别对象的卷积神经网络,这使得高级图像信息显示。我们引入了一种可以分离和重组自然图像的图像内容和艺术风格的神经算法。这个算法允许我们生成高质量的新目标图像,它能将任意照片的内容与许多众所周知的艺术品的风格相结合。我们的结果提供了对卷积神经网络学习的深度图像表示的新理解,并且展示了他们的高水平图像合成和操纵的能力。 关键词:卷积神经网络;图像处理;神经算法 The Study of Image Style Transfer Using Convolutional Neural Networks LiWenxing School of Science,Wuhan University of Technology,Wuhan 430070,China Abstract: Rendering the content of an image in a different style has always been a difficult image processing task. It can also be said that the main limiting factor in the past is that I do not know how to clearly express the content information. Here we use an image representation to derive an optimized, object-aware convolutional neural network, which allows advanced image information to be displayed. We introduce a neural algorithm that can separate and reconstruct the image content and artistic style of natural images. This algorithm allows us to generate high-quality new target images that combine the content of any photo with the style of many well-known works of art. Our results provide a new understanding of the depth image representation of convolution neural network learning and demonstrate their ability to synthesize and manipulate high-level images. Keywords: Convolutional Neural Network;Image Processing;Neural algorithm

一种基于卷积神经网络的图像分类方法

F 福建电脑 UJIAN COMPUTER 福建电脑2018年第2期 基金项目:国家级大学生创新训练计划项目(201610719001);陕西省大学生创新训练计划项目(1495)。 0引言 图像分类就是利用计算机模拟人类对图像的理解和认知,自动根据图像的内容将图片划分到合适的类别中,它在智能识别、目标检测和信息搜索等计算机视觉领域有着广泛的应用,图像分类问题也一直是计算机视觉的基本问题。目前,关于图像分类的研究大多集中在医学图像、遥感图像等专业领域,而对于自然图像分类的研究较少,虽然分类的算法如K 最近邻算法[1]、决策树算法[2]、神经网络算法[3]、支持向量机算法[4]和一些混合算法[5]能达到较可观的分类效果,但对大数据库的分类,存在训练时间长,准确度低、易出现过拟合等缺点。 由于卷积神经网络[6](Convolutional Neural Network,CNN )具有输入图像不需预处理;特征提取和模式分类同时在训练中产生;权重共享减少了网络训练参数;很强的抗干扰能力等优点。本文首先分析探讨了卷积神经网络结构、原理,提出了一种改进的卷积神经网络,设计了基于该模型的图像分类算法,实验结果表明该模型能提取出大数据库中图像明显特征,可精确地对图像集进行分类。 1卷积神经网络及其改进 CNN 是将卷积运算引入到深度学习模型,属于多层前馈神经网络模型,但与传统不同的是它的输入是二维模式,可以直接处理二维模式,其连接权是二维权矩阵,称为卷积核,基本操作是二维离散卷积和池化。简单地说,CNN 就是能够自动的对于一张图片学习出最好的卷积核以及这些卷积核的组合方式。 1.1CNN 结构 CNN 一般由卷积层、池化层、全连接层和一个输出层(或分类器)组成。每层由多个二维平面块组成,每个平面块由多个独立神经元组成,如图1所示。 卷积层通过卷积运算提取图像的不同特征,包含若干组CNN 训练的参数,即进行学习的卷积核,当前层的卷积核对输入的一组图片做卷积运算,再经过激活函数得到新的特征图像,通常采用卷积离散型将输入原始图像的像素输出为新的像素点,可由公式(1)计算得出: (1) 其中,M β表示输入特征图像的子集;W γαβ表示卷积核;γ表 示网络层数;b γβ表示输出特征映射的偏置,f 表示激活函数,最常用的是sigmoid 函数与双曲正切函数。 卷积层后一般接入池化层来减小数据量,通过池化把输入的特征图像分割为不重叠的矩形区域,而对相应的矩形区域做运算,常见的有最大池化和均值池化。经过交替的卷积层和池化层之后,已经获得了高度抽象的特征图像,全连接层把得到的多个特征映射转化为一个特征向量以完全连接的方式输出,最后对提取的特征进行分类。 1.2CNN 工作原理 在CNN 中,通过神经网络的梯度反向传播算法实现对参数的学习训练,属于有监督学习。在进行学习训练过程中,输入信号的训练输出和实际输出会有一定误差,误差在梯度下降算法中逐层传播,逐层更新网络参数。假设样例(x ,y )的损失函数为C (W ,b ;x ,y ),如式(2)。 (2)为防止过拟合,需增加,L 2范数,如式(3)。 (3) 其中,h W ,b (x )为输入样本x 经过CNN 后的输出,y 为样本的标签真值,λ为控制强度。为了使代价函数尽可能的小,因此需要不断更新每一层的权重W 和偏置项b ,任意一层(假设为γ层)的权重更新如式(4)。 (4) 1.3CNN 的改进 在处理大数据集方面,由于卷积层和池化层数较少,获得的特征图相对不足,因此达不到较好的分类效果。针对该缺点,依据CNN 的卷积层和池化层设置灵活性,不同的结构设置会得到不同结果的特点,对传统CNN 进行了两方面的改进,一方面将卷积层和池化层层数分别增至3层,提高了各层提取图像特征的能力,使分类效果得到改善;另一方面设置卷积核大小为5×5,扫描的步长为2,在提高训练效率的同时也保证了分类精确度。 2基于改进CNN 的图像分类 一种基于卷积神经网络的图像分类方法 张琳林,曹军梅 (延安大学计算机学院陕西延安716000) 【摘要】利用卷积神经网络是深度学习的一种高效识别模型的思想, 将卷积神经网络应用于图像分类中,避免对图像进行复杂的预处理的同时也提高了图像分类的准确度。在分析卷积神经网络结构、 原理及特点的基础上,提出了一种改进的卷积神经网络模型,设计了基于该模型的图像分类算法, 并在大数据库CIFA R-10下进行实验验证,表明图像分类的准确度高,总结了网络模型对图像分类结果的影响因素。 【关键词】卷积神经网络;图像分类;卷积;池化;特征图像图1CNN 的基本结 构 DOI:10.16707/https://www.docsj.com/doc/f715079350.html,ki.fjpc.2018.02.021 46··

