文档视界 最新最全的文档下载
当前位置:文档视界 › 低交叉极化高隔离度的C 波段双极化微带天线的设计

低交叉极化高隔离度的C 波段双极化微带天线的设计

低交叉极化高隔离度的C 波段双极化微带天线的设计
低交叉极化高隔离度的C 波段双极化微带天线的设计

低交叉极化高隔离度的C波段双极化微带天线的设计1

孙竹,钟顺时,汤小蓉

上海大学通信与信息工程学院,上海(200072)

E-mail: kiddodo@https://www.docsj.com/doc/f36946623.html,

摘要:本文介绍了一种混合激励的具有低交叉极化和高端口隔离特性的C波段双极化双层微带贴片单元的设计。该天线单元的10dB反射损失带宽达840MHz,约15.6%,覆盖了整个C波段的雷达频段(5.1GHz-5.9GHz),天线单元的两个极化的交叉极化电平值在整个频段内均低于-37dB,极化端口隔离度在整个频段内低于-43dB,方向图前后比大于20dB,天线增益稳定在9dB以上。此外,该天线还具有结构紧凑的优点,易于拓展成大型天线阵列,适合于作相控阵天线、合成口径雷达(Synthetic Aperture Radar, SAR)天线的阵列单元。关键词:微带贴片天线;双极化;高隔离度;SAR天线

1. 引言

在合成口径雷达系统应用中,数据的后处理算法往往要求雷达天线具有高端口隔离度与低交叉极化的特性,以避免可能产生的成像模糊问题。从天线技术的角度而言,天线阵的端口隔离度取决于每个单元的端口隔离度,而天线阵的交叉极化特性尚可通过排阵中采用“成对等幅反相馈电”技术[1-3]进行改善。因此,设计用于成像雷达的天线阵列单元,首要任务是实现高端口隔离度指标,其次是实现低交叉极化电平。文献[4]中指出,目前的算法一般要求天线的交叉极化电平应当抑制在-30dB以下。

在提高双极化天线单元的端口隔离度及降低交叉极化电平方面,已有不少文章可供参考,文献[5]通过调整口径耦合的两个耦合槽的位置,使之排布成“T”字型,在频带内实现端口隔离度大于36dB。文献[6]通过改变耦合槽形状,将H形槽的“双臂”略微向内弯曲,在带内实现隔离度34dB以上。[7]中采用混合馈电的方法,对两个极化端口分别采用口径耦合和电容性耦合方式馈电(capacitive coupled feed)在两个端口都采用平衡馈电,在频带内的隔离度超过了40dB。

本文首先通过对贴片天线单元形状和馈电技术的分析,提出一种混合馈电的设计,然后由数值分析软件仿真和优化确定天线的参数和特性。

2.天线设计思路

由格林定理可知,天线的辐射可以看成是贴片上分布的电流元在远场的辐射的迭加。因此,想得到好的交叉极化特性需要贴片上的电流分布更规则,也就是希望贴片下能产生规整的场分布。

2.1 辐射单元形状分析

由于希望得到规整的场分布,因此双极化贴片单元常用二维对称的结构,诸如:方形贴片、圆形贴片、方环形贴片、圆环形贴片等。以下以最常用的圆形贴片及方形贴片进行分析。圆形贴片一般工作于TM11模,方形贴片则工作于基模TM01,电流分布如图1所示。

圆贴片中,偏离中轴的电流可分解为平行主极化分量与垂直主极化分量。垂直主极化分量除了在辐射正方向上左右相消,在其余方向上均会抬高交叉极化电平。另外,在探针激励

1本课题得到高等学校博士学科点专项科研基金(20050280016);国家高技术发展研究(863计划)(2007AA12Z125)的资助。

的单层圆贴片中,为了阻抗匹配,一般会将馈点移向贴片中心。馈点越向内移,阻抗越小,但是交叉极化电平越高,这是由于圆贴片的中心对称结构造成的,在加工不完善情况下更可能造成极化旋转。而方贴片则无此之虞,因此大多数有低交叉极化电平要求的雷达天线都采用方形贴片。图2为匹配后的单层圆贴片与方贴片比较图,方形贴片交叉极化特性明显占优。

图1 贴片电流分布示意图

G a i n / d B

Angle / Degree

G a i n / d B

Angle / Degree

图2 匹配的单层圆贴片/方贴片交叉极化性能比较图

2.2 馈电技术

通常我们用两个正交端口来激励起两个正交的模式,实现双极化。常规激励方法包括探馈、口径耦合、临近耦合、共面微带线4种。同样,出于交叉极化性能考虑,我们希望激励起的场越规则越好。但是,任何一种天线馈电方式必然会在馈点改变贴片腔内的边界条件(例如:口径耦合的槽改变了原本“电壁”的特性,探针的同轴内芯则相当于加入一根竖直的“电壁”),带来场的不连续性,扰乱场的分布,这是我们需要竭力避免的。

图3为中心馈点与偏置馈点的电场分布/交叉极化比较图。偏置馈电约在-36dB 而中心馈电更低,约在-42dB 。由场分布可以发现,虽然天线的馈电将不可避免的引入场的不连续性,但是可以通过合理的安排馈电点减小它的影响。中心馈电的方法将耦合槽放在电场零值的位置,最大限度减小了对场的扰动。且由于中心位置使得引入耦合槽后的贴片腔内边界条件依然保持对称,这也是降低交叉极化的一个重要原因。

另一极化方向上显然无法再次使用口径耦合,因为这将导致耦合槽相交而降低端口隔离度,因此在另一方向上采用同轴探馈。由图3中心馈电的场分布图可知,由于结构的高度对称性,产生场分布的高度对称性,进而产生良好的交叉极化特性。因此,在同轴探馈端口采用平衡馈电的方法,使贴片腔内边界条件依然保持对称。同时,由于探针馈入点位于贴片中轴上,从图3中中心馈电场分布图可知,正好位于场值的零点上,且左右两侧电场幅值相等,相位相反,分布相同,因此可以减小探针从口径激励起的场中耦合能量,即减小|S 21|,提高

