文档视界 最新最全的文档下载
当前位置:文档视界 › (完整版)同济大学概率论期末复习题(含答案)

(完整版)同济大学概率论期末复习题(含答案)

(完整版)同济大学概率论期末复习题(含答案)
(完整版)同济大学概率论期末复习题(含答案)

复习题(1)--(A )

备用数据:2

2

0.9950.0250.975(8) 3.3554,(8) 2.1797,(8)17.5345t χχ===,

,9772.0)2(,8413.0)1(=Φ=Φ.95.0)645.1(=Φ

一、填空题(18分)

1、 (6分)已知()0.3,()0.4,()0.32,P A P B P A B ===则 ()P A B ?=___ __ ,

()P AB = ,()P A B ?= .

2、 (6分)设一个袋中装有两个白球和三个黑球,现从袋中不放回地任取两个球,则取到

的两个球均为白球的概率为 ;第二次取到的球为白球的概率为 ;如果已知第二次取到的是白球,则第一次取到的也是白球的概率为 .

3、 (6分)假设某物理量X 服从正态分布),(2

σμN ,现用一个仪器测量这个物理量9次,由此算出其样本均值56.32,x =样本标准差0.22s =,则μ的置信水平0.99的双侧置信区间为_____________,σ的置信水平0.95的双侧置信区间为__________ _____.

二、(12分)设有四门火炮独立地同时向一目标各发射一枚炮弹,若有两发或两发以上的炮

弹命中目标时,目标被击毁.

(1) 如果每发炮弹命中目标的概率(即命中率)为0.9,求目标被击毁的概率; (2) 若四门火炮中有两门A 型火炮和两门B 型火炮,A 型火炮发射的炮弹的命中率

为0.9,B 型火炮发射的炮弹的命中率为0.8,求目标被击毁的概率.

三、(12分)设某保险公司开办了一个农业保险项目,共有一万农户参加了这项保险,每户交保险费1060元,一旦农户因病虫害等因素受到损失可获1万元的赔付,假设各农户是否受到损失相互独立.每个农户因病虫害等因素受到损失的概率为0.10.不计营销和管理费用. (要求用中心极限定理解题)

(1)求该保险公司在这个险种上产生亏损的概率; (2)求该保险公司在这个险种上的赢利不少于30万的概率.

四、(16分)设随机变量X 的分布函数为

2

2,0()0,0

x A Be x F x x -??

+>=??≤?. 其中,A B 为常数.

(1)求常数,A B ; (2)求X 的概率密度函数; (3)求概率(12)P X <<; (4)求2

(),(),()E X E X D X .

五、(16分)若),(Y X 的联合密度函数为1,01

(,)0,y x x f x y ?≤≤≤?=???且其他

(1)分别求Y X ,边缘密度函数; (2)求 (),(),()E X E Y E XY ; (3)问:Y X ,是否相互独立?Y X ,是否相关?为什么?请说明理由. (4)求11(,)22

P X Y ≤≤.

六、(12分) 设126,,,X X X L 是取自正态总体),0(2

σN 的简单随机样本,02

>σ,分别

求下列统计量服从的分布:(1) 22

121222234562()

X X T X X X X +=+++ ; (2

)2T =.

七、(14分)设12,,,n X X X L 是取自总体X 的样本,X 的密度函数为

21,()20,x e x f x x ?

??-

-?≥?=??

, 其中?未知.

(1) 求?的极大似然估计;

(2) 问: ?的极大似然估计是?的无偏估计吗? 如果是,请给出证明;如果不是,请将其修正为?的无偏估计.

参考答案:

一、 1.0.5720.1280.872

2.0.10.40.25

3.[56.0739,56.5660],

[0.1486,0.4215]

二、 (1)0.9963(2)0.9892 三、 (1)1(2)

(2)(1)-ΦΦ

四、 (1)1,1A B ==- 2

2,0(2)()0,

0x xe x f x x -??>=??≤? 1

2

2(3)(12)P X e e --<<=-

2(4)()()2,()222

E X E X D X π

=

==- 五、2,01

1||,0||1

(1)()()0,0,

X Y x x y y f x f y <<-<

??其余其余

2

(2)(),()0,()0

3

11

(3)(,0)()(0),()()()

33

(4)(||0.5,||0.5)0.25

X Y E X E Y E XY X Y f f f E XY E X E Y P X Y ===≠=≤≤=与不独立,因为 也不相关,因为

六、12(1)~(2,4)

(2)~(3)T F T t

七、(1)

2??(1)(2)()X E n θθθθ==+≠,所以不是无偏估计,1(1)

2?X n

θ=-为无偏估计。

复习题(1)(B )

备用数据:2

2

0.950.0250.975(9) 1.833,(9) 2.700,(9)19.023t χχ===,

,9772.0)2(,8413.0)1(=Φ=Φ.95.0)645.1(=Φ 45.161)1,1(95.0=F .

一、填空题(18分)

1、 (6分)掷一颗均匀的骰子两次,以,x y 表示先后掷出的点数,记{}(,):10A x y x y =+<,

{}(,):B x y x y =>则 ()P A B ?=___ __ ,()P AB = , ()P B A = .

2、 (6分)某公共汽车站从上午7:00起每15分钟发一班车,如果小王是在7:00到7:30之间(等可能地)随机到达该汽车站的,则小王在车站的等候时间不超过5分钟的概率为 ;小王在车站的平均等候时间为 分钟,小王在车站的等候时间的标准差为 分钟.