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

基于卷积神经网络的图像识别研究

第14期 2018年7月No.14July,2018 1 算法原理 卷积神经网络的卷积层最重要部分为卷积核[1-2]。卷积核不仅能够使各神经元间连接变少,还可以降低过拟合误 差[3]。 子采样过程就是池化过程。进行卷积过程是将卷积核与预测试图像进行卷积,子采样能够简化网络模型,降低网络模型复杂程度,从而缩减参数。 在图像识别时,首先需要对输入图像初始化,然后将初始化后图像进行卷积和采样,前向反馈到全连接层,通过变换、即可计算进入输出层面,最终通过特征增强效果和逻辑之间的线性回归判断是否符合图像识别期望效果,往复循环,每循环一次就迭代一次,进而对图像进行识别。流程如图1所示。 图1 卷积神经网络模型流程 2 卷积神经网络 卷积神经网络主要包括3个层次[4],它由输入层、隐藏 层、输出层共同建立卷积神经网络模型结构。2.1 卷积层 卷积层的作用是提取特征[2]。卷积层的神经元之间进行 局部连接,为不完全连接[5]。 卷积层计算方法公式如下。()r array M a λ+ 其中λ为激活函数,array 是灰度图像矩阵, M 表示卷积核, 表示卷积, a 表示偏置值大小。G x 方向和G y 方向卷积核。 本文卷积神经网络模型中设定的卷积核分为水平方向和竖直方向。卷积层中卷积核通过卷积可降低图像边缘模糊程度,使其更为清晰,效果更好、更为显著。经过S 型函数激活处理之后,进行归一化后图像灰度值具有层次感,易于突出目标区域,便于进一步处理。2.2 全连接层 该层主要对信息进行整理与合并,全连接层的输入是卷积层和池化层的输出。在视觉特征中,距离最近点颜色等特征最为相似,像素同理。全连接如图2所示。 图2 全连接 3 实验结果与分析 本文采用数据集库是MSRA 数据集,该数据集共包含1 000张图片。实验环境为Matlab2015a 实验环境,Windows 7以上系统和无线局域网络。本文从MSRA 数据集中选取其中一张进行效果分析。卷积神经网络模型识别效果如图3所示。 作者简介:谢慧芳(1994— ),女,河南郑州人,本科生;研究方向:通信工程。 谢慧芳,刘艺航,王 梓,王迎港 (河南师范大学,河南 新乡 453007) 摘 要:为降低图像识别误识率,文章采用卷积神经网络结构对图像进行识别研究。首先,对输入图像进行初始化;然后,初 始化后的图像经卷积层与该层中卷积核进行卷积,对图像进行特征提取,提取的图像特征经过池化层进行特征压缩,得到图像最主要、最具代表性的点;最后,通过全连接层对特征进行综合,多次迭代,层层压缩,进而对图像进行识别,输出所识别图像。与原始算法相比,该网络构造可以提高图像识别准确性,大大降低误识率。实验结果表明,利用该网络模型识别图像误识率低至16.19%。关键词:卷积神经网络;卷积核;特征提取;特征压缩无线互联科技 Wireless Internet Technology 基于卷积神经网络的图像识别研究