了端口隔离度。

G a i n / d B

Theta / Degree

G a i n / d B

Theta / Degree

图3 中心馈电/偏置馈电的口径耦合电场分布/交叉极化电平比较图

3.天线结构与设计结果

基于上节的分析,得出天线结构示意图如图4所示。图中只画了探针馈电的剖面图,虚线部分为耦合槽。探针由馈电网络相连,形成精确的等幅反相馈电,经并联后由阻抗变换线实现匹配。中心馈电的口径耦合其槽耦合效率较偏置的口径耦合要高,再加上采用“工”字型耦合槽可以增大耦合量,将更多的能量耦合至贴片,减小背向辐射,改善单元的前后比。

图4 天线结构示意图

G a i n / d B

Theta / Degree

G a i n / d B

Theta / Degree

(a) 5.3GHz

(b) 5.8GHz

图5 天线单元二主面方向图及其交叉极化电平

S 11 & S 21 / d B

Frequency / GHz

图6 天线辐射单元S 参数

图5和图6为阻抗匹配后的交叉极化特性,反射损失和隔离度曲线。探针平衡馈电端口的10dB 反射损失带宽为840MHz (5.01GHz-5.85GHz),口径耦合端口为850MHz (5.09GHz-5.94GHz),整个频段内端口隔离度在43dB 以下,天线的主瓣内交叉极化在整个频带内达到-37dB 以下,在中心频率点5.3GHz 时做到-40dB 以下。整个频段内主极化增益保持在9dB 以上,同时前后比保持在20dB 以上。上述结果均应用商用软件Ansoft HFSS 10.0来得出,文献[8]中仿真与实测曲线的比较已验证了应用该软件仿真的可信性。

4.结论

本文通过应用对称的方法以及合理安排馈电点位置等手段,设计了一幅C 波段低交叉极化,高端口隔离度的双极化天线单元。在整个频段内实现了-37dB 以下的交叉极化电平和-43dB 以下的端口隔离度。该天线结构紧凑、频带宽,很适合于做双极化相控阵雷达、合成口径雷达天线的阵列单元。

参考文献

[1]Kim Woelders, Johan Granholm “Cross-Polarization and Sidelobe Suppression in Dual Linear Polarization Antenna Arrays”. IEEE Transactions on Antennas and Propagation, 45(12),1997:1727-1740

[2]梁仙灵,钟顺时,汪伟, “双极化微带线阵的交叉极化抑制”,微波学报,21(1), 2005.02: 22-25

[3]梁仙灵,钟顺时,汪伟, “高隔离度双极化微带天线直线阵的设计”,电子学报,33(3), 2005.03: 553-555 [4] J. Granholm, Kim Woelders, “Dual Polarization Stacked Microstrip Patch Antenna Array With Very Low

Cross-Polarization”, IEEE Transactions on Antennas and Propagation, 49(10),2001:1393-1402

[5]S.C Gao, et al “Dual-Polarized Slot-Coupled Planar Antenna With Wide Bandwidth”, IEEE Transactions on Antennas and Propagation,51(3),2003:441-448

[6]K.L Wong et al. “Broadband Dual-Polarized Aperture-Coupled Patch Antennas With Modified H-Shaped Coupling Slots”, IEEE Transactions on Antennas and Propagation, 50(2), 2002:188-191

[7]T.W Chiou, K.L. Wong. “Broad-Band Dual-Polarized Single Microstrip Patch Antenna With High Isolation and Low Cross Polarization”, IEEE Transactions on Antennas and Propagation, 50(3),2002:399-401

[8]X. Qu, S.-S. Zhong and Y.-M. Zhang, “Dual-Band Dual-Polarised Microstrip Array for SAR Applications”, Electronics Letters, 42(24),2006:1376-1377

A Design of C Band Dual-polarized Microstrip Antenna with

Low Cross-polarization and High Isolation

Sun Zhu, Zhong Shunshi, Tang Xiaorong

School of Communication and Information Engineering, Shanghai University, Shanghai (200072)

Abstract

A hybrid-fed dual-polarized stacked patch element with low cross-polarization and high port isolation is introduced. The proposed antenna element achieves a 10d

B bandwidth of 840MHz (about 15.6%) in

C band with its cross-polarization less than -37dB in both two orthogonal ports and isolation between these two ports less than -43dB in the whole bandwidth. Its gain is stabled on about 9dB in the whole bandwidth with its front-back ratio over 20dB. Another more, an obvious merit is that the proposed antenna has a compact structure, thus makes it easy to extend to form a large array and excellently meet the need of phased radar and SAR application.

Keywords: Microstrip antenna; Dual-polarized; High isolation; SAR antenna

射频圆极化微带天线设计

射频圆极化微带天线设计

射频圆极化微带天线设计 摘要 天线作为无线通信最为重要的部分长久以来都受到科研人员的重视以及迅速改造发展。如今,微带天线因其自身的质量小,形状易改变而与设备共形等优势在通信领域应用极为广泛。天线的种类多样,极化方式大致分为线极化与圆极化两种,在天线出现的初期,由于技术层面的限制,线极化天线的应用极为广泛。但由于科技的发展和人们对信号的愈来愈严苛的要求导致线极化天线与应用层面的矛盾越发凸显。由于圆极化天线的方向性,旋向相同接收性和抗干扰性较强,因此现代圆极化天线的应用成为当今天线的主流。本文介绍圆极化天线的性质和缺点以及对未来的展望和改进。 关键词:圆极化天线,抗干扰,性质 Designing of Rf circular polarization microstrip antenna ABSTRACT As the most important part of the wireless communication antennas has long been brought to the attention of the researchers and rapid development. Today, the quality of the microstrip antenna with its small, easy to change shape and advantages, such as equipment conformal is widely applied in the field of communications.