3、 (6分)假设某物理量X 服从正态分布),(2

σμN ,现用一个仪器测量这个物理量10次,由此算出其样本均值14.705,x =样本标准差 1.843s =,则μ的置信水平0.90的双侧置信区间为_________________,σ的置信水平0.95的双侧置信区间为__________ _____.

二、(12分)某种电子元件在电源电压不超过200伏、200伏至240伏之间及超过240伏这三种情况下使用时损坏的概率依次为0.1、0.001及0.2,设电源电压)400,220(~N X . (1) 求此种电子元件在使用时损坏的概率;

(2) 求此种电子元件在遭损坏时电源电压在200伏至240伏之间的概率.

三、(12分)每个正常男性成人血液中每毫升所含的白细胞数的数学期望为7300,标准差为700.现准备随机抽查100个正常男性成人的血液,记第i 个被抽查人的血液中每毫升所含的

白细胞数为i X ,

.100,,2,1Λ=i 记∑==100

1

100

1

i i

X

X .求概率()

73707230≤≤X P 的近似值.

(要求用中心极限定理解题)

四、(16分)设随机变量X 的密度函数为

?????<<-=其他

,01

1,2

3)(2

x x x f . 记2Y X =.

(1) 求Y 的概率密度函数;(2)求)(),(),(XY E Y E X E ; (3)问:Y X ,是否相互独立?Y X ,是否不相关?请说明理由.

五、(16分)若),(Y X 的联合密度函数为?????<<<<+=其他

且,02

010),2

(76),(2y x xy

x y x f (1) 分别求Y X ,边缘密度函数; (2) 求 Y X ,的协方差和相关系数; (3)求11(,)22

P X Y ≤≤.

六、(12分) 设4321,,,X X X X 是取自正态总体),0(2

σN 的简单随机样本,02

>σ.

(1) 求统计量2

432

1???

? ??-+=X

X X X Y 服从的分布; (2) 求小于1的常数C 使得05.0)()()(2432212

21=???

? ??>-+++C X X X X X X P .

七、(14分)设12,,,n X X X L 是取自总体X 的样本,X 的密度函数为

?

?

?x

e

x f -

=21);( 其中?未知,0>?.

(1) 求?的极大似然估计;

(2) 问: ?的极大似然估计是?的无偏估计吗? 如果是,请给出证明;如果不是,请将其修正为?的无偏估计.

参考答案: 一、

8121151.

2.

993

32

3.

[13.6367,15.7732],

[1.2677,3.3648]

二、 (1)0.0483(2)0.014

三、 2(1)1Φ-

四、

01(1)()0,

y f y <<=??其余

3

(2)()0,(),()0

5

1111

(3)(,)()(),()()()

2424

X Y E X E Y E XY X Y F F F E XY E X E Y ===≠=与不独立,因为 也不相关,因为

五、2

61

(2),01

(43),02

(1)()()7

14

0,0,X Y x x x y y f x f y ??+<<+<

?

其余其余

1(2)ov(,),(,)14711

(3)(||0.5,||0.5)448c X Y X Y P X Y ρ=-

=≤≤=

六、161.45161.45(1)~(1,1)

(2)161.451162.45

Y F c =

=

+ 七、1

1??(1)||(2)()n i i X E n θθ

θ===∑,所以是无偏估计。

复习题 (2)--(A )

备用数据:

22

0.990.9950.9950.0050.9952.326,(99) 2.575,(99)66.510,(99)138.987u t u χχ=≈===

一、选择题(20分,每题4分,请将你选的答案填在( )内)

1、 下列结论哪一个不正确 ( )

)(A 设A,B 为任意两个事件,则A B A B -=U ; )(B 若A B =,则A,B 同时发生或A,B 同时不发生; )(C 若A B ?,且B A ?,则A B =; )(D 若A B ?,则A-B 是不可能事件.

2、 设(,)X Y 的联合概率函数为

则(1)概率(13,0)P Y X ≤<≥等于 ( )

)(A 58; )(B 12; )(C 34; )(D 78

.

(2)Z X Y =+的概率函数为 ( )

)(A

()B

()C

()D

3、 如果2EX <∞,2EY <∞,且X 与Y 满足()()D X Y D X Y +=-,则必有 ( )

)(A X 与Y 独立;

)(B X 与Y 不相关; )(C ()0D Y =; )(D ()()0D X D Y =. 4、若()25,()36D X D Y ==,X 和Y 的相关系数,0.4X Y ρ=,则,X Y 的协方差(,)Cov X Y 等于( )

)(A 5; )(B 10; )(C 12; )(D 36.

二、(12分)设X,Y 为随机变量,且3(0,0)7P X Y ≥≥=

,4

(0)(0)7

P X P Y ≥=≥= 求(1)(min(,)0)P X Y <;(2)(max(,)0)P X Y ≥.

三、(10分)一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人.然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,

(1)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯确实是黑人的概率是多大? (2)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯是白人的概率是多大?

四、(10分)某商业中心有甲、乙两家影城,假设现有1600位观众去这个商业中心的影城看电影,每位观众随机地选择这两家影城中的一家,且各位观众选择哪家影城是相互独立的.问:影城甲至少应该设多少个座位,才能保证因缺少座位而使观众离影城甲而去的概率小于0.01. (要求用中心极限定理求解.)

五、(16分)设二维随机变量),(Y X 的联合概率密度函数为2,01

(,)0,

x y f x y <<

(1)求Y X ,的边缘密度函数(),()X Y f x f y ; (2)求条件概率113

(0)224

P X Y <<

<<; (3)问:X 与Y 是否相互独立?请说明理由; (4)求Z X Y =+的概率密度函数()Z f z .