卷积神经网络CNN从入门到精通

卷积神经网络CNN从入门到精通 卷积神经网络算法的一个实现 前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献。目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化。 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法。CNN在手写体识别取得最好的效果,[2]将CNN应用在基于人脸的性别识别,效果也非常不错。前段时间我用BP神经网络对手机拍照图片的数字进行识别,效果还算不错,接近98%,但在汉字识别上表现不佳,于是想试试卷积神经网络。 1、CNN的整体网络结构 卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN的有三个重要的思想架构: 局部区域感知 权重共享 空间或时间上的采样 局部区域感知能够发现数据的一些局部特征,比如图片上的一个角,一段弧,这些基本特征是构成动物视觉的基础[3];而BP中,所有的像素点是一堆混乱的点,相互之间的关系没有被挖掘。 CNN中每一层的由多个map组成,每个map由多个神经单元组成,同一个map 的所有神经单元共用一个卷积核(即权重),卷积核往往代表一个特征,比如某个卷积和代表一段弧,那么把这个卷积核在整个图片上滚一下,卷积值较大的区域就很有可能是一段弧。注意卷积核其实就是权重,我们并不需要单独去计算一个卷积,而是一个固定大小的权重矩阵去图像上匹配时,这个操作与卷积类似,因此我们称为卷积神经网络,实际上,BP也可以看做一种特殊的卷积神经网络,只是这个卷积核就是某层的所有权重,即感知区域是整个图像。权重共享策略减少了需要训练的参数,使得训练出来的模型的泛华能力更强。 采样的目的主要是混淆特征的具体位置,因为某个特征找出来后,它的具体位置已经不重要了,我们只需要这个特征与其他的相对位置,比如一个“8”,当我们得到了上面一个"o"时,我们不需要知道它在图像的具体位置,只需要知道它下面又是一个“o”我们就可以知道是一个'8'了,因为图片中"8"在图片中偏左或者偏右都不影响我们认识它,这种混淆具体位置的策略能对变形和扭曲的图片进行识别。 CNN的这三个特点是其对输入数据在空间(主要针对图像数据)上和时间(主要针对时间序列数据,参考TDNN)上的扭曲有很强的鲁棒性。CNN一般采用卷积层与

深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下: ?Section II 给出了DNN 为什么很重要的背景、历史和应用。 ?Section III 给出了DNN 基础组件的概述,还有目前流行使用的DNN 模型。 ?Section IV 描述了DNN 研发所能用到的各种资源。 ?Section V 描述了处理DNN 用到的各种硬件平台,以及在不影响准确率的情况下改进吞吐量(thoughtput)和能量的各种优化方法(即产生bit-wise identical 结果)。 ?Section VI 讨论了混合信号回路和新的存储技术如何被用于近数据处理(near-data processing),从而解决DNN 中数据流通时面临的吞吐量和能量消耗难题。 ?Section VII 描述了各种用来改进DNN 吞吐量和能耗的联合算法和硬件优化,同时最小化对准确率的影响。 ?Section VIII 描述了对比DNN 设计时应该考虑的关键标准。 二、深度神经网络(DNN)的背景