一种高隔离度双极化微带天线的设计

一种高隔离度双极化微带天线的设计 苏振华应增任学施杰乔青 (电子科技大学天线与微波技术国家重点实验室,710071) 摘要:本文介绍了一种工作在Ku波段的高隔离度双极化微带天线,该天线采用邻近耦合和H槽缝隙耦合相结合的馈电方法实现了天线的双极化,双层反射地板的结构降低了天线方向图的后瓣。借助Ansoft 公司的HFSS仿真软件对该天线进行了仿真和优化,得到了较好的结构和指标参数。与常规的双极化微带天线结构相比,该天线具有高端口隔离度和低后瓣的特性。 关键词:双极化;微带天线;隔离度 Design of a Dual-polarization Microstrip Antenna Su Zhenhua Yin Yingzeng Ren Xueshi Zhang Jie Qiao Qing (Institute of Antennas and Electromagnetic Scattering,Xidian University, Xi'an 710071,China) Abstract: A high isolation dual-polarization microstrip antenna working at Ku-band is presented. This antenna is fed by methods of direct coupling and H-slot coupling to realize dual-polarization. Due to the double reflectors structure ,the antenna has a lower back-lobe. On basis of Ansoft HFSS software, this antenna is analyzed and optimized. Some good results are presented. Compared to conventional dual-polarization microstrip antenna, this antenna has better isolation and lower back-lobe characteristics. Keywords: dual-polarization ; microstrip antenna ; isolation 1 引言 微带天线由于具有体积小,重量轻,低剖面,易于加工以及与有源器件及电路集成等诸多有点,在通信,雷达等方面得到广泛的应用。另外,频谱资源日益紧现代卫星通信领域迫切需要天线具有双极化功能,因为双极化可使它的通信容量增加一倍。 双极化技术的应用通常要求低交叉极化电平和高隔离度。单层的双端口馈电隔离度一般只能达到-25dB左右[1],多层馈电虽然结构稍微复杂,但是可以得到很高的隔离度。 本文首先对三层介质板单层反射板的微带双极化天线进行了分析,其结果表明方向图的后瓣比较大。然后采用了四层介质板,在最下层的介质板下方加了一块反射地板,得出比较理想的结果,其端口隔离度低于-40dB,后瓣降低了4.85dB。2 微带双极化天线的研究 2.1 天线的结构 三层介质板微带天线结构如图1所示,其中(a)是立体的侧视图,(b)是俯视图。天线由三层介质板组成,辐射贴片蚀刻在最上层即第一层介质板的顶部。邻近耦合馈电微带线在第二层介质板的上面,第二层介质板和第三层介质板之间放置反射地板,H 槽开在这反射地板上面,第三层介质板的下侧为通过H槽耦合馈电的微带线。三层介质板都采用介电常数为2.2的Rogers RT/duroid 5880(tm)材料,第一,二层厚度为0.381mm,第三层厚度为0.254mm,馈电采用50欧姆微带开路线。 不同层馈电可以明显的增加隔离度,可以对H

微带天线的基本理论和分析方法

目录 摘要 (2) Abstract (3) 1 绪论 (4) 研究背景及意义 (4) 国内外发展概况 (5) 本文的主要工作 (6) 2 微带天线的基本理论和分析方法 (8) 微带天线的辐射机理 (8) 微带天线的分析方法 (9) 传输线模型理论 (10) 全波分析理论 (13) 微带天线的馈电方式 (14) 微带线馈电 (14) 同轴线馈电 (15) 口径(缝隙)耦合馈电 (15) 本章小结 (16) 3宽带双频双极化微带天线单元的设计 (17) 天线单元的结构 (17) 天线单元的设计 (19) 介质基片的选择 (19) 天线单元各参数的确定 (19) 天线单元的仿真结果 (21) 本章小结 (22) 4 结束语 (23) 参考文献 (24) 致谢 (26)

ku波段双频微带天线的设计 摘要 本文的主要工作是Ku波段宽带双频双极化微带天线研究。在微带天线的基本理论和分析方法的基础上,对微带天线的技术进行了深入的研究,设计了3种不同结构的Ku波段宽带双频微带天线单元,并完成了实验验证。依据传输线模型理论并结合软件仿真分析了3种不同结构的天线单元在天线的带宽、隔离度和增益等性能方面的差异,并作了比较,得出了性能最佳的一种天线单元结构形式。最后,对全文的研究工作加以总结,并提出本文进一步的研究设想。 关键词:Ku波段;双频;传输线模型;微带天线

Abstract In this paper, broadband dual-frequency and dual-polarized microstrip antenna at Ku band is described. Three kind s o f wideband dual-frequency and dual-polarized microstrip antenna element are proposed and their experimental verifications are completed which based o n the classical theory and a deeper stud y on broadband, dual-frequency and dual-polarization technique of microstrip antenna. From the transmission-line mode theory and simulative results, he bandwidth, isolation and gain characteristics of a microstrip patch element with various structures are analyzed in detail and compared, and an antenna element with the best performance is adopted. Based on the element described, four-element linear array and planar array is designed which adopted anti-phase feeding and dislocation anti-phase feeding technique, respectively. In addition, the technique of anti-phase feeding which suppress cross-polarized is further studied by using the even/odd theoretical analysis. Finally, we summarize the research of the paper with an outlook for the further researches. Key words: Ku band; dual-frequency; dual-polarized; microstrip antenna

圆极化微带天线设计

GPS圆极化微带天线设计 1.1微带天线简介 微带天线是在一块厚度远小于工作波长的介质基片的一面敷以金属辐射片,一面全部敷以金属薄膜层做接地板而成。GPS天线通常使用平面天线和螺旋形天线。近年来微带天线由于具有重量轻,体积小,易于实现圆极化。而GPS功能在个人行动通讯设备特别是手机中的普及,更使得GPS天线的小型化研究成为十分热门的话题。 1.2GPS微带天线结构与原理 上图是一个简单的微带天线结构,由辐射元,介质层和参考地三部分组成。与天线性能相关的参数为辐射元的长度L,辐射元的宽度W,介质层的厚度h,介质的相对介质电常数εr ,介质的长度和宽度。 1.3辐射机理 理论上可以采用传输线模型来分析其性能,假设辐射贴片的长度近似的为半波长,宽度为w,介质基片厚度为h,工作波长为λ;我们可以将辐射贴片,介质基片和接地板视为一段长度为λ/2的低阻抗微带传输线,在传输线的两端断开形成开路。由于介质基片厚度h<<λ,故电路沿着h方向基本没有变化。最简单的情况可以假设电场沿着宽度w方向也没有变化。那么在只考虑主模激励(TM10模)的情况下辐射基本上可以认为是由辐射贴片开路的边缘引起的。在两开路的电场可以分解为相对于接地板的垂直分量和水平分量,由于辐射贴片长度约为半个波长,所以两垂直分量方向相反,水平分量方向相同。因此,两开路端的水平分量电场可以等效为无限大平面上同相激励的那个缝隙,缝隙的宽度为ΔL(近似等于基片厚度h),长度为w,等效缝隙相距为半波长,缝隙的电场沿着w方向均匀分布,电场方向垂直于w。 1.4微带天线贴片尺寸估算