六、(14分)某地交通管理部门随机调查了100辆卡车,得到它们在最近一年的行驶里程(单位:100km )的数据12100,,,x x x L ,由数据算出145x =,样本标准差24s =.假设卡车一年

中行驶里程服从正态分布),(2

σμN ,分别求出均值μ和方差2σ的双侧0.99置信区间.(请

保留小数点后两位有效数字.)

七、(18分) 设n X X X ,,,21Λ是取自总体X 的简单随机样本,总体X 的密度函数为

(1),(;)0,e x x e

f x θθθθ-+?>=?

?

其它 ,其中θ为未知参数,01θ<<. (1)求出θ的极大似然估计; (2)记1

αθ

=

,求参数α的极大似然估计;

(3)问:在(2)中求到的α的极大似然估计是否为α的无偏估计?请说明理由.

复习题(2)A 参考答案: 一、C B D C A ,,,, 二、

45,77

三、139

,134 四、847=a

五、(1)??

?≥≤<<=??

?≥≤<<-=1

,0,

010,

2)(1,0,

01

0),1(2)(y y y y y f x x x x x f

(2)54)4321|210(=<<<

1()21()31,21(f f f = (4)??

?

??<<-<<=其余,,,021210)(z z z z z f

六、 [138.82,151.18] [410.28,857.37]

七 、(1)1ln 11?1

-=∑=n

i i X n θ

(2)1ln 1?1

-=∑=n

i i X n α

(3)是无偏估计,)?(αα=E

复习题(2)---(B )

备用数据:

22

0.9750.0250.9750.995(2)0.9772,(8) 2.31,(8) 2.18,(8)17.54, 2.575,t u χχΦ=====

一、选择题(共20分,每题4分,请将你选的答案填在( )内)

1、 下列命题哪一个是正确的? ( )

()A 若()()0P A P B >>,则()()P A B P B A <; ()B 若()()0P A P B >>,则()()P A B P B A ≥; )(C 若()0P B >,则()()P A P A B ≥; )(D 若()0P B >,则()()P A B P AB ≤.

2、已知1

()()()2

P A P B P C ===

,1()()()4P AB P AC P BC ===,()0P ABC =,判断下

列结论哪一个是正确的 ( )

)(A 事件A ,B ,C 两两不独立,但事件A ,B ,C 相互独立;

)(B 事件A ,B ,C 两两独立,同时事件A ,B ,C 相互独立;

)(C 事件A ,B ,C 两两独立,但事件A ,B ,C 不相互独立; )(D 事件A ,B ,C 不会同时都发生.

3、 设12,X X 相互独立,且都服从参数1的指数分布,则当0x >时,12min(,)X X 的分布函数()F x 为 ( )

)(A 121(1)e ---; )(B 21(1)x e ---; )(C 2x e ; )(D 21x e --.

4、 已知(,)X Y 的联合概率函数为

若X ,Y 独立,则,αβ的值分别为 ( )

)(A 12,99αβ==; )(B 21

,99αβ==;

)(C 15,1818αβ==; )(D 51

,1818

αβ==.

5、 设15,,X X K 是取自正态总体(0,1)N 的样本,已知222

12345()()X a X X b X X +-+-

(0,0)a b >>服从2χ分布,则这个2χ分布的自由度 ( )

)(A 5; )(B 4; )(C 3; )(D 2.

二、(12分)已知男性患色盲的概率为0.005,女性患色盲的概率为0.0025,如在某医院参加体检的人群中,有3000个男性,2000个女性,现从这群人中随机地选一人, (1)求此人患有色盲的概率;

(2)若经检验此人的确患有色盲,问:此人为男性的概率是多大?

三、(12分)设随机变量Y 服从参数为1的指数分布(1)E .定义随机变量

0,1,k Y k

X Y k

≤?=?

>? , 1,2.k =

(1)求12(,)X X 的联合概率函数; (2)分别求12,X X 的边缘概率函数.

四、(10分)有100位学生在实验室测定某种化合物的PH 值,假设各人测量都是独立进行的,每人得到的测定结果服从相同的分布,且这个相同分布的期望为5,方差为4,设i X 表

示第i 位学生的测定结果,1,,100i =L ,100

1

1100i i X X ==∑,求(4.6 5.4)P X << . (要求用中心极限定理求解.)

五、(16分) 设二维随机变量),(Y X 的联合概率密度函数为

1,

01,02(,)0,

x y x f x y <<<

?且其它

求(1)Y X ,的边缘密度函数(),()X Y f x f y ; (2)21Z X =+的概率密度函数()Z f z ; (3)(2)(2)E X Y D X Y --和; (4)11

()22

P Y X ≤

≤.

六、(14分)某医生为研究铅中毒患者与正常成年人的脉搏数的关系,他随机调查了9例患者,测得其脉搏数分别为129,,,x x x L ,并由此算出

9

9

21

1

675,50657i

i i i x

x ====∑∑. 设铅中毒

患者的脉搏数服从正态分布),(2

σμN ,分别求出均值μ和标准差σ的置信水平0.95的双侧置信区间.(请保留小数点后两位有效数字.)

七、(16分) 设n X X X ,,,21Λ是取自总体X 的简单随机样本,总体X 的概率密度函数为

1,0(;)0x

e

x f x θθθ

-?>?=???

,其它

,其中θ是未知参数,0θ>。

(1)求θ的矩估计; (2)求θ的极大似然估计;

(3)问:在(2)中求得的θ的极大似然估计是否为θ的无偏估计?请说明理由.