基于深度卷积神经网络的图像分类

Equation Chapter 1 Section 1 令狐采学 SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较年夜的影响。为改良卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论阐发,并通过年夜量的比较实验,得出了影响卷积网络性能的因素。结合理论阐发及比较实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等办法,在CIFAR10数据集上取得了88.1%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, 88.1% classification accuracy is achieved on CIFAR10 dataset. Which improves the classification effect of convolution neural network. Key Words:Convolution neural network(CNN), image classification, Batch Normalization,Dropout 目录 基于卷积神经网络的自然图像分类技术研究- 1 - 1引言-2- 2卷积神经网络的模型阐发-3- 2.1网络基本拓扑结构- 3 - 2.2卷积和池化- 4 - 2.3激活函数- 5 - 2.4 Softmax分类器与价格函数- 6 - 2.5学习算法- 7 - 2.6 Dropout- 9 - 2.7 Batch Normalization- 10 - 3模型设计与实验阐发-10- 3.1 CIFAR10数据集- 10 - 3.2 模型设计- 11 -

(完整word版)深度学习-卷积神经网络算法简介

深度学习 卷积神经网络算法简介 李宗贤 北京信息科技大学智能科学与技术系 卷积神经网络是近年来广泛应用在模式识别、图像处理领域的一种高效识别算法,具有简单结构、训练参数少和适应性强的特点。它的权值共享网络结构使之更类似与生物神经网络,降低了网络的复杂度,减少了权值的数量。以二维图像直接作为网络的输入,避免了传统是被算法中复杂的特征提取和数据重建过程。卷积神经网络是为识别二维形状特殊设计的一个多层感知器,这种网络结构对于平移、比例缩放、倾斜和其他形式的变形有着高度的不变形。 ?卷积神经网络的结构 卷积神经网络是一种多层的感知器,每层由二维平面组成,而每个平面由多个独立的神经元组成,网络中包含一些简单元和复杂元,分别记为C元和S元。C元聚合在一起构成卷积层,S元聚合在一起构成下采样层。输入图像通过和滤波器和可加偏置进行卷积,在C层产生N个特征图(N值可人为设定),然后特征映射图经过求和、加权值和偏置,再通过一个激活函数(通常选用Sigmoid函数)得到S层的特征映射图。根据人为设定C层和S层的数量,以上工作依次循环进行。最终,对最尾部的下采样和输出层进行全连接,得到最后的输出。

卷积的过程:用一个可训练的滤波器fx去卷积一个输入的图像(在C1层是输入图像,之后的卷积层输入则是前一层的卷积特征图),通过一个激活函数(一般使用的是Sigmoid函数),然后加一个偏置bx,得到卷积层Cx。具体运算如下式,式中Mj是输入特征图的值: X j l=f?(∑X i l?1?k ij l+b j l i∈Mj) 子采样的过程包括:每邻域的m个像素(m是人为设定)求和变为一个像素,然后通过标量Wx+1加权,再增加偏置bx+1,然后通过激活函数Sigmoid产生特征映射图。从一个平面到下一个平面的映射可以看作是作卷积运算,S层可看作是模糊滤波器,起到了二次特征提取的作用。隐层与隐层之间的空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息。对于子采样层来说,有N 个输入特征图,就有N个输出特征图,只是每个特征图的的尺寸得到了相应的改变,具体运算如下式,式中down()表示下采样函数。 X j l=f?(βj l down (X j l?1) +b j l)X j l) ?卷积神经网络的训练过程 卷积神经网络在本质上是一种输入到输出的映射,它能够学习大量的输入和输出之间的映射关系,而不需要任何输入和输出之间的精确数学表达式。用已知的模式对卷积网络加以训练,网络就具有了输