设计高效率辐射的宽度w,2 1212-??? ??+=r f c w ε 式中C 为光速。 辐射贴片的长度一般为2e λ,这里的e λ是介质内的导波波长,即 e λ=e f c ε 考虑到边缘缩短效应后,实际的辐射单元长度L 应为 L=e f c ε-2ΔL 式中e ε是有效介电常数,ΔL 是等效辐射缝隙长度, 同轴线馈电点的位置,宽度方向上馈电点的位置一般在中心点,在长度方向上边缘处(x=±L/2)的输入阻抗最高。由以下的公式计算出输入阻抗为50欧姆的馈电点位置: ??? ? ??=re 1-12L 1L ξ 2HFSS设计环境概述 2.1模式驱动求解。 2.2建模操作。 模型原型:长方体,圆柱体,矩形面,圆面。 模型操作:相减操作。 2..3边界条件及激励: 边界条件:有限导体边界,辐射边界. 端口激励:集总端口激励。 2.4求解设置。 求解频率:1.6GHz 扫频设置:快速扫描,频率范围:1~2GHz 2..5Optimetrics 参数扫描分析 优化设计 2.6数据后处理:S参数扫描曲线,3D辐射方向图。 3.1仿真模型

圆极化全向天线技术概要

https://www.docsj.com/doc/f36946623.html, 圆极化全向天线技术 胥亚东,阮成礼 电子科技大学物理电子学院,成都(610054) E-mail: 摘要:圆极化全向天线由于其自身性能特点,在现代的无线应用中,越来越受到广泛的关注。本文主要归纳总结了圆极化全向天线的研究进展,探讨了圆极化全向天线的各种实现方法,及其中的各个关键问题,并讨论了各种方案具体设计方案、影响因素、过程原理,及其优劣性,在此基础上,对圆极化全向天线的研究发展趋势提出了展望。 关键词:圆极化天线,全向天线 中图分类号:TN820.1+1 1.引言 天线的极化作为天线性能的一个重要参数,是指在一个发射天线辐射时,其最大辐射方向上,随着时间变化电场矢量(端点)在空间描出的轨迹。天线的极化形式分为线极化,圆极化和椭圆极化三种。线极化和圆极化是椭圆极化的特例。圆极化又分为正交的左旋和右旋圆极化。椭圆极化波可分解为两个旋向相反的圆极化波[1]。 随着科学技术和社会的不断发展,对天线的性能要求也越来越高,在现代的无线应用系统中,普通的线极化天线已很难满足人们的需求,圆极化天线的应用越来越广泛,其主要特点主要体现在以下几个方面[2-4]:1.圆极化天线可接收任意极化的来波,且其辐射波也可由任意极化天线收到;2.圆极化天线具有旋向正交性;3.极化波入射到对称目标(如平面、球面等)时旋向逆转,不同旋向的电磁波具有较大数值的极化隔离。由于圆极化天线具有以上特点,因此,被广泛使用在通信、雷达、电子侦察与电子干扰等各个方面,研究圆极化天线具有巨大的社会效益、经济效益和军事效益。 任意圆极化波可分解为两个在空间、时间上均正交的等幅线极化波,由此得到实现圆极化天线的基本原理:即产生两个空间正交的线极化电场分量并使二者振幅相等(即简并模),相位差90°[5]。尽管圆极化天线形式各异,但产生机理万变不离其宗。反映在史密斯圆图中,两简并模的恰当分离对应阻抗曲线出现一个尖端(cusp)。圆极化天线的基本电参数是最大增益方向上的轴比,即任意极化波的极化椭圆长轴(2A)与短轴(2B)之比[6]: ?A?AR=20lgr=20lg?? ?B?

天线CAD大作业微带天线设计

天线CAD大作业 学院:电子工程学院 专业:电子信息工程

微带天线设计 一、设计要求: (1)工作频带1.1-1.2GHz ,带内增益≥4.0dBi ,VSWR ≤2:1。微波基板介电常数为r ε = 6,厚度H ≤5mm ,线极化。总结设计思路和过程,给出具体的天线结构参数和仿真结果,如VSWR 、方向图等。 (2)拓展要求:检索文献,学习并理解微带天线实现圆极化的方法,尝试将上述天线设计成左旋圆极化天线,并给出轴比计算结果。 二、设计步骤 计算天线几何尺寸 微带天线的基板介电常数为r ε= 6,厚度为 h=5mm,中心频率为 f=1.15GHz,s m /103c 8?=天线使用50Ω同轴线馈电,线极化,则 (1)辐射切片的宽度2 1 )2 1(2-+=r f c w ε=69.72mm (2)有效介电常数2 1)12 1(2 1 2 1 r e - +-+ += w h r εεε=5.33 (3)辐射缝隙的长度) 8.0/)(258.0() 264.0/)(3.0(h 412.0+-++=?h w e h w e L εε=2.20 (4)辐射切片的长度L e f c L ?-=22ε=52.10mm (5)同轴线馈电的位置L1 21 )121(21 2 1)(re -+-+ += L h r r L εεξ=5.20 )1 1(21re L L ξ-= =14.63mm 三、HFSS 设计 (1)微带天线建模概述 为了方便建模和后续的性能分析,在设计中定义一系列变量来表示微带天线的结构尺寸,变量的定义及天线的结构尺寸总结如下:

微带天线的HFSS设计模型如下: 立体图俯视图 模型的中心位于坐标原点,辐射切片的长度方向沿着x轴,宽度方向沿着y 轴。介质基片的大小是辐射切片的2倍,参考地和辐射切片使用理想导体来代替。对于馈电所用的50Ω同轴线,这用圆柱体模型来模拟。使用半径为0.6mm、坐标为(L1,0,0);圆柱体顶部与辐射切片相接,底部与参考地相接,及其高度使用变量H表示;在与圆柱体相接的参考地面上需要挖一个半径为1.5mm的圆孔,作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50Ω。模型建立好后,设置辐射边界条件。辐射边界表面距离辐射源通常需要大于1/4波长,1.15GHz时自由空间中1/4个波长约为65.22mm,用变量length 表示。 (2) HFSS设计环境概述 *求解类型:模式驱动求解。 *建模操作 ①模型原型:长方体、圆柱体、矩形面、圆面。 ②模型操作:相减操作 *边界条件和激励 ①边界条件:理想导体边界、辐射边界。 ②端口激励:集总端口激励。 *求解设置:

一种高隔离度双极化微带天线的设计

一种高隔离度双极化微带天线的设计 苏振华尹应增任学施张杰乔青 (西安电子科技大学天线与微波技术国家重点实验室,西安 710071) 摘要:本文介绍了一种工作在Ku波段的高隔离度双极化微带天线,该天线采用邻近耦合和H槽缝隙耦合相结合的馈电方法实现了天线的双极化,双层反射地板的结构降低了天线方向图的后瓣。借助Ansoft 公司的HFSS仿真软件对该天线进行了仿真和优化,得到了较好的结构和指标参数。与常规的双极化微带天线结构相比,该天线具有高端口隔离度和低后瓣的特性。 关键词:双极化;微带天线;隔离度 Design of a Dual-polarization Microstrip Antenna Su Zhenhua Yin Yingzeng Ren Xueshi Zhang Jie Qiao Qing (Institute of Antennas and Electromagnetic Scattering,Xidian University, Xi'an 710071,China) Abstract: A high isolation dual-polarization microstrip antenna working at Ku-band is presented. This antenna is fed by methods of direct coupling and H-slot coupling to realize dual-polarization. Due to the double reflectors structure ,the antenna has a lower back-lobe. On basis of Ansoft HFSS software, this antenna is analyzed and optimized. Some good results are presented. Compared to conventional dual-polarization microstrip antenna, this antenna has better isolation and lower back-lobe characteristics. Keywords: dual-polarization ; microstrip antenna ; isolation 1 引言 微带天线由于具有体积小,重量轻,低剖面,易于加工以及与有源器件及电路集成等诸多有点,在通信,雷达等方面得到广泛的应用。另外,频谱资源日益紧张现代卫星通信领域迫切需要天线具有双极化功能,因为双极化可使它的通信容量增加一倍。 双极化技术的应用通常要求低交叉极化电平和高隔离度。单层的双端口馈电隔离度一般只能达到-25dB左右[1],多层馈电虽然结构稍微复杂,但是可以得到很高的隔离度。 本文首先对三层介质板单层反射板的微带双极化天线进行了分析,其结果表明方向图的后瓣比较大。然后采用了四层介质板,在最下层的介质板下方加了一块反射地板,得出比较理想的结果,其端口隔离度低于-40dB,后瓣降低了4.85dB。2 微带双极化天线的研究 2.1 天线的结构 三层介质板微带天线结构如图1所示,其中(a)是立体的侧视图,(b)是俯视图。天线由三层介质板组成,辐射贴片蚀刻在最上层即第一层介质板的顶部。邻近耦合馈电微带线在第二层介质板的上面,第二层介质板和第三层介质板之间放置反射地板,H 槽开在这反射地板上面,第三层介质板的下侧为通过H槽耦合馈电的微带线。三层介质板都采用介电常数为2.2的Rogers RT/duroid 5880(tm)材料,第一,二层厚度为0.381mm,第三层厚度为0.254mm,馈电采用50欧姆微带开路线。 不同层馈电可以明显的增加隔离度,可以对H 槽的尺寸进行调节,改善输入端口的阻抗特性。 ·102·

宽带圆极化微带天线设计

宽带圆极化微带天线设计 关键词:微带天线,X波段,设计,分析,HFSS,仿真

目录 1 绪论 (1) 1.1 本课题研究背景 (1) 1.2 微带天线的发展 (1) 1.3 微带天线的优缺点 (2) 1.4 本课题研究内容 (3) 2 微带天线基本概念及原理 (5) 2.1 天线的基本概念 (5) 2.2 天线的辐射原理 (6) 2.3 天线的基本参数 (6) 2.3.1 天线的极化 (7) 2.3.2 天线方向图的概念 (7) 2.3.3 天线输入阻抗的计算方式 (8) 2.3.4 天线的谐振频率与工作频带宽带 (8) 2.3.5 天线的驻波比 (9) 2.4 微带天线的简介 (10) 2.4.1 微带天线的结构与分类 (10) 2.4.2 微带天线的辐射机理 (10) 2.4.3 微带天线的形状 (11) 2.5 微带天线的分析方法 (11) 2.5.1 传输线模型法 (11) 2.5.2 空腔模型法 (13) 2.5.3 积分方程法 (13) 2.6 微带天线的馈电方法 (14) 2.7 微带天线圆极化技术 (15) 2.7.1 圆极化天线的原理 (15) 2.7.2 圆极化实现技术 (16) 3 宽带异形贴片微带天线设计 (21) 3.1 微带天线的仿真 (21) 3.2 Ansoft HFSS高频仿真软件的介绍 (21) 3.3 HFSS对具体实例的仿真 (21)

3.3.1 选取微带天线模型 (21) 3.3.2 微带天线的仿真优化 (23) 4 双点馈电圆形圆极化微带天线设计 (35) 4.1 HFSS对圆极化微带天线的仿真 (35) 4.1.1 选取圆极化微带天线模型 (35) 4.1.2 圆形圆极化微带天线的仿真优化 (35) 5 总结结论及展望 (41) 参考文献 (42)