复习题(2)B 参考答案:

一、C B D C B ,,,, 二、75.0,004.0 三、221

1

,,0,1------e e e e

四、1)2(2-Φ

五、(1)?????≥≤<<-=??

?≥≤<<=1

,0,

020,

2

1)(1,0,01

0,2)(y y y y y f x x x x x f

(2)?????<<-=其余,

03

0,21

2)(z z z f

(3)92

)2(,32)2(=-=

-Y X D Y X E (4)4

3

)41|21(=<

六、 [73.46,76.54] [1.35,3.83]

七 、(1)X =θ? (2)X =1?θ (3)是无偏估计,)?(1

θθ=E

概率论期末试卷

填空题(每小题4分,共32分). 1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A B ) = _______; 若 A 与 B 相互独立, 则 P (A B ) = _________. 2.设随机变量 X 在区间 [0, 10] 上服从均匀分布, 则 P { 1 < X < 6} = ______________. 2014-2015学年《概率论与数理统计》期末考试试卷 (B) 一、填空题(每小题4分,共32分). 1.设 A 、B 为随机事件, P (A ) = 0.3, P (B ) = 0.4, 若 P (A |B ) =0.5, 则 P (A B ) = _______; 若 A 与 B 相互独立, 则 P (A B ) = _________. 2.设随机变量 X 在区间 [0, 10] 上服从均匀分布, 则 P { 1 < X < 6} = ______________. 3.设随机变量 X 的分布函数为,4 ,1 42 ,7.021 ,2.01 ,0 )(???? ?? ?≥<≤<≤--<=x x x x x F 则 X 的分布律为 ___________________________ . 4.若离散型随机变量 X 的分布律为 X 1 2 3 p k 0.5 0.3 a 则常数 a = _________; 又 Y = 2X + 3, 则 P {Y > 5} = _________ . 5.设随机变量 X 服从二项分布 b (100, 0.2), 则 E (X ) = ________, D (X ) = ___________. 6.设随机变量 X ~ N (0, 1), Y ~ N (1, 3), 且X 和 Y 相互独立, 则D (3X +2Y ) = _________.

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为,

概率论期末试题A

A. 一.填空题(每题3分,共15分) 1.三人随机进入五层楼的任一层,则至少有两人在同一层的概率为: 。 。 ,则,若 )( 6.0)|(2.0)( .2=-==A B P A B P A P 3. 3只红球,2只白球,每次从中任取一件,取后放回。则第5次取到第2次白球的概率为 。 4.。 ,则,且泊松分布~,指数分布~若随机变量= =DX DY Y e X 2)()()()(λπλ 。的矩估计为:参数的样本,则二项分布为取自总体若____________ )(),10(~),,(.51p p b X X X n 二、选择题(每题3分,共15分) ) ()()() ()()()|()|()()()()()()(1)()() (0 1ABC A C C B B A P C B A P D A BC P C AB P C B C P A B P A P ABC P B C P B P A P C B A P A C B A =-=-=-=,则以下一定成立的为的概率均大于,,,设有事件 15 9) (158)(157)(156)() ( 32012D C B A 的概率为:件,则至少有一件次品件次品,从中任取件产品中有, 5 1) (41)(31)(21)() ()(),3,2,1(21)( 3D C B A X P k k X P X k =====偶数,则的概率分布为:,若随机变量 4,若随机变量X,Y,Z 相互独立,且DX = 2,DY = 3,DZ = 1。则D (3X - Y - 2Z ) =( ) (A) 1 (B) 11 (C) 18 (D) 25 5. 若(321X X X ,,)为取自总体X 的样本,且EX = p ,则关于p 的无偏估计为( ) (A ) 321636261X X X ++ (B )321616263X X X +- (C )321616263X X X -+ (D )321616263X X X -- 三、计算题(每题10分,共70分) 1,三门炮同时向一飞机射击,彼此互不影响,设击中飞机的概率分别为:0.2、0.3、0.4, 若其中只有一门炮击中飞机,则飞机被击落的概率为0.1;

四川大学概率统计往年期末试题

四川大学期末考试试题 (2008-2009学年第二学期) 一、单项选择题(每空2分,共10分) 1.设事件A 和B 独立,且,5.0)(,3.0)(==B P A P 则=)(B A P Y ( ) (A)0.8 (B)0.5 (C)0.65 (D)0.95 2.设随机变量X 的密度函数为+∞<<-∞=---x e x f x x ,61 )(625102π则 E(X)=( ) (A)5 (B)3 (C)-3 (D)-5 3.设X 有分布函数),(x F 令53-=X Y ,则Y 的分布函数为( ) (A)??? ??+3531y F (B))53(+y F (C) )353(-y F (D) ?? ? ??+35y F 4.设总体n X X X ,,,21Λ是独立同分布的随机变量序列,均服从参数为1的指数分布,令∑==n i i X n X 122 1,则?→?P X 2( ) (A)1 (B)2 (C)3 (D)4 5.设总体3212 ,,),,(~X X X N X σμ是来自X 的样本,记 32114 14121X X X Z ++=,3212313131X X X Z ++=,2125253X X Z += 这三个对μ的无偏估计量中,( )最有效 (A)1Z (B)2Z (C)3Z (D)无法判断 二、填空题(每空2分,共10分) 1.一个袋子中有3个红球,2个白球,从中任取3个球,则至少取得一个白球的概率是______; 2.设), 3.0,100(~B X 由切比雪夫不等式,≥<-)10|30(|X P _______; 3.设)4 3;914,1,1(~),(-N Y X 的二维正态分布,记Y X Z 32-=,则~Z _________分布; 4.设)(~λP X ,已知1)]2)(1[(=--X X E ,则=λ__________; 5.设总体)1,0(~N X ,321,,X X X 分别是来自X 的样本,