卷积神经网络全面解析之算法实现

卷积神经网络全面解析之算法实现 前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献。目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化。 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法。CNN 在手写体识别取得最好的效果,[2]将CNN应用在基于人脸的性别识别,效果也非常不错。前段时间我用BP神经网络对手机拍照图片的数字进行识别,效果还算不错,接近98%,但在汉字识别上表现不佳,于是想试试卷积神经网络。 1、CNN的整体网络结构 卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN的有三个重要的思想架构: ?局部区域感知 ?权重共享 ?空间或时间上的采样 局部区域感知能够发现数据的一些局部特征,比如图片上的一个角,一段弧,这些基本特征是构成动物视觉的基础[3];而BP中,所有的像素点是一堆混乱的点,相互之间的关系没有被挖掘。 CNN中每一层的由多个map组成,每个map由多个神经单元组成,同一个map的所有神经单元共用一个卷积核(即权重),卷积核往往代表一个特征,比如某个卷积和代表一段弧,那么把这个卷积核在整个图片上滚一下,卷积值较大的区域就很有可能是一段弧。注意卷积核其实就是权重,我们并不需要单独去计算一个卷积,而是一个固定大小的权重矩阵去图像上匹配时,这个操作与卷积类似,因此我们称为卷积神经网络,实际上,BP也可以看做一种特殊的卷积神经网络,只是这个卷积核就是某层的所有权重,即感知区域是整个图像。权重共享策略减少了需要训练的参数,使得训练出来的模型的泛华能力更强。 采样的目的主要是混淆特征的具体位置,因为某个特征找出来后,它的具体位置已经不重要了,我们只需要这个特征与其他的相对位置,比如一个“8”,当我们得到了上面一个"o"时,我们不需要知道它在图像的具体位置,只需要知道它下面又是一个“o”我们就可以知道是一个'8'了,因为图片中"8"在图片中偏左或者偏右都不影响我们认识它,这种混淆具体位置的策略能对变形和扭曲的图片进行识别。 CNN的这三个特点是其对输入数据在空间(主要针对图像数据)上和时间(主要针对时间序列数据,参考TDNN)上的扭曲有很强的鲁棒性。CNN一般采用卷积层与采样层交

基于深度卷积神经网络的目标检测

第35卷 第8期 福 建 电 脑 Vol. 35 No.8 2019年8月 Journal of Fujian Computer Aug. 2019 ——————————————— 程胜月,男,1995生,硕士研究生,研究方向为深度学习。E-mail:2968365693@https://www.docsj.com/doc/f715079350.html, 。张德贤,男,1961生,博士,研究方向为模式识别、人工智能信息处理。 基于深度卷积神经网络的目标检测 程胜月 张德贤 (河南工业大学信息科学与工程学院 郑州 450001) 摘 要 目标检测是计算机视觉领域中最基本、最具挑战性的课题之一,由于传统检测方法已经不能满足其在精度和速度上需求,深度学习利用其对图像特征强大地分析处理能力,逐渐成为目标检测的主流方向。本文首先对主流卷积神经网络框架进行简述,其次对目标检测中的几种重要的方法具体分析,最后对未来可能的发展方向进行讨论。 关键词 目标检测;卷积神经网络;RCNN ;YOLO ;SSD 中图法分类号 TP183 DOI:10.16707/https://www.docsj.com/doc/f715079350.html,ki.fjpc.2019.08.009 Target Detection Based on Deep Convolutional Neural Networks CHENG Shengyue, ZHANG Dexian (School of Information Science and Engineering, Henan University of Technology, Zhengzhou,China, 450001) 1引言 目标检测作为计算机视觉的基本问题之一,是 许多其他计算机视觉任务的基础,如实例分割、图像处理、对象跟踪等[1]。目前,目标检测已广泛应用于无人驾驶、安防监管、视频分析等领域。 传统目标检测方法包含预处理、窗口滑动、特征提取、特征选择、特征分类、后处理等步骤。而卷积神经网络本身具有特征提取、特征选择和特征分类的功能,所以在现在计算能力充足的情况下得到充分发展。 2主流深度卷积网络的发展 1998年Yann LeCun 提出的LeNet-5网络是首次成功应用于数字识别问题的卷积神经网络。但是由于当时计算能力不足,未能受到重视。直到2012年AlexNet 在ImageNet 图像分类任务竞赛中获得冠军,目标检测才迎来深度卷积神经网络的时代。 2.1 AlexNet AlexNet 由5个卷积层和3个全连接层组成,使用数据增广和Dropout 防止过拟合,并且提出了 局部响应归一化来提高模型的泛化能力。 2.2 VGGNet VGGNet 获得了2014年ILSVRC 比赛的亚军和目标定位的冠军。到目前为止,VGGNet 依然被广泛使用来提取图像的特征。VGGNet 主要是证明了增加网络的深度可以提高最终的性能。 2.3 GoogleNet GoogleNet 分析得出增加网络的深度和宽度可以提升性能,但同时不可避免的增加参数,造成过拟合和计算量过大。因此提出Inception 结构将稀疏矩阵聚类成相对稠密的子空间矩阵提高计算性能。 2.2 ResNet ResNet 指出随着卷积神经网络深度的增加,却出现梯度消失现象造成准确率的下降。ResNet 通过恒等映射解决深层网络梯度消失问题,大幅度提升深度卷积网络的性能。 3目标检测算法 手工设计特征的目标检测方法在2010年左右