一种紧凑高隔离度的双极化微带天线单元设计

一种紧凑高隔离度的双极化微带天线单元设计 张杰尹应增任学施苏振华席磊 (西安电子科技大学天线与微波技术国家重点实验室,西安710071) 摘要:本文运用临近耦合与口径耦合的馈电方式,设计了一种工作于Ku波段、高端口隔离度、低交叉极化和低后向辐射的双极化微带贴片单元。采用四层介质板结构,剖面为1.27mm,两个端口的馈线分别位于接地板两侧,减小了馈线的寄生辐射对方向图的影响。仿真结果表明,在500MHz(VSWR<1.5)的工作带宽内,增益为7.15dB,单元的端口隔离度低于-53dB,极化隔离度低于-55dB,前后比低于-22dB,为实现高隔离度的双极化微带天线阵打下基础。 关键词:双极化,口径耦合馈电,隔离度,交叉极化,后向辐射 Design of a Compact Dual-polarization Microstrip Antenna Element with High Isolation Zhang Jie Yin Yingzeng Ren Xueshi Su Zhenhua Xi Lei (Institute of Antennas and Electromagnetic Scattering,Xidian University, Xi'an 710071,China) Abstract: In this paper, a Ku-band compact dual-polarization microstrip antenna element with high isolation, low cross-polarization and low back-radiation is presented. This antenna is fed by the method of cross-slot coupling to realize dual-polarization. By using four medium flies, the section plane of antenna is 1.27mm. To reduce the affect of feed lines on radiation, two feed lines are placed on the side of earth-plate. In the bandwidth (VSWR<1.5) of 500MHz, the gain is 7.15dB, the isolation of two ports is under -53dB, the isolation of polarization is under -55dB, the back-radiation is under -22dB. The design of high isolation dual-polarization microstrip antenna array can base on this element. Keywords: Dual-polarization; Aperture-coupled; Isolation; Cross-polarization; Back-radiation 1 引言 随着现代无线通信技术的快速发展,全球定位系统(GPS)、卫星通信、合成孔径雷达(SAR)、无线个人通信(WLAN)等领域都需要重量轻、剖面低、易共形的双极化天线。而微带天线天线具有馈电方式和极化形式多样化的优点,并且易与馈电网络和有源电路集成一体化,已成为印刷天线类的主角。 天线的极化指天线在最大辐射方向上电场矢量的取向,频谱资源日益紧张的现代卫星通信领域迫切需要天线具有双极化功能。因为双极化天线能发射或接收两个正交的电磁波,在同一带宽内可以发射两种信号,这有利于实现频率复用和收发一体,将通信容量提高一倍。在地面通信中可实现极化分集和抗多径衰落;在合成孔径雷达中,多极化可以获得更加详尽的各种散射体的信息,易于对目标的探测和识别,随着分辨率要求的提高,极化隔离度要求越来越高。 通常用微带线直接给方形贴片馈电的双极化微带天线,端口隔离度和极化隔离度一般只有-20dB~-25dB左右。本文分析并设计了一种十字型口径耦合馈电的双极化贴片天线,馈线采用分支线型结构,并分别位于接地板的两侧,具有较高的端口

一种提高交叉极化隔离度的16元微带阵列天线_刘藤

一种提高交叉极化隔离度的16元微带阵列天线 刘 藤1,2,罗 勇1,李莎莎2,李旭哲1 (1.电子科技大学,四川成都 610054; 2.中国东方红卫星股份有限公司,陕西西安 710061) 摘 要:在现代通信中,特别是卫星通信,有时需要比较高的交叉极化隔离度。对于传统的微带阵列天线来说,由于其馈电网络与阵元均处于同一侧,不仅会产生互耦,影响增益,并且交叉极化隔离度也不能满足广大用户的要求。在此提出一种新型的馈电结构,旨在提高其交叉极化隔离度。从仿真中可以看出,交叉极化隔离度能达到40dB 以上,为实现更大型微带阵列天线网络做出一定的理论实践和工程指导。 关键词:微带阵列天线;交叉极化隔离度;馈源网络;开槽线 中图分类号:T N 823 文献标识码:A 文章编号:1004-373X(2010)14-0114-03 16-element Microstrip Array Antenna for Enhancing Cross -polarization Isolation LIU T eng 1,2,L U O Yo ng 1,L I Sha -sha 2,L I Xu -zhe 1 (1.Universi t y o f Electronic Sci ence and T echnolo gy of China,Chengdu 610054,Chi na; 2.China Spacesat Co.L td.,Xi an 710061,China) Abstract :A hig h cr oss -po lar ization iso lation is so metimes needed in modern communications,especially in satellite com -munications.A new feeder structure is pr oposed to enhance the cro ss -polarization iso lat ion because the ar ray elements and the feed netw or k are at the same side in the tr aditio nal micr ostr ip ar ray antenna,and the structure can cause lo w cro ss -polarization iso lation and co -coupling w hich affects the g ain.It is fo und from t he simulat ion result calculated by H FSS of A nsoft that the cro ss -polarization isolatio n is hig her than 40dB.T his conclusion can pr ovide a g ood r efer ence to t he practical eng ineering. Keywor ds :microstr ip arr ay antenna;cr oss -po lar ization iso latio n;feed sour ce netw ork;slot line 收稿日期:2010-03-12 0 引 言 微带阵列天线具有体积小,重量轻,制作简单,安装方便,容易与有源器件集成,外观美观,受环境影响小等优点,因此越来越受到人们的欢迎。目前,微带阵列天 线已经成功地用于机载雷达,卫星通信,移动通信和卫星电视等系统中。 关于微带阵列天线的馈电问题,前人已做了大量的工作。一般都是辐射片与微带线馈源网络处于同一侧,如文献[1-2]所述。这种方式由于馈源网络本身会产生一定的辐射,所以总的辐射场就是各辐射单元的辐射场与馈源网络辐射场的叠加。由于馈源网络布线并不一定规则,这无疑会影响天线整体的交叉极化隔离度性能;同时,由于微带线与辐射贴片存在有互耦,这样还会进一步使天线交叉极化隔离度性能降低,影响主瓣增益[3] 。在某些特定的应用场合(如卫星通信),要求天线的交叉极化隔离度性能是比较高的(30dB 以上)[4],对于一般阵元数目比较少的天线阵,还能够满足要求,但是对于大型或者超大型阵列,以上的馈电方式就很难满 足要求了。关于抑制交叉极化隔离度的馈电方式,前人也做了大量的工作,如文献[5]所述,文章中提到将辐射 单元与馈源网络隔离的方式,能有效提高交叉极化隔离度;类似的做法再如文献[6]所述;而文献[7]提出一种用开槽线耦合馈电的方式将能量耦合给辐射单元,亦取得了良好地效果。本文在总结了前面优秀工作的基础上,提出一种全新的馈电结构:天线辐射单元与馈源网络分别处于接地板两侧,通过接地板的开槽线把馈源网络上的能量耦合到辐射单元上,通过H FSS 软件仿真,得到了比较好的结果,说明此种馈电方式确有比较好的提高交叉极化隔离度的作用,并为进一步组建大型或超大型阵列做出指导。1 辐射单元 辐射单元采用嵌入式微带边馈贴片[8](如图1所示),这样可以很容易地实现阻抗匹配。对于介质基片厚度为h = 1.5m m,天线工作的中心频率为f 0=12.5GH z,采用相对介电常数为 r = 2.2的Rogers RT/duroid 5880介质作为基片,辐射贴片宽度为: W p = c 2f 0 r +1 2 -1 2 (1) 114 科学计算与信息处理刘 藤等:一种提高交叉极化隔离度的16元微带阵列天线