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

同济大学_概率论与数理统计期中试卷

同济大学 09 学年 第一学期 专业 级《 概率统计 》期中试卷 考试形式:( 闭卷 ) 一、填空题(共 30 分,每空2分): 1.事件C B A ,,中至少有一个发生可表示为 ,三个事件都发生可表示为 ,都不发生可表示为 . 2.设()4.0=A P ,()3.0=B P ,()4.0=B A P ,则() =B A P . 3.一袋中有10个球,其中3个黑球,7个白球. 每次从中任取一球,直到第3次才取到黑球的概率为 ,至少取3次才能取到黑球的概率为 . 4.设随机变量X 的分布函数()??? ?? ??≥<≤<≤--<=31318 .0114 .010x x x x x F ,则X 的分布列为 . 5.进行10次独立重复射击,设X 表示命中目标的次数,若每次射击命中目标的概率都是4.0,则X 服从 分布,其数学期望为 ,方差为 . 6.设连续型随机变量()λe X ~,)0(>λ,则=k 时,{}4 12= >k X P . 7.已知随机变量()2~P X ,则102-=X Y 的数学期望=EY ,方差=DY . 8. 已知随机变量X 的概率密度函数为()?? ?>-<≤≤-=2 ,20 2225.0x x x x f ,则X 服从 分布,设随机变量 12+=X Y ,则=EY . 二、选择题(共10 分,每小题 2 分) 1.设事件B A ,互不相容,且()()0,0>>B P A P ,则有 ( ) (A )()0>A B P (B )() ()A P B A P = (C )() 0=B A P (D )()()()B P A P AB P =

【期末复习】大学概率论与数理统计期末考试试卷 答案

20**~20**学年第一学期概率论与数理统计期末考试试卷(A 卷)答案 一.(本题满分8分) 某城市有汽车100000辆,牌照编号从00000到99999.一人进城,偶然遇到一辆车,求该车牌照号中含有数字8的概率. 解: 设事件{}8汽车牌照号中含有数字=A ,所求概率为()A P .…………….2分 ()()40951.010 91155 =-=-=A P A P .…………….6分 二.(本题满分8分) 设随机事件,,满足:()()()41===C P B P A P ,()0=AB P ,()()16 1==BC P AC P .求随机事件,,都不发生的概率. 解: 由于AB ABC ?,所以由概率的非负性以及题设,得()()00=≤≤AB P ABC P ,因此有 ()0=ABC P .…………….2分 所求概率为() C B A P .注意到C B A C B A ??=,因此有…………….2分 ()()C B A P C B A P ??-=1…………….2分 ()()()()()()()ABC P BC P AC P AB P C P B P A P -+++---=1 8 3 016116104141411=-+++--- =.…………….2分 三.(本题满分8分) 某人向同一目标进行独立重复射击,每次射击时命中目标的概率均为,()10<

概率论与数理统计-朱开永--同济大学出版社习题一答案

习 题 一 1.下列随机试验各包含几个基本事件? (1)将有记号b a ,的两只球随机放入编号为Ⅰ,Ⅱ,Ⅲ 的盒子里(每个盒子可容纳两个球) 解:用乘法原理,三个盒子编号为Ⅰ,Ⅱ,Ⅲ看作不动物,。两个球看作是可动物,一个 一个地放入盒中;a 球可放入的任一个,其放法有 313=C 种,b 球也可放入三个盒子的 任一个,其放法有313=C 种,由乘法原理知:这件事共有的方法数为11339C C ?=种。 (2)观察三粒不同种子的发芽情况。 解:用乘法原理,三粒种子,每一粒种子按发芽与否是两种不同情况(方法)。三粒种子发芽共有81 21212=??C C C 种不同情况。 (3)从五人中任选两名参加某项活动。 解:从五人中任选两名参加某项活动,可不考虑任选的两人的次序, 所以此试验的基本事件个数 1025==C n 。 (4)某人参加一次考试,观察得分(按百分制定分)情况。 解:此随机试验是把从0到100 任一种分看作一个基本事件,101=∴n 。 (5)将c b a ,,三只球装入三只盒子中,使每只盒子各装一只球。 解:可用乘法原理:三只盒子视为不动物,可编号Ⅰ,Ⅱ,Ⅲ,三只球可视为可动物,一 个一个放入盒子内(按要求)。a 球可放入三个盒子中的任一个有313=C 种方法。b 球因 为试验要求每只盒子只装一个球,所以a 球放入的盒子不能再放入b 球,b 球只能放入其余(无a 球 的盒子)两个中任一个,其放法有21 2=C 个。c 只能放入剩下的空盒中,其放法只有一个。三个球任放入三个盒中保证每个盒只有一个球,完成这件事共有方法为 611213=??C C 种。 2. 事件A 表示“五件产品中至少有一件不合格品”,事件B 表示“五件产品都是合格品”,则,A B AB U 各表示什么事件?B A 、之间有什么关系? 解: 设k A =“五件中有k 件是不合格品” =B “五件都是合格品”。此随机试验E 的样 本空间可以写成:{}12345,,,,,S A A A A A B = 而 12345A A A A A A =U U U U ,A B S ∴=U φ=AB ,A 与B 是互为对立事件。 3. 随机抽验三件产品,设A 表示“三件中至少有一件是废品”,设B 表示“三件中至少有两件是废品”,C 表示“三件都是正品”,问 ,,,,A B C A B AC U 各表示什么事件?