基于深度卷积神经网络的人脸识别研究定稿版

基于深度卷积神经网络的人脸识别研究 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

基于深度卷积神经网络的人脸识别研究 深度卷积神经网络主要应用包括语音识别、图像处理、自然语言处理等。本文就当前大环境下研究了卷积神经网络模型在静态环境下人脸识别领域的应用。卷积神经网络模型需要设计一个可行的网络模型,将大量的人脸训练数据集加载到网络模型中,然后进行自动训练,这样就可以得到很好的识别率。把训练好的模型保存下来,那么这个模型就是一个端到端的人脸特征提取器。该方法虽然操作简单,但是需要根据训练数据集设计合理的网络结构,而且最难的关键点是超参数的调整和优化算法的设计。因此本文结合残差网络和融合网络构建了两个与计算资源和数据资源相匹配的网络模型,并通过反复调整超参数和调试优化器使其在训练集上能够收敛,最终还取得较好的识别率。 本文的主要研宄内容和创新点如下: 1.介绍了卷积神经网络的基础理论知识。先从传统人工神经网络的模型结构、前向和反向传播算法进行了详细的分析;然后过渡到卷积神经网络的相关理论,对其重要组成部分如卷积层、激励层、池化层和全连接层进行了具体的阐述;最后对卷积神经网络训练时的一些注意事项进行了说明。 人工神经元是构成人工神经网络的基本计算单元,单个神经元的模型结构如下图所示。 其中, b X W b x w Z T+ = + =∑1 1 1 ) ( ) ( , z f x h h w = 卷积神经网路的基本结构简单的池化过程:

2.对深度学习框架TensorFlow的系统架构和编程模型作了一些说明,并对人脸数据进行预处理,包括人脸检测、数据增强、图像标准化和人脸中心损失。 TensorFlow的系统架构如下图所示 TensorFlow的编程模式 系统本地模式和分布式模式示意图 3.提出了基于改进的MyVGGNet和MySqueezeNet网络的人脸识别。首先分析了模型VGGNet-16和SqueezeNe的网络结构及相关参数,然后本文提出将原VGGNet-16和SqueezeNe的网络结构和参数进行优化,并在每个卷积层和激励层之间添加批归一化层,在VGGNet-16网络末尾用1个1 * 1的卷积层代替三个全连接层,还增加全局平均池化层,得到新的MyVGGNet和MySqueezeNet模型,最后在LFW数据集上分别获得9 4.3%和9 5.1%的准确率。 VGGNet-16 网络结构框图 MyVGGNet 网络框图 MyVGGNet网络训练时LFW测试集的准确率走势图 MyVGGNet网络在LFW上的ROC曲线图 4.提出了基于二叉树型融合网络BTreeFuseNet_v1和BTreeFuseNet_v2的人脸识别。首先对深度神经网络的优化问题和融合原理作了分析;然后结合残差学习,融入分支并行、融合和级联三种结构,采用ReLU函数、BN层、Dropout层、哈维尔方法和截断高斯函数初始化方法、Adam优化器等技巧,构建了两个层次深度为22和19的网络模型

相关文档