圆极化天线交叉极化隔离度与轴比间的关系

对于圆极化或线极化通信制式的地面站天线来说,国际卫星(INTELSAT)组织有一些强制性技术要求。 例如,其中要求线极化地面站天线交叉极化隔离度XPD >=30dB; 而对于圆极化地面站天线: 1. 当地面站天线口径D>=4.5m时,要求天线交叉极化隔离度XPD不低于30.7dB(相当于天线轴比AR不大于1.06或0.5dB); 2.当地面站天线口径 2.5m<= D <=4.5m时,要求天线交叉极化隔离度XPD 不低于27.3dB(相当于天线轴比AR不大于1.09或0.75dB); 3.当地面站天线口径 D <=2.5m时,要求天线交叉极化隔离度XPD不低于17.7dB(相当于天线轴比AR不大于1.3或2.28dB)。 上面讲到了天线交叉极化隔离度XPD,天线轴比AR,以及轴比AR的两种表达形式。对于线极化地面站天线,由于天线是发射或接受线极化电磁波,没有轴比问题,所以只提交叉极化隔离度; 而圆极化地面站天线是发射或接受圆极化电磁波,所以既要用交叉极化隔离度,还可以用天线轴比。实际上轴比和交叉极化隔离度是相关的,知道了轴比就可以求出交叉极化隔离度,当然知道了交叉极化隔离度也可以求出轴比。如以下公式: (1) 其中R表示以dB为单位的轴比。 天线轴比一般用的最多有两种表示(还有用角度表示,但用的很少),一种是以dB 为单位的R表示,或者一种是无单位的b表示。前者一般在试验室测试很方便,所以研制生产人员用的较多。二者换算关系如下: (2) 轴比还可以用角度表示: R=20lg{ ( 1+sin Δ )/( 1-sin Δ) } (3) b= ( 1+sin Δ )/( 1-sin Δ) (4) 其中Δ = 0~90°(要用弧度表示) 由(1),(2),)式可以算出常用的几种数据: 轴比 b 1.06 1.09 1.3 轴比 R(dB) 0.506124 0.7485 2.2788

双极化混合馈电微带贴片天线

双极化混合馈电微带贴片天线 安婷婷1张文梅1 (山西大学物理电子工程学院,太原030006)1 摘要:提出了一种新型的双极化混合馈电微带贴片天线,天线采用探针馈电与孔径耦合馈电相结合的混合 馈电方式,结合“T”型馈线提高了端口隔离度,“Hour glass”形的槽改善了输入端口的阻抗特性。用商业软件 Designer(SV)对天线的电特性进行仿真优化,天线的谐振频率为2.40GHz,端口1和2的反射损耗分别为-26.97dB和-25.45dB,端口隔离度为-22.28dB。 关键词:双极化,混合馈电,微带贴片天线 A Dual-polarized Microstrip Patch Antenna Fed by Hybrid Structure An tingting1Zhang wenmei1 (College of Physics and Electronics Engineering, Shanxi University of China, Taiyuan 030006)1 Abstract: A new dual-polarized microstrip patch antenna fed by hybrid structure is presented. In order to improve isolation between two ports, hybrid feed (probe feed and aperture coupled feed) and “T” shaped microstrip line are used. The “Hour glass” shaped slot can improve the input impedance. The parameters of the antenna are calculated by Ansoft Designer (SV) simulation. The center frequency of the antenna is 2.40 GHz, the return loss for port 1 is -26.97 dB, and -25.45 dB for port 2, and the isolation between two ports is -22.28 dB. Keywords: Dual-polarized; Hybrid feed; Microstrip patch antenna 1 引言 近年来,随着无线通信系统用户的迅猛增长,通信信息容量需求的不断增大,能有效解决多径衰落问题的分集天线得到了广泛应用。而分集技术中的双极化技术是无线通信领域十分重要的技术,它可用来实现极化分集和极化复用,其中极化分集是解决无线信道多径衰落的有效方法,而极化复用则可以更加有效地利用有限的频谱资源。双极化天线能够互不干扰地发送或接收两种极化波,从而实现频谱复用。到目前为止,双极化微带天线在国内外都有很大发展。文献[1]-[3]提出了孔径耦合馈电的双极化天线,其中[1]采用在贴片中心开十字槽来实现双极化,[2]采取开两个偏移中心的互相垂直的耦合槽来实现双极化,而[3]采用直线槽和C形槽来实现双极化。文献[4]-[5]提出的双极化天线采用混合馈电的方式,[4]采用探针馈电与微带线馈电相结合的馈电方式,[5]采用电容耦合馈电与孔径耦合馈电相结合的馈电方式,极大提高了端口隔离度。 本文提出了一种新型的双极化混合馈电微带贴片天线,该天线采用探针馈电与孔径耦合馈电相结合的混合馈电方式,结合“T”型馈线提高了端口隔离度,“Hour glass”形的槽改善了输入端口的阻抗特性。天线的谐振频率为2.40GHz,端口1和2的反射损耗分别为-26.97dB和-25.45dB,3dB相对带宽分别为2.50%,端口隔离度为-22.28dB,天线最大增益为3.865dBi。该天线保持了孔径耦合贴片天线的优势,同时馈电同轴线垂直贴片,电缆占用空间小, 基金项目:国家自然科学基金项目(60771052);国家博士后基金特别资助(200801424);山西省自然科学基金项目(2006011029);太原市科技项目(0703004)

圆极化微带天线的设计与实现 (1)