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

《概率论与数理统计》期末考试试题及解答(DOC)

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(的概率密 度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤==- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

同济大学概率统计试卷

概率统计试卷二 一、(10分)已知随机变量X 服从参数为1的泊松分布,记事件{}2,X A =≥ {}1,X B =<求()()() ,,.P P P A B A -B B A 二、(10分)对以往数据分析结果表明,当机器运转正常时,产品的合格率为90%;而当机器发生故障时其合格率为30%,机器开动时,机器运转正常的概率为75%,试求已知某日首件产品是合格品时,机器运转正常的概率。 三、(12分)设(X ,Y )为二维离散型随机变量,X ,Y 的边缘概率函数分别为 且()01,P XY ==试求: (1)(X ,Y )的联合概率函数;(2)X ,Y 是否相互独立?为什么? (3)X ,Y 是否相关?为什么? 四、(14分)设(X ,Y )的联合密度函数为()()22,0,0,0, x y e x y f x y -+?>>?=???其余, 试求:(1)()X 1,Y 2;P <> (2)()X Y 1.P +< 五、(12分)假设一条生产流水线在一天内发生故障的概率为0.1,流水线发生故障时全天停止工作,若一周5个工作日无故障这条流水线可产生利润20万元,一周内发生一次故障时,仍可获利润6万元,发生二次或二次以上故障就要亏损2万元,求一周内这条流水线所产生利润的期望值。 六、(12分)假设生产线上组装每件成品花费的时间服从指数分布。统计资料表明:该生产线每件成品的平均组装时间10分钟。假设各件产品的组装时间相互独立。试求在15小时至20小时之间在该生产线组装完成100件成品的概率。(要用中心极限定理) 七、(16分)设()1n X ,,X 是取自总体X 的一个样本,X 服从区间[],1θ上的均匀分布, 其中1,θθ<未知,求(1)*θθ的矩估计; (2)θθ的极大似然估计; (3)试问:θ是否为θ的无偏估计?若不是,试将θ修正成θ的一个无偏估计。 八、(14分)已知某种食品的袋重(单位:千克)服从正态分布() 2N μσ,,其中

《概率统计》期末考试题(有答案)

《概率论》期末 A 卷考试题(免费) 一 填空题(每小题 2分,共20 分) 1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为( ). 2.设()0.3,()0.6P A P A B == ,则()P A B =( ). 3.设随机变量X 的分布函数为??? ? ? ????> ≤≤<=2,120,sin 0,0)(ππx x x a x x F ,则=a ( ), ()6 P X π > =( ). 4.设随机变量X 服从参数为2=λ的泊松分布,则=-)1(2 X E ( ). 5.若随机变量X 的概率密度为2 36 ()x X p x -= ,则(2)D X -=( ) 6.设Y X 与相互独立同服从区间 (1,6)上的均匀分布,=≥)3),(max(Y X P ( ). 7.设二维随机变量(X,Y )的联合分布律为 X Y 1 2 ?i p 0 a 12 1 6 1 1 3 1 b 则 ( ), ( ).a b == 8.设二维随机变量(X,Y )的联合密度函数为? ? ?>>=--其它 00,0),(2y x ae y x f y x ,则 =a ( ) 9.若随机变量X 与Y 满足关系23X Y =-,则X 与Y 的相关系数X Y ρ=( ). 10.设二维随机变量)0,4,3,2,1(~),(N Y X ,则=-)52(Y X D ( ). 二.选择题(每小题 2分,共10 分) 1.设当事件C B 和同时发生时事件A 也发生,则有( ).

) ()()(1 )()()()(1)()()()() ()()(C B P A P d C P B P A P c C P B P A P b BC P A P a =-+≤-+≥= 2.假设事件B A 和满足1)|(=B A P ,则( ). (a ) B 是必然事件 (b )0)(=-A B P (c) B A ? (d ) 0)|(=B A P 3.下列函数不是随机变量密度函数的是( ). (a )sin 0()20 x x p x π? <=( ). 1 11() 1 () () ()4 28 a b c d 三、解答题(1-6小题每题9分,7-8小题每题8分,共70分) 1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三 车间的正品率分别为0.95, 0.96, 0.98. 现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。 2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数X 的概率分布 ;(2)求X 的分布函数()F x . 3.设随机变量X 的密度函数为(1) 01()0 A x x f x -<. 4.设随机变量X 的密度函数为sin 0()20 x x f x π? <

深圳大学的概率论与数理统计试题(含答案)

期末考试试卷参考解答及评分标准 开/闭卷 闭卷 A/B 卷 A 2219002801- 课程编号 2219002811 课程名称 概率论与数理统计 _______________ 学分 J ________ 第一部分基本题 一、选择题(共6小题,每小题5分,满分30分。在每小题给出的四个选项中,只有一 个是符合题目要求的,把所选项前的字母填在题后的括号内) (每道选择题选对满分,选 错0分) 2?假设事件A 与事件B 互为对立,则事件A B( ) (A)是不可能事件 (B)是可能事件 (C) 发生的概率为1 (D)是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。 3. 已知随机变量X,Y 相互独立,且都服从标准正态分布,则 X 2 + Y 2服从( ) (A)自由度为1的2分布 (B)自由度为2的2分布 (C)自由度为1的F 分布 (D)自由度为2的F 分布 答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为 2分布。 4. 已知随机变量X,Y 相互独立,X~N(2,4),Y~N(-2,1),则( (A) X+Y~P ⑷ (B) X+Y~U(2,4) (C) X+Y~N(0,5) 答:选C ,因为相互独立的正态变量相加仍然服从正态分布, D(X+Y)=D(X)+D(Y)=4+1=5,所以有 X+Y~N(0,5)。 5. 样本(X 1,X 2,X 3)取自总体 X ,E(X)= < D(X)=-2,则有( ) 答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。 6. 随机变量 X 服从在区间(2,5)上的均匀分布,贝U X 的数学期望E(X)的值为( ) (A) 2 (B) 3 (C) 3.5 (D) 4 答:选C ,因为在(a,b)区间上的均匀分布的数学期望为(a+b)/2。 二、填空题(共6小题,每小题5分,满分30分。把答案填在题中横线上) 1. 事件表达式A B 的意思是( ) (A) 事件A 与事件B 同时发生 (C)事件B 发生但事件A 不发生 答:选D , (B) 事件A 发生但事件B 不发生 (D)事件A 与事件B 至少有一件发生 ) (D) X+Y~N(0,3) 而 E(X+Y)=E(X)+E(Y)=2-2=0, (A) X 1+X 2+X 3是」的无偏估计 Y + V + V (B) X1 X2 入3 是邛勺无偏估计 3 (C) X ;是二2 的无偏估计 (D) .宁严2 是■-2的无偏估计

北京邮电大学概率论期末考试试卷及答案

北京邮电大学概率论期末考试试卷及答案

第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于2,则B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关 系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A 与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: .

2. 设}4 B =x ≤ x ≤ A S:则 x x = x < 3 1: }, { 2: { }, ≤ = {≤< 5 0: (1)= A,(2) ?B = AB,(3)=B A, (4)B A?= ,(5)B A= 。 §1 .3 概率的定义和性质 1.已知6.0 A P ?B = P A B P,则 ( ,5.0 ( ) ) ,8.0 (= ) = (1) =) (AB P, (2)() P)= , (B A (3)) P?= . (B A 2. 已知, 3.0 P A P则 =AB ( (= ) ,7.0 ) P= . A ) (B §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。 2. 已知,2/1 A P =B A P则 = A P B | ( | ) ,3/1 ) ) ,4/1 ( (=

《概率论》期末考试试题(B卷答案)

《概率论》期末考试试题(B卷答案) 考试时间:120分钟(2005年07月) 班级姓名成绩 1.设甲、乙两人在同样条件下各生产100天,在一天中出现废品的概率分布分别如下: 求甲、乙两人生产废品的数学期望,比较甲、乙两人谁的技术高?() A甲好B乙好C一样好D无法确定 2.某厂产品的合格率为96%,合格品中一级品率为75%。从产品中任取一件为一级品的概率是多少?() A 0.72 B 0.24 C 0.03 D 0.01 3. 任一随机事件A的概率P(A)的取值在() A (0,1) B [0,1] C [-1,0] D (0,∞) 4.已知P(A)=1,P(B)=0,则() A. A为必然事件,B为不可能事件 B. A为必然事件,B不是不可能事件 C. A不必为必然事件,B为不可能事件 D. A不一定是必然事件,B不一定是不可能事件 5. 设A、B两个任意随机事件,则= A P () (B ) A. P(A)+ P(B) B. P(A)-P(B)+ P(AB) C. P(A)+ P(B)-P(AB) D. P(AB)-P(A)-P(B) 6.若已知φ A ,且已知P(A)=0,则() B = A.A与B独立 B. A与B不独立

C.不一定 D.只有当φ=A ,φ=B 时,A 、B 才独立 7.已知X ~B (n ,p ),则D (X )=( ) A.np B.p (1-p ) C.n (1-p ) D.np (1-p ) 8.设),(~2σμN X ,将X 转化为标准正态分布,转化公式Z =( ) A. 2 σ μ -x B. σ μ -x C. σ μ +x D. μ σ -x 9. 设),(~2 σμN X ,P (a ≤x ≤b )=( ) A.()()a b φφ- B.?? ? ??--??? ??-σμφσμφa b C.??? ??-+??? ??-σμφσμφa b D.?? ? ??--??? ??-σμφσμφb a 10. )1,0(~N X ,P (X ≤2)=( ) A.0.6826 B.0.9545 C.0.9973 D.0.5 二、 多项选择题(3*8=24分) 1. 设A 、B 是两个独立随机事件,则( ) A.)()()(B P A P B A P ?= B. )()|(A P B A P = C. )()|(B P A B P = D. )()()(B P A P B A P += E. )()|()(B P B A P B A P ?= 2. 离散型随机变量的概率分布具有性质( )

概率论期中考试试卷及答案

1.将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 解: 把4个球随机放入5个盒子中共有45=625种等可能结果. (1)A={4个球全在一个盒子里}共有5种等可能结果,故 P(A)=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有 30 2415=C C 种方法 4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故 12572 625360)(= =B P 2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。 解: 设x,y 分别为两船到达码头的时刻。 由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω。设A 为“两船不碰面”,则表现为阴影部分。 222024,024024,024,2111 ()24576,()2322506.522 () ()0.8793 () x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===?+?===Ω={(x,y)}, A={(x,y)或},有所以, 3.设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求: (1) 该件商品是次品的概率。 (2) 该件次品是由第一厂家生产的概率。 解: 厦门大学概统课程期中试卷 ____学院___系___年级___专业 考试时间