2004年4月重庆大学学报 Apr.2004  第27卷第4期Journal of Chongqing University Vol.27 No.4 文章编号:1000-582X (2004)04-0057-04 圆极化微带天线的设计与实现 Ξ 韩庆文,易念学,李忠诚,雷剑梅 (重庆大学通信学院,重庆 400030) 摘 要:圆极化微带天线是一种低剖面的天线元,研究圆极化微带天线的特性在天线设计中显得十 分重要,而微带贴片天线的馈电位置的确定是设计的关键。针对单端侧馈五边形圆极化微带天线进行了详细分析和论述;简要介绍了微带天线的实现方法,并介绍了一种用于分析多边形微带天线的有效方法———有限元分析法;通过对一个5.6GHz 的五边形圆极化微带天线的研究设计,给出了圆极化微带天线的设计过程,找到了确定馈电点位置的合理方法,采用HFSS 软件进行优化设计,进行仿真,给出了合理的仿真结果。 关键词:微带天线;圆极化;轴比;五边形;方向图;电压驻波比;带宽 中图分类号:TN820.11 文献标识码:A 目前简单的线极化天线已很难满足人们的需求,这就使得圆极化微带天线倍受青睐。 但在微带天线的分析中,近似处理较多,使得天线的设计准确性并不太好,微带贴片天线的馈电位置的确定往往需要实验调整的方法进行研究。另外由于微带天线的频带窄,设计尺寸的微小误差都会造成天线谐振频率的偏离,极化特性也会变差。在实际工作中由于介质基片的离散性,也影响了谐振频率的准确性[1]。针对上述问题,特别对圆极化微带天线的设计过程进行了深入的分析;通过应用HFSS 高频结构软件仿真,使天线的性能得到了优化。 1 微带天线 微带天线是一种基于微带传输线的天线。它有多种形式,按结构特征,可把微带天线分为两大类,即微带贴片天线和微带缝隙天线;常用的一类,是贴片微带天线。贴片可以是矩形、圆形、椭圆形及其它形状,在此选用五边形贴片。 微带天线的辐射,是由微带天线边沿和接地板之间的边缘场产生的。以矩形贴片为例,其辐射场的示意图如图1所示。 图1 矩形微带天线的场图 微带天线分析的基本问题是,求解天线周围空间 建立的电磁场;求得电磁场后,进而得出其方向图、增益和输入阻抗等特性指标,另外,微带天线的馈电,对天线的性能有至关重要的作用。馈线的长度和宽度直接影响着天线的谐振频率;馈电点的位置决定着天线边沿上的电流幅度、相位分布以及谐振频率。因此,对馈电方式的选择是设计成功与否的关键因素[2]。在本设计中采用微带线馈电。 2 圆极化微带天线的实现 微带天线要获得圆极化波的关键是,激励起两个极化方向正交的、幅度相等的、相位相差90°的线极化波[3]。当前用微带天线实现圆极化辐射主要有以下几种方法: Ξ 收稿日期:2003-11-08 基金项目:重庆市应用基础研究资助项目(2003-7960) 作者简介:韩庆文(1969-),女,重庆人,重庆大学工程师,硕士,主要从事微波通信、天线理论及天线设计的科研教学工作。

单馈点圆极化微带天线

A Single-Feeding Circularly Polarized Microstrip Antenna With the Effect of Hybrid Feeding Hyungrak Kim,Byoung Moo Lee,and Young Joong Yoon ,Member,IEEE Abstract—In this paper,a single series feeding cross-aperture coupled microstrip antenna with the effect of hybrid feeding is pro-posed and demonstrated.To better understand this antenna,the characteristics according to the variation of parameters are shown.This proposed antenna has the following advantages of the effect of hybrid feeding,improved axial ratio bandwidth (4.6%),high gain (8dBi),and flat 3-dB gain bandwidth (above 16.7%).In measured radiation patterns,we have 3-dB beamwidth of 30and good F/B of 20dB. Index Terms—Effect of hybrid feeding,microstrip antenna. I.I NTRODUCTION W ITH rapid development of wireless communication system,many kinds of circularly polarized (CP)antennas have been studied since CP antennas are often preferred in satellite communication,Global Positioning System (GPS),and radar system.In general,feeding structure of CP antenna may be divided into single and hybrid feeding.A single-feeding CP antenna provides simple structure,easy manufacture,and advantage in array with small size.However,it has narrow axial ratio bandwidth.Hybrid feeding gives complex structure,difficult manufacture,and increased antenna size,but it provides wide axial ratio bandwidth.Thus,in the design of CP antenna,a tradeoff of characteristics between two feeding methods is required. In CP antenna,axial ratio bandwidth is the most important factor in design since it is the most limiting factor for oper-ating factor.Therefore,many kinds of CP antennas have been studied to obtain wide axial ratio bandwidth [1]–[4].Recently,CP antennas to obtain wide axial ratio bandwidth using single feeding have been studied to improve disadvantages of hybrid feeding,e.g.,large antenna size and complex structure.Cross-aperture coupled microstrip antennas [5],[6]were proposed and analyzed,but it still has narrow axial ratio bandwidth (2.5%),narrow gain bandwidth (3.27%for 3-dB),and low antenna gain (5dBi).Another improvement was suggested by Aloni et al.[7],where traveling wave type CP antenna was introduced.How-ever,it has very low gain and low radiation efficiency,and nar-rower gain bandwidth than reasonably wide axial ratio band-width and impedance bandwidth.Therefore,not only wide axial ratio and impedance bandwidth,but also other enhanced charac-teristics,e.g.,high gain,flat-gain bandwidth,and similar radia-tion patterns in operating frequencies are needed in CP antenna for practical wireless communication system. Manuscript received February 20,2003;revised April 9,2003. The authors are with the Department of Electrical and Electronic Engi-neering,Yonsei University,Seoul,Korea (e-mail:okebari@mwnat.yonsei.ac.kr;binny@mwnat.yonsei.ac.kr;yjyoon@mwnat.yonsei.ac.kr).Digital Object Identifier 10.1109/LAWP.2003.813382 (a) (b) Fig.1. (a)Side view and (b)bottom view of the proposed antenna. In this paper,we propose a resonant type single series feeding CP microstrip antenna.Series feeding is suggested to obtain wide axial ratio bandwidth and flat gain bandwidth.Also,cross-aperture with short length is used to provide high gain. II.A NTENNA D ESIGN The configuration of the proposed antenna is shown in Fig.1.It is composed of the two layers and air-gap.The rectangular patch,whose physical dimensions are 45 mm 45mm at center frequency of 2.4GHz,is on the upper layer,and series feeding line under the lower layer is positioned close behind cross-aper-ture.For the upper and lower layer,Duroid 5880substrate with 0.5-oz copper,62-mil substrate height,and dielectric constant of 2.2and FR-4substrate with 1-oz copper,0.8-mm substrate height,and dielectric constant of 4.6are used,respectively.As shown in Fig.1(b),series feeding line is placed behind cross-aperture,and a quarter-wavelength section of feeding line is positioned between each arm of aperture to create the 90phase difference for circular polarization.Series feeding brings into sequential rotation of current on the surface of radiating 1536-1225/03$17.00?2003IEEE

相关文档
相关文档 最新文档