同济大学概率论与数理统计 复习试卷

同济大学概率论与数理统计 复习试卷 1、对于任意二个随机事件B A ,,其中1)(,0)(≠≠A P A P ,则下列选项中必定成立的是( ) (A ) ()()A B P A B P = 是B A ,独立的充分必要条件; (B) ()()A B P A B P = 是B A ,独立的充分条件非必要条件; (C) ()()A B P A B P = 是B A ,独立的必要条件非充分条件; (D) ()()A B P A B P = 是B A ,独立的既非充分条件也非必要条件. 2、 设一批产品中一、二、三等品各占60%、30%、10%,现从中随机地取出一件,结果发现取到的这件不是三等品,在此条件下取到的这件产品是一等品的概率为 ,在此条件下取到的这件产品是二等品的概率为 . 3、 对任意常数)(,,b a b a <,已知随机变量X 满足 (),()P X a P X b αβ≤=≥=. 记()b X a P p ≤<=,则下列选项中必定成立的是 ( ) (A))(1βα+-=p ; (B) )(1βα+-≥p ; (C) )(1βα+-≠p ; (D) )(1βα+-≤p . 4、 设随机变量X 的概率密度为 ???<<=其它,010,5)(4x x x f ,则使得)()(a X P a X P <=>成立的常数=a ,X Y ln 2-=的密度函数

为=)(y f Y . 5、如果22,,EY EX ∞<<∞且X 与Y 满足()(),D X Y D X Y +=-则必有 ( ) ()A X 与Y 独立; ()B X 与Y 不相关; ()()0C D Y =; ()()()0.D D X D Y = 6、 设12,,n X X X 相互独立且服从相同的分布, ∑====n i i X n X X D X E 1 111,3)(,1)(,则由切比雪夫不等式可得() ≤≥-11X P ,∑=n i i X n 121依概率收敛于 . 7、 设521,X X X 独立且服从相同的分布, ()1,0~1N X .()()2 542321X X X X X c Y +++=.当常数c = 时,Y 服从自由度为 的F 分布. 8、一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人。然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,

《概率论》期末考试试题A卷及答案

07级《概率论》期末考试试题A 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则“第一卷及第五卷出现在旁边”的概率为 10 1 。 解答:10 1 !5!321=?= p 2.设,)(,)(,)(r B A P q B P p A P =?==则=)(B A P q r - 。 解答:q r B P B A P B B A P B A P B A P -=-?=-?=-=)()()])[()()( 3.设随机变量ξ的分布列为 ,...2,1,0,3 )(===k a k X P k 则a = 3 2 . 解答:32233 111310 =?=-?== ∑ ∞ =a a a a k k 4.设随机变量为ξ与η,已知D ξ=25,D η=36,4.0,=ηξρ, 则D(ξ-η)= 37 . 解答: 37 4.065236252)(),cov() ,cov(2)(,,=???-+=-+=-= -+=-ηξηξρηξηξηξη ξηξρηξηξηξD D D D D D D D D D 5. 设随机变量ξ服从几何分布,...2,1,)(1 ===-k p q k P k ξ。则ξ的特征函数 =)(t f ξ 。 ()() .1)(:1 1 1 1it it k k it it k k itk it qe pe qe pe p q e e E t f -====∑∑∞ =--∞ =ξ ξ解 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件至多一个发生”为( ④ ). ① C B A ??. ② C B A C B A C B A ++

概率论期末考试试题A卷及答案

07级《概率论》期末考试试题 A 卷及答案 一、 填空题(满分15分): 1. 一部五卷的文集,按任意次序放到书架上,则“第一卷及第五卷出现在旁边”的概 1 o 10 — 解答: 单项选择题(满分15分): ,B 、C 为三个事件,用A 、B C 的运算关系表示“三个事件至多一个发生”为 B C . ② ABC ABC ABC ABC . ④ ABC ABC ABC ABC 率为 解答:P 1 2 3! 5! 1 10 2.设 P(A) P,P(B) q, P(A B) r,则 P(AB) 解答:P (AB ) P(A B) P[(A B) B)] P(A B) P(B) r q 3.设随机变量 的分布列为 P(X k) 3^,k 0,1,2,... 解答: 3 -a 2 4.设随机变量为 已知D =25,D =36, 0.4,则 D( - )=_37 D( )D cov(, 2cov( D( 25 36 5 6 0.4 37 5.设随机变量服从几何分布 P( k) p,k 12... o 贝u 的特征函数 (t) 解:f t E(e it ) itk k 1 e q p k 1 it pe it qe k 1 P e" 1 qe . 1.设.A 、

2.下列函数中, ( ) 可以作为连续型随机变量的分布函数 x 3.下面是几个随机变量的概率分布,其中期望不存在的为 土, k S. 0,k 0,1,2... (③)。 ①二项分布 ③均匀分布. 三、(满分20分) (1)把长度为a 的线段,任意折成三折,求此三线段能构成三角形的概 率。 解:设X 、y 分别表示其中二条线段的长度,第三条线段的长度为 (x, y)0 x a,0 y a,0 x y a , 又设 A = “三条线段能构成一个三角形” a x, y x y 2,x ①P( n k) k p k (1 P)n k ,0 p 1,k 0,1,...,n . ④.P( k) (1 p)k 1 p, 0 p 1, k 1,2, … 4.设 (, 2 )服从二维正态分布 N (a 1,a 2; 1 2 、 2 ;r),r 0是,独立的(③)。 ①充分但不必要条件 ③充分且必要条件 ②必要但不充分条件. ④.既不充分也不必要条件 5.设随机变量 1 、 2为相互独立的随机变量,下面给出的分布中不具有再生性的为 (② ②P( ③P( ②.泊松分布 ④正态分布 a (x y),则 =(x, y) x y a (x y),x a (x y) y, y a (x y) x

相关文档
相关文档 最新文档